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ABSTRACT

Vision-Language-Action models (VLAs) have demonstrated remarkable perfor-
mance in robot control. However, they remain fundamentally limited in tasks that
require high precision due to their single-inference paradigm. While test-time
scaling approaches using external verifiers have shown promise, they require addi-
tional training and fail to generalize to unseen conditions. We propose Masking
Distribution Guided Selection (MG-Select), a novel test-time scaling framework
for VLAs that leverages the model’s internal properties without requiring addi-
tional training or external modules. Our approach utilizes KL divergence from
a reference action token distribution as a confidence metric for selecting optimal
action from multiple candidates. We introduce a reference distribution generated
by the same VLA but with randomly masked states and language conditions as
inputs, ensuring maximum uncertainty while remaining aligned with the target
task distribution. Additionally, we propose a joint training strategy that enables
the model to learn both conditional and unconditional distributions by applying
dropout to state and language conditions, thereby further improving the quality of
the reference distribution. Our experiments demonstrate that MG-Select achieves
significant performance improvements, including a 28%/35% improvement in
real-world in-distribution/out-of-distribution tasks, along with a 168% relative gain
on RoboCasa pick-and-place tasks trained with 30 demonstrations.

1 INTRODUCTION

Vision-Language-Action models (VLAs; Zitkovich et al. 2023; Kim et al. 2024; Black et al. 2025;
Bjorck et al. 2025), trained on large-scale robotic datasets (O’Neill et al., 2024; Bu et al., 2025),
have demonstrated remarkable performance in robot control. Among these, autoregressive VLAs
represent one of the predominant VLA (Driess et al., 2023; Kim et al., 2024; Pertsch et al., 2025),
leveraging the same autoregressive objective used in training vision and foundation models without
requiring architectural modifications, yet achieving comparable performance to more sophisticated
architectures. Despite their success, VLAs remain fundamentally limited in tasks that demand high
precision; even after extensive pre-training, they often fail on fine-grained manipulation tasks such
as grasping or object placement (Nakamoto et al., 2024; Kwok et al., 2025; Gu et al., 2025; Yang
et al., 2025). This precision gap is particularly problematic for real-world robotic applications where
millimeter-level accuracy can determine task success or failure.

Previous work (Nakamoto et al., 2024; Kwok et al., 2025) shows that while VLAs can achieve high
precision with adequate training, their greedy decoding (always choosing the highest-probability
action) becomes a bottleneck. To address this limitation, inspired by the substantial gains observed in
LLM reasoning with Test Time Scaling (TTS) (Wang et al., 2023; Wan et al., 2025; Kang et al., 2025),
they use repeated sampling paired with an external verifier, i.e., a value function trained on robotic
data. However, these approaches have significant drawbacks: First, they require additional training
for obtaining verifiers with reinforcement learning objectives before inference, which adds substantial
computational overhead and complexity to the deployment pipeline. Second, these external verifiers
fail to generalize to unseen input conditions (Nakamoto et al., 2024), such as novel task prompts
or objects, and their reward modeling is tailored to specific datasets, severely limiting their broader
applicability (Kwok et al., 2025).
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Figure 1: Overview of MG-Select. (1) Autoregressive VLA πθ samples action tokens in parallel
from the predicted distribution, while simultaneously computing token-wise KL divergence from the
condition-masking distribution to the predicted distribution. (2) Best-of-N selection is then performed
using an action confidence score Cã obtained by aggregating these token-wise scores.

Our approach. To tackle this problem, our research goal is to develop a test-time scaling framework
for VLAs that leverages the model’s internal properties without requiring additional training or
external modules. Inspired by verifier-free approaches for TTS (Zheng et al., 2024), we begin with the
most straightforward approach: selecting the action with the highest likelihood from multiple sampled
actions. We observe that this simple technique alone can improve VLA performance by producing
more precise actions in some cases (see Table 5 (a)). However, this approach is not effective in
general, as VLAs fine-tuned on target tasks for next action token prediction often memorize expert
trajectories, causing the probability distribution over action tokens to become overly concentrated,
which leads to multiple sampling converging to the same result.

