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ABSTRACT

Vision-Language-Action models (VLAs) have demonstrated remarkable perfor-
mance in robot control. However, they remain fundamentally limited in tasks that
require high precision due to their single-inference paradigm. While test-time
scaling approaches using external verifiers have shown promise, they require addi-
tional training and fail to generalize to unseen conditions. We propose Masking
Distribution Guided Selection (MG-Select), a novel test-time scaling framework
for VLAs that leverages the model’s internal properties without requiring additional
training or external modules. Our approach utilizes KL divergence from a reference
action token distribution as a confidence metric for selecting the optimal action
from multiple candidates. We introduce a reference distribution generated by the
same VLA but with randomly masked states and language conditions as inputs,
providing action uncertainty while remaining aligned with the target task distribu-
tion. Additionally, we propose a joint training strategy that enables the model to
learn both conditional and unconditional distributions by applying dropout to state
and language conditions, thereby further improving the quality of the reference
distribution. Our experiments demonstrate that MG-Select provides a reliable refer-
ence for action selection through task-relevant condition masking and consistently
improves base models across diverse simulation and real-world benchmarks.

1 INTRODUCTION

Vision-Language-Action models (VLAs; Zitkovich et al. 2023; Kim et al. 2024; Black et al. 2025;
Bjorck et al. 2025), trained on large-scale robotic datasets (O’Neill et al., 2024; Bu et al., 2025),
have demonstrated remarkable performance in robot control. Among these, autoregressive VLAs
represent one of the predominant VLAs (Driess et al., 2023; Kim et al., 2024; Pertsch et al., 2025),
leveraging the same autoregressive objective used in training vision and foundation models without
requiring architectural modifications, yet achieving comparable performance to more sophisticated
architectures. Despite their success, VLAs remain fundamentally limited in tasks that demand high
precision; even after extensive pre-training, they often fail on fine-grained manipulation tasks such
as grasping or object placement (Nakamoto et al., 2024; Kwok et al., 2025; Gu et al., 2025; Yang
et al., 2025). This precision gap is particularly problematic for real-world robotic applications where
millimeter-level accuracy can determine task success or failure.

Previous work (Nakamoto et al., 2024; Kwok et al., 2025) shows that while VLAs can achieve high
precision with adequate training, their greedy decoding (always choosing the highest-probability
action) becomes a bottleneck. To address this limitation, inspired by the substantial gains observed in
LLM reasoning with Test Time Scaling (TTS) (Wang et al., 2023; Wan et al., 2025; Kang et al., 2025),
they use repeated sampling paired with an external verifier, i.e., a value function trained on robotic
data. However, these approaches have significant drawbacks: First, they require additional training
to obtain verifiers with reinforcement learning objectives before inference, which adds substantial
computational overhead and complexity to the deployment pipeline. Second, these external verifiers
fail to generalize to unseen input conditions (Nakamoto et al., 2024), such as novel task prompts
or objects, and their reward modeling is tailored to specific datasets, severely limiting their broader
applicability (Kwok et al., 2025).

Our approach. To tackle this problem, our research goal is to develop a test-time scaling framework
for VLAs that leverages the model’s internal properties without requiring additional training or
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Figure 1: Overview of MG-Select. (1) Autoregressive VLA πθ samples action tokens in parallel
from the predicted distribution, while simultaneously computing token-wise KL divergence from the
condition-masking distribution to the predicted distribution. (2) Best-of-N selection is then performed
using an action confidence score Cã obtained by aggregating these token-wise scores.

external modules. Inspired by verifier-free approaches for TTS (Zheng et al., 2024), we begin with the
most straightforward approach: selecting the action with the highest likelihood from multiple sampled
actions. We observe that this simple technique alone can improve VLA performance by producing
more precise actions in some cases (see Table 5 (a)). However, this approach is not effective in
general, as VLAs fine-tuned on target tasks for next action token prediction often memorize expert
trajectories, causing the probability distribution over action tokens to become overly concentrated,
which leads to multiple sampling converging to the same result.

These insights motivate us to propose Masking Distribution Guided Selection (MG-Select), a novel
TTS framework that leverages the KL divergence from a reference action token distribution as a
confidence metric for selecting the optimal action from multiple candidates. Inspired by recent
advances in LLM literature that use self-certainty measures (Kang et al., 2025), we adapt this
principle to the VLA setting. Specifically, we introduce a reference distribution generated by the
same VLA but with randomly masked states and language conditions as inputs. This design ensures
the reference distribution provides action uncertainty while remaining aligned with the target task
distribution, yielding a more meaningful baseline for confidence measurement. By selecting actions
with the highest KL divergence from this uncertainty-aware reference, MG-Select effectively identifies
the most confident action sequences while avoiding the limitations of likelihood-based selection,
achieving significant performance improvements in practice. Additionally, we propose a joint training
strategy that enables the model to learn both conditional and unconditional distributions by applying
dropout to state and language conditions, thereby further improving the quality of the reference
distribution.

In our experiments, we have validated the effectiveness of our test-time scaling framework on both
simulated (Nasiriany et al., 2024; Li et al., 2024; Liu et al., 2023) and real-world benchmarks
(Khazatsky et al., 2024). Our results show that MG-Select consistently improves state-of-the-art
VLAs (Pertsch et al., 2025) across diverse pick-and-place tasks and various environments. In
particular, MG-Select achieves a 28% improvement in real-world in-distribution tasks and 35%
in out-of-distribution tasks, along with a 168% relative gain (5.3% → 14.2%) over vanilla greedy
decoding on RoboCasa (Nasiriany et al., 2024) pick-and-place tasks trained with 30 demonstrations.

2 PRELIMINARIES

Problem formulation. We train the policy using the Imitation Learning (IL) framework. Specifically,
IL formulates the robot control problem as a Markov Decision Process (MDP) (Sutton et al., 1998)
without rewards, M = (S,A, P, γ, ρ0), where S denotes the state space, A the action space, and
P (s′ | s, a) ∈ [0, 1] is the transition probability from state s ∈ S to s′ ∈ S given action a ∈ A,
γ ∈ [0, 1) represent discount factor, and ρ0 denote the inital state distribution. Given a policy πθ and
an expert demonstration dataset D = {(si, ai)}Ni=1, the policy is optimized such that πθ(si) closely
matches the expert action ai for each demonstration pair.
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Autoregressive VLA. Given a state st ∈ S at timestep t and an instruction I ∈ I, We assume a
language-conditioned VLA parameterized by θ, πθ : S ×I → ∆(A), where ∆(A) denotes the set of
probability distributions over actions. The policy outputs a distribution πθ(a | st, I) over a ∈ A. We
further decompose the state into visual observation ot and proprioceptive state qt, st = (ot, qt) with
ot ∈ O, qt ∈ Q, where O and Q denote the observation and proprioceptive state spaces, respectively.
Therefore, the policy’s action distribution can be expressed as πθ(a | st, I) = πθ(a | ot, qt, I). In
our test-time scaling framework, we utilize this distribution through repeated sampling to generate
multiple candidate actions. In an autoregressive VLA, the probability of an action sequence a =
(a1, . . . , aT ) factorizes as

πθ(a | ot, qt, I) =
T∏

k=1

πθ(ak | ot, qt, I, a<k), (1)

where a<k = (a1, . . . , ak−1) is the prefix up to step k − 1. At each step k, the model produces a
logit vector ℓk ∈ R|V| over the vocabulary. Applying the softmax function yields the next-token
distribution πθ(· | ot, qt, I, a<k) ∈ [0, 1]|V|, which is a categorical distribution over |V| possible
tokens and sums to one.

