
Harnessing Negative Signals: Reinforcement
Distillation from Teacher Data for LLM Reasoning

Shuyao Xu1,2,∗ Cheng Peng2 Jiangxuan Long2,∗ Weidi Xu2 Wei Chu2 Yuan Qi2
1National University of Singapore 2INFLY TECH (Shanghai) Co., Ltd.

shuyao@u.nus.edu, wdxu@inftech.ai

Code: https://github.com/Tim-Siu/reinforcement-distillation

Abstract

Recent advances in model distillation show that data from advanced reasoning
models can effectively train smaller student models. However, standard practices
discard incorrect reasoning examples—valuable, yet underutilized data. This
paper addresses the critical question: How can both positive and negative distilled
reasoning traces be effectively leveraged to maximize LLM reasoning performance
in an offline setting? We employ a two-stage training recipe: first, Supervised Fine-
Tuning (SFT) on positive traces, followed by a refinement stage using both positive
and negative traces. We find that a simple, reference-free loss function, which
we term the Reinforcement Distillation (REDI) objective, outperforms established
preference optimization methods like DPO and SimPO in this distillation context.
Our empirical evaluations demonstrate the effectiveness of this approach. Notably,
our Qwen-REDI-1.5B model, trained on just 131k traces from the open Open-
R1 dataset, achieves an 83.1% score on MATH-500. Its performance matches
that of DeepSeek-R1-Distill-Qwen-1.5B, a model trained on 800k proprietary
data. This result showcases the remarkable data efficiency of utilizing previously
discarded negative traces.

1 Introduction

Recent breakthroughs with large reasoning models, such as DeepSeek-R1 and OpenAI’s o1, have
demonstrated remarkable capabilities in complex reasoning tasks [DeepSeek-AI et al., 2025, OpenAI
et al., 2024]. Techniques like test-time scaling facilitate longer Chain-of-Thought (CoT) processes and
induce sophisticated reasoning behaviors, enhancing model performance in domains like mathematics.
For base models initially lacking such advanced reasoning, two primary methods are employed to
cultivate these abilities. The first, large-scale reinforcement learning (RL), directly applies RL
algorithms to the base model, continually optimizing it through online exploration [DeepSeek-AI
et al., 2025, Pan et al., 2025, Zeng et al., 2025]. However, RL approaches typically demand strong
base models to achieve their full potential and are computationally intensive [Yue et al., 2025,
DeepSeek-AI et al., 2025]. In contrast, distillation—learning from reasoning traces (e.g., CoT)
generated by large "teacher" models—emerges as an attractive alternative for smaller, more efficient
student models. This approach offers a practical and cost-effective pathway to extend their reasoning
capabilities [Team, 2025, DeepSeek-AI et al., 2025]. Benefiting from open datasets distilled from
powerful reasoning models like DeepSeek-R1 [Team, 2025, Labs, 2025, Face, 2025], openly post-
trained models have shown strong performance [Team, 2025, Ye et al., 2025, Muennighoff et al., 2025,
Wen et al., 2025], although a performance gap remains compared to their closed-data counterparts.

∗Work done during an internship at INF AI (INFLY TECH (Shanghai) Co., Ltd).

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

https://github.com/Tim-Siu/reinforcement-distillation

Teacher Distilled
Student

Teacher Stronger
Student

Correct
Traces (+)

Incorrect
Traces (-)

Not
Utilized

Correct
Traces (+)

Incorrect
Traces (-)

Reinforcement
with REDI

Distilled
Student

Standard Practices:
Rejection Sampling

Ours:
Reinforcement Distillation (REDI)

Figure 1: Standard distillation practices via Rejection Sampling vs. our proposed Reinforcement
Distillation (REDI). Our REDI recipe can utilize previously discarded incorrect reasoning traces generated by
the teacher and yield stronger distilled models.

Table 1: Model Performance Comparison (pass@1 over 16 samples) across reasoning benchmarks. Our
Qwen-REDI-1.5B, trained with the REDI recipe on just 131k open data points, achieves the highest average
score. This performance surpasses DeepSeek-R1-Distill-Qwen-1.5B (trained on 800k proprietary data)
[DeepSeek-AI et al., 2025], demonstrating REDI’s remarkable data efficiency. REDI enhances reasoning by
effectively utilizing both positive and negative distilled examples. Values in bold indicate the best performance
in each column. *Officially reported pass@1 results.

Model MATH-500 AIME24 AMC23 Minerva OlympiadBench Avg.

Qwen2.5-Math-1.5B-Instruct* 75.8 10.0 60.0 29.4 38.1 42.7
DeepSeek-R1-Distill-Qwen-1.5B 83.2 ±0.2 28.3 ±1.0 62.1 ±0.8 26.0 ±0.4 43.1 ±0.3 48.6 ±0.3

Qwen-SFT-1.5B-5ep (SFT Baseline) 80.4 ±0.3 21.9 ±1.1 57.5 ±0.6 27.5 ±0.4 41.5 ±0.3 45.8 ±0.3

Qwen-REDI-1.5B 83.1 ±0.3 28.1 ±1.1 62.4 ±0.6 28.8 ±0.3 45.2 ±0.2 49.5 ±0.3

However, current distillation methodologies predominantly rely on rejection sampling, which involves
leveraging only positive2 reasoning examples—those whose final answers are verified. This practice
means that negative examples, despite the significant computational effort invested in their generation,
are typically underutilized. We hypothesize that these negative traces contain vital insights into
common pitfalls and nuanced errors from which smaller models could learn, thereby further unlocking
the potential of open distilled data. This leads to the central research question we address:

How can we effectively leverage both positive and negative distilled reasoning traces to maximize
LLM reasoning performance with a fixed distilled open dataset?

To address this challenge, we first investigate the application of established preference optimization
methods, such as Direct Preference Optimization (DPO) [Rafailov et al., 2024] and SimPO [Meng
et al., 2024], to this offline distillation setting. Our analysis reveals a critical performance-stability
trade-off: while the Kullback-Leibler (KL) divergence penalty β is essential for stable training, it
simultaneously constrains the model’s peak achievable performance3. This discovery motivated a
deeper analysis, where we found that in the β → 0 limit, these complex objectives converge to a
simpler, reference-free, REINFORCE-style objective. This insight forms the basis of our approach.
We propose Reinforcement Distillation (REDI), which adopts this powerful but potentially unstable
objective and introduces a asymmetric weighting scheme. By down-weighting the gradient from
negative traces, REDI restores training stability without sacrificing the performance benefits, offering
a simple and effective method for learning from both positive and negative signals.

Our key contributions are:

1. We provide the first systematic study on the utilization of both correct and incorrect distilled
reasoning traces. We identify and analyze a performance-stability trade-off inherent in the
KL regularization of methods like DPO, demonstrating that it limits peak performance in this
practical setting.

2. Motivated by this analysis, we propose the Reinforcement Distillation (REDI) objective, a
simple, asymmetrically weighted, and REINFORCE-style loss function. REDI is designed
to capture the high-performance potential of the β → 0 limit of DPO while mitigating the
associated training instability, providing a more effective, efficient, and easier-to-tune alternative.

2We use "positive" interchangeably with "correct", and "negative" interchangeably with "incorrect".
3Performance refers to the test-time accuracy of the best checkpoint in a training run.

2

3. We empirically demonstrate that our two-stage recipe of SFT combined with REDI training
consistently outperforms both Rejection Sampling SFT and SFT combined with DPO/SimPO.
Our Qwen-REDI-1.5B model achieves performance comparable to models trained on much
larger proprietary datasets, showcasing the data efficiency of our method.

The remainder of this paper is organized as follows: Section 2 details the Reinforcement Distillation
methodology and the REDI objective. Section 3 describes the experimental setup. Section 4 presents
our results and analysis. Section 5 discusses related work, and Section 6 concludes the paper.

2 Methodology: Reinforcement Distillation (REDI)

2.1 Problem Setting and Data

We operate in an offline distillation setting with a fixed dataset collected via a common distillation
pipeline. The dataset originates from a set of problems, each denoted by x. For each problem x,
a capable "teacher" model is employed to generate reasoning traces. The generation process for a
specific problem x continues until a correct reasoning trace, yw, is successfully produced. During
these attempts, incorrect traces, yl, might also be generated before yw is obtained.

From these generated traces, we construct two distinct datasets for our two-stage training recipe:

1. Positive Traces Dataset (DSFT): This dataset comprises all pairs (x, yw), where yw is a correct
reasoning trace generated by the teacher for problem x.

2. Preference Pairs Dataset (DPref): This dataset is constructed from the subset of problems x
for which at least one incorrect trace was generated before the correct trace yw was obtained.
For each such problem x, we form a preference tuple (x, yw, yl) by pairing its correct trace yw
with one selected incorrect trace yl generated for the same problem. This selection strategy is
adopted for simplicity and aligns with observations from datasets like Open-R1 [Face, 2025],
where most problems that have negative examples feature only one such instance.

Our overall objective is to train a student LLM, πθ, to maximize its reasoning performance by
effectively leveraging all information within the pre-collected DSFT and DPref datasets.

2.2 The Reinforcement Distillation (REDI) Recipe

2.2.1 Stage 1: Supervised Fine-Tuning (SFT) on Positive Traces

The first stage involves standard Supervised Fine-Tuning (SFT) of the base LLM on the DSFT dataset,
which contains only positive (correct) reasoning traces (x, yw). The SFT objective is to maximize the
likelihood of generating the correct trace yw given the problem x:

LSFT(θ) = − E
(x,yw)∼DSFT

[log πθ(yw|x)] . (1)

This initial SFT stage serves several key purposes. Primarily, it adapts the base model to the specific
style and format of the reasoning traces. Furthermore, it provides a strong initial policy, denoted
as πSFT, which can subsequently serve as a reference for methods like DPO or as the starting point
for our REDI objective in the second stage. Finally, this stage establishes a baseline performance
comparable to traditional SFT-only pipelines (i.e., training solely on positive examples), allowing us
to quantify the gains achieved by later incorporating negative examples.

2.2.2 Stage 2: Reinforcement with Positive and Negative Traces

The second stage aims to further refine the model obtained from Stage 1 by leveraging the negative
signals encoded in DPref, which contains pairs of positive (yw) and negative (yl) traces for the same
problem x.

Preliminary study. To contextualize our REDI objective, we first briefly review established prefer-
ence optimization methods such as DPO [Rafailov et al., 2024] and SimPO [Meng et al., 2024].