These insights motivate us to propose Masking Distribution Guided Selection (MG-Select), a novel
TTS framework that leverages the KL divergence from a reference action token distribution as a
confidence metric for selecting the optimal action from multiple candidates. Inspired by recent
advances in LLM literature that use self-certainty measures (Kang et al., 2025), we adapt this
principle to the VLA setting. Specifically, we introduce a reference distribution generated by the
same VLA but with randomly masked states and language conditions as inputs. This design ensures
the reference distribution represents maximum uncertainty while remaining aligned with the target
task distribution, providing a more meaningful baseline for confidence measurement. By selecting
actions with the highest KL divergence from this uncertainty-aware reference, MG-Select effectively
identifies the most confident action sequences while avoiding the limitations of likelihood-based
selection, achieving significant performance improvements in practice. Additionally, we propose a
joint training strategy that enables the model to learn both conditional and unconditional distributions
by applying dropout to state and language conditions, thereby further improving the quality of the
reference distribution.

In our experiments, we have validated the effectiveness of our test-time scaling framework on both
simulated (Nasiriany et al., 2024; Li et al., 2024; Liu et al., 2023) and real-world benchmarks
(Khazatsky et al., 2024). Our results show that MG-Select consistently improves state-of-the-art
VLAs (Pertsch et al., 2025) across diverse pick-and-place tasks and various environments. In
particular, MG-Select achieves a 28% improvement in real-world in-distribution tasks and 35%
in out-of-distribution tasks, along with a 168% relative gain on RoboCasa (Nasiriany et al., 2024)
pick-and-place tasks trained with 30 demonstrations.

2 PRELIMINARIES

Problem formulation. We train the policy using the Imitation Learning (IL) framework. Specifically,
IL formulates the robot control problem as a Markov Decision Process (MDP) (Sutton et al., 1998)
without rewards, M = (S,A, P, γ, ρ0), where S denotes the state space, A the action space, and
P (s′ | s, a) ∈ [0, 1] is the transition probability from state s ∈ S to s′ ∈ S given action a ∈ A,
γ ∈ [0, 1) represent discount factor, and ρ0 denote the inital state distribution. Given a policy πθ and
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an expert demonstration dataset D = {(si, ai)}Ni=1, the policy is optimized such that πθ(si) closely
matches the expert action ai for each demonstration pair.

Autoregressive VLA. Given a state st ∈ S at timestep t and an instruction I ∈ I, We assume a
language-conditioned VLA parameterized by θ, πθ : S ×I → ∆(A), where ∆(A) denotes the set of
probability distributions over actions. The policy outputs a distribution πθ(a | st, I) over a ∈ A. We
further decompose the state into visual observation ot and proprioceptive state qt, st = (ot, qt) with
ot ∈ O, qt ∈ Q, where O and Q denote the observation and proprioceptive state spaces, respectively.
Therefore, the policy’s action distribution can be expressed as πθ(a | st, I) = πθ(a | ot, qt, I). In
our test-time scaling framework, we utilize this distribution through repeated sampling to generate
multiple candidate actions. In an autoregressive VLA, the probability of an action sequence a =
(a1, . . . , aT ) factorizes as

πθ(a | ot, qt, I) =
T∏

k=1

πθ(ak | ot, qt, I, a<k), (1)

where a<k = (a1, . . . , ak−1) is the prefix up to step k − 1. At each step k, the model produces a
logit vector ℓk ∈ R|V| over the vocabulary. Applying the softmax function yields the next-token
distribution πθ(· | ot, qt, I, a<k) ∈ [0, 1]|V|, which is a categorical distribution over |V| possible
tokens and sums to one.

3 METHOD

We present Masking Distribution Guided Selection (MG-Select), a novel test-time scaling framework
that selects actions based on confidence scores from a reference action token distribution. In
Section 3.1, we first introduce our overall test-time scaling framework. In Section 3.2, we introduce
the confidence metric and its reference distribution used in our framework. In Section 3.3, we propose
a joint training strategy for further improving the quality of the reference distribution in parallel with
fine-tuning to the target dataset. We provide the overview of MG-Select in Figure 1. For additional
details, please refer to Appendix A.

3.1 TEST-TIME SCALING FRAMEWORK

While VLAs demonstrate strong performance in robot control tasks, the single-inference paradigm
becomes a bottleneck: the model always selects the most probable action from its predicted distri-
bution (greedy decoding), even when this action may be suboptimal. This limitation is particularly
problematic for tasks requiring high precision, such as fine-grained manipulation. To resolve this,
we propose a test-time scaling framework that leverages only the model’s internal signals, without
relying on external verifiers. It consists of two stages: (1) parallel stochastic sampling to generate N
candidates, and (2) Best-of-N selection using specific criterion M .