3 METHOD

We present Masking Distribution Guided Selection (MG-Select), a novel test-time scaling framework
that selects actions based on confidence scores from a reference action token distribution. In
Section 3.1, we first introduce our overall test-time scaling framework. In Section 3.2, we introduce
the confidence metric and its reference distribution used in our framework. In Section 3.3, we propose
a joint training strategy for further improving the quality of the reference distribution in parallel with
fine-tuning on the target dataset. We provide the overview of MG-Select in Figure 1. For additional
details, please refer to Appendix A.

3.1 TEST-TIME SCALING FRAMEWORK

While VLAs demonstrate strong performance in robot control tasks, the single-inference paradigm
becomes a bottleneck: the model always selects the most probable action from its predicted distri-
bution (greedy decoding), even when this action may be suboptimal. This limitation is particularly
problematic for tasks requiring high precision, such as fine-grained manipulation. To resolve this,
we propose a test-time scaling framework that leverages only the model’s internal signals, without
relying on external verifiers. It consists of two stages: (1) parallel stochastic sampling to generate N
candidates, and (2) Best-of-N selection using a specific criterion M .

1. Sampling N candidate actions. At timestep t, the autoregressive VLA πθ samples actions a ∈ A
from πθ(a | ot, qt, I). To obtain N diverse candidates in parallel (batch-inference), we sample
with temperature τ > 0:

ã
(n)
j ∼ πθ(· | ot, qt, I, ã(n)<j ; τ), n = 1, . . . , N, j = 1, . . . , T,

where πθ(·; τ) = softmax(ℓ/τ) controls distribution sharpness and sample diversity (close to
greedy as τ→0). This yields the candidate set Ã = {ã(n)}Nn=1 with ã(n) = (ã

(n)
1 , . . . , ã

(n)
T ).

2. Best-of-N selection. Among the N candidate actions, we select the final action according to a
pre-defined criterion M . This criterion is metric for selecting the best candidate, and the selected
action is given by:

at = argmax
ã(n)∈Ã

Mã(n) .

3.2 CONDITION-MASKING DISTRIBUTIONAL CONFIDENCE FOR TEST-TIME SAMPLING

For test-time scaling, choosing a proper metric for selecting the best candidate is crucial for effective-
ness. When multiple candidate actions are generated, we need a reliable way to identify the most
promising one. Intuitively, using the model’s likelihood for action selection would be the simplest
choice. However, this approach is not effective in general because VLAs fine-tuned on target tasks
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often produce overly concentrated probability distributions over action tokens, causing multiple
sampling to converge to the same result. Instead, we propose a confidence metric based on the KL
divergence between a predicted distribution and a reference distribution that represents uncertainty.
This approach is motivated by the insight that actions that deviate most from an uncertainty-aware
reference are likely to be the most confident and precise.

Confidence over action token distributions. We first define the action token distribution over
the action vocabulary V as a probability distribution P (ai) where ai ∈ V represents the i-th action
token. While the VLA πθ produces conditional distributions πθ(· | ot, qt, I, a<i) given observations,
states, and instruction sequences, reference distributions can be constructed independently of such
conditioning. These reference distributions can take various forms, such as uniform distributions over
the action vocabulary, task-specific priors or other types of policy distributions. For computing the
confidence over the action sequence, we first compute token-level distributional confidence at the i-th
step token ai by measuring the distance between the predicted distribution Pi = πθ(· | ot, qt, I, a<i)
and a reference distribution Qi as Ci = KL(Qi∥Pi), where we use Kullback–Leibler (KL) divergence
as our distributional confidence measure. We then aggregate these token-level confidences across the
entire action sequence to obtain the final action-level confidence score for ranking candidate actions.
Formally, for an action sequence a = (a1, a2, . . . , aT ) of length T , we compute the action-level
confidence as Ca =

∑
i∈I Ci =

∑
i∈I KL(Qi∥Pi), where I ⊆ {1, 2, . . . , T} represents the set of

token indices to be aggregated. The choice of I depends on the action tokenizing scheme: for full
sequence aggregation, we use I = {1, 2, . . . , T}, while for partial aggregation, we select specific
token ranges based on the tokenization structure.

Condition-masking distribution. To construct a reference distribution Q, our hypothesis is that a
reference distribution that is uncertain yet not too distant from the target action token distribution
will provide meaningful confidence signals. To this end, we mask specific information (Text, State,
or both Text & State) from the input modalities given to the VLA πθ, creating condition-masking
distributions that approximate failure modes where essential conditions for task solving are ignored.
Formally, we compute the scoring metric as follows:

(Text-masking) KLtext = KL
(
πθ(· | ot, qt, ∅, a<i) ∥πθ(· | ot, qt, I, a<i)

)
, (2)

(State-masking) KLstate = KL
(
πθ(· | ot, ∅, I, a<i) ∥πθ(· | ot, qt, I, a<i)

)
, (3)

(Text&State-masking) KLboth = KL
(
πθ(· | ot, ∅, ∅, a<i) ∥πθ(· | ot, qt, I, a<i)

)
, (4)

For each task environment, the optimal confidence variant can vary. For example, in the SIMPLER-
WidowX benchmark (Li et al., 2024), which consists solely of pick-and-place tasks, state-masking
confidence works best because the model already memorizes how to pick and place objects without
task instructions. In contrast, RoboCasa benchmark (Nasiriany et al., 2024), which has multiple task
types, text-masking or text&state-masking are more effective, since the model cannot determine the
correct action without instructions.

3.3 JOINT TRAINING STRATEGY

Although our method can be seamlessly integrated with any autoregressive VLA, existing VLAs
are not trained under condition-masking settings, and directly masking inputs often leads to un-
intended actions. To address this, we propose a new fine-tuning strategy that enables the model
to generate condition-masking distributions while maintaining the performance gains from stan-
dard fine-tuning on the target dataset. Specifically, we train the VLA with both all-condition and
condition-masking data, randomly dropping certain conditions during fine-tuning to the target dataset,
thereby increasing awareness of condition-masking distributions. Given the dataset D, we augment
it using four different masking variants applied to the proprioceptive state qt and the instruction I:
M =

{
(qt, I), (qt, ∅), (∅, I), (∅, ∅)

}
, corresponding to (i) all-condition, (ii) text-masking, (iii)

state-masking, and (iv) both-masking cases. We then train the VLA with the augmented dataset
Daugmented where Daugmented = {(T i, Ii, q

(m)
t , I(m)) | (q(m)

t , I(m)) ∈ M} as follows:

LJoint-IL(θ;D) = −E((ot,qt),at,I)∼D

[
E
(q

(m)
t ,I(m))∈M

[
log πθ(at | ot, q(m)

t , I(m))
]]

. (5)
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As a result, this fine-tuning strategy enables the VLA to maintain performance comparable to standard
fine-tuning while gaining awareness of condition-masking distributions. When combined with our
proposed confidence measure, this enhanced model (denoted as MG-Select*) demonstrates improved
performance over the original Masking Distribution Guided Selection framework.

