

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VERIFIER-FREE TEST-TIME SAMPLING FOR VISION LANGUAGE ACTION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Vision-Language-Action models (VLAs) have demonstrated remarkable performance in robot control. However, they remain fundamentally limited in tasks that require high precision due to their single-inference paradigm. While test-time scaling approaches using external verifiers have shown promise, they require additional training and fail to generalize to unseen conditions. We propose Masking Distribution Guided Selection (MG-Select), a novel test-time scaling framework for VLAs that leverages the model’s internal properties without requiring additional training or external modules. Our approach utilizes KL divergence from a reference action token distribution as a confidence metric for selecting the optimal action from multiple candidates. We introduce a reference distribution generated by the same VLA but with randomly masked states and language conditions as inputs, **providing action uncertainty** while remaining aligned with the target task distribution. Additionally, we propose a joint training strategy that enables the model to learn both conditional and unconditional distributions by applying dropout to state and language conditions, thereby further improving the quality of the reference distribution. **Our experiments demonstrate that MG-Select provides a reliable reference for action selection through task-relevant condition masking and consistently improves base models across diverse simulation and real-world benchmarks.**

1 INTRODUCTION

Vision-Language-Action models (VLAs; Zitkovich et al. 2023; Kim et al. 2024; Black et al. 2025; Bjorck et al. 2025), trained on large-scale robotic datasets (O’Neill et al., 2024; Bu et al., 2025), have demonstrated remarkable performance in robot control. Among these, autoregressive VLAs represent one of the predominant VLAs (Driess et al., 2023; Kim et al., 2024; Pertsch et al., 2025), leveraging the same autoregressive objective used in training vision and foundation models without requiring architectural modifications, yet achieving comparable performance to more sophisticated architectures. Despite their success, VLAs remain fundamentally limited in tasks that demand high precision; even after extensive pre-training, they often fail on fine-grained manipulation tasks such as grasping or object placement (Nakamoto et al., 2024; Kwok et al., 2025; Gu et al., 2025; Yang et al., 2025). This precision gap is particularly problematic for real-world robotic applications where millimeter-level accuracy can determine task success or failure.

Previous work (Nakamoto et al., 2024; Kwok et al., 2025) shows that while VLAs can achieve high precision with adequate training, their greedy decoding (always choosing the highest-probability action) becomes a bottleneck. To address this limitation, inspired by the substantial gains observed in LLM reasoning with Test Time Scaling (TTS) (Wang et al., 2023; Wan et al., 2025; Kang et al., 2025), they use repeated sampling paired with an external verifier, *i.e.*, a value function trained on robotic data. However, these approaches have significant drawbacks: First, they require additional training to obtain verifiers with reinforcement learning objectives before inference, which adds substantial computational overhead and complexity to the deployment pipeline. Second, these external verifiers fail to generalize to unseen input conditions (Nakamoto et al., 2024), such as novel task prompts or objects, and their reward modeling is tailored to specific datasets, severely limiting their broader applicability (Kwok et al., 2025).

Our approach. To tackle this problem, our research goal is to develop a test-time scaling framework for VLAs that leverages the model’s internal properties without requiring additional training or

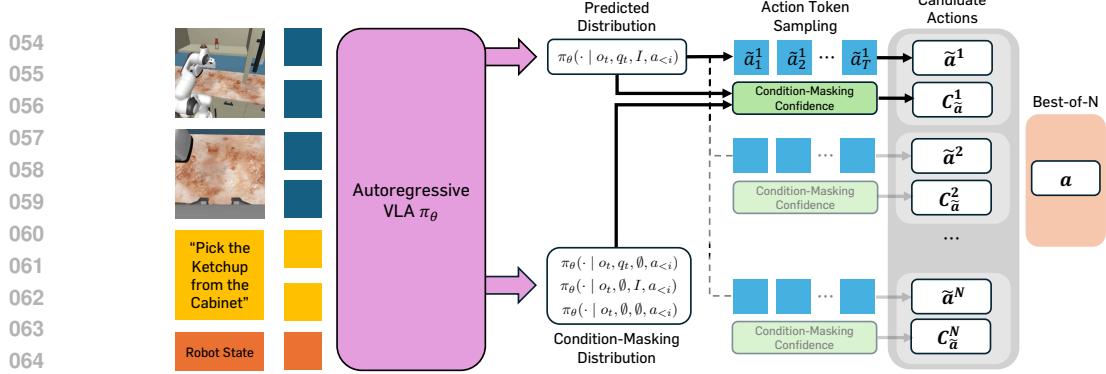


Figure 1: **Overview of MG-Select.** (1) Autoregressive VLA π_θ samples action tokens in parallel from the predicted distribution, while simultaneously computing token-wise KL divergence from the condition-masking distribution to the predicted distribution. (2) Best-of-N selection is then performed using an action confidence score $C_{\tilde{a}}$ obtained by aggregating these token-wise scores.

external modules. Inspired by verifier-free approaches for TTS (Zheng et al., 2024), we begin with the most straightforward approach: selecting the action with the highest likelihood from multiple sampled actions. We observe that this simple technique alone can improve VLA performance by producing more precise actions in some cases (see Table 5 (a)). However, this approach is not effective in general, as VLAs fine-tuned on target tasks for next action token prediction often memorize expert trajectories, causing the probability distribution over action tokens to become overly concentrated, which leads to multiple sampling converging to the same result.

These insights motivate us to propose Masking Distribution Guided Selection (MG-Select), a novel TTS framework that leverages the KL divergence from a reference action token distribution as a confidence metric for selecting the optimal action from multiple candidates. Inspired by recent advances in LLM literature that use self-certainty measures (Kang et al., 2025), we adapt this principle to the VLA setting. Specifically, we introduce a reference distribution generated by the same VLA but with randomly masked states and language conditions as inputs. This design ensures the reference distribution **provides action uncertainty** while remaining aligned with the target task distribution, yielding a more meaningful baseline for confidence measurement. By selecting actions with the highest KL divergence from this uncertainty-aware reference, MG-Select effectively identifies the most confident action sequences while avoiding the limitations of likelihood-based selection, achieving significant performance improvements in practice. Additionally, we propose a joint training strategy that enables the model to learn both conditional and unconditional distributions by applying dropout to state and language conditions, thereby further improving the quality of the reference distribution.

In our experiments, we have validated the effectiveness of our test-time scaling framework on both simulated (Nasiriany et al., 2024; Li et al., 2024; Liu et al., 2023) and real-world benchmarks (Khazatsky et al., 2024). Our results show that MG-Select consistently improves state-of-the-art VLAs (Pertsch et al., 2025) across diverse pick-and-place tasks and various environments. In particular, MG-Select achieves a **28%** improvement in real-world in-distribution tasks and **35%** in out-of-distribution tasks, along with a **168% relative gain** (**5.3% \rightarrow 14.2%**) over **vanilla greedy decoding** on RoboCasa (Nasiriany et al., 2024) pick-and-place tasks trained with 30 demonstrations.

2 PRELIMINARIES

Problem formulation. We train the policy using the Imitation Learning (IL) framework. Specifically, IL formulates the robot control problem as a Markov Decision Process (MDP) (Sutton et al., 1998) without rewards, $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, \gamma, \rho_0)$, where \mathcal{S} denotes the state space, \mathcal{A} the action space, and $P(s' | s, a) \in [0, 1]$ is the transition probability from state $s \in \mathcal{S}$ to $s' \in \mathcal{S}$ given action $a \in \mathcal{A}$, $\gamma \in [0, 1]$ represent discount factor, and ρ_0 denote the initial state distribution. Given a policy π_θ and an expert demonstration dataset $D = \{(s_i, a_i)\}_{i=1}^N$, the policy is optimized such that $\pi_\theta(s_i)$ closely matches the expert action a_i for each demonstration pair.

108 **Autoregressive VLA.** Given a state $s_t \in \mathcal{S}$ at timestep t and an instruction $I \in \mathcal{I}$, We assume a
 109 language-conditioned VLA parameterized by θ , $\pi_\theta : \mathcal{S} \times \mathcal{I} \rightarrow \Delta(\mathcal{A})$, where $\Delta(\mathcal{A})$ denotes the set of
 110 probability distributions over actions. The policy outputs a distribution $\pi_\theta(a | s_t, I)$ over $a \in \mathcal{A}$. We
 111 further decompose the state into visual observation o_t and proprioceptive state q_t , $s_t = (o_t, q_t)$ with
 112 $o_t \in \mathcal{O}$, $q_t \in \mathcal{Q}$, where \mathcal{O} and \mathcal{Q} denote the observation and proprioceptive state spaces, respectively.
 113 Therefore, the policy’s action distribution can be expressed as $\pi_\theta(a | s_t, I) = \pi_\theta(a | o_t, q_t, I)$. In
 114 our test-time scaling framework, we utilize this distribution through repeated sampling to generate
 115 multiple candidate actions. In an autoregressive VLA, the probability of an action sequence $\mathbf{a} =$
 116 (a_1, \dots, a_T) factorizes as

$$\pi_\theta(\mathbf{a} | o_t, q_t, I) = \prod_{k=1}^T \pi_\theta(a_k | o_t, q_t, I, a_{<k}), \quad (1)$$

120 where $a_{<k} = (a_1, \dots, a_{k-1})$ is the prefix up to step $k-1$. At each step k , the model produces a
 121 logit vector $\ell_k \in \mathbb{R}^{|\mathcal{V}|}$ over the vocabulary. Applying the softmax function yields the next-token
 122 distribution $\pi_\theta(\cdot | o_t, q_t, I, a_{<k}) \in [0, 1]^{|\mathcal{V}|}$, which is a categorical distribution over $|\mathcal{V}|$ possible
 123 tokens and sums to one.