3

DPO optimizes the policy πθ to align with human or model preferences while regularizing its
deviation from a reference policy πref (typically πSFT from Stage 1). Its loss function is:

LDPO(θ;πref) = − E
(x,yw,yl)∼DPref

[
log σ

(
β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

))]
, (2)

where σ(·) is the sigmoid function. The hyperparameter β controls the strength of an implicit KL
divergence penalty against πref, where larger β values imply stronger regularization.

SimPO offers a reference-free alternative that incorporates sequence length normalization and an
explicit margin γ:

LSimPO(θ) = − E
(x,yw,yl)∼DPref

[
log σ

(
β

(
log πθ(yw|x)

|yw|
− log πθ(yl|x)

|yl|

)
− γ

)]
. (3)

Here, |y| denotes the length (e.g., number of tokens) of sequence y. Similarly, in SimPO, higher
values of β act as a regularizer, leading to more stable training.

As empirically demonstrated in Section 4.2, while stronger regularization (e.g., higher β in DPO or
SimPO) can enhance training stability and permit larger gradient steps, it often results in lower peak
model performance.

Towards a regularization-free objective. The observed trade-off between performance and stabil-
ity associated with β in methods like DPO and SimPO motivates exploring objectives that minimize
or eliminate such explicit regularization. As detailed in Appendix B, considering the β → 0 limit of
preference optimization objectives like SimPO yields the following simplified, regularization-free
and REINFORCE-style [Williams, 1992] loss function (to be minimized):

Lsymm(θ) = E
(x,yw,yl)∼DPref

(
− log πθ(yw|x)

|yw|
+

log πθ(yl|x)
|yl|

)
. (4)

As empirically demonstrated in Section 4.3, this symmetric, reference-free objective (Eq. (4)) can
achieve performance comparable to meticulously tuned DPO or SimPO, offering reduced hyper-
parameter tuning. Nevertheless, the tension between performance and stability persists: careful
learning rate tuning remains crucial, as larger learning rates, while potentially accelerating learning
and improving transient performance, often lead to early training collapse.

The REDI objective: asymmetric weighting for stability and performance. During experiments
with DPO, SimPO, and the symmetric objective Lsymm (Section 4), we observed frequent early training
collapses when learning rates were inadequately tuned. Collapse manifests as a rapid decrease in the
likelihood of both positive (yw) and negative (yl) responses, accompanied by declining task accuracy.
Recent studies attribute this instability to unintended side effects of off-policy gradients [Yan et al.,
2025b, Razin et al., 2025, Ren and Sutherland, 2025]. Specifically, gradient updates penalizing
negative responses may inadvertently suppress semantically similar positive responses, leading to
degenerate solutions. Heuristic mitigations include auxiliary SFT losses or asymmetric β tuning
[Pang et al., 2024, Yan et al., 2025b].

Inspired by these insights, we propose asymmetric weighting for the simplified objective (Eq. (4)).
By down-weighting gradients from negative traces, we preserve stability while maximizing peak
performance.

The REDI objective, central to the second stage of our recipe, refines the model using an asymmetri-
cally weighted, REINFORCE-style loss. The REDI loss to be minimized is defined as:

LREDI(θ) = E
(x,yw,yl)∼DPref

[
− log πθ(yw|x)

|yw|
+ α · log πθ(yl|x)

|yl|

]
, (5)

where α ∈ [0, 1] controls the penalty strength for negative traces:

• α = 0: Reduces to SFT on positive traces (ignores negatives).
• α = 1: Recovers the symmetric objective (Eq. (4)).

The REDI objective, when optimized using gradient descent with an appropriate learning rate
schedule (such as the one in Section 3), is amenable to standard convergence analysis. Under typical

4

L-smoothness assumptions for the loss function, this optimization process is guaranteed to converge
to a stationary point. Further details and a formal proof are provided in Appendix A. The asymmetric
weighting (α < 1) moderates gradient contributions from positive and negative samples, preventing
collapse while maintaining aggressive learning dynamics.

3 Experimental Setup

3.1 Data Curation

Following the data pipeline described in Section 2.1, we derived two datasets from the OpenR1-
Math-Raw corpus [Face, 2025]; the cn_k12 subset was excluded due to its lower relative difficulty.
The OpenR1-Math-Raw corpus provides two labels for correctness: one from the Llama judge and
one from Math-Verify [Kydlíček]. A response was considered correct if both labels were "True";
otherwise, it was considered incorrect. More details are discussed in Appendix C.2.

The two datasets were constructed as follows:

• Positive Traces Dataset (DSFT): This dataset contains 78k problem-solution pairs (x, yw), where
yw represents a correct reasoning trace. It was used for SFT in Stage 1.

• Preference Pairs Dataset (DPref): This dataset consists of 53k triplets (x, yw, yl), where yw is a
correct trace and yl is an incorrect trace for the same problem x. It was utilized in Stage 2.

3.2 Training Configuration

Stage 1 Configuration: In the first stage, we establish strong SFT baselines by fine-tuning the base
Qwen2.5-Math-1.5B model on the DSFT dataset. Two SFT baselines were prepared:

• Qwen-SFT-1.5B-3ep: This model was trained for 3 epochs on DSFT. It served as the initial
checkpoint for our comparative studies involving DPO, SimPO, and various REDI configurations.

• Qwen-SFT-1.5B-5ep: Observing continued SFT performance improvement beyond 3 epochs
(as shown in Section 4.1), this model was trained for 5 epochs on DSFT. This stronger SFT variant
was used as the starting point for training our final Qwen-REDI-1.5B model.

For this SFT stage, all models were trained using the AdamW optimizer [Loshchilov and Hutter,
2019] with a batch size of 128. The learning rate schedule featured a linear warmup for the initial
10% of total training steps, followed by a linear decay to zero.

Stage 2 Configuration: The second stage involves further refining the SFT-tuned models using
the DPref dataset, which contains preference pairs (x, yw, yl). We applied the DPO, SimPO, and our
proposed REDI objectives to the SFT checkpoints from Stage 1. All preference tuning methods were
trained for 1 epoch over the DPref dataset. Similar to Stage 1, the AdamW optimizer and the same
learning rate schedule (10% warmup, then linear decay) were used. The batch size for this stage
was 32. Specific hyperparameter settings for DPO (e.g., β values, learning rates), SimPO (e.g., β, γ
values, learning rates), and REDI (e.g., α values, learning rates) were carefully tuned, with detailed
ranges and chosen values provided in Appendix C.4.

3.3 Evaluation Protocol

During all evaluations, generated samples were decoded using a temperature of 0.6, Top P sampling
with p = 0.95, and a maximum generation length of 32, 768 tokens.

Protocols: We utilized two distinct configurations for evaluating model performance:

• Intermediate Evaluations: These evaluations, used for hyperparameter tuning, performance
plotting, and ablation studies, were conducted using LightEval [Habib et al., 2023] on the MATH-
500 benchmark [Lightman et al., 2023]. Performance was measured as pass@1, averaged over 4
generated samples per problem.

• Final Model Evaluations: These evaluations, presented in comparison tables (e.g., Table 1),
were performed using the DeepScaleR/rllm [Luo et al., 2025] codebase on the mathematics
benchmarks MATH-500, AIME24, AMC23, Minerva and out-of-distribution STEM benchmark

5

OlympiadBench [Lewkowycz et al., 2022, He et al., 2024]. Performance was measured as
pass@1 (averaged over 16 generated samples) per problem for Tables 1 and 2, and pass@16 for
discussions in Section 4.7.

4 Results and Analysis

4.1 Performance Limits of SFT-Only Training

0 1 2 3 4 5
Epoch

60

65

70

75

80

85

M
AT

H
-5

00
 A

cc
ur

ac
y

(%
) MATH-500 Accuracy vs. Epoch

Qwen-SFT-1.5B-3ep
Qwen-SFT-1.5B-5ep

Figure 2: SFT MATH-500 accu-
racy vs. training epochs.

We first establish the performance achievable using only positive
distilled data via Supervised Fine-Tuning (SFT). As illustrated by
Figure 2, performance increases for approximately 5 epochs before
eventually plateauing. This observation highlights the limitations
of learning solely from positive traces and motivates the utilization
of negative signals.

4.2 Performance-Stability Tradeoff in DPO

0 500 1000 1500
Step

65

70

75

80

85

M
AT

H
-5

00
 A

cc
ur

ac
y

(%
)

MATH-500 Accuracy vs. Step

0 500 1000 1500
Step

1.4

1.2

1.0

0.8

0.6

0.4

C
ho

se
n

Lo
gP

S

Chosen LogPS vs. Step

0 500 1000 1500
Step

1.4

1.2

1.0

0.8

0.6

0.4

R
ej

ec
te

d
Lo

gP
S

Rejected LogPS vs. Step

0 500 1000 1500
Step

1

2

3

4

5

6

G
ra

di
en

t S
te

p
Si

ze

1e 6Gradient Step Size vs. Step

(=0.001, LR=1e-6) (=0.01, LR=1e-7) (=0.1, LR=1e-8)

Figure 3: DPO training dynamics with respect to β, when initial gradient step sizes are controlled to be
similar. LogPS visualizes the average per-token log probability of the model generating the chosen or rejected
response. Gradient Step Size refers to the norm of the parameter update.

DPO dynamics with varying β and similar initial gradient step sizes. Figure 3 illustrates DPO
training dynamics for three configurations: (β = 0.001,LR = 1×10−6), (β = 0.01,LR = 1×10−7),
and (β = 0.1,LR = 1× 10−8). The learning rates were selected such that the initial gradient step
sizes were comparable across these runs, as indicated in the "Gradient Step Size vs. Step" subplot.
The subsequent dynamics revealed a trade-off:

• The lowest β setting (0.001) achieved the highest peak accuracy (approximately 80.9% on
MATH-500) but subsequently experienced training collapse. This collapse in accuracy was
accompanied by a sharp drop in chosen and rejected LogPS and a surge in gradient step size.

• Higher β values (0.01, 0.1) maintained stability throughout training but achieved lower peak
accuracies (approximately 80.3% and 78.3%, respectively).

This exploration suggests that when initial gradient step sizes are matched, stronger KL regularization
(higher β) yields more stable training, but performance can be constrained.

Optimizing learning rates for different β values. To further investigate whether the performance
ceiling observed with higher β values is an inherent limitation, we conducted learning rate (LR)
sweeps for fixed β values of 0.001 and 0.01 (Figure 4). This allows for a fairer comparison, as
stronger regularization (higher β) can often accommodate larger gradient steps.

• For β = 0.001, an LR of 2 × 10−7 yielded the best peak performance at step 1000, reaching
approximately 82.3% on MATH-500.

• For β = 0.01, an LR of 2 × 10−7 achieved the best peak for this β value at step 1600, at
approximately 81.2%.