1. Sampling N candidate actions. At timestep t, the autoregressive VLA πθ samples actions a ∈ A
from πθ(a | ot, qt, I). To obtain N diverse candidates in parallel (batch-inference), we sample
with temperature τ > 0:

ã
(n)
j ∼ πθ(· | ot, qt, I, ã(n)<j ; τ), n = 1, . . . , N, j = 1, . . . , T,

where πθ(·; τ) = softmax(ℓ/τ) controls distribution sharpness and sample diversity (close to
greedy as τ→0). This yields the candidate set Ã = {ã(n)}Nn=1 with ã(n) = (ã

(n)
1 , . . . , ã

(n)
T ).

2. Best-of-N selection. Among the N candidate actions, we select the final action according to a
pre-defined criterion M . This criterion is metric for selecting the best candidate, and the selected
action is given by:

at = argmax
ã(n)∈Ã

Mã(n) .

3.2 CONDITION-MASKING DISTRIBUTIONAL CONFIDENCE FOR TEST TIME SAMPLING

For test-time scaling, choosing a proper metric for selecting the best candidate is crucial for effective-
ness. When multiple candidate actions are generated, we need a reliable way to identify the most
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promising one. Intuitively, using the model’s likelihood for action selection would be the simplest
choice. However, this approach is not effective in general because VLAs fine-tuned on target tasks
often produce overly concentrated probability distributions over action tokens, causing multiple
sampling to converge to the same result. Instead, we propose a confidence metric based on the KL
divergence between a predicted distribution and a reference distribution that represents uncertainty.
This approach is motivated by the insight that actions that deviate most from an uncertainty-aware
reference are likely to be the most confident and precise.

Confidence over action token distributions. We first define the action token distribution over
the action vocabulary V as a probability distribution P (ai) where ai ∈ V represents the i-th action
token. While the VLA πθ produces conditional distributions πθ(· | ot, qt, I, a<i) given observations,
states, and instruction sequences, reference distributions can be constructed independently of such
conditioning. These reference distributions can take various forms, such as uniform distributions over
the action vocabulary, task-specific priors or other type of policy distributions. For computing the
confidence over the action sequence, we first compute token-level distributional confidence at the i-th
step token ai by measuring the distance between the predicted distribution Pi = πθ(· | ot, qt, I, a<i)
and a reference distribution Qi as Ci = KL(Pi∥Qi), where we use Kullback–Leibler (KL) divergence
as our distributional confidence measure. We then aggregate these token-level confidences across the
entire action sequence to obtain the final action-level confidence score for ranking candidate actions.
Formally, for an action sequence a = (a1, a2, . . . , aT ) of length T , we compute the action-level
confidence as Ca =

∑
i∈I Ci =

∑
i∈I KL(Pi∥Qi), where I ⊆ {1, 2, . . . , T} represents the set of

token indices to be aggregated. The choice of I depends on the action tokenizing scheme: for full
sequence aggregation, we use I = {1, 2, . . . , T}, while for partial aggregation, we select specific
token ranges based on the tokenization structure.

Condition-masking distribution. To construct a reference distribution Q, our hypothesis is that a
reference distribution that is uncertain yet not too distant from the target action token distribution
will provide meaningful confidence signals. To this end, we mask specific information (Text, State,
or both Text & State) from the input modalities given to the VLA πθ, creating condition-masked
distributions that approximate failure modes where essential conditions for task solving are ignored.
Formally, we compute the scoring metric as follows:

(Text-masking) KLtext = KL
(
πθ(· | ot, qt, ∅, a<i) ∥πθ(· | ot, qt, I, a<i)

)
,

(State-masking) KLstate = KL
(
πθ(· | ot, ∅, I, a<i) ∥πθ(· | ot, qt, I, a<i)

)
,

(Text&State-masking) KLboth = KL
(
πθ(· | ot, ∅, ∅, a<i) ∥πθ(· | ot, qt, I, a<i)

)
,

For each task environment, the optimal confidence variant can vary. For example, in the SIMPLER-
WidowX benchmark (Li et al., 2024), which consists soley of pick-and-place tasks, state-masking
confidence works best because model already memorizes how to pick and place object without task
instruction. In contrast, RoboCasa benchmark (Nasiriany et al., 2024), which has multiple task types,
text-masking or text&state-masking is more effective, since model cannot determine correct action
without instructions.