4 EXPERIMENTS

4.1 SIMULATED ROBOT EXPERIMENTS

To validate the effectiveness of MG-Select, we conduct experiments across diverse robotic simulation
environments including RoboCasa, SIMPLER-WidowX, and LIBERO. We fine-tune the pretrained
π0-FAST model for evaluation on all simulation environments, and additionally fine-tune OpenVLA
for evaluation on LIBERO to demonstrate that our method improves performance regardless of the
underlying model architecture.

4.1.1 SETUP

RoboCasa (Nasiriany et al., 2024). RoboCasa provides 24 atomic tasks set in household kitchen
environments. We focus on 8 pick-and-place tasks, which are particularly challenging since they
require high-precision actions (i.e., grasping objects) and are well-suited for evaluating improvements
in precision. Following Bjorck et al. (2025), we train the base model with 30, 100, and 300
demonstrations for each task. For comparison, we also report results for GR00T N1 (Bjorck et al.,
2025), taken from the original paper.

SIMPLER-WidowX (Li et al., 2024). This benchmark evaluates whether our method improves
precision in a real-to-sim setting. Because it does not provide simulated training data, we train
the base model on BridgeData V2 (Walke et al., 2023) and evaluate it on 4 pick-and-place tasks.
For comparison, we also report results for RT-1-X (O’Neill et al., 2024), Octo (Team et al., 2024),
RoboVLM (Liu et al., 2025), and SpatialVLA (Qu et al., 2025), as reported in the SIMPLER paper
(Li et al., 2024) and the respective original papers.

LIBERO (Liu et al., 2023). This benchmark evaluates multiple axes of generalization, including
variations in layout, objects, and goals, as well as long-horizon tasks (LIBERO-Long) that require
sustained high-precision actions.

4.1.2 EXPERIMENT RESULTS

RoboCasa (Nasiriany et al., 2024). Table 1 presents the performance of MG-Select with π0-FAST
(Pertsch et al., 2025) on RoboCasa. MG-Select consistently improves the base model across all tasks,
including the 8 pick-and-place tasks, and under all demonstration scales. Notably, improvements
appear even without joint training, showing that our test-time scaling alone can reliably select higher-
precision actions. When combined with joint training, the gains are further amplified, since learning
the condition-masking distribution during training provides a more reliable confidence signal for test-
time scaling. We also observe particularly strong improvements in the low-data regime. For instance,
with only 30 demonstrations, MG-Select with our joint training achieves a 168% relative improvement
on pick-and-place tasks over the base model, highlighting that our method effectively compensates
for limited performance under scarce data. We provide the detailed results in Appendix B.

SIMPLER-WidowX (Li et al., 2024). Table 2 shows the performance of MG-Select with π0-
FAST (Pertsch et al., 2025) on SIMPLER-WidowX. MG-Select clearly improves the base model
across all tasks, demonstrating the robustness of our approach in enhancing action precision. We
note that the base model performs relatively poorly on the “put eggplant in basket” task, since its
background differs substantially from the other three tasks, making it sensitive to model-specific
training configurations. For instance, SpatialVLA (Qu et al., 2025) achieves 100% success on the
eggplant task but performs poorly on the remaining tasks. Despite this challenge, MG-Select still
provides consistent improvements on the eggplant task, indicating that our approach remains effective
even when the base model struggles. For detailed results, please refer to Appendix B.

LIBERO (Liu et al., 2023). Table 6 presents the performance of MG-Select with π0-FAST (Pertsch
et al., 2025) on LIBERO. In this benchmark, we further extend our evaluation by applying MG-Select
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Table 1: Performance comparison on RoboCasa (Nasiriany et al., 2024). We report the average
success rate (%) over 50 trials on 24 tasks, including 8 pick-and-place tasks, trained with varying
numbers of demonstrations. Results for our methods are averaged over 3 random seeds, while
baseline results are taken as reported in the original paper. † indicates reproduced performance, and ∗
indicates results with additional joint training before applying our test-time scaling framework.

Model
30 Demos 100 Demos 300 Demos

Pick and Place All Pick and Place All Pick and Place All

GR00T N1 0.4 17.4 2.2 32.1 22.6 49.6

π0-FAST† 5.3 30.9 17.0 40.2 43.2 61.2
+ MG-Select (Ours) 7.2 32.0 22.6 43.7 46.5 61.3
+ MG-Select* (Ours) 14.2 34.6 31.0 48.1 46.9 62.9

Table 2: Performance comparison on SIMPLER-WidowX (Li et al., 2024). We report the average
success rate (%) over 24 trials on 4 pick-and-place tasks. Results for our methods are averaged over
3 random seeds, while baseline results are taken as reported in SIMPLER paper (Li et al., 2024)
and the respective original papers. † indicates reproduced performance, and ∗ indicates results with
additional joint training before applying our test-time scaling framework.

Model Spoon on Towel Carrot on Plate Stack Cubes Eggplant in Basket Average
RT-1-X 0.0 4.2 0.0 0.0 1.1
Octo 12.5 8.3 0.0 43.1 16.0
RoboVLM 29.2 25.0 12.5 58.3 31.3
SpatialVLA 16.7 25.0 29.2 100.0 42.7

π0-FAST† 66.7 70.8 41.7 8.3 46.9
+ MG-Select* (Ours) 69.4 75.0 43.1 13.9 50.3

to OpenVLA (Kim et al., 2024), showing that our approach is compatible with different architectures.
The results show that MG-Select achieves superior average performance over both base models,
demonstrating its general effectiveness. Notably, LIBERO-Object and LIBERO-Long are the most
challenging task suites (lowest base model performance), and the gains observed on these benchmarks
highlight the effectiveness of our test-time scaling framework in improving precision. We provide
further details about OpenVLA implementation in Appendix A.

4.2 REAL WORLD EXPERIMENTS

To further validate our method’s generalization beyond simulation environments, we conduct real-
robot experiments on a 7-DoF Franka Research 3 robot arm. we fine-tunes the pre-trained π0-FAST
on the DROID dataset (Khazatsky et al., 2024) for evaluation.

4.2.1 SETUP

In-distribution tasks. We design in-distribution (ID) tasks to evaluate the effectiveness of our
method in enhancing base model performance under limited data, as task-specific real-world data is
costly to collect. The ID tasks are pick-and-place tasks defined by a start and goal location, focusing
on whether our method can generate high-precision actions for objects with different geometries, e.g.,
a teddy bear, a cube, a rigid cup, and a sponge. For training, we used 60 demonstrations per task,
corresponding to 15 demonstrations for each of the four objects.

Out-of-distribution tasks. We design out-of-distribution (OOD) tasks to evaluate whether our
method improves the zero-shot generalization of the policy. We construct 2 OOD tasks involving
unseen objects, e.g., a lighter cup and a roll of tape. These OOD tasks are pick-and-place tasks similar
to the ID tasks, but the policy must generalize to unseen real-world scenes and objects. The gains on
these tasks reflect the effectiveness of our method in improving policy robustness.