3 METHOD

127 We present Masking Distribution Guided Selection (MG-Select), a novel test-time scaling framework
 128 that selects actions based on confidence scores from a reference action token distribution. In
 129 Section 3.1, we first introduce our overall test-time scaling framework. In Section 3.2, we introduce
 130 the confidence metric and its reference distribution used in our framework. In Section 3.3, we propose
 131 a joint training strategy for further improving the quality of the reference distribution in parallel with
 132 fine-tuning on the target dataset. We provide the overview of MG-Select in Figure 1. For additional
 133 details, please refer to Appendix A.

3.1 TEST-TIME SCALING FRAMEWORK

135 While VLAs demonstrate strong performance in robot control tasks, the single-inference paradigm
 136 becomes a bottleneck: the model always selects the most probable action from its predicted distribution
 137 (greedy decoding), even when this action may be suboptimal. This limitation is particularly
 138 problematic for tasks requiring high precision, such as fine-grained manipulation. To resolve this,
 139 we propose a test-time scaling framework that leverages only the model’s internal signals, without
 140 relying on external verifiers. It consists of two stages: (1) parallel stochastic sampling to generate N
 141 candidates, and (2) Best-of-N selection using a specific criterion M .

142 **1. Sampling N candidate actions.** At timestep t , the autoregressive VLA π_θ samples actions $\mathbf{a} \in \mathcal{A}$
 143 from $\pi_\theta(\mathbf{a} | o_t, q_t, I)$. To obtain N diverse candidates in parallel (batch-inference), we sample
 144 with temperature $\tau > 0$:

$$\tilde{a}_j^{(n)} \sim \pi_\theta(\cdot | o_t, q_t, I, \tilde{a}_{<j}^{(n)}; \tau), \quad n = 1, \dots, N, \quad j = 1, \dots, T,$$

145 where $\pi_\theta(\cdot; \tau) = \text{softmax}(\ell/\tau)$ controls distribution sharpness and sample diversity (close to
 146 greedy as $\tau \rightarrow 0$). This yields the candidate set $\tilde{\mathcal{A}} = \{\tilde{\mathbf{a}}^{(n)}\}_{n=1}^N$ with $\tilde{\mathbf{a}}^{(n)} = (\tilde{a}_1^{(n)}, \dots, \tilde{a}_T^{(n)})$.

147 **2. Best-of-N selection.** Among the N candidate actions, we select the final action according to a
 148 pre-defined criterion M . This criterion is metric for selecting the best candidate, and the selected
 149 action is given by:

$$\mathbf{a}_t = \arg \max_{\tilde{\mathbf{a}}^{(n)} \in \tilde{\mathcal{A}}} M_{\tilde{\mathbf{a}}^{(n)}}.$$

3.2 CONDITION-MASKING DISTRIBUTIONAL CONFIDENCE FOR TEST-TIME SAMPLING

157 For test-time scaling, choosing a proper metric for selecting the best candidate is crucial for effectiveness.
 158 When multiple candidate actions are generated, we need a reliable way to identify the most
 159 promising one. Intuitively, using the model’s likelihood for action selection would be the simplest
 160 choice. However, this approach is not effective in general because VLAs fine-tuned on target tasks

162 often produce overly concentrated probability distributions over action tokens, causing multiple
 163 sampling to converge to the same result. Instead, we propose a confidence metric based on the KL
 164 divergence between a predicted distribution and a reference distribution that represents uncertainty.
 165 This approach is motivated by the insight that actions that deviate most from an uncertainty-aware
 166 reference are likely to be the most confident and precise.
 167

168 **Confidence over action token distributions.** We first define the action token distribution over
 169 the action vocabulary \mathcal{V} as a probability distribution $P(a_i)$ where $a_i \in \mathcal{V}$ represents the i -th action
 170 token. While the VLA π_θ produces conditional distributions $\pi_\theta(\cdot | o_t, q_t, I, a_{<i})$ given observations,
 171 states, and instruction sequences, reference distributions can be constructed independently of such
 172 conditioning. These reference distributions can take various forms, such as uniform distributions over
 173 the action vocabulary, task-specific priors or other types of policy distributions. For computing the
 174 confidence over the action sequence, we first compute token-level distributional confidence at the i -th
 175 step token a_i by measuring the distance between the predicted distribution $P_i = \pi_\theta(\cdot | o_t, q_t, I, a_{<i})$
 176 and a reference distribution Q_i as $C_i = \text{KL}(Q_i \| P_i)$, where we use Kullback–Leibler (KL) divergence
 177 as our distributional confidence measure. We then aggregate these token-level confidences across the
 178 entire action sequence to obtain the final action-level confidence score for ranking candidate actions.
 179 Formally, for an action sequence $\mathbf{a} = (a_1, a_2, \dots, a_T)$ of length T , we compute the action-level
 180 confidence as $C_{\mathbf{a}} = \sum_{i \in \mathcal{I}} C_i = \sum_{i \in \mathcal{I}} \text{KL}(Q_i \| P_i)$, where $\mathcal{I} \subseteq \{1, 2, \dots, T\}$ represents the set of
 181 token indices to be aggregated. The choice of \mathcal{I} depends on the action tokenizing scheme: for full
 182 sequence aggregation, we use $\mathcal{I} = \{1, 2, \dots, T\}$, while for partial aggregation, we select specific
 183 token ranges based on the tokenization structure.

184 **Condition-masking distribution.** To construct a reference distribution Q , our hypothesis is that a
 185 reference distribution that is uncertain yet not too distant from the target action token distribution
 186 will provide meaningful confidence signals. To this end, we mask specific information (Text, State,
 187 or both Text & State) from the input modalities given to the VLA π_θ , creating condition-masking
 188 distributions that approximate failure modes where essential conditions for task solving are ignored.
 189 Formally, we compute the scoring metric as follows:

$$(Text\text{-}masking) \quad \text{KL}_{\text{text}} = \text{KL}(\pi_\theta(\cdot | o_t, q_t, \emptyset, a_{<i}) \| \pi_\theta(\cdot | o_t, q_t, I, a_{<i})), \quad (2)$$

$$(State\text{-}masking) \quad \text{KL}_{\text{state}} = \text{KL}(\pi_\theta(\cdot | o_t, \emptyset, I, a_{<i}) \| \pi_\theta(\cdot | o_t, q_t, I, a_{<i})), \quad (3)$$

$$(Text\&State\text{-}masking) \quad \text{KL}_{\text{both}} = \text{KL}(\pi_\theta(\cdot | o_t, \emptyset, \emptyset, a_{<i}) \| \pi_\theta(\cdot | o_t, q_t, I, a_{<i})), \quad (4)$$

190 For each task environment, the optimal confidence variant can vary. For example, in the SIMPLER-
 191 WidowX benchmark (Li et al., 2024), which consists solely of pick-and-place tasks, state-masking
 192 confidence works best because the model already memorizes how to pick and place objects without
 193 task instructions. In contrast, RoboCasa benchmark (Nasiriany et al., 2024), which has multiple task
 194 types, text-masking or text&state-masking are more effective, since the model cannot determine the
 195 correct action without instructions.

3.3 JOINT TRAINING STRATEGY

201 Although our method can be seamlessly integrated with any autoregressive VLA, existing VLAs
 202 are not trained under condition-masking settings, and directly masking inputs often leads to un-
 203 intended actions. To address this, we propose a new fine-tuning strategy that enables the model
 204 to generate condition-masking distributions while maintaining the performance gains from stan-
 205 dard fine-tuning on the target dataset. Specifically, we train the VLA with both all-condition and
 206 condition-masking data, randomly dropping certain conditions during fine-tuning to the target dataset,
 207 thereby increasing awareness of condition-masking distributions. Given the dataset \mathcal{D} , we augment
 208 it using four different masking variants applied to the proprioceptive state q_t and the instruction I :
 209 $\mathcal{M} = \{(q_t, I), (q_t, \emptyset), (\emptyset, I), (\emptyset, \emptyset)\}$, corresponding to (i) all-condition, (ii) text-masking, (iii)
 210 state-masking, and (iv) both-masking cases. We then train the VLA with the augmented dataset
 211 $\mathcal{D}_{\text{augmented}}$ where $\mathcal{D}_{\text{augmented}} = \{(\mathcal{T}^i, I^i, q_t^{(m)}, I^{(m)}) \mid (q_t^{(m)}, I^{(m)}) \in \mathcal{M}\}$ as follows:

$$\mathcal{L}_{\text{Joint-IL}}(\theta; D) = -\mathbb{E}_{((o_t, q_t), \mathbf{a}_t, I) \sim D} \left[\mathbb{E}_{(q_t^{(m)}, I^{(m)}) \in \mathcal{M}} \left[\log \pi_\theta(\mathbf{a}_t | o_t, q_t^{(m)}, I^{(m)}) \right] \right]. \quad (5)$$

216 As a result, this fine-tuning strategy enables the VLA to maintain performance comparable to standard
 217 fine-tuning while gaining awareness of condition-masking distributions. When combined with our
 218 proposed confidence measure, this enhanced model (denoted as MG-Select*) demonstrates improved
 219 performance over the original Masking Distribution Guided Selection framework.
 220

221 4 EXPERIMENTS

223 4.1 SIMULATED ROBOT EXPERIMENTS

225 To validate the effectiveness of MG-Select, we conduct experiments across diverse robotic simulation
 226 environments including RoboCasa, SIMPLER-WidowX, and LIBERO. We fine-tune the pretrained
 227 π_0 -FAST model for evaluation on all simulation environments, and additionally fine-tune OpenVLA
 228 for evaluation on LIBERO to demonstrate that our method improves performance regardless of the
 229 underlying model architecture.
 230

231 4.1.1 SETUP

233 **RoboCasa** (Nasiriany et al., 2024). RoboCasa provides 24 atomic tasks set in household kitchen
 234 environments. We focus on 8 pick-and-place tasks, which are particularly challenging since they
 235 require high-precision actions (*i.e.*, grasping objects) and are well-suited for evaluating improvements
 236 in precision. Following Bjorck et al. (2025), we train the base model with 30, 100, and 300
 237 demonstrations for each task. For comparison, we also report results for GR00T N1 (Bjorck et al.,
 238 2025), taken from the original paper.