3.3 JOINT TRAINING STRATEGY

Although our method can be seamlessly integrated with any autoregressive VLA, existing VLAs
are not trained under condition-masking settings, and directly masking inputs often leads to un-
intended actions. To address this, we propose a new fine-tuning strategy that enables the model
to generate condition-masking distributions while maintaining the performance gains from stan-
dard fine-tuning on the target dataset. Specifically, we train the VLA with both all-condition and
condition-masking data, randomly dropping certain conditions during fine-tuning to the target dataset,
thereby increasing awareness of condition-masking distributions. Given the dataset D, we augment
it using four different masking variants applied to the proprioceptive state qt and the instruction I:
M =

{
(qt, I), (qt, ∅), (∅, I), (∅, ∅)

}
, corresponding to (i) all-condition, (ii) text-masking, (iii)

state-masking, and (iv) both-masking cases. We then train the VLA with the augmented dataset
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Daugmented where Daugmented = {(T i, Ii, q
(m)
t , I(m)) | (q(m)

t , I(m)) ∈ M} as follows:

LJoint-IL(θ;D) = −E((ot,qt),at,I)∼D

[
E
(q

(m)
t ,I(m))∈M

[
log πθ(at | ot, q(m)

t , I(m))
]]

. (2)

As a result, this fine-tuning strategy enables the VLA to maintain performance comparable to standard
fine-tuning while gaining awareness of condition-masking distributions. When combined with our
proposed confidence measure, this enhanced model (denoted as MG-Select*) demonstrates improved
performance over the original Masking Distribution Guided Selection framework.

4 EXPERIMENTS

4.1 SIMULATED ROBOT EXPERIMENTS

To validate effectiveness of MG-Select, we conduct experiments across diverse robotic simulation
environments including RoboCasa, SIMPLER-WidowX, and LIBERO. We fine-tune the pretrained
π0-FAST model for evaluation on all simulation environments, and additionally fine-tune OpenVLA
for evaluation on LIBERO to demonstrate that our method improves performance regardless of the
underlying model architecture.

4.1.1 SETUP

RoboCasa (Nasiriany et al., 2024). RoboCasa provides 24 atomic tasks set in household kitchen
environments. We focus on 8 pick-and-place tasks, which are particularly challenging since they
require high-precision actions (i.e., grasping objects) and are well-suited for evaluating improvements
in precision. Following Bjorck et al. (2025), we train the base model with 30, 100, and 300
demonstrations for each task. For comparison, we also report results for GR00T N1 (Bjorck et al.,
2025), taken from the original paper.

SIMPLER-WidowX (Li et al., 2024). This benchmark evaluates whether our method improves
precision in a real-to-sim setting. Because it does not provide simulated training data, we train
the base model on BridgeData V2 (Walke et al., 2023) and evaluate it on 4 pick-and-place tasks.
For comparison, we also report results for RT-1-X (O’Neill et al., 2024), Octo (Team et al., 2024),
RoboVLM (Liu et al., 2025), and SpatialVLA (Qu et al., 2025), as reported in the SIMPLER paper
(Li et al., 2024) and the respective original papers.

LIBERO (Liu et al., 2023). This benchmark evaluates multiple axes of generalization, including
variations in layout, objects, and goals, as well as long-horizon tasks (LIBERO-Long) that require
sustained high-precision actions.

4.1.2 EXPERIMENT RESULTS

RoboCasa (Nasiriany et al., 2024). Table 1 presents the performance of MG-Select with π0-FAST
(Pertsch et al., 2025) on RoboCasa. MG-Select consistently improves the base model across all tasks,
including the 8 pick-and-place tasks, and under all demonstration scales. Notably, improvements
appear even without joint training, showing that our test-time scaling alone can reliably select higher-
precision actions. When combined with joint training, the gains are further amplified, since learning
the condition-masking distribution during training provides a more reliable confidence signal for
test-time scaling. We also observe particularly strong improvements in the low-data regime. For
instance, with only 30 demonstrations, MG-Select with our joint training achieves a 168% relative
improvement on pick-and-place tasks over the base model, highlighting that our method effectively
compensates for limited performance under scarce data.