4.2.2 EXPERIMENTAL RESULTS

In-distribution tasks. Table 4 presents the performance of MG-Select on π0-FAST-DROID (Pertsch
et al., 2025) in in-distribution tasks. MG-Select outperforms the base model across all tasks, achieving
a 28% relative gain. This demonstrates that our test-time scaling framework remains effective beyond
simulation, enabling high-precision actions to complete pick-and-place tasks with diverse objects.

6
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𝜋!-FAST-DROID 𝜋!-FAST-DROID + MG-Select 

(a) Grasping a sponge from the box

𝜋!-FAST-DROID 𝜋!-FAST-DROID + MG-Select 

(b) Releasing a sponge to the bowl

Figure 2: Qualitative results of MG-Select in real-world pick-and-place tasks. We visualize one
of our real-world experiments in the “Box to Bowl” task: (a) grasping an object from the box and
(b) releasing it into the bowl. The rollout shows that MG-Select can generate high-precision actions
at critical moments for task success, whereas the base policy (π0-FAST-DROID) often struggles at
these steps.

Table 4: Real-world performance on in-distribution tasks with Franka Research 3. We evaluate
our method on seen tasks after multi-task training with 60 demonstrations per task. Each task is
defined by a start and goal location with 4 different target objects. We report the average success rate
(%) over 24 trials (4 objects × 6 trials) for each task. ∗ indicates results with additional joint training
before applying our test-time scaling framework.

Model
Pick and Place

Average
Box to Bowl Box to Plate Basket to Bowl Plate to Basket

π0-FAST-DROID 41.7 37.5 45.8 25.0 37.5
+ MG-Select* (Ours) 58.3 54.2 50.0 29.2 47.9

Table 3: Real-world performance on out-of-distribution
tasks with Franka Research 3. We report the average
success rate (%) over 16 trials for each task.

Model Pick up Tape Take Cup out of Bowl Average

π0-FAST-DROID 56.3 50.0 53.1
+ MG-Select (Ours) 68.8 75.0 71.9

Out-of-distribution tasks. Table 3
presents the performance of MG-
Select on π0-FAST-DROID in out-of-
distribution tasks. The results demon-
strate that MG-Select can be directly ap-
plied to a generalizable policy, enhanc-
ing its robustness and precision on novel
objects, with a 35% improvement. No-
tably, MG-Select shows clear gains on objects that are more difficult to grasp and lift than in-
distribution ones, e.g., a roll of tape. We also provide qualitative results about real-world experiments
in Figure 4, which show that MG-Select improves precision of policy at critical moments of pick-
and-place tasks, i.e., grasping and releasing, where the base model often fails.

4.3 ABLATION STUDIES AND ANALYSES

We investigate the effectiveness of the proposed components on RoboCasa and conduct the inference
latency analysis on LIBERO-Object. For component-wise analysis, we use models trained on
RoboCasa with 100 demonstrations, whereas for the latency analysis, we use models trained on
LIBERO.

Inference strategy. Table 5 (a) shows that low-temperature sampling (e.g., τ = 0.5) already improves
over greedy decoding on the jointly trained model. Even simple Best-of-N strategies, such as selecting
actions by likelihood or KL divergence against a uniform reference distribution (Kang et al., 2025),
yield further gains. Building on this, MG-Select achieves the strongest improvements, confirming
that condition-masking distributional confidence provides a more effective uncertainty signal.

Number of candidates. Table 5 (b) shows that performance increases up to N = 64, but the
improvement beyond N = 4 is marginal. Considering computational efficiency, we adopt N = 4 as
the practical point that yields meaningful precision gains.
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M N PnP All

Greedy 1 28.5 42.7
Sampling 1 27.6 43.8
Uniform KL 4 30.0 46.5
Likelihood 4 30.5 46.8
MG-Select 4 31.0 48.1

(a) Inference strategy

N PnP All

1 27.6 43.8
2 30.0 46.2
4 31.0 48.1
8 30.0 46.9

16 30.7 46.1
32 31.0 46.6
64 33.3 48.4

(b) Number of candidates

Text State PnP All

✓ ✗ 31.0 48.1
✗ ✓ 30.1 46.7
✓ ✓ 29.7 46.3

(c) Condition-masking variants

Joint-IL MG-Select PnP All

✗ ✗ 17.0 40.2
✗ ✓ 22.6 43.7
✓ ✗ 28.5 42.7
✓ ✓ 31.0 48.1

(d) Effect of joint training

τ PnP All

0.5 27.5 43.9
1.0 28.8 44.3
2.0 25.4 43.8
4.0 31.0 48.1
8.0 30.0 45.5

(e) Regularization temperature

I PnP All

Sum 26.1 44.5
Avg 24.7 44.7
First 1 25.5 44.1
First 3 27.1 45.5
First 5 31.0 48.1
First 7 29.2 46.3
First 10 26.6 45.1

(f) Aggregation strategy

Table 5: MG-Select ablation experiments. We present a component-wise analysis of our proposed
test-time scaling framework on RoboCasa (Nasiriany et al., 2024), trained with 100 demonstrations.
We report the average success rate (%) over 50 trials and 3 random seeds. Temperature (τ ) for
stochastic sampling is fixed to 0.5 across all experiments. PnP denotes the 8 pick-and-place tasks,
and All denotes the full set of 24 tasks. Gray rows indicate the main results reported in Table 1.

Condition-masking variants. Table 5 (c) presents the results of different masking variants after joint
training. Text-masking achieves the best performance, while other variants remain competitive and
outperform the uniform baseline (Kang et al., 2025).

Effect of joint training. Table 5 (d) shows the effect of combining our joint training strategy
with MG-Select. Joint training alone already outperforms vanilla imitation learning, likely because
condition-masking prevents the model from overfitting. Coupling it with MG-Select yields further
gains over using MG-Select alone, confirming the effectiveness of the proposed strategy.

Figure 3: Inference latency comparison on
LIBERO-Object. We compare vanilla MG-
Select with its efficient deployment variant us-
ing single prefill, based on π0-FAST (Pertsch
et al., 2025).

Regularization temperature. We empirically find
that naively using the condition-masking distribu-
tion (τ = 1.0) as a reference does not work well, as
shown in Table 5 (e), compared to uniform-based
KL divergence (Kang et al., 2025). It is possi-
bly because condition-masking distribution may be
"peaked" around certain action tokens, which under-
mines the purpose of distributional confidence by
failing to consider the entire probability distribution.
To address this issue, we apply an appropriate high
temperature (e.g., τ = 4.0) to the condition-masking
distribution, which regularizes its concentration and
results in superior performance.

Aggregation strategy. Table 5 (f) shows that the
aggregation strategy for action-level confidence is
crucial for selecting high-precision actions. Intrigu-
ingly, the naive summation of token-level confidence performs the worst, while truncating to the first
5 tokens works best. We hypothesize that the results may be correlated with the nature of the FAST
tokenizer (Pertsch et al., 2025), i.e., each action sequence is composed of a variable number of action
tokens, which are aligned from low- to high-frequency. We provide an additional analysis on the
truncated FAST tokens and Robocasa performance in Appendix H.
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Table 6: Performance comparison on LIBERO (Liu et al., 2023). We report the average success
rate (%) over 4 task suites, each consisting of 10 tasks with 50 trials per task. Results for our methods
are averaged over 3 random seeds. † indicates reproduced performance, and ∗ indicates results with
additional joint training before applying our test-time scaling framework.