239 **SIMPLER-WidowX** (Li et al., 2024). This benchmark evaluates whether our method improves
 240 precision in a real-to-sim setting. Because it does not provide simulated training data, we train
 241 the base model on BridgeData V2 (Walke et al., 2023) and evaluate it on 4 pick-and-place tasks.
 242 For comparison, we also report results for RT-1-X (O’Neill et al., 2024), Octo (Team et al., 2024),
 243 RoboVLM (Liu et al., 2025), and SpatialVLA (Qu et al., 2025), as reported in the SIMPLER paper
 244 (Li et al., 2024) and the respective original papers.

245 **LIBERO** (Liu et al., 2023). This benchmark evaluates multiple axes of generalization, including
 246 variations in layout, objects, and goals, as well as long-horizon tasks (LIBERO-Long) that require
 247 sustained high-precision actions.
 248

249 4.1.2 EXPERIMENT RESULTS

250 **RoboCasa** (Nasiriany et al., 2024). Table 1 presents the performance of MG-Select with π_0 -FAST
 251 (Pertsch et al., 2025) on RoboCasa. MG-Select consistently improves the base model across all tasks,
 252 including the 8 pick-and-place tasks, and under all demonstration scales. Notably, improvements
 253 appear even without joint training, showing that our test-time scaling alone can reliably select higher-
 254 precision actions. When combined with joint training, the gains are further amplified, since learning
 255 the condition-masking distribution during training provides a more reliable confidence signal for test-
 256 time scaling. We also observe particularly strong improvements in the low-data regime. For instance,
 257 with only 30 demonstrations, MG-Select with our joint training achieves a 168% relative improvement
 258 on pick-and-place tasks over the base model, highlighting that our method effectively compensates
 259 for limited performance under scarce data. We provide the detailed results in Appendix B.

260 **SIMPLER-WidowX** (Li et al., 2024). Table 2 shows the performance of MG-Select with π_0 -
 261 FAST (Pertsch et al., 2025) on SIMPLER-WidowX. MG-Select clearly improves the base model
 262 across all tasks, demonstrating the robustness of our approach in enhancing action precision. We
 263 note that the base model performs relatively poorly on the “put eggplant in basket” task, since its
 264 background differs substantially from the other three tasks, making it sensitive to model-specific
 265 training configurations. For instance, SpatialVLA (Qu et al., 2025) achieves 100% success on the
 266 eggplant task but performs poorly on the remaining tasks. Despite this challenge, MG-Select still
 267 provides consistent improvements on the eggplant task, indicating that our approach remains effective
 268 even when the base model struggles. For detailed results, please refer to Appendix B.

269 **LIBERO** (Liu et al., 2023). Table 6 presents the performance of MG-Select with π_0 -FAST (Pertsch
 et al., 2025) on LIBERO. In this benchmark, we further extend our evaluation by applying MG-Select

Table 1: **Performance comparison on RoboCasa** (Nasiriany et al., 2024). We report the average success rate (%) over 50 trials on 24 tasks, including 8 pick-and-place tasks, trained with varying numbers of demonstrations. Results for our methods are averaged over 3 random seeds, while baseline results are taken as reported in the original paper. \dagger indicates reproduced performance, and $*$ indicates results with additional joint training before applying our test-time scaling framework.

Model	30 Demos		100 Demos		300 Demos	
	Pick and Place	All	Pick and Place	All	Pick and Place	All
GR00T N1	0.4	17.4	2.2	32.1	22.6	49.6
π_0 -FAST \dagger	5.3	30.9	17.0	40.2	43.2	61.2
+ MG-Select (Ours)	7.2	32.0	22.6	43.7	46.5	61.3
+ MG-Select* (Ours)	14.2	34.6	31.0	48.1	46.9	62.9

Table 2: **Performance comparison on SIMPLER-WidowX** (Li et al., 2024). We report the average success rate (%) over 24 trials on 4 pick-and-place tasks. Results for our methods are averaged over 3 random seeds, while baseline results are taken as reported in SIMPLER paper (Li et al., 2024) and the respective original papers. \dagger indicates reproduced performance, and $*$ indicates results with additional joint training before applying our test-time scaling framework.

Model	Spoon on Towel	Carrot on Plate	Stack Cubes	Eggplant in Basket	Average
RT-1-X	0.0	4.2	0.0	0.0	1.1
Octo	12.5	8.3	0.0	43.1	16.0
RoboVLM	29.2	25.0	12.5	58.3	31.3
SpatialVLA	16.7	25.0	29.2	100.0	42.7
π_0 -FAST \dagger	66.7	70.8	41.7	8.3	46.9
+ MG-Select* (Ours)	69.4	75.0	43.1	13.9	50.3

to OpenVLA (Kim et al., 2024), showing that our approach is compatible with different architectures. The results show that MG-Select achieves superior average performance over both base models, demonstrating its general effectiveness. Notably, LIBERO-Object and LIBERO-Long are the most challenging task suites (lowest base model performance), and the gains observed on these benchmarks highlight the effectiveness of our test-time scaling framework in improving precision. We provide further details about OpenVLA implementation in Appendix A.

4.2 REAL WORLD EXPERIMENTS

To further validate our method’s generalization beyond simulation environments, we conduct real-robot experiments on a 7-DoF Franka Research 3 robot arm. we fine-tunes the pre-trained π_0 -FAST on the DROID dataset (Khazatsky et al., 2024) for evaluation.

4.2.1 SETUP

In-distribution tasks. We design in-distribution (ID) tasks to evaluate the effectiveness of our method in enhancing base model performance under limited data, as task-specific real-world data is costly to collect. The ID tasks are pick-and-place tasks defined by a start and goal location, focusing on whether our method can generate high-precision actions for objects with different geometries, *e.g.*, a teddy bear, a cube, a rigid cup, and a sponge. For training, we used 60 demonstrations per task, corresponding to 15 demonstrations for each of the four objects.

Out-of-distribution tasks. We design out-of-distribution (OOD) tasks to evaluate whether our method improves the zero-shot generalization of the policy. We construct 2 OOD tasks involving unseen objects, *e.g.*, a lighter cup and a roll of tape. These OOD tasks are pick-and-place tasks similar to the ID tasks, but the policy must generalize to unseen real-world scenes and objects. The gains on these tasks reflect the effectiveness of our method in improving policy robustness.

4.2.2 EXPERIMENTAL RESULTS

In-distribution tasks. Table 4 presents the performance of MG-Select on π_0 -FAST-DROID (Pertsch et al., 2025) in in-distribution tasks. MG-Select outperforms the base model across all tasks, achieving a 28% relative gain. This demonstrates that our test-time scaling framework remains effective beyond simulation, enabling high-precision actions to complete pick-and-place tasks with diverse objects.

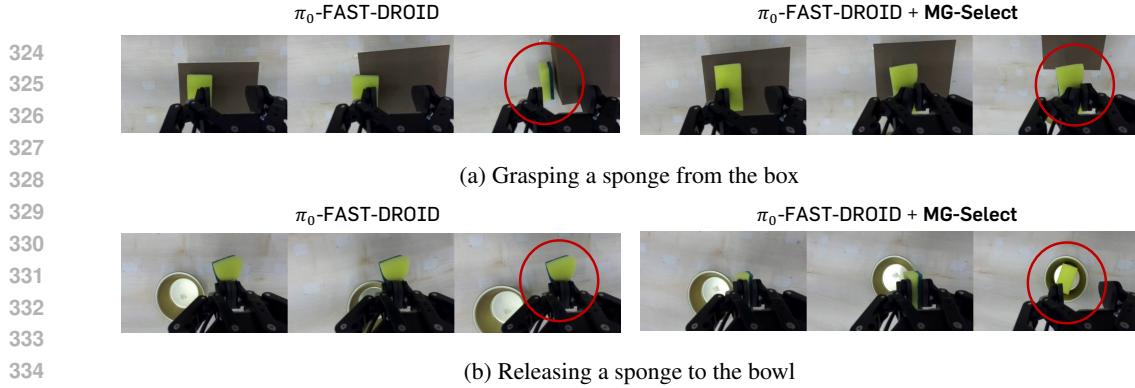


Figure 2: **Qualitative results of MG-Select in real-world pick-and-place tasks.** We visualize one of our real-world experiments in the “Box to Bowl” task: (a) grasping an object from the box and (b) releasing it into the bowl. The rollout shows that MG-Select can generate high-precision actions at critical moments for task success, whereas the base policy (π_0 -FAST-DROID) often struggles at these steps.