SIMPLER-WidowX (Li et al., 2024). Table 2 shows the performance of MG-Select with π0-
FAST (Pertsch et al., 2025) on SIMPLER-WidowX. MG-Select clearly improves the base model
across all tasks, demonstrating the robustness of our approach in enhancing action precision. We
note that the base model performs relatively poorly on the “put eggplant in basket” task, since its
background differs substantially from the other three tasks, making it sensitive to model-specific
training configurations. For instance, SpatialVLA (Qu et al., 2025) achieves 100% success on the
eggplant task but performs poorly on the remaining tasks. Despite this challenge, MG-Select still
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Table 1: Performance comparison on RoboCasa (Nasiriany et al., 2024). We report the average
success rate (%) over 50 trials on 24 tasks, including 8 pick-and-place tasks, trained with varying
numbers of demonstrations. Results for our methods are averaged over 3 random seeds, while
baseline results are taken as reported in the original paper. † indicates reproduced performance, and ∗
indicates results with additional joint training before applying our test-time scaling framework.

Model
30 Demos 100 Demos 300 Demos

Pick and Place All Pick and Place All Pick and Place All

GR00T N1 0.4 17.4 2.2 32.1 22.6 49.6

π0-FAST† 5.3 30.9 17.0 40.2 43.2 61.2
+ MG-Select (Ours) 7.2 32.0 22.6 43.7 46.5 61.3
+ MG-Select* (Ours) 14.2 34.6 31.0 48.1 46.9 62.9

Table 2: Performance comparison on SIMPLER-WidowX (Li et al., 2024). We report the average
success rate (%) over 24 trials on 4 pick-and-place tasks. Results for our methods are averaged over
3 random seeds, while baseline results are taken as reported in SIMPLER paper (Li et al., 2024)
and original paper. † indicates reproduced performance, and ∗ indicates results with additional joint
training before applying our test-time scaling framework.

Model Spoon on Towel Carrot on Plate Stack Cubes Eggplant in Basket Average
RT-1-X 0.0 4.2 0.0 0.0 1.1
Octo 12.5 8.3 0.0 43.1 16.0
RoboVLM 29.2 25.0 12.5 58.3 31.3
SpatialVLA 16.7 25.0 29.2 100.0 42.7

π0-FAST† 66.7 70.8 41.7 8.3 46.9
+ MG-Select* (Ours) 69.4 75.0 43.1 13.9 50.3

provides consistent improvements on the eggplant task, indicating that our approach remains effective
even when the base model struggles.

LIBERO (Liu et al., 2023). Table 6 presents the performance of MG-Select with π0-FAST (Pertsch
et al., 2025) on LIBERO. In this benchmark, we further extend our evaluation by applying MG-Select
to OpenVLA (Kim et al., 2024), showing that our approach is compatible with different architectures.
The results show that MG-Select achieves superior average performance over both base models,
demonstrating its general effectiveness. Notably, LIBERO-Object and LIBERO-Long are the most
challenging task suites (lowest base model performance), and the gains observed on these benchmarks
highlight the effectiveness of our test-time scaling framework in improving precision. We provide
further details about OpenVLA implementation in Appendix A.

4.2 REAL WORLD EXPERIMENTS

To further validate our method’s generalization beyond simulation environments, we conduct real-
robot experiments on a 7-DoF Franka Research 3 robot arm. we fine-tunes the pre-trained π0-FAST
on the DROID dataset (Khazatsky et al., 2024) for evaluation.

4.2.1 SETUP

In-distribution tasks. We design in-distribution (ID) tasks to evaluate the effectiveness of our
method in enhancing base model performance under limited data, as task-specific real-world data is
costly to collect. The ID tasks are pick-and-place tasks defined by a start and goal location, focusing
on whether our method can generate high-precision actions for objects with different geometries, e.g.,
a teddy bear, a cube, a rigid cup, and a sponge. For training, we used 60 demonstrations per task,
corresponding to 15 demonstrations for each of the four objects.

Out-of-distribution tasks. We design out-of-distribution (OOD) tasks to evaluate whether our
method improves the zero-shot generalization of the policy. We construct 2 OOD tasks involving
unseen objects, e.g., a lighter cup and a roll of tape. These OOD tasks are pick-and-place tasks similar
to the ID tasks, but the policy must generalize to unseen real-world scenes and objects. The gains on
these tasks reflect the effectiveness of our method in improving policy robustness.

6
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𝜋!-FAST-DROID 𝜋!-FAST-DROID + MG-Select 

(a) Grasping a sponge from the box

𝜋!-FAST-DROID 𝜋!-FAST-DROID + MG-Select 

(b) Releasing a sponge to the bowl

Figure 2: Qualitative results of MG-Select in real-world pick-and-place tasks. We visualize one
of our real-world experiments in the “Box to Bowl” task: (a) grasping an object from the box and
(b) releasing it into the bowl. The rollout shows that MG-Select can generate high-precision actions
at critical moments for task success, whereas the base policy (π0-FAST-DROID) often struggles at
these steps.