Comparing the best-tuned runs from Figure 4, the configuration with the lower β = 0.001 still
achieved a significantly higher peak accuracy.

6

0 250 500 750 1000 1250 1500
Step

70

72

74

76

78

80

82

84

M
AT

H
-5

00
 A

cc
ur

ac
y

(%
)

DPO LR Sweep (=0.001)

=0.001
LR=1e-7
LR=2e-7 (Best Peak)
LR=5e-7
LR=1e-6

0 250 500 750 1000 1250 1500
Step

DPO LR Sweep (=0.01)

=0.01
LR=1e-7
LR=2e-7 (Best Peak)
LR=5e-7
LR=1e-6

Figure 4: DPO MATH-500 accuracy with learning rate sweeps for β = 0.001 and β = 0.01.

Observation: Stability and Peak Performance Trade-off in DPO with KL Regularization

DPO’s β parameter, which controls KL regularization, presents a critical trade-off. Higher β
values enhance training stability, often allowing for more aggressive learning rates and more
stable training steps. However, our experiments suggest that even with tuned LRs, higher β may
restrict peak performance. Conversely, lower β values can yield higher peak performance,
although they may require more careful tuning to avoid instability..

0 500 1000 1500
Step

65

70

75

80

85

M
AT

H
-5

00
 A

cc
ur

ac
y

(%
)

MATH-500 Accuracy vs. Step

0 500 1000 1500
Step

2.0

1.5

1.0

0.5

C
ho

se
n

Lo
gP

S

Chosen LogPS vs. Step

0 500 1000 1500
Step

2.0

1.5

1.0

0.5

R
ej

ec
te

d
Lo

gP
S

Rejected LogPS vs. Step

0 500 1000 1500
Step

0

2

4

6

8

G
ra

di
en

t U
pd

at
e

Si
ze

1e 6
Gradient Update Size vs. Step

(=2, =1, LR=5e-7) (=10, =5, LR=3e-7)

Figure 5: SimPO training dynamics.

Similar performance-stability tradeoff observed for SimPO. Preliminary experiments were also
conducted with SimPO (Figure 5). We found that with a fixed γ/β ratio (0.5 in our tests), higher β
values correspond to stronger regularization effects. We experimented with (β = 2, γ = 1,LR =
5× 10−7) and (β = 10, γ = 5,LR = 3× 10−7). The β = 10 run had a larger initial gradient update
size and demonstrated greater stability (i.e., it "collapsed" later than the β = 2 run). However, its
peak performance on MATH-500 was slightly lower than that of the β = 2 run before its collapse.
This reinforces the observation of a trade-off between stability and attainable peak performance.

4.3 REDI: Achieving Stability and Performance with Asymmetric Weighting

Our REDI method directly optimizes log-likelihoods without KL regularization against a reference
model, relying instead on asymmetric weighting to manage stability.

0 500 1000 1500
Step

65

70

75

80

85

M
AT

H
-5

00
 A

cc
ur

ac
y

(%
)

MATH-500 Accuracy vs. Step

0 500 1000 1500
Step

3.5

3.0

2.5

2.0

1.5

1.0

0.5

C
ho

se
n

Lo
gP

S

Chosen LogPS vs. Step

0 500 1000 1500
Step

3

2

1

R
ej

ec
te

d
Lo

gP
S

Rejected LogPS vs. Step

0 500 1000 1500
Step

0.0

0.5

1.0

1.5

2.0

G
ra

di
en

t U
pd

at
e

Si
ze

1e 6
Gradient Update Size vs. Step

(=0.8, LR=1e-6) (=1.0, LR=1e-7) (=1.0, LR=2e-7) (=1.0, LR=1e-6)

Figure 6: Comparison of Symmetric REDI (α = 1.0) and Asymmetric REDI (α = 0.8).

Symmetric REDI (α = 1.0). Figure 6 shows that the Symmetric REDI objective exhibits
dynamics similar to DPO with low β. A high LR (1 × 10−6) leads to rapid learning (peaking

7

around 80.8% MATH-500 accuracy) but then collapses, evidenced by sharp drops in chosen and
rejected LogPS, as well as accuracy. However, reducing the learning rate significantly improves
training stability. The ablation table (Table 2) further shows that a more stable symmetric REDI
run (α = 1.0,LR = 2× 10−7) achieves 81.7% on MATH-500, comparable to the best-tuned DPO
result (81.3%). This suggests that a simpler, REINFORCE-style and regularization-free objective can
indeed match DPO’s performance when its LR is carefully tuned. Nevertheless, the trade-off between
performance and stability persists. For instance, the stable LR = 1×10−7 run, while avoiding LogPS
collapse, achieves a lower peak accuracy than the unstable LR = 2 × 10−7 run. This trade-off is
particularly evident if we focus on the first 200 steps, where the least stable run with LR = 1× 10−6

achieves the highest accuracy (learns the fastest) before collapsing.

Asymmetric weighting (α < 1.0) is key for REDI. Figure 6 (yellow solid line) demonstrates that
REDI with α = 0.8 and a high LR of 1× 10−6 achieves rapid learning, comparable to the symmetric
α = 1.0 high-LR run, but crucially, it avoids the training collapse observed in the symmetric case. It
reaches a high peak performance and maintains it. The chosen and rejected LogPS do not suffer from
collapse, and the gradient update size remains controlled.

Insight: Asymmetric weighting of positive and negative gradients improves stability and
leads to higher peak performance

Asymmetric weighting in the REDI objective (specifically, α < 1.0, with α = 0.8 proving
effective in our experiments) greatly impacts the training dynamics. In our experiments, it
improves training stability and allows the use of more aggressive learning rates, which leads to
faster learning and higher peak performance.

4.4 Tuning the Asymmetric Weighting Factor α in REDI

We studied α ∈ {0.2, 0.5, 0.8} and found that α = 0.8 provided the best balance for achieving strong
test-time performance while maintaining stability. Lowering α further (e.g., to 0.5 or 0.2) lower the
impact of negative gradients and tended to degrade peak performance. This is intuitive, as lower α
values make the objective more similar to SFT on positive examples only, which we have shown
to plateau earlier. We advocate setting α to a value like 0.8, which is close to 1.0, to benefit from
enhanced stability without a significant sacrifice in peak performance. Refer to Appendix D.1 for
detailed ablation on α.

4.5 Summary of Ablation and Final Model Performance

Comparative analysis of REDI against established objectives. Table 2 summarizes the optimal
outcomes from our ablation studies across key reasoning benchmarks (pass@1 over 16 samples), with
all configurations initialized from the Qwen-SFT-1.5B-3ep model. Our REDI objective (α = 0.8,
LR = 1×10−6) consistently surpasses the SFT baseline and optimized DPO, SimPO, and symmetric
REDI configurations across all metrics, achieving a benchmark average of 48.3%.

Table 2: Ablation Study: Model Performance Comparison (pass@1, 16 samples). SEM reported. We chose the
best checkpoint for each configuration.

Model Configuration MATH-500 AIME24 AMC23 Minerva OlympiadBench Avg.

Qwen-SFT-1.5B-3ep (Start) 76.7 ±0.3 18.1 ±1.1 52.8 ±0.6 24.6 ±0.5 37.5 ±0.3 41.9 ±0.3

DPO (β = 0.001,LR = 2e− 7) 81.3 ±0.2 24.6 ±1.7 58.5 ±0.6 28.7 ±0.4 43.1 ±0.3 47.2 ±0.4

SimPO (β = 2, γ = 1,LR = 5e− 7) 81.1 ±0.3 24.8 ±1.9 58.8 ±0.6 29.1 ±0.2 42.2 ±0.3 47.2 ±0.4

Symmetric REDI (α = 1.0,LR = 2e− 7) 81.7 ±0.2 25.8 ±1.3 59.5 ±1.1 29.3 ±0.4 42.1 ±0.2 47.7 ±0.4

REDI (α = 0.8,LR = 1e− 6) 81.7 ±0.2 27.3 ±1.4 58.8 ±0.8 30.4 ±0.5 43.4 ±0.3 48.3 ±0.3

Advancing data efficiency. When REDI stage 2 training is applied to the stronger
Qwen-SFT-1.5B-5ep baseline, our final Qwen-REDI-1.5B model attains strong results as shown
in Table 1. Remarkably, Qwen-REDI-1.5B—post-trained on merely 131k openly available traces—
outperforms DeepSeek-R1-Distill-Qwen-1.5B (trained on 800k proprietary samples). This
underscores the exceptional data efficiency of our Reinforcement Distillation framework, achieved
through systematic utilization of previously discarded negative traces.

8

4.6 REDI is Robust and Generalizes Well

To assess REDI’s broader applicability, we applied it to Llama-3.2-3B and Qwen2.5-Math-7B, ob-
serving consistent gains over SFT baselines, demonstrating that learning from distilled negative traces
is helpful for wider range of models. We also evaluated Qwen-REDI-1.5B on out-of-domain tasks
(GPQA for scientific reasoning, HumanEval for code generation), finding substantial improvements
despite training only on mathematical data. These results suggest REDI cultivates generalizable
reasoning capabilities. Details are in Appendix D.2.

4.7 REDI Preserves Potential for Future Online RL

We examined whether REDI’s performance gains come at the cost of solution diversity by analyzing
pass@16 scores. As shown in Appendix D.3 (Tables 6, 7), REDI maintains or improves pass@16
while enhancing pass@1, suggesting it broadens rather than narrows the model’s capabilities, keeping
models well-suited for subsequent online RL.

5 Related Work

Eliciting reasoning in LLMs. Large reasoning models demonstrate strong step-by-step problem
solving when trained with online reinforcement learning (RL) and verifiable rewards, as in DeepSeek-
R1 and follow-ups [DeepSeek-AI et al., 2025, Pan et al., 2025, Zeng et al., 2025, Yue et al., 2025].
Recent work further shows that RL can be effective even without dense external rewards, relying
on internal objectives, self-generated signals, or extremely sparse supervision [Zhang et al., 2025a,
Wang et al., 2025, Zhao et al., 2025]. In parallel, distillation from powerful teachers provides a
compute-efficient path for smaller students by learning from teacher CoT traces [Team, 2025, Face,
2025, Labs, 2025, Ye et al., 2025, Muennighoff et al., 2025, Wen et al., 2025]. Our work lies in this
offline distillation line, but departs from the common rejection-sampling practice by leveraging both
correct and incorrect traces.