Table 4: **Real-world performance on in-distribution tasks with Franka Research 3.** We evaluate our method on seen tasks after multi-task training with 60 demonstrations per task. Each task is defined by a start and goal location with 4 different target objects. We report the average success rate (%) over 24 trials (4 objects \times 6 trials) for each task. * indicates results with additional joint training before applying our test-time scaling framework.

Model	Pick and Place				Average
	Box to Bowl	Box to Plate	Basket to Bowl	Plate to Basket	
π_0 -FAST-DROID	41.7	37.5	45.8	25.0	37.5
+ MG-Select* (Ours)	58.3	54.2	50.0	29.2	47.9

Out-of-distribution tasks. Table 3 presents the performance of MG-Select on π_0 -FAST-DROID in out-of-distribution tasks. The results demonstrate that MG-Select can be directly applied to a generalizable policy, enhancing its robustness and precision on novel objects, with a 35% improvement. Notably, MG-Select shows clear gains on objects that are more difficult to grasp and lift than in-distribution ones, *e.g.*, a roll of tape. We also provide qualitative results about real-world experiments in Figure 4, which show that MG-Select improves precision of policy at critical moments of pick-and-place tasks, *i.e.*, grasping and releasing, where the base model often fails.

4.3 ABLATION STUDIES AND ANALYSES

We investigate the effectiveness of the proposed components on RoboCasa and conduct the inference latency analysis on LIBERO-Object. For component-wise analysis, we use models trained on RoboCasa with 100 demonstrations, whereas for the latency analysis, we use models trained on LIBERO.

Inference strategy. Table 5 (a) shows that low-temperature sampling (*e.g.*, $\tau = 0.5$) already improves over greedy decoding on the jointly trained model. Even simple Best-of-N strategies, such as selecting actions by likelihood or KL divergence against a uniform reference distribution (Kang et al., 2025), yield further gains. Building on this, MG-Select achieves the strongest improvements, confirming that condition-masking distributional confidence provides a more effective uncertainty signal.

Number of candidates. Table 5 (b) shows that performance increases up to $N = 64$, but the improvement beyond $N = 4$ is marginal. Considering computational efficiency, we adopt $N = 4$ as the practical point that yields meaningful precision gains.

378	<i>M</i>	<i>N</i>	PnP	All	<i>N</i>	PnP	All	Text	State	PnP	All
379	Greedy	1	28.5	42.7	1	27.6	43.8	✓	✗	31.0	48.1
380	Sampling	1	27.6	43.8	2	30.0	46.2	✗	✓	30.1	46.7
381	Uniform KL	4	30.0	46.5	4	31.0	48.1	✓	✓	29.7	46.3
382	Likelihood	4	30.5	46.8	8	30.0	46.9				
383	MG-Select	4	31.0	48.1	16	30.7	46.1				
384					32	31.0	46.6				
385					64	33.3	48.4				
386											
387	(a) Inference strategy				(b) Number of candidates				(c) Condition-masking variants		
388											
389	Joint-IL	MG-Select	PnP	All	τ	PnP	All	\mathcal{I}	PnP	All	
390	✗	✗	17.0	40.2	0.5	27.5	43.9	Sum	26.1	44.5	
391	✗	✓	22.6	43.7	1.0	28.8	44.3	Avg	24.7	44.7	
392	✓	✗	28.5	42.7	2.0	25.4	43.8	First 1	25.5	44.1	
393	✓	✓	31.0	48.1	4.0	31.0	48.1	First 3	27.1	45.5	
394					8.0	30.0	45.5	First 5	31.0	48.1	
395								First 7	29.2	46.3	
396								First 10	26.6	45.1	
397											
398	(d) Effect of joint training				(e) Regularization temperature				(f) Aggregation strategy		
399											

Table 5: **MG-Select ablation experiments.** We present a component-wise analysis of our proposed test-time scaling framework on RoboCasa (Nasiriany et al., 2024), trained with 100 demonstrations. We report the average success rate (%) over 50 trials and 3 random seeds. Temperature (τ) for stochastic sampling is fixed to 0.5 across all experiments. PnP denotes the 8 pick-and-place tasks, and All denotes the full set of 24 tasks. Gray rows indicate the main results reported in Table 1.

Condition-masking variants. Table 5 (c) presents the results of different masking variants after joint training. Text-masking achieves the best performance, while other variants remain competitive and outperform the uniform baseline (Kang et al., 2025).

Effect of joint training. Table 5 (d) shows the effect of combining our joint training strategy with MG-Select. Joint training alone already outperforms vanilla imitation learning, likely because condition-masking prevents the model from overfitting. Coupling it with MG-Select yields further gains over using MG-Select alone, confirming the effectiveness of the proposed strategy.

Regularization temperature. We empirically find that naively using the condition-masking distribution ($\tau = 1.0$) as a reference does not work well, as shown in Table 5 (e), compared to uniform-based KL divergence (Kang et al., 2025). It is possibly because condition-masking distribution may be "peaked" around certain action tokens, which undermines the purpose of distributional confidence by failing to consider the entire probability distribution. To address this issue, we apply an appropriate high temperature (*e.g.*, $\tau = 4.0$) to the condition-masking distribution, which regularizes its concentration and results in superior performance.

Aggregation strategy. Table 5 (f) shows that the aggregation strategy for action-level confidence is crucial for selecting high-precision actions. Intriguingly, the naive summation of token-level confidence performs the worst, while truncating to the first 5 tokens works best. We hypothesize that the results may be correlated with the nature of the FAST tokenizer (Pertsch et al., 2025), *i.e.*, each action sequence is composed of a variable number of action tokens, which are aligned from low- to high-frequency. We provide an additional analysis on the truncated FAST tokens and Robocasa performance in Appendix H.

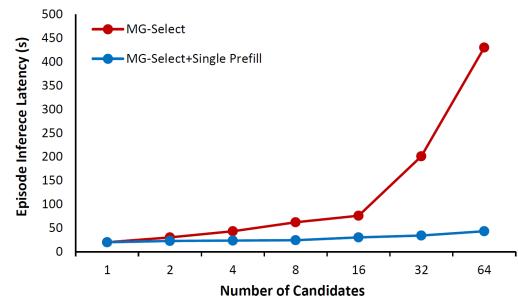


Figure 3: **Inference latency comparison on LIBERO-Object.** We compare vanilla MG-Select with its efficient deployment variant using single prefill, based on π_0 -FAST (Pertsch et al., 2025).

Table 6: **Performance comparison on LIBERO** (Liu et al., 2023). We report the average success rate (%) over 4 task suites, each consisting of 10 tasks with 50 trials per task. Results for our methods are averaged over 3 random seeds. \dagger indicates reproduced performance, and $*$ indicates results with additional joint training before applying our test-time scaling framework.

Model	LIBERO-Spatial	LIBERO-Object	LIBERO-Goal	LIBERO-Long	Average
OpenVLA \dagger	85.2	63.7	75.5	52.5	69.2
+ MG-Select* (Ours)	84.8	72.5	74.9	55.4	71.9
π_0 -FAST \dagger	97.4	95.4	95.6	79.6	92.0
π_0 -FAST \dagger + MG-Select* (Ours)	97.2	98.0	94.5	82.7	93.1

Effect of single prefill deployment. Since MG-Select generates multiple candidate actions in parallel, it inevitably introduces additional latency, as the prefill step must be repeated N times. This issue is particularly critical for VLAs, which require prefilling at every step when generating action sequences conditioned on the current observation. To address this, we design a *single-prefill* deployment strategy that shares one prefill across all N candidates before decoding. This significantly reduces the computational overhead, as shown in Figure 3: with $N = 4$, our deployment achieves a 45% reduction in latency compared to vanilla MG-Select. As a result, the inference time of MG-Select remains comparable to that of single-action inference across different candidate sizes. [We provide the detailed results in Appendix C](#).

5 RELATED WORK

Vision-Language-Action models. Developing generalist robot policies has long been a central objective in robotics. Recently, Vision-Language-Action models (VLAs) have emerged as a prominent approach, showing strong performance across diverse downstream tasks through large-scale pre-training on robotic datasets (Driess et al., 2023; Zitkovich et al., 2023; Black et al., 2025; Pertsch et al., 2025; Bjorck et al., 2025). Two common design paradigms have been explored: augmenting a vision-language model (VLM) with a diffusion-based action expert (Black et al., 2025; Bjorck et al., 2025), or converting the VLM into a VLA in an autoregressive manner (Kim et al., 2024; Pertsch et al., 2025). However, despite these advances, they fundamentally rely on a single-inference paradigm to generate actions, which increases the risk of errors in high-precision tasks.

Test-time computing. Applying additional computation at test time is widely recognized as an effective approach to generate more accurate outputs for challenging tasks across domains. In large language models (LLMs), numerous methods have demonstrated its effectiveness in improving reasoning capabilities, *e.g.*, mathematics, coding, and problem-solving (Chen et al., 2024; Brown et al., 2024; Ehrlich et al., 2025; Song et al., 2024). In robotics, test-time scaling has recently emerged as a promising paradigm, which involves repeated sampling combined with external value functions. For example, Nakamoto et al. (2024) ranks candidate actions using a value function trained via offline reinforcement learning on diverse robotic datasets, while Kwok et al. (2025) introduces VLM-based action verifiers obtained through reward modeling with synthetic preference datasets. Unlike these approaches, MG-Select requires no external modules. It performs Best-of-N sampling using only the model’s intrinsic signals, *i.e.*, condition-masking distributional confidence. MG-Select consistently improves performance across diverse pick-and-place tasks. Moreover, it offers an efficient framework by eliminating the need for external model loading or interaction, and by introducing optimized parallel sampling that reduces inference latency.