Table 4: Real-world performance on in-distribution tasks with Franka Research 3. We evaluate
our method on seen tasks after multi-task training with 60 demonstrations per task. Each task is
defined by a start and goal location with 4 different target objects. We report the average success rate
(%) over 24 trials (4 objects × 6 trials) for each task. ∗ indicates results with additional joint training
before applying our test-time scaling framework.

Model
Pick and Place

Average
Box to Bowl Box to Plate Basket to Bowl Plate to Basket

π0-FAST-DROID 41.7 37.5 45.8 25.0 37.5
+ MG-Select* (Ours) 58.3 54.2 50.0 29.2 47.9

4.3 RESULTS

Table 3: Real-world performance on out-of-distribution
tasks with Franka Research 3. We report the average
success rate (%) over 16 trials for each task.

Model Pick up Tape Take Cup out of Bowl Average

π0-FAST-DROID 56.3 50.0 53.1
+ MG-Select (Ours) 68.8 75.0 71.9

In-distribution tasks. Table 4 presents
the performance of MG-Select on π0-
FAST-DROID (Pertsch et al., 2025) in
in-distribution tasks. MG-Select outper-
forms the base model across all tasks,
achieving a 28% relative gain. This
demonstrates that our test-time scaling
framework remains effective beyond simulation, enabling high-precision actions to complete pick-
and-place tasks with diverse objects.

Out-of-distribution tasks. Table 3 presents the performance of MG-Select on π0-FAST-DROID
in out-of-distribution tasks. The results demonstrate that MG-Select can be directly applied to a
generalizable policy, enhancing its robustness and precision on novel objects, with a 35% improve-
ment. Notably, MG-Select shows clear gains on objects that are more difficult to grasp and lift
than in-distribution ones, e.g., a roll of tape. We also provide qualitative results about real-world
experiments in Figure 2, which show that MG-Select improves precision of policy at critical moments
of pick-and-place tasks, i.e., grasping and releasing, where the base model often fails.

4.4 ABLATION STUDIES AND ANALYSES

We investigate the effectiveness of the proposed components and conduct additional analyses on
RoboCasa with 100 demonstrations.

Inference strategy. Table 5 (a) shows that low-temperature sampling (e.g., τ = 0.5) already improves
over greedy decoding on jointly trained model. Even simple Best-of-N strategies, such as selecting
actions by likelihood or KL divergence against a uniform reference distribution (Kang et al., 2025),

7
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M N PnP All

Greedy 1 28.5 42.7
Sampling 1 27.6 43.8
Uniform KL 4 30.0 46.5
Likelihood 4 30.5 46.8
MG-Select 4 31.0 48.1

(a) Inference strategy

N PnP All

1 27.6 43.8
2 30.0 46.2
4 31.0 48.1
8 30.0 46.9

16 30.7 46.1

(b) Number of candidates

Text State PnP All

✓ ✗ 31.0 48.1
✗ ✓ 30.1 46.7
✓ ✓ 29.7 46.3

(c) Condition-masking variants

Joint-IL MG-Select PnP All

✗ ✗ 17.0 40.2
✗ ✓ 22.6 43.7
✓ ✗ 28.5 42.7
✓ ✓ 31.0 48.1

(d) Effect of joint training

τ PnP All

0.5 27.5 43.9
1.0 28.8 44.3
2.0 25.4 43.8
4.0 31.0 48.1
8.0 30.0 45.5

(e) Regularization temperature

I PnP All

Sum 26.1 44.5
Avg 24.7 44.7
First 5 31.0 48.1
First 10 26.6 45.1

(f) Aggregation strategy

Table 5: MG-Select ablation experiments. We present a component-wise analysis of our proposed
test-time scaling framework on RoboCasa (Nasiriany et al., 2024) with 100 demonstrations. We
report the average success rate (%) over 50 trials and 3 random seeds. Temperature (τ ) for stochastic
sampling is fixed to 0.5 across all experiments. PnP denotes the 8 pick-and-place tasks, and All
denotes the full set of 24 tasks. Gray rows indicate the main results reported in Table 1.

yield further gains. Building on this, MG-Select achieves the strongest improvements, confirming
that condition-masking distributional confidence provides a more effective uncertainty signal.