Bridging Online Reinforcement Learning with Distillation. A recent thread explores using
teacher/expert guidance during RL to go beyond purely on-policy rollouts. LUFFY mixes off-policy
demonstrations with on-policy GRPO to improve reasoning and generalization [Yan et al., 2025a].
TAPO injects high-level "thought patterns" as external guidance to augment exploration [Wu et al.,
2025]. CHORD dynamically harmonizes SFT-style expert supervision with on-policy RL via global
and token-wise weighting [Zhang et al., 2025b]. These works are concurrent with ours and target
online RL with teacher guidance. In contrast, REDI is fully offline: it consumes only pre-collected
teacher traces and attains strong data efficiency by systematically utilizing off-policy negatives traces,
without any on-policy rollouts.

Learning dynamics of LLM post-training. Instabilities in preference/RL post-training (e.g.,
DPO-style objectives) have been traced to negative gradient side-effects, especially when off-policy
and offline, motivating auxiliary stabilizers [Yan et al., 2025b, Razin et al., 2025, Ren and Sutherland,
2025, Pang et al., 2024, Zhang et al.]. Concurrent to our research, Zhu et al. report that negative
gradients are uniquely beneficial for improving reasoning in online RLVR, yet they also note that
using negative gradients alone is highly unstable—making the relative weighting between positive
and negative gradients crucial [Zhu et al., 2025]. We study a fully offline distillation regime, which
is especially sensitive to off-policy instability, and find that moderately downweighting negative
gradients yields stable training while preserving the performance boost from utilizing learning signals
from negative data.

6 Conclusion

In this work, we addressed the underutilization of negative reasoning traces in model distillation. We
introduced a two-stage training recipe that first adapts a model to correct reasoning via Supervised
Fine-Tuning, then refines its capabilities by learning from both positive and negative distilled traces.
A key finding is that within this second stage, a simple, asymmetrically weighted objective we term
REDI is more effective and stable than established preference optimization methods. The success of
our recipe is empirically validated: our Qwen-REDI-1.5B model, trained with this method on only
131k open traces, rivals a model trained on 800k proprietary data, demonstrating the powerful data
efficiency of our approach and the benefits of harnessing negative signals.

9

References
DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,

Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Lighteval:
A lightweight framework for llm evaluation, 2023. URL https://github.com/huggingface/
lighteval.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench: A
challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
3828–3850, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.211. URL https://aclanthology.org/2024.acl-long.211/.

Hynek Kydlíček. Math-Verify: Math Verification Library. URL https://github.com/
huggingface/math-verify.

Bespoke Labs. Bespoke-stratos: The unreasonable effectiveness of reasoning distil-
lation. https://www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-
reasoning-distillation, 2025. Accessed: 2025-01-22.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam

10

https://arxiv.org/abs/2501.12948
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://zenodo.org/records/12608602
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://aclanthology.org/2024.acl-long.211/
https://github.com/huggingface/math-verify
https://github.com/huggingface/math-verify

Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language
models, 2022. URL https://arxiv.org/abs/2206.14858.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl, 2025. Notion Blog.

Yu Meng, Mengzhou Xia, and Danqi Chen. SimPO: Simple preference optimization with a reference-
free reward. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=3Tzcot1LKb.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi,
Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David
Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong,
Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin,
Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian
O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin
Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus,
Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk,
Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko
Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz,
Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe,
Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang,
Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowd-
hury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg
Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias,
Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny
Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi
Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago
Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani
Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir
Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted
Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng,
Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie

11

https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://openreview.net/forum?id=3Tzcot1LKb
https://arxiv.org/abs/2501.19393

Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou,
Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai,
Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li. Openai o1 system card,
2024. URL https://arxiv.org/abs/2412.16720.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

Richard Yuanzhe Pang, Weizhe Yuan, He He, Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason E
Weston. Iterative reasoning preference optimization. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=
4XIKfvNYvx.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL
https://arxiv.org/abs/2305.18290.

Noam Razin, Sadhika Malladi, Adithya Bhaskar, Danqi Chen, Sanjeev Arora, and Boris Hanin.
Unintentional unalignment: Likelihood displacement in direct preference optimization. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=uaMSBJDnRv.

Yi Ren and Danica J. Sutherland. Learning dynamics of LLM finetuning. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=tPNHOoZFl9.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

OpenThoughts Team. Open Thoughts. https://open-thoughts.ai, January 2025.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
Shen. Reinforcement learning for reasoning in large language models with one training example.
arXiv preprint arXiv:2504.20571, 2025. URL https://arxiv.org/abs/2504.20571.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
Tang, Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, and Xiangzheng Zhang.
Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond, 2025. URL https:
//arxiv.org/abs/2503.10460.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Jinyang Wu, Chonghua Liao, Mingkuan Feng, Shuai Zhang, Zhengqi Wen, Pengpeng Shao, Huazhe
Xu, and Jianhua Tao. Thought-augmented policy optimization: Bridging external guidance and
internal capabilities. arXiv preprint arXiv:2505.15692, 2025. doi: 10.48550/arXiv.2505.15692.
URL https://arxiv.org/abs/2505.15692.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance. arXiv preprint arXiv:2504.14945, 2025a. doi:
10.48550/arXiv.2504.14945. URL https://arxiv.org/abs/2504.14945.

Yuzi Yan, Yibo Miao, Jialian Li, Yipin Zhang, Jian Xie, Zhijie Deng, and Dong Yan. 3d-properties:
Identifying challenges in dpo and charting a path forward, 2025b. URL https://arxiv.org/
abs/2406.07327.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning, 2025. URL https://arxiv.org/abs/2502.03387.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang.
Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model?
arXiv preprint arXiv:2504.13837, 2025.

12

https://arxiv.org/abs/2412.16720
https://openreview.net/forum?id=4XIKfvNYvx
https://openreview.net/forum?id=4XIKfvNYvx
https://arxiv.org/abs/2305.18290
https://openreview.net/forum?id=uaMSBJDnRv
https://openreview.net/forum?id=uaMSBJDnRv
https://openreview.net/forum?id=tPNHOoZFl9
https://openreview.net/forum?id=tPNHOoZFl9
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2503.10460
https://arxiv.org/abs/2503.10460
https://arxiv.org/abs/2505.15692
https://arxiv.org/abs/2504.14945
https://arxiv.org/abs/2406.07327
https://arxiv.org/abs/2406.07327
https://arxiv.org/abs/2502.03387

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
URL https://arxiv.org/abs/2503.18892.

Hanning Zhang, Jiarui Yao, Chenlu Ye, Wei Xiong, and Tong Zhang. Online-dpo-r1: Unlocking
effective reasoning without the ppo overhead, 2025. Notion Blog.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Fully unsupervised
llm reasoning incentivization. arXiv preprint arXiv:2504.05812v1, 2025a. URL https://arxiv.
org/abs/2504.05812v1.

Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding,
and Jingren Zhou. On-policy rl meets off-policy experts: Harmonizing supervised fine-tuning and
reinforcement learning via dynamic weighting. arXiv preprint arXiv:2508.11408, 2025b. doi:
10.48550/arXiv.2508.11408. URL https://arxiv.org/abs/2508.11408.

Ao Zhao et al. Absolute zero: Reinforced self-play reasoning with zero data. arXiv preprint
arXiv:2505.03335, 2025. URL https://arxiv.org/abs/2505.03335.

Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surprising
effectiveness of negative reinforcement in llm reasoning. arXiv preprint arXiv:2506.01347, 2025.
doi: 10.48550/arXiv.2506.01347. URL https://arxiv.org/abs/2506.01347.

13

https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2504.05812v1
https://arxiv.org/abs/2504.05812v1
https://arxiv.org/abs/2508.11408
https://arxiv.org/abs/2505.03335
https://arxiv.org/abs/2506.01347

A Convergence Guarantee

Definition A.1 (REDI Loss). Let πθ be the target policy model, which is parametrized by θ ∈ Rd.
Let yw be the preferred data and yl be the not preferred data. Let N be the number of data pairs, i.e.,
the number of (yw, yl). Let α be a preset hyperparameter. The loss function is given as:

L(θ) := E
(x,yw,yl)∼DPref

[
− log πθ(yw|x)

|yw|
+ α

log πθ(yl|x)
|yl|

]
Assumption A.2. Let the loss function L(θ) be defined in Definition A.1. We assume that ∇L(θ) is
L-Lipschitz, i.e., for θ, θ̂ ∈ Rd, we have

∥∇L(θ)−∇L(θ̂)∥ ≤ L · ∥θ − θ̂∥.
Definition A.3 (Update Rule with Linear Scheme). Let the loss function L(θ) be defined in Defini-
tion A.1. At training step k, for the parameter θ ∈ Rd, we have:

θk = θk−1 − ηk−1 · ∇L(θk−1).

Our Training scheme involve a linear warm-up stage and a linear decay stage. The learning rate η is
given by

ηk =

{
η + k

k̃
(η − η), if k ≤ k̃;

η − k−k̃

K−k̃
(η − η), if k > k̃,

where k̃ ∈ [K] is a preset hyperparameter denoting the number of warm-up steps, η and η are the
minimum value and maximum value of learning rate η respectively, i.e., η ∈ [η, η]. Specifically, we
set η < 1/L, where L is the Lipschitz constant in Assumption A.2.
Theorem A.4 (Convergence Guarantee). Let the loss function L(θ) be defined in Definition A.1. For
any small ϵ > 0, the update iterations satisfy:

min
k∈[K]

E[∥∇L(θk)∥2] ≤ ϵ.

Proof. At time step k − 1, we analyze the expected loss and perform a Taylor expansion of L(θ):

E[L(θk)] ≤ E[L(θk−1) + (θk − θk−1)⊤∇L(θk−1) + 0.5L∥θk − θk−1∥2]
≤ E[L(θk−1)− ηk−1∇L(θk−1)⊤∇L(θk−1) + 0.5L∥ηk−1∇L(θk−1)∥2]
= E[L(θk−1)]− ηk−1 E[∥∇L(θk−1)∥2] + 0.5Lη2k−1 · E[∥∇L(θk−1)∥2],

where the first step follows from Assumption A.2, the second step follows from Definition A.3, and
the third step follows from basic algebra.

Thus, we can show that

E[∥∇L(θk−1)∥2] ≤ 1

η(1− 0.5Lη)
E[L(θk−1)− L(θk)], (6)

which follows from Definition A.3 and basic algebra.

Further, for the minimal value of E[∥∇L(θk−1)∥2], we have

min
k∈[K]

E[∥∇L(θk−1)∥2] ≤ 1

K

K∑
k=1

E[∥∇L(θk−1)∥2]

≤ 1

K

K∑
k=1

(
1

ηk−1(1− 0.5Lηk−1)
E[L(θk−1)− L(θk)])

≤ 1

Kη(1− 0.5Lη)
(L(θ0)− L(θK))

≤ 1

Kη(1− 0.5Lη)
(L(θ0)− L(θ∗))

14

where the first step follows from the minimum is always smaller than the average, the second step
follows from Eq. (6), the third step follows from Definition A.3 and basic algebra, the fourth step
follows from L(θ∗) ≤ L(θK).