6 CONCLUSION

In this work, we propose MG-Select, a novel test-time scaling framework for Vision-Language-Action models (VLAs). Our approach leverages condition-masking distributional confidence as a self-generated signal for Best-of-N sampling, enabling precise action selection without external verifiers. This framework mitigates the precision issues inherent in single-inference paradigms and consistently improves policy performance across a wide range of simulation and real-world benchmarks. In addition, we introduce a joint training strategy and optimized implementation to further enhance both effectiveness and efficiency. [We believe MG-Select opens up a verifier-free test-time scaling paradigm in VLAs, improving robustness and precision solely through the model itself.](#)

486 REPRODUCIBILITY STATEMENT
487488 We provide implementation details about training and deployment in Appendix A.
489490 REFERENCES
491

492 Suneel Belkhale and Dorsa Sadigh. Minivla: A better vla with a smaller footprint, 2024. URL
493 <https://github.com/Stanford-ILLIAD/openvla-mini>.

494 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel
495 Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
496 Paligemma: A versatile 3b vlm for transfer. *arXiv preprint arXiv:2407.07726*, 2024.

497 Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang,
498 Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00tn1: An open foundation model for generalist
499 humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025.

500 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai,
501 Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow model for
502 general robot control. *Robotics: Science and Systems*, 2025.

503 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
504 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
505 *arXiv preprint arXiv:2407.21787*, 2024.

506 Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
507 He, Xuan Hu, Xu Huang, et al. Agibot world colosseo: A large-scale manipulation platform for
508 scalable and intelligent embodied systems. *arXiv preprint arXiv:2503.06669*, 2025.

509 Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
510 without process. *Advances in Neural Information Processing Systems*, 37:27689–27724, 2024.

511 Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
512 Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
513 language model. In *International Conference on Machine Learning*, pp. 8469–8488. PMLR, 2023.

514 Ryan Ehrlich, Bradley Brown, Jordan Juravsky, Ronald Clark, Christopher Ré, and Azalia Mirhoseini.
515 Codemonkeys: Scaling test-time compute for software engineering. *arXiv preprint arXiv:2501.14723*, 2025.

516 Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language
517 models via self-certainty. *arXiv preprint arXiv:2502.18581*, 2025.

518 Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
519 Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models.
520 In *Forty-first International Conference on Machine Learning*, 2024.

521 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
522 Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
523 et al. Droid: A large-scale in-the-wild robot manipulation dataset. *arXiv preprint arXiv:2403.12945*,
524 2024.

525 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
526 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
527 vision-language-action model. *Conference on Robot Learning*, 2024.

528 Jacky Kwok, Christopher Agia, Rohan Sinha, Matt Foutter, Shulu Li, Ion Stoica, Azalia Mirhoseini,
529 and Marco Pavone. Robomonkey: Scaling test-time sampling and verification for vision-language-
530 action models. *arXiv preprint arXiv:2506.17811*, 2025.

540 Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa
 541 Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation policies in
 542 simulation. *Conference on Robot Learning*, 2024.

543

544 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 545 Benchmarking knowledge transfer for lifelong robot learning. *arXiv preprint arXiv:2306.03310*,
 546 2023.

547

548 Huaping Liu, Xinghang Li, Peiyan Li, Minghuan Liu, Dong Wang, Jirong Liu, Bingyi Kang, Xiao
 549 Ma, Tao Kong, and Hanbo Zhang. Towards generalist robot policies: What matters in building
 550 vision-language-action models. *CoRR*, 2025.

551

552 Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
 553 language-conditioned policy learning for long-horizon robot manipulation tasks. *IEEE Robotics
 and Automation Letters*, 7(3):7327–7334, 2022.

554

555 Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and Sergey Levine. Steering your generalists:
 556 Improving robotic foundation models via value guidance. *Conference on Robot Learning*, 2024.

557

558 Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
 559 Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
 560 robots. *Robotics: Science and Systems*, 2024.

561

562 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 563 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
 564 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *IEEE Interna-
 tional Conference on Robotics and Automation*, pp. 6892–6903. IEEE, 2024.

565

566 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
 567 Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
 568 models. *arXiv preprint arXiv:2501.09747*, 2025.

569

570 Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan Gu,
 571 Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-language-
 572 action model. *Robotics: Science and Systems*, 2025.

573

574 Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The good, the bad, and the greedy:
 575 Evaluation of llms should not ignore non-determinism. *arXiv preprint arXiv:2407.10457*, 2024.

576

577 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 578 press Cambridge, 1998.

579

580 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 581 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
 582 policy. *Robotics: Science and Systems*, 2024.

583

584 Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
 585 Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset for
 586 robot learning at scale. In *Conference on Robot Learning*, pp. 1723–1736. PMLR, 2023.

587

588 Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li. Reasoning aware self-consistency: Leveraging
 589 reasoning paths for efficient llm sampling. *Conference of the North American Chapter of the
 590 Association for Computational Linguistics*, 2025.

591

592 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 593 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 594 *International Conference on Learning Representations*, 2023.

595

596 Yifan Yang, Zhixiang Duan, Tianshi Xie, Fuyu Cao, Pinxi Shen, Peili Song, Piaopiao Jin, Guokang
 597 Sun, Shaoqing Xu, Yangwei You, et al. Fpc-vla: A vision-language-action framework with a
 598 supervisor for failure prediction and correction. *arXiv preprint arXiv:2509.04018*, 2025.

594 Danna Zheng, Danyang Liu, Mirella Lapata, and Jeff Z Pan. Trustscore: Reference-free evaluation of
595 llm response trustworthiness. In *ICLR 2024 Workshop on Secure and Trustworthy Large Language*
596 *Models*, 2024.

597

598 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
599 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
600 to robotic control. In *Conference on Robot Learning*, pp. 2165–2183. PMLR, 2023.

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A IMPLEMENTATION DETAILS**
649650 **A.1 TRAINING ON SIMULATION DATA**
651652 **Imitation learning.** We use two representative autoregressive VLA policies as base models:
653

- 654 • π_0 -FAST (Pertsch et al., 2025): It uses Paligemma-3B VLM (Beyer et al., 2024) as the backbone
655 and is trained on 2 NVIDIA A100 GPUs with full fine-tuning from the pre-trained checkpoint.
656 Common training configurations are fixed with the AdamW optimizer and a cosine decay schedule,
657 with `warmup_steps` = 1,000, `peak_lr` = 2.5e-5, `decay_lr` = 2.5e-6, and `decay_steps`
658 = 30,000. Training steps, global batch size, and action chunk horizon vary by dataset as shown in
659 Table 7.

660 Table 7: Training setups of π_0 -FAST for different simulation benchmarks.
661

Configuration	RoboCasa			SIMPLER-WidowX	LIBERO
	30 demos	100 demos	300 demos		
Training steps	3k	5k	20k	10k	10k
Global batch size	64	64	64	64	32
Action chunk horizon	16	16	16	5	10

- 667 • OpenVLA (Kim et al., 2024): It uses Prismatic-7B VLM (Karamcheti et al., 2024) as the backbone
668 and is trained on 2 NVIDIA A100 GPUs with LoRA fine-tuning ($r = 32$) from the pre-trained
669 checkpoint. We use a global batch size of 32 for LIBERO (Liu et al., 2023), while other training
670 configurations follow the official OpenVLA implementation. Note that, consistent with the
671 OpenVLA configuration, we train the model separately on each LIBERO benchmark rather than
672 performing multi-task fine-tuning.

673 **Joint imitation learning.** Joint imitation learning strictly follows the training configuration of
674 the aforementioned imitation learning, differing only in the data configuration, as it incorporates
675 condition-dropout data. We consider 3 variants of dropout data, (1) text-masking, (2) state-masking,
676 and (3) both text&state-masking. For π_0 -FAST, we randomly dropout 10%/10%/10% (text / state/
677 both text&state) in RoboCasa and LIBERO, and only dropout 10% of state data in SIMPLER-
678 WidowX. For OpenVLA, we apply a 10% dropout only to text condition since OpenVLA does not
679 receive state input.

681 **A.2 TRAINING ON REAL-WORLD DATA**
682

683 **Imitation learning.** We use π_0 -FAST-DROID (Pertsch et al., 2025) as the base model for real-world
684 experiments. It is fine-tuned with our manually collected data on 2 NVIDIA A100 GPUs with full
685 fine-tuning and a global batch size of 64. Training follows the imitation learning configuration
686 described in Appendix A.1, except that `peak_lr` and `decay_lr` are reduced to 1e-5, and 1e-6,
687 respectively.

688 **Joint imitation learning.** We apply random dropout of 10%/10%/10% (text / state / both text&state)
689 and fine-tune with manually collected data.