Number of candidates. Table 5 (b) shows that performance improves as N increases from 1 to 4,
indicating that even a small number of samples is sufficient to generate diverse candidates and yield
meaningful precision gains.

Condition-masking variants. Table 5 (c) presents results of different masking variants after joint
training. Text-masking achieves the best performance, while other variants remain competitive and
outperform the uniform baseline (Kang et al., 2025).

Effect of joint training. Table 5 (d) shows the effect of combining our joint training strategy
with MG-Select. Joint training alone already outperforms vanilla imitation learning, likely because
condition-masking prevents the model from overfitting. Coupling it with MG-Select yields further
gains, confirming the effectiveness of the proposed strategy.

Figure 3: Inference latency comparison be-
tween vanilla MG-select and MG-select
with efficient deployment by single prefill.

Regularization temperature. We empirically find
that naively using the condition-masking distribu-
tion (τ = 1.0) as a reference does not work well,
as shown in Table 5 (e), compared to uniform-based
KL divergence (Kang et al., 2025). It is possibly due
to condition-masking distribution may be "peaked"
around certain action tokens, which undermines the
purpose of distributional confidence by failing to con-
sider the entire probability distribution. To address
this issue, we apply a high temperature (τ = 8.0) to
the condition-masking distribution, which regularizes
its concentration and results in superior performance.

Aggregation strategy. Table 5 (f) shows that the
aggregation strategy for action-level confidence is
crucial for selecting high-precision actions. Intriguingly, the naive summation of token-level con-
fidence performs the worst, while truncating to the first 5 tokens works best. We hypothesize that
the results may be correlated with the nature of the FAST tokenizer (Pertsch et al., 2025), i.e., each
action chunk is composed of a variable number of action tokens, which are aligned from low- to
high-frequency.
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Table 6: Performance comparison on LIBERO (Liu et al., 2023). We report the average success
rate (%) over 4 task suites, each consisting of 10 tasks with 50 trials per task. Results for our methods
are averaged over 3 random seeds. † indicates reproduced performance, and ∗ indicates results with
additional joint training before applying our test-time scaling framework.

Model LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long Average

OpenVLA† 85.2 63.7 75.5 52.5 69.2
+ MG-Select* (Ours) 81.7 72.5 73.6 55.4 70.8

π0-FAST† 97.4 95.4 95.6 79.6 92.0
+ MG-Select* (Ours) 97.2 98.0 94.5 82.7 93.1

Effect of single prefill deployment. Since MG-Select generates multiple candidate actions in
parallel, it inevitably introduces additional latency, as the prefill step must be repeated N times. This
issue is particularly critical for VLAs, which require prefilling at every step when generating action
chunks conditioned on the current observation. To address this, we design a single-prefill deployment
strategy that shares one prefill across all N candidates before decoding. This significantly reduces
the computational overhead, as shown in Figure 3: with N = 4, our deployment achieves a 45%
reduction in latency compared to vanilla MG-Select. As a result, the inference time of MG-Select
remains comparable to that of single-action inference across different candidate sizes.

5 RELATED WORK

Vision-Language-Action models. Developing generalist robot policies has long been a central
objective in robotics. Recently, Vision-Language-Action models (VLAs) have emerged as a prominent
approach, showing strong performance across diverse downstream tasks through large-scale pre-
training on robotic datasets (Driess et al., 2023; Zitkovich et al., 2023; Black et al., 2025; Pertsch
et al., 2025; Bjorck et al., 2025). Two common design paradigms have been explored: augmenting
a vision-language model (VLM) with a diffusion-based action expert (Black et al., 2025; Bjorck
et al., 2025), or converting the VLM into a VLA in an autoregressive manner (Kim et al., 2024;
Pertsch et al., 2025). However, despite these advances, they fundamentally rely on a single-inference
paradigm to generate actions, which increases the likelihood of errors in high-precision tasks.