Plugging in

K =
L(θ0)− L(θ∗)
η(1− 0.5Lη)ϵ

,

we finish the proof.

15

B Relationship between SimPO and Our Loss Function

First, we restate SimPO loss Eq. (3) as follows:

LSimPO(θ) = − E
(x,yw,yl)∼DPref

[
log σ

(
β

(
log πθ(yw|x)

|yw|
− log πθ(yl|x)

|yl|

)
− γ

)]
Then, we restate the gradient of SimPO, which is implicit on page 22 in Meng et al. [2024].

∇θLSimPO(θ) = − β E
(x,yw,tl)∼DPref

[σ(
β

|yl|
log(yl | x)−

β

|yw|
log(yw | x) + γ)·

(
1

|yw|
∇θ log(yw | x)− 1

|yl|
∇θ log(yl | x))].

Define Rθ := 1
|yw| log(yw | x)− 1

|yl| log(yl | x), we have

∇θLSimPO(θ) = − β E
(x,yw,tl)∼DPref

[σ(−β ·Rθ + γ) · ∇θRθ]

= − E
(x,yw,tl)∼DPref

[σ(−β ·Rθ + γ) · β∇θRθ].

Also, we define

Lsymm(θ) = E
(x,yw,yl)∼DPref

(
− log πθ(yw|x)

|yw|
+

log πθ(yl|x)
|yl|

)
.

Fact B.1. the sigmoid function is Lipschitz continuous, i.e., |σ(x)− σ(x′)| ≤ 0.25|x− x′|.
Lemma B.2. Let Rθ be bounded by constant c0. Let the hyperparameter β > 0 be an arbitrary
small number. Let γ be a constant. Let ϵ = β·c0

4 which can be arbitary small, we have

|σ(−βRθ + γ)− σ(γ)| < ϵ.

Proof. We can show

|σ(−βR+ γ)− σ(γ)| ≤ β ·Rθ

4

≤ β · c0
4

,

where the first step follows from Fact B.1, the second step follows from Rθ is bounded by constant
c0.

Given typical learning rate η, adjusted learning rate η′. We claim the one step update over parameter
θ with loss function LSimPO(θ) is approximately equal to Lsymm(θ).
Proposition B.3. Let the hyperparameter β > 0 be an arbitrary small number. Let ηSimPO be set as
an inverse multiple of β, i.e., ηSimPO = c1/β. Assume ∇θRθ is bounded. Given the initial parameter
θt. We can choose learning rate η = c1 · σ(γ), such that for the one step gradient decent update
over ∆SimPO

θ := θt+1 − θt = −ηSimPO∇θLSimPO(θ) is approximately equal to the gradient decent
update over ∆symm

θ := θt+1−θt = −η∇θLsymm(θ), i.e., |ηSimPO∇θLSimPO(θ)−η∇θLsymm(θ)| can
be arbitrary small.

Proof. We have

|ηSimPO∇θLSimPO(θ)− η∇θLsymm(θ)| = |ηSimPOσ(−β ·Rθ + γ) · β∇θRθ − η∇θRθ|
= |c1σ(−β ·Rθ + γ)∇θRθ − η∇θRθ|
= |c1σ(−β ·Rθ + γ)∇θRθ − c1σ(γ)∇θRθ|
= c1∇θRθ|σ(−βR+ γ)− σ(γ)|
≤ c0c1∇θRθβ/4,

which can be arbitrarily small.

16

C Detailed Experimental Setup

This section provides a comprehensive overview of the experimental setup, including details on the
base model, dataset curation, training configurations for both SFT and preference optimization stages,
evaluation protocols, and computational resources. For more detailed implementation, readers may
refer to the provided codebase.

C.1 Base Model and Initial SFT Checkpoints

All experiments commenced with the Qwen2.5-Math-1.5B model as the base LLM, chosen for its
strong foundational capabilities in mathematical reasoning. Two SFT checkpoints were prepared
from this base model to serve different purposes:

• Qwen-SFT-1.5B-3ep: This model was fine-tuned on the DSFT dataset for 3 epochs. It served
as the starting point for the ablation studies involving DPO, SimPO, and REDI, as detailed in
Section 4 and Table 2.

• Qwen-SFT-1.5B-5ep: Fine-tuned for 5 epochs on DSFT, this model demonstrated improved
SFT performance and was used as the SFT starting point for our final, best-performing
Qwen-REDI-1.5B model presented in Table 1.

C.2 Datasets

As described in Section 3.1, the data was derived from the OpenR1-Math-Raw corpus [Face, 2025],
excluding the cn_k12 subset due to its lower relative difficulty. A response was considered correct if
both the Llama judge (an LLM-based verifier) and Math-Verify [Kydlíček] (a rule-based verifier)
labeled it as "True"; otherwise, it was considered incorrect.

• DSFT (Positive Traces Dataset): Contained 77,629 problem-solution pairs (x, yw) where yw is a
correct reasoning trace. This dataset was used for Stage 1 SFT.

• DPref (Preference Pairs Dataset): Consisted of 53,175 triplets (x, yw, yl). This dataset was
derived by selecting data from DSFT for which an incorrect response yl (deemed incorrect by
either Math-Verify or the Llama verifier) was also available for the same problem x. Each triplet
comprises a problem x, a preferred correct trace yw, and a rejected incorrect trace yl. We further
filtered out instances where queries exceeded 800 tokens, or either chosen (yw) or rejected (yl)
responses exceeded 19,000 tokens. This dataset was used for Stage 2 preference optimization.

C.3 Stage 1: Supervised Fine-Tuning (SFT)

• Objective: Maximize log-likelihood of positive traces (Eq. (1)).
• Optimizer: AdamW [Loshchilov and Hutter, 2019] with β1 = 0.9, β2 = 0.999, ϵ = 10−8, and a

weight decay of 0.0001.
• Learning Rate Schedule: Peak learning rate of 5× 10−5, with a linear warmup for the first 10%

of total training steps, followed by a linear decay to zero.
• Batch Size: 128.
• Epochs: 3 epochs for Qwen-SFT-1.5B-3ep and 5 epochs for Qwen-SFT-1.5B-5ep.
• Max Sequence Length: 32,768 tokens.

C.4 Stage 2: Preference Optimization

All preference optimization methods (DPO, SimPO, REDI) were initialized from an SFT check-
point (Qwen-SFT-1.5B-3ep for ablations, Qwen-SFT-1.5B-5ep for the final model). Training was
conducted on the DPref dataset.

• Optimizer: AdamW with the same parameters as in Stage 1 (β1 = 0.9, β2 = 0.999, ϵ = 10−8,
weight decay 0.0001).

• Learning Rate Schedule: Linear warmup for the first 10% of total training steps, followed by
linear decay to zero. Peak learning rates were method-specific and tuned as described below.

• Batch Size: 32.

17

• Epochs: 1 epoch over DPref.
• Max Sequence Length: 800 tokens for queries (prompts x) and 19,000 tokens for responses

(yw, yl).

Hyperparameter Configurations and Tuning: We meticulously tuned hyperparameters for each
preference optimization method. The reference model for DPO was the Qwen-SFT-1.5B-3ep
checkpoint.

• DPO [Rafailov et al., 2024]:
– β values explored: {0.001, 0.01, 0.1}.
– Learning Rate (LR) exploration: Specific LRs were tested for each β value:

* For β = 0.1: {1× 10−6, 1× 10−7, 1× 10−8}.
* For β = 0.01: {1× 10−6, 5× 10−7, 2× 10−7, 1× 10−7}.
* For β = 0.001: {1× 10−6, 5× 10−7, 2× 10−7, 1× 10−7}.

– Best Ablation Configuration (Table 2): β = 0.001, LR = 2× 10−7.
• SimPO [Meng et al., 2024]:

– Two primary configurations were evaluated based on different β values, with the margin γ set
to maintain a γ/β ratio of 0.5:
* Configuration 1: β = 2, γ = 1,LR = 5× 10−7.
* Configuration 2: β = 10, γ = 5,LR = 3× 10−7.

– Best Ablation Configuration (Table 2): The first configuration, β = 2, γ = 1,LR = 5×10−7,
yielded superior results in our ablation studies.

• REDI (Ours):
– α (asymmetric weight) values explored: {0.2, 0.5, 0.8, 1.0}. (See Appendix D for detailed α

tuning).
– Learning Rate (LR) exploration:

* For α ∈ {0.2, 0.8}, a learning rate of 1× 10−6 was primarily used.
* For α = 0.5, learning rates of 1× 10−6 and 2× 10−6 were tested.
* For α = 1.0 (Symmetric REDI), learning rates of {1 × 10−6, 2 × 10−7, 1 × 10−7} were

evaluated.
– Best Ablation Configuration (Table 2): α = 0.8,LR = 1× 10−6.
– Final Model Configuration (Table 1): For the Qwen-REDI-1.5B model, initialized from
Qwen-SFT-1.5B-5ep, we used α = 0.8 with LR = 1× 10−6.

C.5 Evaluation

Decoding Parameters: During all evaluations, generated samples were decoded using the following
parameters:

• Temperature: 0.6
• Top P (nucleus sampling): p = 0.95

• Maximum generation length: 32, 768 tokens

Evaluation Frameworks, Protocols, and Benchmarks: We utilized two distinct configurations for
evaluating model performance:

• Intermediate Evaluations: These evaluations were used for hyperparameter tuning, generating
performance plots (e.g., Figures 3, 4, 5, 6), and ablation studies. They were conducted using
LightEval [Habib et al., 2023] on the MATH-500 benchmark. Performance was measured as
pass@1, averaged over 4 generated samples per problem.

• Final Model Evaluations: These evaluations, presented in main comparison tables (Table 1,2,6,7),
were performed using the DeepScaleR/rllm [Luo et al., 2025] framework. The benchmarks
included MATH-500, AIME24, AMC23, Minerva, and OlympiadBench. Performance was mea-
sured as either pass@1 (averaged over 16 generated samples) or pass@16. For these evaluations,
and specifically for our models, we fixed "<think>" as the first token generated by our model to
align our practices with DeepSeek-R1 series of models.