691 **A.3 DEPLOYMENT**
692

693 MG-Select’s main hyperparameters are: (1) the sampling temperature τ , (2) the number of candidate
694 actions N , (3) the variant of condition-masking, and (4) the regularization temperature for the
695 condition-masking distribution. We search for the optimal configuration on each dataset within the
696 following ranges: $\tau \in \{0.1, 0.3, 0.5, 0.7, 1.0\}$, $N \in \{4, 8\}$, variants $\in \{\text{text}, \text{state}, \text{text\&state}\}$, and
697 regularization temperature $\in \{4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0\}$, and report the best result for each
698 policy.

699 For aggregating token-level confidence scores, we use the summation of the first 5 tokens by default
700 in π_0 -FAST. In contrast, for OpenVLA, we use the average score across the entire token sequence,
701 since its output sequence length is fixed to the action dimension of the training data. Additionally,
only the text-masking variant is applied in OpenVLA, as it does not take state input.

702 B DETAIL RESULTS ON SIMULATION EXPERIMENTS
703704
705 Table 8: **Detailed performance comparison on RoboCasa** (Nasiriany et al., 2024). We report
706 the average success rate (%) over 50 trials, trained with varying numbers of demonstrations. For
707 clarity, the 24 tasks are grouped into three categories: pick-and-place, open-and-close, and others.
708 Results for our methods are averaged over 3 random seeds, while baseline results are taken from the
709 original paper (Bjorck et al., 2025). \dagger indicates reproduced performance, and $*$ indicates results with
710 additional joint training before applying our test-time scaling framework.
711

Model	30 Demos				100 Demos				300 Demos					
	Pick and Place		Open and Close	Others	All	Pick and Place		Open and Close	Others	All	Pick and Place		Open and Close	Others
GR00T N1	0.4	26.0	26.0	17.4	2.2	52.8	43.5	32.1	22.6	68.3	60.0	49.6		
π_0 -FAST \dagger	5.3	51.3	39.2	30.9	17.0	60.7	46.6	40.2	43.2	74.7	67.4	61.2		
+ MG-Select (Ours)	7.2	53.7	38.9	32.0	22.6	63.2	48.9	43.7	46.5	76.1	64.3	61.3		
+ MG-Select* (Ours)	14.2	53.2	39.7	34.6	31.0	67.3	50.1	48.1	46.9	81.0	64.9	62.9		

712
713 Table 9: **Detailed performance comparison on SIMPLER-WidowX** (Li et al., 2024). We report
714 both the task success rate and the grasp success rate (%) over 24 trials on 4 pick-and-place tasks.
715 Results for our methods are averaged over 3 random seeds, while baseline results are taken from the
716 SIMPLER paper (Li et al., 2024) and the respective original papers (Liu et al., 2025; Qu et al.,
717 2025). \dagger indicates reproduced performance, and $*$ indicates results with additional joint training
718 before applying our test-time scaling framework.
719

Model	Spoon on Towel		Carrot on Plate		Stack Cubes		Eggplant in Basket		Average	
	Grasp	Success	Grasp	Success	Grasp	Success	Grasp	Success	Grasp	Success
RT-1-X	16.7	0.0	20.8	4.2	8.3	0.0	0.0	0.0	11.5	1.1
Octo	34.7	12.5	52.8	8.3	31.9	0.0	66.7	43.1	46.5	16.0
RoboVLM	70.8	45.8	33.3	20.8	54.2	4.2	91.7	79.2	62.5	37.5
SpatialVLA	20.8	16.7	29.2	25.0	62.5	29.2	100.0	100.0	53.1	42.7
π_0 -FAST \dagger	83.3	66.7	83.3	70.8	91.7	41.7	8.3	8.3	66.7	46.9
+ MG-Select* (Ours)	87.5	69.4	83.3	75.0	79.2	43.1	26.4	13.9	69.1	50.3

723 C DETAIL RESULTS ON EFFICIENT DEPLOYMENT STRATEGY
724725
726 Table 10: **Detailed inference latency comparison on LIBERO-Object**. This table presents the
727 detailed results corresponding to Figure 3, comparing vanilla MG-Select and MG-Select with the
728 single prefill strategy. We report the average inference latency over 10 episodes for each of 5 random
729 seeds, across different numbers of N candidates. Latency is measured on an NVIDIA A100 GPU. \downarrow
730 indicates lower values are better.
731

N	Latency (s, \downarrow)	
	MG-Select	MG-Select + Single Prefill
1	20.2	20.2
2	30.4	22.7
4	43.4	23.7
8	62.0	24.3
16	76.0	30.4
32	201.0	34.1
64	430.0	43.1

756 **D ADDITIONAL EXPERIMENTS**
757758 **D.1 EFFECT OF DROPOUT RATIO**
759760 **Table 11: Ablation experiment on dropout ratios.** We present a dropout ratio analysis for joint
761 imitation learning on RoboCasa (Nasiriany et al., 2024), trained with 100 demonstrations. We report
762 the average success rate (%) over 50 trials and 3 random seeds. From left to right, the dropout ratio
763 corresponds to text, state, and both text&state conditions. PnP denotes the 8 pick-and-place tasks,
764 and All denotes the full set of 24 tasks. Blue rows indicate the main results reported in Table 1.
765

Dropout Ratio (%)	PnP	All
5/ 5/ 5	24.2	45.3
10/10/10	31.0	48.1
20/20/20	27.9	46.1

771 **Dropout ratios on RoboCasa.** We investigate the effect of the dropout ratio in joint imitation learning
772 for MG-Select. Table 11 shows that a ratio of 10%/10%/10% achieves the best performance. We
773 hypothesize that small ratios (e.g., 5%) are insufficient for learning a meaningful masking distribution,
774 while large ratios (e.g., 20%) make the masking distribution too similar to the all-condition distribution,
775 leading our confidence metric to select suboptimal action.
776777 **D.2 EFFECT OF AGGREGATION STRATEGY**
778779 **Table 12: Ablation experiment on aggregation strategies.** We report the average success rate (%)
780 over 24 trials on 4 pick-and-place tasks in SIMPLER-WidowX (Li et al., 2024). Results for our
781 methods are averaged over 3 random seeds. Blue rows indicate the main results reported in Table
782 2. † indicates reproduced performance, and * indicates results with additional joint training before
783 applying our test-time scaling framework.
784

Model	Spoon on Towel	Carrot on Plate	Stack Cubes	Eggplant in Basket	Average
π_0 -FAST [†]	66.7	70.8	41.7	8.3	46.9
+ MG-Select* (First 1)	68.1	70.8	48.6	20.8	52.1
+ MG-Select* (First 5)	69.4	75.0	43.1	13.9	50.3
+ MG-Select* (First 10)	66.7	76.4	38.9	22.2	51.0
+ MG-Select* (Sum)	62.5	73.6	43.1	16.7	49.0
+ MG-Select* (Avg)	66.7	68.1	40.3	16.7	47.9

792 **Aggregation strategies on SIMPLER-WidowX.** We investigate whether the aggregation strategy for
793 action-level confidence remains important in a different domain. Table 12 shows that the truncation
794 strategy consistently outperforms naive summation and averaging, and intriguingly, truncating first 1
795 token yields the best performance. This suggests that domain-specific tuning of the token-span size
796 can further improve MG-Select. Nevertheless, we adopt the first 5 tokens truncation as default, as it
797 shows robust and superior performance across action domains.
798799
800
801
802
803
804
805
806
807
808
809

810 D.3 EFFECT OF MODEL SCALE
811812 Table 13: **Additional performance comparison on LIBERO** (Liu et al., 2023). We report the
813 average success rate (%) over 4 task suites, each consisting of 10 tasks with 50 trials per task. Results
814 for our methods are averaged over 3 random seeds. \dagger indicates reproduced performance, and $*$
815 indicates results with additional joint training before applying our test-time scaling framework.
816

Model	LIBERO-Spatial	LIBERO-Object	LIBERO-Goal	LIBERO-Long	Average
MiniVLA \dagger	79.4	38.8	68.0	30.2	54.1
+ MG-Select* (Ours)	76.8	60.9	72.1	32.3	60.5

817
818
819
820
821
822 **Implementation Details.** MiniVLA (Belkhale & Sadigh, 2024) is a $7\times$ smaller variant of OpenVLA,
823 containing only 1B parameters. It uses a Qwen 2.5 0.5B backbone while retaining the same ViT
824 used in OpenVLA. We fine-tune MiniVLA with vanilla imitation learning on the full set of LIBERO
825 training data for 30k iterations with a global batch size of 128. Joint imitation learning includes 10%
826 text-only dropout, as MiniVLA does not take state inputs. We adopt the average aggregation strategy,
827 because the output token length is fixed to the action dimension.
828829 **Experimental Results.** Table 13 presents the performance of MG-Select with MiniVLA (Belkhale &
830 Sadigh, 2024) on LIBERO. The results show MG-Select significantly outperforms the base model
831 on average, indicating that our test-time scaling framework generalizes across different VLAs and
832 model scales.
833

834 D.4 COMPARISON WITH ADDITIONAL BASELINES

835 Table 14: **Additional performance comparison on SIMPLER-WidowX** (Li et al., 2024). We
836 report the average success rate (%) over 24 trials on 4 pick-and-place tasks. Results for RoboMonkey
837 (Kwok et al., 2025) and our methods are averaged over 3 random seeds. Blue rows indicate the main
838 results reported in Table 2. \dagger indicates reproduced performance, and $*$ indicates models trained with
839 joint imitation learning. For a fair comparison, we match the number of candidates in RoboMonkey
840 to that used by MG-Select. Latency is measured on an NVIDIA RTX A6000 GPU.
841