Model LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long Average

OpenVLA† 85.2 63.7 75.5 52.5 69.2
+ MG-Select* (Ours) 84.8 72.5 74.9 55.4 71.9

π0-FAST† 97.4 95.4 95.6 79.6 92.0
+ MG-Select* (Ours) 97.2 98.0 94.5 82.7 93.1

Effect of single prefill deployment. Since MG-Select generates multiple candidate actions in parallel,
it inevitably introduces additional latency, as the prefill step must be repeated N times. This issue is
particularly critical for VLAs, which require prefilling at every step when generating action sequences
conditioned on the current observation. To address this, we design a single-prefill deployment
strategy that shares one prefill across all N candidates before decoding. This significantly reduces
the computational overhead, as shown in Figure 3: with N = 4, our deployment achieves a 45%
reduction in latency compared to vanilla MG-Select. As a result, the inference time of MG-Select
remains comparable to that of single-action inference across different candidate sizes. We provide
the detailed results in Appendix C.

5 RELATED WORK

Vision-Language-Action models. Developing generalist robot policies has long been a central
objective in robotics. Recently, Vision-Language-Action models (VLAs) have emerged as a prominent
approach, showing strong performance across diverse downstream tasks through large-scale pre-
training on robotic datasets (Driess et al., 2023; Zitkovich et al., 2023; Black et al., 2025; Pertsch
et al., 2025; Bjorck et al., 2025). Two common design paradigms have been explored: augmenting
a vision-language model (VLM) with a diffusion-based action expert (Black et al., 2025; Bjorck
et al., 2025), or converting the VLM into a VLA in an autoregressive manner (Kim et al., 2024;
Pertsch et al., 2025). However, despite these advances, they fundamentally rely on a single-inference
paradigm to generate actions, which increases the risk of errors in high-precision tasks.

Test-time computing. Applying additional computation at test time is widely recognized as an
effective approach to generate more accurate outputs for challenging tasks across domains. In large
language models (LLMs), numerous methods have demonstrated its effectiveness in improving
reasoning capabilities, e.g., mathematics, coding, and problem-solving (Chen et al., 2024; Brown
et al., 2024; Ehrlich et al., 2025; Song et al., 2024). In robotics, test-time scaling has recently emerged
as a promising paradigm, which involves repeated sampling combined with external value functions.
For example, Nakamoto et al. (2024) ranks candidate actions using a value function trained via offline
reinforcement learning on diverse robotic datasets, while Kwok et al. (2025) introduces VLM-based
action verifiers obtained through reward modeling with synthetic preference datasets. Unlike these
approaches, MG-Select requires no external modules. It performs Best-of-N sampling using only the
model’s intrinsic signals, i.e., condition-masking distributional confidence. MG-Select consistently
improves performance across diverse pick-and-place tasks. Moreover, it offers an efficient framework
by eliminating the need for external model loading or interaction, and by introducing optimized
parallel sampling that reduces inference latency.

6 CONCLUSION

In this work, we propose MG-Select, a novel test-time scaling framework for Vision-Language-
Action models (VLAs). Our approach leverages condition-masking distributional confidence as
a self-generated signal for Best-of-N sampling, enabling precise action selection without external
verifiers. This framework mitigates the precision issues inherent in single-inference paradigms
and consistently improves policy performance across a wide range of simulation and real-world
benchmarks. In addition, we introduce a joint training strategy and optimized implementation to
further enhance both effectiveness and efficiency. We believe MG-Select opens up a verifier-free
test-time scaling paradigm in VLAs, improving robustness and precision solely through the model
itself.

9
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REPRODUCIBILITY STATEMENT

We provide implementation details about training and deployment in Appendix A.

REFERENCES

Suneel Belkhale and Dorsa Sadigh. Minivla: A better vla with a smaller footprint, 2024. URL
https://github.com/Stanford-ILIAD/openvla-mini.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel
Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
Paligemma: A versatile 3b vlm for transfer. arXiv preprint arXiv:2407.07726, 2024.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang,
Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model for generalist
humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow model for
general robot control. Robotics: Science and Systems, 2025.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
He, Xuan Hu, Xu Huang, et al. Agibot world colosseo: A large-scale manipulation platform for
scalable and intelligent embodied systems. arXiv preprint arXiv:2503.06669, 2025.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process. Advances in Neural Information Processing Systems, 37:27689–27724, 2024.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
language model. In International Conference on Machine Learning, pp. 8469–8488. PMLR, 2023.

Ryan Ehrlich, Bradley Brown, Jordan Juravsky, Ronald Clark, Christopher Ré, and Azalia Mirho-
seini. Codemonkeys: Scaling test-time compute for software engineering. arXiv preprint
arXiv:2501.14723, 2025.

Qiao Gu, Yuanliang Ju, Shengxiang Sun, Igor Gilitschenski, Haruki Nishimura, Masha Itkina, and
Florian Shkurti. Safe: Multitask failure detection for vision-language-action models. arXiv preprint
arXiv:2506.09937, 2025.

Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language
models via self-certainty. arXiv preprint arXiv:2502.18581, 2025.

Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models.
In Forty-first International Conference on Machine Learning, 2024.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint arXiv:2403.12945,
2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. Conference on Robot Learning, 2024.

Jacky Kwok, Christopher Agia, Rohan Sinha, Matt Foutter, Shulu Li, Ion Stoica, Azalia Mirhoseini,
and Marco Pavone. Robomonkey: Scaling test-time sampling and verification for vision-language-
action models. arXiv preprint arXiv:2506.17811, 2025.

10

https://github.com/Stanford-ILIAD/openvla-mini


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa
Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation policies in
simulation. Conference on Robot Learning, 2024.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. arXiv preprint arXiv:2306.03310,
2023.

Huaping Liu, Xinghang Li, Peiyan Li, Minghuan Liu, Dong Wang, Jirong Liu, Bingyi Kang, Xiao
Ma, Tao Kong, and Hanbo Zhang. Towards generalist robot policies: What matters in building
vision-language-action models. CoRR, 2025.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics
and Automation Letters, 7(3):7327–7334, 2022.

Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and Sergey Levine. Steering your generalists:
Improving robotic foundation models via value guidance. Conference on Robot Learning, 2024.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
robots. Robotics: Science and Systems, 2024.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In IEEE Interna-
tional Conference on Robotics and Automation, pp. 6892–6903. IEEE, 2024.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models. arXiv preprint arXiv:2501.09747, 2025.

Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan Gu,
Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-language-
action model. Robotics: Science and Systems, 2025.

Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The good, the bad, and the greedy:
Evaluation of llms should not ignore non-determinism. arXiv preprint arXiv:2407.10457, 2024.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. Robotics: Science and Systems, 2024.

Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset for
robot learning at scale. In Conference on Robot Learning, pp. 1723–1736. PMLR, 2023.

Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li. Reasoning aware self-consistency: Leveraging
reasoning paths for efficient llm sampling. Conference of the North American Chapter of the
Association for Computational Linguistics, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
International Conference on Learning Representations, 2023.