SEM Calculation: The reported Standard Error of the Mean (SEM) quantifies the uncertainty
of this "pass@1 over k samples" score. It is calculated as s/

√
k. To obtain s, we first compute k

18

distinct "benchmark-wide pass@1 scores." Each of these k scores (Pj , for j = 1 . . . k) is determined
by evaluating the model’s performance across the entire benchmark using only the j-th generated
sample for every problem. The term s is then the standard deviation of these k intermediate scores
(P1, P2, . . . , Pk). This method estimates the variability of the overall "pass@1 over k samples"
metric by assessing performance consistency across the individual samples drawn for each problem.

Evaluation Prompt Format: For prompting, we followed the Open-R1 project Face [2025] and
used the following template:

Prompt Template

Solve the following math problem efficiently and clearly. The last line of your response should be
of the following format: ‘Therefore, the final answer is: $\boxed{{ANSWER}}$. I hope it is correct’
(without quotes) where ANSWER is just the final number or expression that solves the problem. Think
step by step before answering.

{Question}

C.6 Computational Resources

All model training and fine-tuning experiments were conducted on a distributed training cluster
equipped with NVIDIA A100 80GB SXM GPUs. Each experiment was run on a node of 8 such
GPUs. We utilized standard open-source libraries for large language model training, including
Hugging Face Transformers for model architecture and tokenization, and Accelerate for distributed
training management. DeepSpeed (ZeRO Stage 3 for DPO; ZeRO Stage 2 for SimPO and REDI) was
employed to optimize memory usage and enable efficient training. Custom scripts were developed
for data processing; the computational resources required for preprocessing were negligible.

Training Times: The approximate training times per run on an 8-GPU (A100 80GB) node are
summarized in Table 3.

Table 3: Approximate Training Times per Run (on one 8-GPU A100 80GB node).
Task / Method Duration per Run Approx. GPU Hours

SFT (3 epochs on DSFT) 8 hours 64
SFT (5 epochs on DSFT) 13 hours 104
DPO (1 epoch on DPref) 5 hours 10 mins 41.3
SimPO (1 epoch on DPref) 4 hours 50 mins 38.7
REDI (1 epoch on DPref) 4 hours 10 mins 33.3

The total training compute required for our final Qwen-REDI-1.5B model (SFT 5 epochs + REDI 1
epoch) is approximately 17 hours on an 8-GPU node (or around 136 A100 80GB GPU hours).

Evaluation Times: The approximate evaluation times on an 8-GPU (A100 80GB) node are:

• MATH-500 (pass@1 over 4 samples, LightEval): 40 minutes.
• 5 Benchmarks (pass@1 over 16 samples, DeepScaleR/rllm): 20 hours.

Total Compute for Reproducibility: The total compute needed to reproduce all results presented
in this paper (including all SFT runs, hyperparameter sweeps for DPO, SimPO, and REDI, final
evaluations and with buffer for debugging) is estimated to be around 350 hours on an 8-GPU node,
which translates to approximately 2,800 A100 80GB GPU hours.

19

D Additional Results

D.1 Ablation Study on REDI Hyperparameter α

This section details the ablation study conducted to determine an effective value for the asymmetric
weighting hyperparameter α in the REDI objective (Equation 5). The goal was to find an α that
optimally leverages negative traces for performance improvement while maintaining training stability.
We explored α ∈ {0.2, 0.5, 0.8} (with α = 1.0 representing the symmetric case discussed in the
main paper), using the Qwen-SFT-1.5B-3ep model as the starting checkpoint. Figure 7 illustrates
the training dynamics for key configurations.

0 500 1000 1500
Step

65

70

75

80

85

M
AT

H
-5

00
 A

cc
ur

ac
y

(%
)

MATH-500 Accuracy vs. Step

0 500 1000 1500
Step

2.0

1.5

1.0

0.5

C
ho

se
n

Lo
gP

S
Chosen LogPS vs. Step

0 500 1000 1500
Step

2.0

1.5

1.0

0.5

R
ej

ec
te

d
Lo

gP
S

Rejected LogPS vs. Step

0 500 1000 1500
Step

0.0

0.5

1.0

1.5

2.0

G
ra

di
en

t U
pd

at
e

Si
ze

1e 6
Gradient Update Size vs. Step

(=0.2, LR=1e-6) (=0.5, LR=1e-6) (=0.5, LR=2e-6) (=0.8, LR=1e-6)

Figure 7: REDI training dynamics with varying α values and learning rates. All runs start from
Qwen-SFT-1.5B-3ep. Metrics shown are MATH-500 Accuracy, Chosen LogPS, Rejected LogPS,
and Gradient Update Size, all plotted against training steps.

Analysis of Different α Configurations:

• Low α (α = 0.2,LR = 1× 10−6, orange dotted line): With this configuration, the model’s
performance largely fluctuated around the initial SFT level. This is anticipated, as a lower α
value makes the REDI objective more closely resemble the SFT loss, for which performance
had already neared a plateau.

• Moderate α (α = 0.5,LR = 1 × 10−6, pink dashed line): Increasing α to 0.5 while
maintaining LR = 1× 10−6 yielded improved peak accuracy (approximately 79.8%) compared
to α = 0.2. This underscores the benefit of incorporating negative samples, even moderately,
over relying solely on SFT.

• Moderate α with Higher LR (α = 0.5,LR = 2×10−6, purple dashed line): Testing α = 0.5
with a more aggressive learning rate (LR = 2 × 10−6) showed stable LogPS values, though
accompanied by intermittent spikes in the gradient update size. While its peak performance
slightly surpassed the lower LR variant with α = 0.5, it remained inferior to the α = 0.8 run.

• Higher α (α = 0.8,LR = 1×10−6, yellow solid line): This configuration achieved the highest
peak MATH-500 accuracy. We note that both the Chosen LogPS and Rejected LogPS steadily
decreased throughout training. This concurrent decrease, in the absence of a sudden collapse
and while performance is improving, appears to be benign. It is distinct from a catastrophic
collapse where both LogPS would plummet sharply alongside performance.

Importance of Update Direction over Raw Magnitude: The comparison between the (α =
0.5,LR = 2× 10−6) and (α = 0.8,LR = 1× 10−6) configurations is particularly insightful. The
former features larger average gradient update sizes, implying a stronger raw magnitude of adjustment
driven by the negative log-likelihood term (which scales with α×LR). However, this did not translate
to superior peak performance relative to the (α = 0.8,LR = 1× 10−6) run.

This observation supports the view that the direction of the gradient, as modulated by α, is more
critical than its sheer magnitude derived from negative samples. A higher α (such as 0.8) appears to
provide a more qualitatively beneficial gradient signal, guiding the model more effectively. Simply
increasing the learning rate for a lower α (e.g., α = 0.5) to match or exceed the raw gradient
magnitude of a higher α configuration does not necessarily yield better performance and may
even compromise stability. The role of α thus extends beyond scaling the penalty; it is crucial for
appropriately balancing the influence of negative examples to effectively shape the learning landscape.

20

Suggestions on α Tuning: Based on these ablation studies, α = 0.8 combined with a learning
rate of 1× 10−6 demonstrated the most favorable trade-off for the Qwen-SFT-1.5B-3ep checkpoint,
achieving the highest peak performance while maintaining robust training stability. Consequently, for
applying the REDI framework to other domains or datasets, we recommend initially fixing α = 0.8
and primarily focusing on tuning the learning rate.

D.2 Generalizability and Robustness of REDI

To validate that the benefits of the REDI framework extend beyond a single model family and task
domain, we conducted a series of additional experiments testing its generalizability across different
model architectures, scales, and out-of-domain reasoning tasks. REDI demonstrates storng results.
For further details, refer to appendix

Generalization Across Architectures and Scales. We applied the REDI framework to two addi-
tional models: Llama-3.2-3B, representing a different model architecture, and Qwen2.5-Math-7B,
a larger model within the same family. Following the same two-stage training protocol, we first
established a strong Rejection Sampling SFT baseline for each model and then applied one epoch
of REDI training. As shown in Table 4, REDI consistently delivers significant performance gains
over the SFT baseline in both cases. On Llama-3.2-3B, REDI achieves a relative improvement of
17.7% on the benchmark average, and on Qwen2.5-Math-7B, it improves the average score by 4.2%.
These results strongly suggest that REDI’s effectiveness in leveraging negative signals is a general
principle applicable across modern decoder-only transformer architectures and is not limited to a
specific model size.

Table 4: Generalization Across Architectures and Scales (pass@1 over 16 samples). REDI consistently im-
proves performance over the strong SFT baseline on both the Llama-3.2-3B and the larger Qwen2.5-Math-7B
models.

Model Method MATH-500 AIME24 AMC23 Minerva OlympiadBench Avg.
Llama-3.2-3B SFT 54.3 8.5 33.9 14.3 28.8 28.0

REDI 61.2 13.3 41.9 15.3 32.9 32.9
Qwen2.5-Math-7B SFT 90.3 51.0 75.9 39.8 55.3 62.5

REDI 91.2 56.5 79.6 40.5 57.6 65.1

Generalization to Out-of-Domain Tasks. A critical question is whether the improved reasoning
abilities fostered by REDI on mathematical data can transfer to other complex domains. To investigate
this, we evaluated our final Qwen-REDI-1.5B model against its SFT baseline (Qwen-SFT-1.5B-3ep)
on the out-of-domain benchmarks GPQA [?] for scientific reasoning and HumanEval [?] for code
generation. The evaluation on GPQA was done with LightEval Habib et al. [2023], and the evaluation
on HumanEval was done with lm-evaluation-harness Gao et al. [2024]. We note that our model
lacks instruction-following capabilities for HumanEval, so we used the default prompt setting in
lm-evaluation-harness, which is a continuation prompt.

The results, presented in Table 5, demonstrate strong and positive transfer. REDI achieves a 26.8%
relative improvement on GPQA and a 181.2% improvement in pass@1 on HumanEval. This suggests
that by learning from both positive and negative examples, REDI cultivates a more robust and
generalizable reasoning policy that is less prone to overfitting on the distribution of the distilled math
data, enabling it to better follow instructions and solve problems in unrelated domains.

Table 5: Out-of-Domain Generalization to Science QA and Coding. The reasoning capabilities gained from
REDI on math data transfer effectively to other complex domains, with particularly strong improvements on
HumanEval.

Model GPQA (pass@1) OlympiadBench (pass@1) HumanEval (pass@1) HumanEval (pass@5)

Qwen-SFT-1.5B-3ep 28.3% 37.5% 7.1% 22.6%
Qwen-REDI-1.5B 35.9% 43.4% 19.9% 39.6%
Relative Improvement +26.8% +15.7% +181.2% +75.7%

21

D.3 REDI Improves Performance Without Harming Potential for Future Online RL

A key consideration is whether REDI enhances performance (like pass@1) by simply reinforcing
the model’s existing high-probability solution paths, or if it genuinely broadens its problem-solving
abilities. Online Reinforcement Learning (RL) often works by refining and amplifying the knowledge
already present within a model [Shao et al., 2024, Yue et al., 2025]. Therefore, it’s important that an
offline method like REDI doesn’t narrow the model’s underlying knowledge base.