Model	N	External Verifier	Latency (ms, \downarrow)	Spoon on Towel	Carrot on Plate	Stack Cubes	Eggplant in Basket	Average
π_0 -FAST \dagger	1	-	616.2 (1.00 \times)	66.7	70.8	41.7	8.3	46.9
+ RoboMonkey*	4	✓	1194.9 (1.94 \times)	68.1	72.2	44.4	18.1	50.7
+ MG-Select* (Ours)	4	✗	880.3 (1.43 \times)	69.4	75.0	43.1	13.9	50.3

842
843
844
845
846 **Implementation Details.** RoboMonkey (Kwok et al., 2025) is a recent test-time scaling method
847 that uses a LLaVA-7B VLM-based verifier to select the optimal action. We aim to investigate
848 whether our confidence metric can perform as well as an external verifier. To explicitly compare
849 the two approaches, we fix $\tau = 0.1$ and the $N = 4$ for parallel stochastic sampling, and remove the
850 Gaussian perturbation and majority voting process in RoboMonkey, using only the verifier to perform
851 Best-of- N selection from sampled action chunks.
852853 **Experimental Results.** Table 14 shows that MG-Select achieves competitive performance compared
854 to RoboMonkey without requiring an external verifier. MG-Select is substantially more efficient
855 than RoboMonkey in terms of latency, demonstrating that our method is not only effective but also a
856 practical test-time scaling approach.
857
858
859
860
861
862
863

864 E EFFECT OF TEMPERATURE IN CONDITION-MASKING DISTRIBUTION
865

866 In our proposed method, we utilize a condition-masking distribution to serve as the reference
867 distribution for the confidence metric. Here, we define the general condition-masking distribution as
868 π_{masked} , which corresponds to the first argument in the KL divergence terms (see Eq. (2), (3), and
869 (4)). In this section, we provide a theoretical derivation how temperature τ affects the entropy of the
870 reference distribution π_{masked} .

871
872 E.1 THEOREM
873

874 **Theorem.** Let $\pi_{\text{masked}}(a; \tau)$ be the temperature-scaled condition-masking reference distribution.
875 Then its entropy $H(\pi_{\text{masked}})$ is monotonically increasing in temperature $\tau > 0$:

$$876 \quad \frac{\partial H(\pi_{\text{masked}})}{\partial \tau} \geq 0. \quad (6)$$

877 Thus, using a higher temperature (e.g., $\tau = 4.0$) explicitly increases the entropy of the reference
878 distribution, preventing our confidence metric from being biased by the over-confidence (low-entropy)
879 of the masked distribution itself.

880
881 E.2 PROOF
882

883 Let $z(a)$ denote the logit (unnormalized log-probability) of an action $a \in \mathcal{A}$ from π_{masked} . The
884 probability of a under temperature τ is defined as:

$$885 \quad \pi_{\text{masked}}(a; \tau) = \frac{\exp(z(a)/\tau)}{Z(\tau)}, \quad \text{where} \quad Z(\tau) = \sum_{a'} \exp(z(a')/\tau). \quad (7)$$

886 The entropy of this distribution is defined as:
887

$$888 \quad H(\pi_{\text{masked}}) = - \sum_a \pi_{\text{masked}}(a; \tau) \log \pi_{\text{masked}}(a; \tau). \quad (8)$$

890 First, we expand the entropy term using the definition of the softmax distribution:
891

$$892 \quad \begin{aligned} H(\pi_{\text{masked}}) &= - \sum_a \pi_{\text{masked}}(a; \tau) \left(\frac{z(a)}{\tau} - \log Z(\tau) \right) \\ 893 &= \log Z(\tau) \sum_a \pi_{\text{masked}}(a; \tau) - \frac{1}{\tau} \sum_a \pi_{\text{masked}}(a; \tau) z(a) \\ 894 &= \log Z(\tau) - \frac{1}{\tau} \mathbb{E}_{\pi_{\text{masked}}}[z(A)]. \end{aligned} \quad (9)$$

902 Differentiating $H(\pi_{\text{masked}})$ with respect to τ . We first note the derivative of the log-partition function
903 $\log Z(\tau)$:

$$904 \quad \begin{aligned} \frac{\partial \log Z(\tau)}{\partial \tau} &= \frac{1}{Z(\tau)} \sum_a \exp\left(\frac{z(a)}{\tau}\right) \cdot \left(-\frac{z(a)}{\tau^2}\right) \\ 905 &= -\frac{1}{\tau^2} \sum_a \pi_{\text{masked}}(a; \tau) z(a) \\ 906 &= -\frac{1}{\tau^2} \mathbb{E}_{\pi_{\text{masked}}}[z(A)]. \end{aligned} \quad (10)$$

912 Differentiating Eq. (9) with respect to τ :

$$913 \quad \frac{\partial H}{\partial \tau} = \frac{\partial \log Z(\tau)}{\partial \tau} - \left(-\frac{1}{\tau^2} \mathbb{E}_{\pi_{\text{masked}}}[z(A)] + \frac{1}{\tau} \frac{\partial \mathbb{E}_{\pi_{\text{masked}}}[z(A)]}{\partial \tau} \right). \quad (11)$$

914 Substituting Eq. (10) into the first term, the expected value terms cancel out:
915

$$916 \quad \frac{\partial H}{\partial \tau} = -\frac{1}{\tau} \frac{\partial \mathbb{E}_{\pi_{\text{masked}}}[z(A)]}{\partial \tau}. \quad (12)$$

918 Next, to evaluate the derivative of the expectation $\mathbb{E}_{\pi_{\text{masked}}}[z(A)]$, we use the chain rule for $\frac{\partial \pi_{\text{masked}}(a; \tau)}{\partial \tau}$:

$$\begin{aligned} \frac{\partial \pi_{\text{masked}}(a; \tau)}{\partial \tau} &= \pi_{\text{masked}}(a; \tau) \frac{\partial \log \pi_{\text{masked}}(a; \tau)}{\partial \tau} \\ &= \pi_{\text{masked}}(a; \tau) \left(-\frac{z(a)}{\tau^2} - \frac{\partial \log Z(\tau)}{\partial \tau} \right) \\ &= \pi_{\text{masked}}(a; \tau) \frac{1}{\tau^2} (\mathbb{E}_{\pi_{\text{masked}}}[z(A)] - z(a)). \end{aligned} \quad (13)$$

926 Using this, the derivative of the expectation becomes:

$$\begin{aligned} \frac{\partial \mathbb{E}_{\pi_{\text{masked}}}[z(A)]}{\partial \tau} &= \sum_a z(a) \frac{\partial \pi_{\text{masked}}(a; \tau)}{\partial \tau} \\ &= \frac{1}{\tau^2} \sum_a \pi_{\text{masked}}(a; \tau) z(a) (\mathbb{E}_{\pi_{\text{masked}}}[z(A)] - z(a)) \\ &= \frac{1}{\tau^2} ((\mathbb{E}_{\pi_{\text{masked}}}[z(A)])^2 - \mathbb{E}_{\pi_{\text{masked}}}[(z(A))^2]) \\ &= -\frac{1}{\tau^2} \text{Var}_{\pi_{\text{masked}}}[z(A)]. \end{aligned} \quad (14)$$

936 Finally, substituting this result back into Eq. (12):

$$\frac{\partial H(\pi_{\text{masked}})}{\partial \tau} = -\frac{1}{\tau} \left(-\frac{1}{\tau^2} \text{Var}_{\pi_{\text{masked}}}[z(A)] \right) = \frac{1}{\tau^3} \text{Var}_{\pi_{\text{masked}}}[z(A)]. \quad (15)$$