Yifan Yang, Zhixiang Duan, Tianshi Xie, Fuyu Cao, Pinxi Shen, Peili Song, Piaopiao Jin, Guokang
Sun, Shaoqing Xu, Yangwei You, et al. Fpc-vla: A vision-language-action framework with a
supervisor for failure prediction and correction. arXiv preprint arXiv:2509.04018, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Danna Zheng, Danyang Liu, Mirella Lapata, and Jeff Z Pan. Trustscore: Reference-free evaluation of
llm response trustworthiness. In ICLR 2024 Workshop on Secure and Trustworthy Large Language
Models, 2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 TRAINING ON SIMULATION DATA

Imitation learning. We use two representative autoregressive VLA policies as base models:

• π0-FAST (Pertsch et al., 2025): It uses Paligemma-3B VLM (Beyer et al., 2024) as the backbone
and is trained on 2 NVIDIA A100 GPUs with full fine-tuning from the pre-trained checkpoint.
Common training configurations are fixed with the AdamW optimizer and a cosine decay schedule,
with warmup_steps = 1,000, peak_lr = 2.5e-5, decay_lr = 2.5e-6, and decay_steps
= 30,000. Training steps, global batch size, and action chunk horizon vary by dataset as shown in
Table 7.

Table 7: Training setups of π0-FAST for different simulation benchmarks.

Configuration
RoboCasa

SIMPLER-WidowX LIBERO
30 demos 100 demos 300 demos

Training steps 3k 5k 20k 10k 10k
Global batch size 64 64 64 64 32
Action chunk horizon 16 16 16 5 10

• OpenVLA (Kim et al., 2024): It uses Prismatic-7B VLM (Karamcheti et al., 2024) as the backbone
and is trained on 2 NVIDIA A100 GPUs with LoRA fine-tuning (r = 32) from the pre-trained
checkpoint. We use a global batch size of 32 for LIBERO (Liu et al., 2023), while other training
configurations follow the official OpenVLA implementation. Note that, consistent with the
OpenVLA configuration, we train the model separately on each LIBERO benchmark rather than
performing multi-task fine-tuning.

Joint imitation learning. Joint imitation learning strictly follows the training configuration of
the aforementioned imitation learning, differing only in the data configuration, as it incorporates
condition-dropout data. We consider 3 variants of dropout data, (1) text-masking, (2) state-masking,
and (3) both text&state-masking. For π0-FAST, we randomly dropout 10%/10%/10% (text / state/
both text&state) in RoboCasa and LIBERO, and only dropout 10% of state data in SIMPLER-
WidowX. For OpenVLA, we apply a 10% dropout only to text condition since OpenVLA does not
receive state input.

A.2 TRAINING ON REAL-WORLD DATA

Imitation learning. We use π0-FAST-DROID (Pertsch et al., 2025) as the base model for real-world
experiments. It is fine-tuned with our manually collected data on 2 NVIDIA A100 GPUs with full
fine-tuning and a global batch size of 64. Training follows the imitation learning configuration
described in Appendix A.1, except that peak_lr and decay_lr are reduced to 1e-5, and 1e-6,
respectively.

Joint imitation learning. We apply random dropout of 10%/10%/10% (text / state / both text&state)
and fine-tune with manually collected data.

A.3 DEPLOYMENT

MG-Select’s main hyperparameters are: (1) the sampling temperature τ , (2) the number of candidate
actions N , (3) the variant of condition-masking, and (4) the regularization temperature for the
condition-masking distribution. We search for the optimal configuration on each dataset within the
following ranges: τ ∈ {0.1, 0.3, 0.5, 0.7, 1.0}, N ∈ {4, 8}, variants ∈ {text, state, text&state}, and
regularization temperature ∈ {4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0}, and report the best result for each
policy.

For aggregating token-level confidence scores, we use the summation of the first 5 tokens by default
in π0-FAST. In contrast, for OpenVLA, we use the average score across the entire token sequence,
since its output sequence length is fixed to the action dimension of the training data. Additionally,
only the text-masking variant is applied in OpenVLA, as it does not take state input.
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B DETAIL RESULTS ON SIMULATION EXPERIMENTS

Table 8: Detailed performance comparison on RoboCasa (Nasiriany et al., 2024). We report
the average success rate (%) over 50 trials, trained with varying numbers of demonstrations. For
clarity, the 24 tasks are grouped into three categories: pick-and-place, open-and-close, and others.
Results for our methods are averaged over 3 random seeds, while baseline results are taken from the
original paper (Bjorck et al., 2025). † indicates reproduced performance, and ∗ indicates results with
additional joint training before applying our test-time scaling framework.

Model
30 Demos 100 Demos 300 Demos

Pick and Place Open and Close Others All Pick and Place Open and Close Others All Pick and Place Open and Close Others All

GR00T N1 0.4 26.0 26.0 17.4 2.2 52.8 43.5 32.1 22.6 68.3 60.0 49.6

π0-FAST† 5.3 51.3 39.2 30.9 17.0 60.7 46.6 40.2 43.2 74.7 67.4 61.2
+ MG-Select (Ours) 7.2 53.7 38.9 32.0 22.6 63.2 48.9 43.7 46.5 76.1 64.3 61.3
+ MG-Select* (Ours) 14.2 53.2 39.7 34.6 31.0 67.3 50.1 48.1 46.9 81.0 64.9 62.9

Table 9: Detailed performance comparison on SIMPLER-WidowX (Li et al., 2024). We report
both the task success rate and the grasp success rate (%) over 24 trials on 4 pick-and-place tasks.
Results for our methods are averaged over 3 random seeds, while baseline results are taken from
the SIMPLER paper (Li et al., 2024) and the respective original papers (Liu et al., 2025; Qu et al.,
2025). † indicates reproduced performance, and ∗ indicates results with additional joint training
before applying our test-time scaling framework.

Model Spoon on Towel Carrot on Plate Stack Cubes Eggplant in Basket Average
Grasp Success Grasp Success Grasp Success Grasp Success Grasp Success

RT-1-X 16.7 0.0 20.8 4.2 8.3 0.0 0.0 0.0 11.5 1.1
Octo 34.7 12.5 52.8 8.3 31.9 0.0 66.7 43.1 46.5 16.0
RoboVLM 70.8 45.8 33.3 20.8 54.2 4.2 91.7 79.2 62.5 37.5
SpatialVLA 20.8 16.7 29.2 25.0 62.5 29.2 100.0 100.0 53.1 42.7

π0-FAST† 83.3 66.7 83.3 70.8 91.7 41.7 8.3 8.3 66.7 46.9
+ MG-Select* (Ours) 87.5 69.4 83.3 75.0 79.2 43.1 26.4 13.9 69.1 50.3

C DETAIL RESULTS ON EFFICIENT DEPLOYMENT STRATEGY

Table 10: Detailed inference latency comparison on LIBERO-Object. This table presents the
detailed results corresponding to Figure 3, comparing vanilla MG-Select and MG-Select with the
single prefill strategy. We report the average inference latency over 10 episodes for each of 5 random
seeds, across different numbers of N candidates. Latency is measured on an NVIDIA A100 GPU. ↓
indicates lower values are better.