A model’s ability to find a correct answer given multiple attempts (e.g., pass@k for larger k, like
k = 16) can serve as an indicator of the breadth of its existing knowledge. If REDI maintains or
improves these pass@k scores, it suggests that while it refines certain solution strategies, it doesn’t do
so at the expense of the model’s diverse underlying capabilities. This would mean the model remains
a strong candidate for subsequent online RL.

We investigate this by examining pass@16 performance, as presented in Tables 6 and 7.

Table 6 shows that for models initialized from Qwen-SFT-1.5B-3ep, REDI (with α = 0.8) not only
improves pass@1 (Table 2) but also sustains or improves pass@16 scores across several benchmarks
(e.g., AIME24, Minerva, OlympiadBench) compared to both the SFT baseline and other preference
optimization methods. For instance, it achieved the best pass@16 on AIME24 and Minerva among
the preference-tuned models.

Furthermore, Table 7 indicates that our final Qwen-REDI-1.5B model (initialized from the stronger
Qwen-SFT-1.5B-5ep) maintains robust pass@16 performance. It achieves the highest pass@16 on
AIME24 and matches or surpasses the SFT baseline and the DeepSeek-R1-Distill-Qwen-1.5B
model on Minerva and OlympiadBench.

The consistent maintenance or improvement in pass@16 scores suggests that REDI’s offline refine-
ment does not merely over-optimize for a narrow set of high-probability solutions from the SFT
model. Rather, these pass@16 results indicate that by learning from both the teacher’s successful
and unsuccessful solution attempts, REDI genuinely improves the model’s overall problem-solving
abilities. It appears to build these skills without causing the model to "forget" or narrow down the
range of solutions it could already generate. This is encouraging, as it suggests that REDI-trained
models are well-prepared, and potentially even better suited, for subsequent performance gains
through online RL.

Table 6: Pass@16 Performance Comparison for Models Initialized from Qwen-SFT-1.5B-3ep.
Model Configuration MATH-500 AIME24 AMC23 Minerva OlympiadBench

Qwen-SFT-1.5B-3ep (Start) 94.6 53.3 86.7 57.7 63.1
DPO (β = 0.001,LR = 2e− 7) 94.6 63.3 86.7 58.8 64.7
SimPO (β = 2, γ = 1,LR = 5e− 7) 94.8 60.0 89.2 58.5 63.3
Symmetric REDI (α = 1.0,LR = 2e− 7) 95.0 63.3 90.4 58.8 62.5
REDI (α = 0.8,LR = 1e− 6) 95.0 66.7 81.9 59.9 63.9

Table 7: Pass@16 Performance for REDI Initialized from Qwen-SFT-1.5B-5ep.
Model MATH-500 AIME24 AMC23 Minerva OlympiadBench

DeepSeek-R1-Distill-Qwen-1.5B 95.6 63.3 92.8 56.6 65.8
Qwen-SFT-1.5B-5ep (SFT baseline) 95.6 56.7 86.7 56.3 64.3
Qwen-REDI-1.5B (α = 0.8,LR = 1e− 6) 95.0 66.7 90.4 57.0 65.8

22

E Qualitative Analysis of Model Behavior

E.1 Generation Statistics

0 500 1000 1500
Step

0

2500

5000

7500

10000

12500

15000

17500

Av
g.

 T
ok

en
s

pe
r P

re
di

ct
io

n

Average Prediction Tokens

0 500 1000 1500
Step

0

20

40

60

80

Av
g.

 "
W

ai
t"

 C
ou

nt

Average "Wait" Occurrences

0 500 1000 1500
Step

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

N
or

m
al

iz
ed

 "
W

ai
t"

 C
ou

nt

Normalized "Wait" Occurrences

Figure 8: Generation statistics for the REDI model presented in Table 2 (initialized from
Qwen-SFT-1.5B-3ep, trained with REDI using α = 0.8,LR = 1× 10−6) on the AIME24 test set.
Metrics shown are (Left) Average Prediction Tokens, (Center) Average "Wait" Occurrences, and
(Right) Normalized "Wait" Occurrences, all plotted against REDI training steps. Step 0 represents
the SFT model before REDI training.

To investigate qualitative changes in reasoning style during REDI training, we monitored key gen-
eration statistics. The frequency of terms like "Wait" serves as an indicator of explicit reflective
steps within the model’s Chain-of-Thought (CoT), a common trait in reasoning models. The average
generation length (token count per prediction) is also crucial, as complex reasoning often correlates
with longer outputs. These metrics help assess how REDI influences the model’s reasoning trace
characteristics.

Figure 8 illustrates these trends for the REDI configuration detailed in Table 2. The average token
count (left panel) shows a slight decrease from the SFT model’s baseline (Step 0), stabilizing at a
somewhat lower level during REDI training.

The frequency of "Wait" occurrences (center panel) exhibits a notable dynamic: a transient increase
during early-to-mid REDI training, followed by a return to levels largely comparable with the SFT
baseline. This pattern is mirrored by the normalized "Wait" occurrences (right panel), which accounts
for token length.

Overall, while REDI training leads to a modest reduction in average generation length, the model’s
propensity for explicit reflection, as indicated by "Wait" counts, shows temporary fluctuations before
largely realigning with the SFT base model’s characteristics after the initial tuning phase.

E.2 Case Study on Model Responses

We examine model responses to AIME 2024 II Problem 3. The generation parameters were consistent
with those used in our main evaluations. The problem is presented to the model as follows:

Problem Statement: AIME 2024 II Problem 3

Solve the following math problem efficiently and clearly. The last line of your response should be of the following format: ‘Therefore, the
final answer is: $\boxed{{ANSWER}}$. I hope it is correct’ (without quotes) where ANSWER is just the final number or expression that
solves the problem. Think step by step before answering.

Find the number of ways to place a digit in each cell of a 2x3 grid so that the sum of the two numbers formed by reading
left to right is 999, and the sum of the three numbers formed by reading top to bottom is 99. The grid below is an example of such an
arrangement because 8 + 991 = 999 and 9 + 9 + 81 = 99.

0 0 8
9 9 1

The ground truth answer is 45.

23

E.2.1 Response from Qwen-SFT-1.5B-3ep (SFT Baseline)

This model answered 0/4 attempts correctly for this problem. A representative incorrect response is:

SFT Baseline Response (Incorrect)

<think >
Okay , so I need to figure out how many ways there are to fill a 2x3 grid ...
Let me denote the grid as follows:
Row 1: a b c
Row 2: d e f

The total sum of the row numbers is abc + def = 999.
(100a + 10b + c) + (100d + 10e + f) = 999
Which simplifies to:
100(a + d) + 10(b + e) + (c + f) = 999

The total sum of the column numbers is ad + be + cf = 99.
10a + d + 10b + e + 10c + f = 99
Which simplifies to:
10(a + b + c) + (d + e + f) = 99

Let me denote S1 = a + d, S2 = b + e, S3 = c + f
Then equation 1 becomes:
100*S1 + 10*S2 + S3 = 999

Equation 2 becomes:
10*(a + b + c) + (d + e + f) = 99
But a + b + c + d + e + f = S1 + S2 + S3
Therefore , substituting into equation 2:
10*(S1 + S2 + S3 - S3) + S3 = 99 [Error in reasoning: S1+S2+S3-S3 = S1+S2, not a+b

+c]
Which simplifies to:
10*(S1 + S2) + S3 = 99

So equation 2 is 10*(S1 + S2) + S3 = 99
Equation 1 is 100*S1 + 10*S2 + S3 = 999

Let me write equation 2 as 10*S1 + 10*S2 + S3 = 99
Then subtract equation 2 from equation 1:
(100* S1 + 10*S2 + S3) - (10*S1 + 10*S2 + S3) = 999 - 99
90*S1 = 900 ⇒ S1 = 10

Then substitute back into equation 2: 10*10 + 10*S2 + S3 = 99
⇒ 100 + 10*S2 + S3 = 99 ⇒ 10*S2 + S3 = -1

But S2 and S3 are sums of digits , so they must be non -negative.
Therefore , 10*S2 + S3 = -1 is impossible. Therefore , there are no solutions.
[...]
Wait , let me check the example again. The example is:
Row 1: 0 0 8 → 8
Row 2: 9 9 1 → 991
Sum: 8 + 991 = 999
Columns:
First column: 0 9 → 09
Second column: 0 9 → 09
Third column: 8 1 → 81
Sum: 09 + 09 + 81 = 99
Yes , this is correct. So the example is a valid solution.
[...]
In the example , S1 = a + d = 0 + 9 = 9, S2 = b + e = 0 + 9 = 9, S3 = c + f = 8 + 1

= 9.
Then equation 1: 100*9 + 10*9 + 9 = 999. Correct.
Equation 2 [Model A’s version]: 10*(S1 + S2) + S3 = 10*(9 + 9) + 9 = 189. Which is

not equal to 99.
So equation 2 is not satisfied. Therefore , the equations are inconsistent.
[...]
Therefore , according to the equations , there are no solutions. Therefore , the

number of ways is zero.

**Final Answer **
The number of ways is \boxed {0}.
</think >
[...]
Thus , the number of ways to place the digits in the grid is \(\ boxed {0}\).

24

Analysis of SFT Baseline Response: The SFT model correctly set up the initial two main equations
based on row and column sums. However, it made a critical algebraic error when attempting to rewrite
the second equation (sum of column numbers) in terms of intermediate sums S1 = a + d, S2 =
b+e, S3 = c+f . Specifically, it incorrectly assumed a+b+c = S1+S2. This flawed transformation
led to an inconsistent system of equations, resulting in the conclusion that 10S2 + S3 = −1, which
is impossible for sums of digits. Consequently, it incorrectly answered 0. Even when checking the
provided example, which contradicted its derived system, the model failed to identify its algebraic
mistake and instead reinforced its belief in the inconsistency.