940 Since $\text{Var}_{\pi_{\text{masked}}}[z(A)] \geq 0$ and $\tau > 0$, we conclude:

$$\frac{\partial H(\pi_{\text{masked}})}{\partial \tau} \geq 0. \quad (16)$$

F RESULTS ON CALVIN BENCHMARK

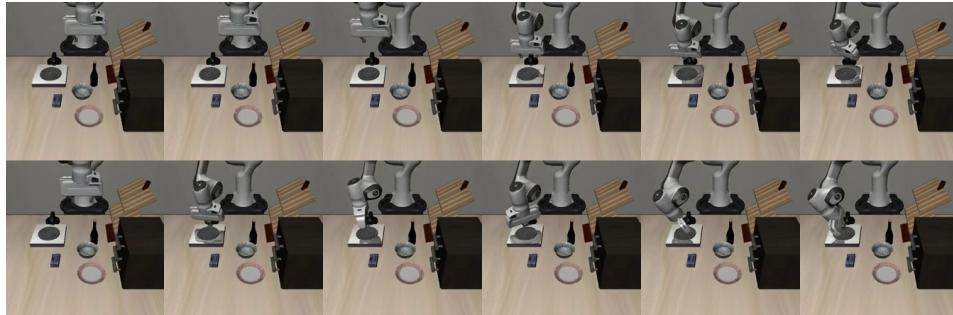
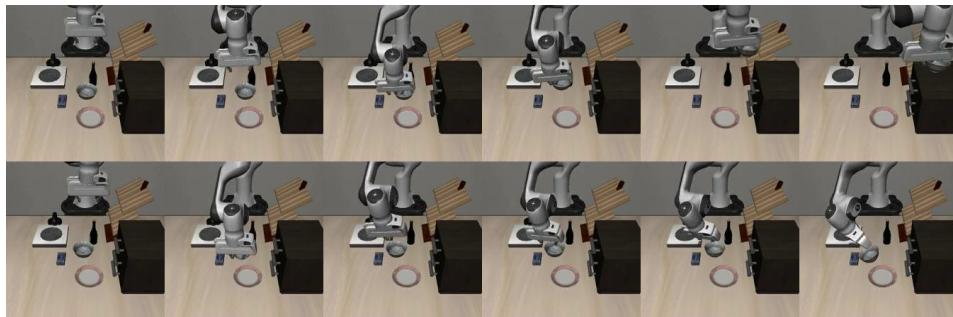
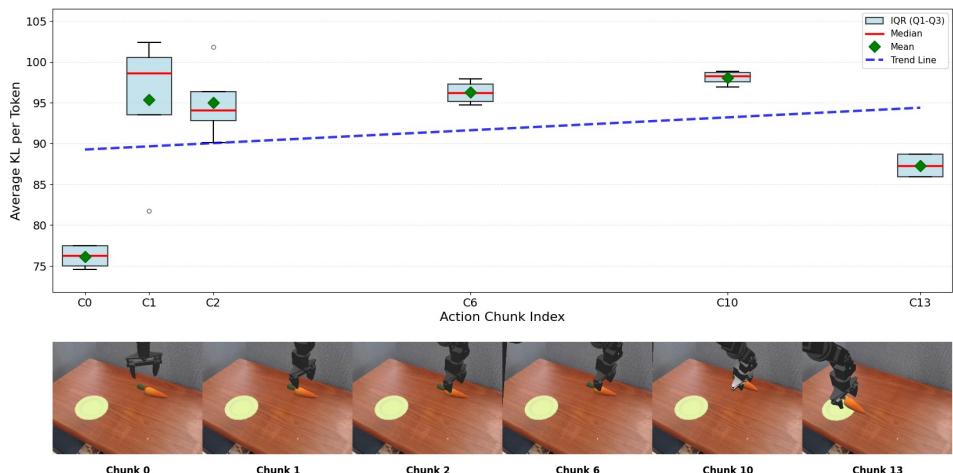
947 Table 15: **Performance comparison on CALVIN** (Mees et al., 2022). We report the success rate for
948 each instruction chain and the average number of consecutive successes over 5 instruction chains.
949 The model is trained on environments A, B and C and zero-shot evaluation is performed on novel
950 environment D. Results for our methods are averaged over 3 random seeds. \dagger indicates reproduced
951 performance, and $*$ indicates results with additional joint training before applying our test-time
952 scaling framework.

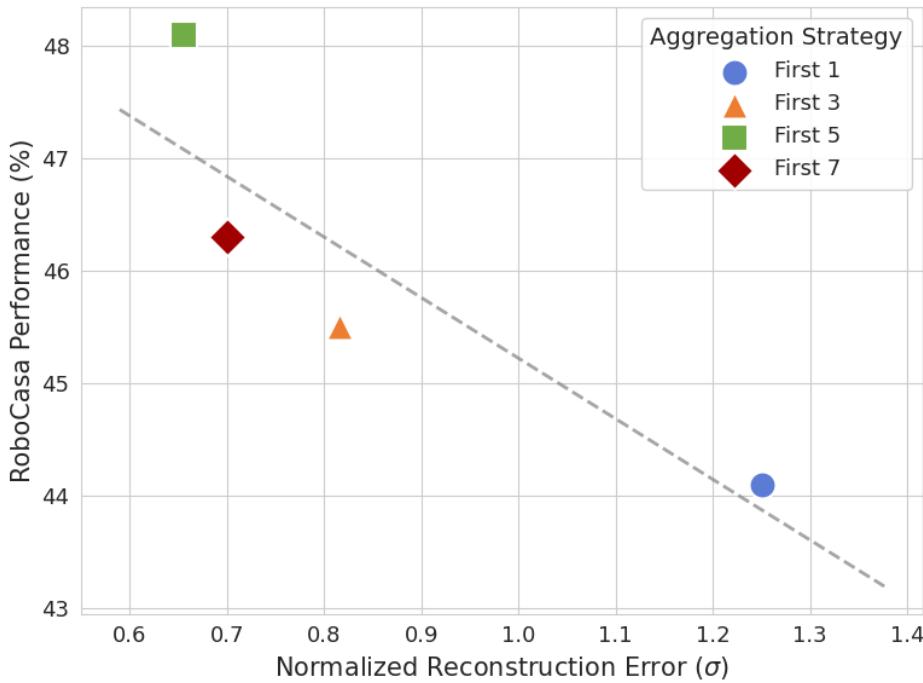
954 Method	955 Task	956 Tasks Completed in a Row (%)					957 Avg. Len (\uparrow)
		958 1	959 2	960 3	961 4	962 5	
$\pi_0\text{-FAST}^\dagger$	ABC \rightarrow D	96.0	85.8	74.4	62.4	50.6	3.69
+ MG-Select* (Ours)	ABC \rightarrow D	96.9	88.0	77.8	67.6	55.8	3.86

960 To demonstrate that our method is also effective for long-horizon, multi-step planning tasks, we
961 evaluate MG-Select on CALVIN benchmark in the zero-shot setting.

963 **Setup.** CALVIN (Mees et al., 2022) consists of 34 distinct tasks and uses a Franka Panda Arm for
964 manipulation. We evaluate on the ABC \rightarrow D setting, measuring whether the model can execute
965 long-horizon language-conditioned tasks in a zero-shot manner. We fine-tune $\pi_0\text{-FAST}$ with vanilla
966 imitation learning on environments A,B,C for 5k iterations with a global batch size of 32. Then,
967 we evaluate the model on environment D using 1000 instructions. Joint imitation learning includes
968 10%/10%/10% dropout, and MG-Select searches for optimal deployment hyperparameters within the
969 ranges defined in Appendix A.

970 **Experimental Results.** Table 15 presents that MG-Select consistently outperforms the base model
971 across all consecutive tasks, demonstrating our proposed method’s generalizability to long-horizon
972 and multi-step planning.

972 **G VISUALIZATIONS OF MG-SELECT**
973975 (a) Task : Turn on the stove. Top : OpenVLA, Bottom : OpenVLA + MG-Select (Ours).
976977 (b) Task : Put the bowl on top of the cabinet. Top : OpenVLA, Bottom : OpenVLA + MG-Select (Ours).
978979 **Figure 4: Visualization of failure cases of MG-Select on LIBERO-Goal.** We show representative
980 failures corresponding to minor performance drop in LIBERO-Goal. In simple and atomic tasks,
981 MG-Select may introduce unnecessary stochasticity, leading to slight misalignment between the
982 gripper and object, whereas the base model already produces near-optimal actions.
983984 **Figure 5: Visualization of token-level KL divergence of MG-Select on SIMPLER-WidowX.**
985 We visualize the token-level state-masking confidence (see Eq. (3)) for a successful pick-and-place
986 episode in SIMPLER-WidowX. Average KL per token denotes the mean KL over first 5 action tokens,
987 and the box-plots show KL statistics across action candidates ($N = 4$). Each frame corresponds
988 to the state observed after executing the respective action chunk. We observe that KL rises sharply
989 during the alignment phase (C1-C2), where state information is crucial for action prediction. At the
990 same time, KL values among candidates also vary, and the highest-KL candidate produces the correct
991 alignment. Similar patterns are observed in grasping (C10) and placement (C13).
992

1026 **H DETAILED ANALYSIS OF TRUNCATED FAST TOKENS**


1051 **Figure 6: Correlation between action reconstruction error and RoboCasa performance.** We
1052 compare the performance of truncated aggregation strategies (see Table 5 (f)) against the action
1053 reconstruction error using FAST (Pertsch et al., 2025) tokens on RoboCasa (Nasiriany et al., 2024)
1054 with 100 demonstrations. Reconstruction error is measured by tokenizing continuous actions and
1055 detokenizing them using only the first K tokens. The error is reported as the Mean Absolute Error
1056 (MAE) normalized by the standard deviation of the original actions, averaged across all action
1057 dimensions.

1058 **Action reconstruction from FAST tokens.** We analyze the behavior of the FAST (Pertsch et al.,
1059 2025) tokenizer, which produces variable-length token sequences ordered from low-frequency to
1060 high-frequency components. To understand how these tokens relate to action information, we conduct
1061 a simple action reconstruction experiment on the RoboCasa dataset using 100 demonstrations per task:
1062 (1) tokenize continuous actions into discrete FAST token sequences, (2) truncate the first K tokens,
1063 and (3) detokenize the truncated sequence back into continuous actions. We evaluate $K \in \{1, 3, 5, 7\}$,
1064 corresponding to RoboCasa’s 7-dimensional action space. As a reconstruction metric, we measure
1065 the mean absolute deviation between the original and detokenized actions with the first K tokens,
1066 normalized by original action’s standard deviation. Interestingly, we find that reconstruction error is
1067 negatively correlated with RoboCasa performance. In particular, using only the first 5 tokens provides
1068 a reasonable reconstruction, suggesting a more stable and length-invariant confidence measure than
1069 naively aggregating all FAST tokens, as shown in Table 5 (f).

1080 **I LLM USAGE DISCLOSURE**
10811082 We acknowledge the use of large language models (LLMs) in preparing this manuscript. LLMs were
1083 employed solely to refine writing quality, including grammar correction, vocabulary suggestions, and
1084 typographical checks. All substantive ideas, analyses, and conclusions in this paper are entirely the
1085 work of the authors.
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133