N
Latency (s, ↓)

MG-Select MG-Select + Single Prefill

1 20.2 20.2
2 30.4 22.7
4 43.4 23.7
8 62.0 24.3

16 76.0 30.4
32 201.0 34.1
64 430.0 43.1
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D ADDITIONAL EXPERIMENTS

D.1 EFFECT OF DROPOUT RATIO

Table 11: Ablation experiment on dropout ratios. We present a dropout ratio analysis for joint
imitation learning on RoboCasa (Nasiriany et al., 2024), trained with 100 demonstrations. We report
the average success rate (%) over 50 trials and 3 random seeds. From left to right, the dropout ratio
corresponds to text, state, and both text&state conditions. PnP denotes the 8 pick-and-place tasks,
and All denotes the full set of 24 tasks. Blue rows indicate the main results reported in Table 1.

Dropout Ratio (%) PnP All

5/ 5/ 5 24.2 45.3
10/10/10 31.0 48.1
20/20/20 27.9 46.1

Dropout ratios on RoboCasa. We investigate the effect of the dropout ratio in joint imitation learning
for MG-Select. Table 11 shows that a ratio of 10%/10%/10% achieves the best performance. We
hypothesize that small ratios (e.g., 5%) are insufficient for learning a meaningful masking distribution,
while large ratios (e.g., 20%) make the masking distribution too similar to the all-condition distribution,
leading our confidence metric to select suboptimal action.

D.2 EFFECT OF AGGREGATION STRATEGY

Table 12: Ablation experiment on aggregation strategies. We report the average success rate (%)
over 24 trials on 4 pick-and-place tasks in SIMPLER-WidowX (Li et al., 2024). Results for our
methods are averaged over 3 random seeds. Blue rows indicate the main results reported in Table
2. † indicates reproduced performance, and ∗ indicates results with additional joint training before
applying our test-time scaling framework.

Model Spoon on Towel Carrot on Plate Stack Cubes Eggplant in Basket Average

π0-FAST† 66.7 70.8 41.7 8.3 46.9
+ MG-Select* (First 1) 68.1 70.8 48.6 20.8 52.1
+ MG-Select* (First 5) 69.4 75.0 43.1 13.9 50.3
+ MG-Select* (First 10) 66.7 76.4 38.9 22.2 51.0
+ MG-Select* (Sum) 62.5 73.6 43.1 16.7 49.0
+ MG-Select* (Avg) 66.7 68.1 40.3 16.7 47.9

Aggregation strategies on SIMPLER-WidowX. We investigate whether the aggregation strategy for
action-level confidence remains important in a different domain. Table 12 shows that the truncation
strategy consistently outperforms naive summation and averaging, and intriguingly, truncating first 1
token yields the best performance. This suggests that domain-specific tuning of the token-span size
can further improve MG-Select. Nevertheless, we adopt the first 5 tokens truncation as default, as it
shows robust and superior performance across action domains.
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D.3 EFFECT OF MODEL SCALE

Table 13: Additional performance comparison on LIBERO (Liu et al., 2023). We report the
average success rate (%) over 4 task suites, each consisting of 10 tasks with 50 trials per task. Results
for our methods are averaged over 3 random seeds. † indicates reproduced performance, and ∗
indicates results with additional joint training before applying our test-time scaling framework.

Model LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long Average

MiniVLA† 79.4 38.8 68.0 30.2 54.1
+ MG-Select* (Ours) 76.8 60.9 72.1 32.3 60.5

Implementation Details. MiniVLA (Belkhale & Sadigh, 2024) is a 7× smaller variant of OpenVLA,
containing only 1B parameters. It uses a Qwen 2.5 0.5B backbone while retaining the same ViT
used in OpenVLA. We fine-tune MiniVLA with vanilla imitation learning on the full set of LIBERO
training data for 30k iterations with a global batch size of 128. Joint imitation learning includes 10%
text-only dropout, as MiniVLA does not take state inputs. We adopt the average aggregation strategy,
because the output token length is fixed to the action dimension.

Experimental Results. Table 13 presents the performance of MG-Select with MiniVLA (Belkhale &
Sadigh, 2024) on LIBERO. The results show MG-Select significantly outperforms the base model
on average, indicating that our test-time scaling framework generalizes across different VLAs and
model scales.

D.4 COMPARISON WITH ADDITIONAL BASELINES

Table 14: Additional performance comparison on SIMPLER-WidowX (Li et al., 2024). We
report the average success rate (%) over 24 trials on 4 pick-and-place tasks. Results for RoboMonkey
(Kwok et al., 2025) and our methods are averaged over 3 random seeds. Blue rows indicate the main
results reported in Table 2. † indicates reproduced performance, and ∗ indicates models trained with
joint imitation learning. For a fair comparison, we match the number of candidates in RoboMonkey
to that used by MG-Select. Latency is measured on an NVIDIA RTX A6000 GPU.

Model N External Verifier Latency (ms, ↓) Spoon on Towel Carrot on Plate Stack Cubes Eggplant in Basket Average

π0-FAST† 1 - 616.2 (1.00×) 66.7 70.8 41.7 8.3 46.9
+ RoboMonkey* 4 ✓ 1194.9 (1.94×) 68.1 72.2 44.4 18.1 50.7
+ MG-Select* (Ours) 4 ✗ 880.3 (1.43×) 69.4 75.0 43.1 13.9 50.3

Implementation Details. RoboMonkey (Kwok et al., 2025) is a recent test-time scaling method
that uses a LLaVA-7B VLM-based verifier to select the optimal action. We aim to investigate
whether our confidence metric can perform as well as an external verifier. To explicitly compare
the two approaches, we fix τ = 0.1 and the N = 4 for parallel stochastic sampling, and remove the
Gaussian perturbation and majority voting process in RoboMonkey, using only the verifier to perform
Best-of-N selection from sampled action chunks.

Experimental Results. Table 14 shows that MG-Select achieves competitive performance compared
to RoboMonkey without requiring an external verifier. MG-Select is substantially more efficient
than RoboMonkey in terms of latency, demonstrating that our method is not only effective but also a
practical test-time scaling approach.
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E EFFECT OF TEMPERATURE IN CONDITION-MASKING DISTRIBUTION

In our proposed method, we utilize a condition-masking distribution to serve as the reference
distribution for the confidence metric. Here, we define the general condition-masking distribution as
πmasked, which corresponds to the first argument in the KL divergence terms (see Eq. (2), (3), and
(4)). In this section, we provide a theoretical derivation how temperature τ affects the entropy of the
reference distribution πmasked.

E.1 THEOREM

Theorem. Let πmasked(a; τ) be the temperature-scaled condition-masking reference distribution.
Then its entropy H(πmasked) is monotonically increasing in temperature τ > 0:

∂H(πmasked)

∂τ
≥ 0. (6)

Thus, using a higher temperature (e.g., τ = 4.0) explicitly increases the entropy of the reference
distribution, preventing our confidence metric from being biased by the over-confidence (low-entropy)
of the masked distribution itself.