E.2.2 Response from Qwen-SFT-1.5B-3ep + REDI (α = 0.8, Checkpoint 1400)

This model, taken from an intermediate stage of REDI training (step 1400 out of 1661 total steps for
1 epoch), answered 2/4 attempts correctly for this problem. A representative correct response is:

REDI-tuned Response (Correct)

<think >
Okay , so I need to figure out how many ways there are to fill a 2x3 grid ...
Let the grid be:

a b c
d e f

Row 1 sum: R1 = 100a + 10b + c
Row 2 sum: R2 = 100d + 10e + f
Column 1 sum: C1 = 10a + d
Column 2 sum: C2 = 10b + e
Column 3 sum: C3 = 10c + f
Given that R1 + R2 = 999 and C1 + C2 + C3 = 99.
So, first equation: 100(a + d) + 10(b + e) + (c + f) = 999
Second equation: (10a + d) + (10b + e) + (10c + f) = 99
[...]
Let X = a + d, Y = b + e, Z = c + f.
Row sum equation: 100X + 10Y + Z = 999
Column sum equation [initial incorrect attempt by Model B]: 10X + Y + Z = 99
Subtracting the column sum equation from the row sum equation:
90X + 9Y = 900
Divide by 9: 10X + Y = 100
Then , substituting back into column sum equation:
100 + Z = 99 => Z = -1
Which is impossible. Therefore , there is a contradiction , meaning that there are
no solutions? But the problem states that there are such arrangements , so I must
have made a wrong assumption.
[...]
Wait , let ’s think about the addition of the two three -digit numbers R1 and R2

resulting in 999.
100(a + d) + 10(b + e) + (c + f) = 999
So, 100X + 10Y + Z = 999, where X = a + d, Y = b + e, Z = c + f.
[...] So X can be at most 9. [...] So X must be at least 9. Therefore , X=9.
Therefore , X=9, so 100*9 + 10Y + Z = 999 => 900 + 10Y + Z = 999 => 10Y + Z = 99.
Therefore , Y=9, Z=9. So:
X = a + d = 9
Y = b + e = 9
Z = c + f = 9
Therefore , S = a + b + c + d + e + f = (a + d) + (b + e) + (c + f) = X + Y + Z = 9

+ 9 + 9 = 27
[...]
But also , C1 + C2 + C3 = 10(a + b + c) + (d + e + f) = 99
But a + b + c = 27 - (d + e + f). Let me denote D = d + e + f.
Therefore , C1 + C2 + C3 = 10*(27 - D) + D = 270 - 10D + D = 270 - 9D
But we know that C1 + C2 + C3 = 99. Therefore:
270 - 9D = 99 => -9D = -171 => D = 19
Therefore , d + e + f = 19
[...]
So, we have the following equations:
1. a + d = 9
2. b + e = 9
3. c + f = 9
4. d + e + f = 19
5. a + b + c = 8 (since 27 -19=8)
6. All variables a, b, c, d, e, f are digits (0-9)
[...]
The number of non -negative integer solutions to d + e + f = 19 with d, e, f <= 9.
Using inclusion -exclusion principle.
[...]

25

First term: C(19 + 3 -1, 3 -1) = C(21, 2) = 210
Subtract the cases where at least one variable >=10. [...] 3*55=165.
Now , add back the cases where two variables >=10. [...] No solutions.
Therefore , total solutions =210 -165 +0 -0=45.
Therefore , 45 solutions. So there are 45 possible triples (d, e, f) that sum to

19.
But each such triple corresponds to a unique (a, b, c) since a=9 - d, b=9 - e, c=9

- f.
Therefore , the number of ways is 45.

But let ’s confirm with an example ...

Therefore , the number of ways is 45. Therefore , the final answer is \boxed {45}.
**Final Answer **
\boxed {45}
</think >
[...]
Thus , the number of ways to place the digits in the grid is:
\[
\boxed {45}
\]

Analysis of REDI-tuned Response: The REDI-tuned model also correctly established the initial
equations. Notably, it initially made a similar algebraic error when attempting to use intermediate
sums, leading to a momentary contradiction (Z = −1). However, unlike the SFT baseline, this
model demonstrated an enhanced ability to self-correct or find an alternative path. It revisited the
first primary equation (100(a+ d) + 10(b+ e) + (c+ f) = 999) and correctly deduced from the
properties of digit sums that a + d = 9, b + e = 9, c + f = 9. This crucial insight allowed it
to determine the total sum of all digits (27). Using this, along with the second primary equation
(10(a+b+c)+(d+e+f) = 99), it correctly solved for the sum of digits in the top row (a+b+c = 8)
and bottom row (d+ e+ f = 19). Finally, it correctly applied the Principle of Inclusion-Exclusion
to count the number of ways to form d+ e+ f = 19 with digits, leading to the correct answer of 45.

This case study suggests that REDI training, by incorporating signals from both positive and negative
reasoning traces, can enhance a model’s ability to navigate complex problem-solving paths, including
recovering from intermediate errors and identifying correct solution strategies, which might be less
developed in models trained solely on positive examples.

26

F Additional Analysis on Training Dynamics

To further investigate the training dynamics of REDI, particularly the observed phenomenon where
both chosen (yw) and rejected (yl) log-probabilities (LogPS) can decline even in stable runs, we
tracked additional statistics. The specific run analyzed here is our REDI configuration with α = 0.8,
initialized from the Qwen-SFT-1.5B-3ep. We randomly sampled 4 prompts from the preference
dataset (DPref), supplemented by 1 test prompt from AIME24, 1 from AIME25, and 2 from MATH-
500. For the training data samples, we analyzed the logits directly. For the test data samples, we first
performed auto-regressive generation and then analyzed the logits of the generated sequences.

SFT
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
16

61

Checkpoint Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

To
ke

n
En

tr
op

y

Average Token Entropy Across Checkpoints
Sample Type

test_generated
train_chosen
train_rejected

Figure 9: Average token entropy dynamics across training checkpoints for different sample types, for
the REDI α = 0.8 run. "SFT" denotes the initial model state (Qwen-SFT-1.5B-3ep). "train_chosen"
and "train_rejected" refer to sequences from the preference dataset, while "test_generated" refers to
sequences generated by the model on test prompts.

8 6 4 2 0
Average Log Probability (LogP) before REDI

8

6

4

2

0

C
ha

ng
e

in
 A

ve
ra

ge
 L

og
P

(
 L

og
P)

Min Frequency 1
Corr: 0.46 (N=1058)

1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
Average Log Probability (LogP) before REDI

1.50

1.25

1.00

0.75

0.50

0.25

0.00

C
ha

ng
e

in
 A

ve
ra

ge
 L

og
P

(
 L

og
P)

Min Frequency 10
Corr: 0.56 (N=255)

Figure 10: Correlation between the change in average token log-probability (LogP) after REDI
training (∆ LogP) and the average token LogP before REDI training (i.e., in the Qwen-SFT-1.5B-3ep
model). Analysis performed on tokens from chosen responses in the training data for the REDI
α = 0.8 run. Left: Tokens with a minimum frequency ≥ 1. Right: Tokens with a minimum frequency
≥ 10. A positive correlation indicates that tokens with initially higher LogP tend to see their LogP
increase (or decrease less), while tokens with initially lower LogP tend to experience a larger decrease.

Figure 9 illustrates the average token entropy across training checkpoints for the REDI α = 0.8
run. We observe a rapid decrease in entropy from the initial SFT model state to approximately
step 400-600 of REDI training. This decrease is more pronounced for sequences from the training
data ("train_chosen" and "train_rejected") compared to sequences generated by the model on test
prompts ("test_generated"). This suggests that the model becomes more confident (i.e., assigns
sharper probability distributions) over tokens when conditioned on training sequences. After the
initial drop, the entropy tends to stabilize or fluctuate slightly.

To understand where the model’s probability mass is shifting, we analyzed the change in token
log-probabilities (LogPs) relative to their initial values in the Qwen-SFT-1.5B-3ep model. Figure 10
displays this relationship for tokens in the chosen responses from the training data, specifically for
the REDI α = 0.8 run. A moderate positive correlation is observed (Pearson correlation coefficient
of 0.46 for tokens with frequency ≥ 1, and 0.56 for tokens with frequency ≥ 10). This positive
correlation suggests that, on average:

27

• Tokens for which the SFT model already had a high probability (higher initial LogP) tend to see
their probabilities further increase or decrease less after REDI training.

• Conversely, tokens for which the SFT model had a low probability (lower initial LogP) tend to
experience a more significant decrease in their probabilities.

In essence, REDI appears to amplify the model’s existing tendencies to some extent, making it more
confident about tokens it was already likely to predict and even less confident about tokens it was
unlikely to predict. This behavior, where negative gradients might inadvertently suppress probabilities
of tokens beyond the specific negative example, has been discussed in recent literature on off-policy
preference optimization [Yan et al., 2025b, Ren and Sutherland, 2025, Razin et al., 2025].

Despite these complex dynamics and the observed shifts in token probabilities, our main results in
Section 4 indicate that as long as the training process avoids catastrophic collapse (which REDI’s
asymmetric weighting helps to prevent), the model achieves strong performance improvements on
downstream reasoning tasks.

The analyses presented in this section are preliminary and offer initial insights into REDI’s learning
mechanisms for the specific α = 0.8 configuration. A more comprehensive understanding of how
REDI precisely refines the model’s internal representations and generation strategies warrants further
investigation.

28

	Introduction
	Methodology: Reinforcement Distillation (REDI)
	Problem Setting and Data
	The Reinforcement Distillation (REDI) Recipe
	Stage 1: Supervised Fine-Tuning (SFT) on Positive Traces
	Stage 2: Reinforcement with Positive and Negative Traces

	Experimental Setup
	Data Curation
	Training Configuration
	Evaluation Protocol

	Results and Analysis
	Performance Limits of SFT-Only Training
	Performance-Stability Tradeoff in DPO
	REDI: Achieving Stability and Performance with Asymmetric Weighting
	Tuning the Asymmetric Weighting Factor in REDI
	Summary of Ablation and Final Model Performance
	REDI is Robust and Generalizes Well
	REDI Preserves Potential for Future Online RL

	Related Work
	Conclusion
	Convergence Guarantee
	Relationship between SimPO and Our Loss Function
	Detailed Experimental Setup
	Base Model and Initial SFT Checkpoints
	Datasets
	Stage 1: Supervised Fine-Tuning (SFT)
	Stage 2: Preference Optimization
	Evaluation
	Computational Resources

	Additional Results
	Ablation Study on REDI Hyperparameter
	Generalizability and Robustness of REDI
	REDI Improves Performance Without Harming Potential for Future Online RL

	Qualitative Analysis of Model Behavior
	Generation Statistics
	Case Study on Model Responses
	Response from Qwen-SFT-1.5B-3ep (SFT Baseline)
	Response from Qwen-SFT-1.5B-3ep + REDI (=0.8, Checkpoint 1400)

	Additional Analysis on Training Dynamics