E.2 PROOF

Let z(a) denote the logit (unnormalized log-probability) of an action a ∈ A from πmasked. The
probability of a under temperature τ is defined as:

πmasked(a; τ) =
exp(z(a)/τ)

Z(τ)
, where Z(τ) =

∑
a′

exp(z(a′)/τ). (7)

The entropy of this distribution is defined as:

H(πmasked) = −
∑
a

πmasked(a; τ) log πmasked(a; τ). (8)

First, we expand the entropy term using the definition of the softmax distribution:

H(πmasked) = −
∑
a

πmasked(a; τ)

(
z(a)

τ
− logZ(τ)

)
= logZ(τ)

∑
a

πmasked(a; τ)−
1

τ

∑
a

πmasked(a; τ)z(a)

= logZ(τ)− 1

τ
Eπmasked [z(A)]. (9)

Differentiating H(πmasked) with respect to τ . We first note the derivative of the log-partition function
logZ(τ):

∂ logZ(τ)

∂τ
=

1

Z(τ)

∑
a

exp

(
z(a)

τ

)
·
(
−z(a)

τ2

)
= − 1

τ2

∑
a

πmasked(a; τ)z(a)

= − 1

τ2
Eπmasked [z(A)]. (10)

Differentiating Eq. (9) with respect to τ :

∂H

∂τ
=

∂ logZ(τ)

∂τ
−

(
− 1

τ2
Eπmasked [z(A)] +

1

τ

∂Eπmasked [z(A)]

∂τ

)
. (11)

Substituting Eq. (10) into the first term, the expected value terms cancel out:

∂H

∂τ
= −1

τ

∂Eπmasked [z(A)]

∂τ
. (12)
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Next, to evaluate the derivative of the expectation Eπmasked [z(A)], we use the chain rule for ∂πmasked(a;τ)
∂τ :

∂πmasked(a; τ)

∂τ
= πmasked(a; τ)

∂ log πmasked(a; τ)

∂τ

= πmasked(a; τ)

(
−z(a)

τ2
− ∂ logZ(τ)

∂τ

)
= πmasked(a; τ)

1

τ2
(Eπmasked [z(A)]− z(a)) . (13)

Using this, the derivative of the expectation becomes:
∂Eπmasked [z(A)]

∂τ
=

∑
a

z(a)
∂πmasked(a; τ)

∂τ

=
1

τ2

∑
a

πmasked(a; τ)z(a) (Eπmasked [z(A)]− z(a))

=
1

τ2
(
(Eπmasked [z(A)])2 − Eπmasked [(z(A))2]

)
= − 1

τ2
Varπmasked [z(A)]. (14)

Finally, substituting this result back into Eq. (12):
∂H(πmasked)

∂τ
= −1

τ

(
− 1

τ2
Varπmasked [z(A)]

)
=

1

τ3
Varπmasked [z(A)]. (15)

Since Varπmasked [z(A)] ≥ 0 and τ > 0, we conclude:
∂H(πmasked)

∂τ
≥ 0. (16)

F RESULTS ON CALVIN BENCHMARK

Table 15: Performance comparison on CALVIN (Mees et al., 2022). We report the success rate for
each instruction chain and the average number of consecutive successes over 5 instruction chains.
The model is trained on environments A, B and C and zero-shot evaluation is performed on novel
environment D. Results for our methods are averaged over 3 random seeds. † indicates reproduced
performance, and ∗ indicates results with additional joint training before applying our test-time
scaling framework.

Method Task
Tasks Completed in a Row (%)

Avg. Len (↑)
1 2 3 4 5

π0-FAST† ABC → D 96.0 85.8 74.4 62.4 50.6 3.69
+ MG-Select* (Ours) ABC → D 96.9 88.0 77.8 67.6 55.8 3.86

To demonstrate that our method is also effective for long-horizon, multi-step planning tasks, we
evaluate MG-Select on CALVIN benchmark in the zero-shot setting.

Setup. CALVIN (Mees et al., 2022) consists of 34 distinct tasks and uses a Franka Panda Arm for
manipulation. We evaluate on the ABC → D setting, measuring whether the model can execute
long-horizon language-conditioned tasks in a zero-shot manner. We fine-tune π0-FAST with vanilla
imitation learning on environments A,B,C for 5k iterations with a global batch size of 32. Then,
we evaluate the model on environment D using 1000 instructions. Joint imitation learning includes
10%/10%/10% dropout, and MG-Select searches for optimal deployment hyperparameters within the
ranges defined in Appendix A.

Experimental Results. Table 15 presents that MG-Select consistently outperforms the base model
across all consecutive tasks, demonstrating our proposed method’s generalizability to long-horizon
and multi-step planning.
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G VISUALIZATIONS OF MG-SELECT

(a) Task : Turn on the stove. Top : OpenVLA, Bottom : OpenVLA + MG-Select (Ours).

(b) Task : Put the bowl on top of the cabinet. Top : OpenVLA, Bottom : OpenVLA + MG-Select (Ours).

Figure 4: Visualization of failure cases of MG-Select on LIBERO-Goal. We show representative
failures corresponding to minor performance drop in LIBERO-Goal. In simple and atomic tasks,
MG-Select may introduce unnecessary stochasticity, leading to slight misalignment between the
gripper and object, whereas the base model already produces near-optimal actions.

Figure 5: Visualization of token-level KL divergence of MG-Select on SIMPLER-WidowX.
We visualize the token-level state-masking confidence (see Eq. (3)) for a successful pick-and-place
episode in SIMPLER-WidowX. Average KL per token denotes the mean KL over first 5 action tokens,
and the box-plots show KL statistics across action candidates (N = 4). Each frame corresponds
to the state observed after executing the respective action chunk. We observe that KL rises sharply
during the alignment phase (C1-C2), where state information is crucial for action prediction. At the
same time, KL values among candidates also vary, and the highest-KL candidate produces the correct
alignment. Similar patterns are obsersved in grasping (C10) and placement (C13).
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H DETAIL ANALYSIS OF TRUNCATED FAST TOKENS

Figure 6: Correlation between action reconstruction error and RoboCasa performance. We
compare the performance of truncated aggregation strategies (see Table 5 (f)) against the action
reconstruction error using FAST (Pertsch et al., 2025) tokens on RoboCasa (Nasiriany et al., 2024)
with 100 demonstrations. Reconstruction error is measured by tokenizing continuous actions and
detokenizing them using only the first K tokens. The error is reported as the Mean Absolute Error
(MAE) normalized by the standard deviation of the original actions, averaged across all action
dimensions.

Action reconstruction from FAST tokens. We analyze the behavior of the FAST (Pertsch et al.,
2025) tokenizer, which produces variable-length token sequences ordered from low-frequency to
high-frequency components. To understand how these tokens relate to action information, we conduct
a simple action reconstruction experiment on the RoboCasa dataset using 100 demonstrations per task:
(1) tokenize continuous actions into discrete FAST token sequences, (2) truncate the first K tokens,
and (3) detokenize the truncated sequence back into continuous actions. We evaluate K ∈ {1, 3, 5, 7},
corresponding to RoboCasa’s 7-dimensional action space. As a reconstruction metric, we measure
the mean absolute deviation between the original and detokenized actions with the first K tokens,
normalized by original action’s standard deviation. Interestingly, we find that reconstruction error is
negatively correlated with RoboCasa performance. In particular, using only the first 5 tokens provides
a reasonable reconstruction, suggesting a more stable and length-invariant confidence measure than
naively aggregating all FAST tokens, as shown in Table 5 (f).
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