Test-time computing. Applying additional computation at test time is widely recognized as an
effective approach to generate more accurate outputs for challenging tasks across domains. In large
language models (LLMs), numerous methods have demonstrated its effectiveness in improving
reasoning capabilities, e.g., mathematics, coding, and problem-solving (Chen et al., 2024; Brown
et al., 2024; Ehrlich et al., 2025; Song et al., 2024). In robotics, test-time scaling has recently
emerged as a promising paradigm, which involves repeated sampling combined with external value
functions. For example, Nakamoto et al. (2024) ranks candidate actions using a value function
trained via offline reinforcement learning (RL) on diverse robotic datasets, while Kwok et al. (2025)
introduces VLM-based action verifiers obtained through reward modeling with synthetic preference
datasets. Unlike these approaches, MG-Select requires no external modules. It performs Best-of-N
sampling using only the model’s intrinsic signals, i.e., condition-masking distributional confidence.
MG-Select consistently improves performance across diverse pick-and-place tasks. Moreover, it
offers an efficient framework by eliminating the need for external model loading or interaction, and
by introducing optimized parallel sampling that reduces deployment.

6 CONCLUSION

In this work, we propose MG-Select, a novel test-time scaling framework for Vision-Language-
Action models (VLAs). Our approach leverages condition-masking distributional confidence as
a self-generated signal for Best-of-N sampling, enabling precise action selection without external
verifiers. This framework mitigates the precision issues inherent to single-inference paradigms
and consistently improves policy performance across a wide range of simulation and real-world
benchmarks. In addition, we introduce a joint training strategy and optimized implementation to
further enhance both effectiveness and efficiency. We believe MG-Select contributes to establishing a
general test-time scaling paradigm for improving robustness and precision in VLAs.

9
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REPRODUCIBILITY STATEMENT

We provide implementation details about training and deployment in Appendix A.
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A IMPLEMENTATION DETAILS

A.1 TRAINING ON SIMULATION DATA

Imitation learning. We use two representative autoregressive VLA policies as base models:

• π0-FAST (Pertsch et al., 2025): It uses Paligemma-3B VLM (Beyer et al., 2024) as the backbone
and is trained on 2 NVIDIA A100 GPUs with full fine-tuning. We use a global batch size of
64 for RoboCasa (Nasiriany et al., 2024) and SIMPLER-WidowX (Li et al., 2024), and 32 for
LIBERO (Liu et al., 2023). Common training configurations are fixed with the AdamW optimizer
and a cosine decay schedule, with peak_lr = 2.5e-5 and decay_lr = 2.5e-6. Training steps
and action chunk length vary by dataset as shown in Table 7.

Table 7: Training setups of π0-FAST for different simulation benchmarks.

Configuration RoboCasa BridgeV2 LIBERO
30 demos 100 demos 300 demos

Training steps 3k 5k 20k 10k 10k
Action chunk length 16 16 16 5 10

• OpenVLA (Kim et al., 2024): It uses Prismatic-7B VLM (Karamcheti et al., 2024) as the backbone
and is trained on 2 NVIDIA A100 GPUs with LoRA fine-tuning (r = 32). We use a global batch
size of 32 for LIBERO (Liu et al., 2023), while other training configurations follow the official
OpenVLA implementation. Note that, consistent with the OpenVLA configuration, we train the
model separately on each LIBERO benchmark rather than performing multi-task fine-tuning.

Joint imitation learning. Joint imitation learning strictly follows the training configuration of
aforementioned imitation learning, differing only in the data configuration, as it incorporates condition-
dropout data. We consider 3 variants of dropout data, (1) text-masking, (2) state-masking, and (3)
both text&state-masking. For π0-FAST, we randomly dropout 10%/10%/10% (text / state/ both
text&state) in RoboCasa and LIBERO, and only dropout 10% of state data in SIMPLER-WidowX.
For OpenVLA, we apply a 10% dropout only on text condition since OpenVLA does not receive
state input.

A.2 TRAINING ON REAL-WORLD DATA

Imitation learning. We use π0-FAST-DROID (Pertsch et al., 2025) as the base model for real-world
experiments. It is fine-tuned with our manually collected data on 2 NVIDIA A100 GPUs with full
fine-tuning and a global batch size of 64. Training follows the imitation learning configuration
described in Appendix A.1, except that peak_lr and decay_lr are reduced to 1e-5, and 1e-6,
respectively.

Joint imitation learning. We apply random dropout of 10%/10%/10% (text / state / both text&state)
and fine-tune with manually collected data.

A.3 DEPLOYMENT

MG-Select’s main hyperparameters are: (1) the sampling temperature τ , (2) the number of candidate
actions N , (3) the variant of condition-masking, and (4) the regularization temperature for the
condition-masking distribution. We search for the optimal configuration on each dataset by sweeping
τ ∈ {0.1, 0.3, 0.5, 0.7, 1.0}, N ∈ {4, 8}, variants ∈ {text, state, text&state}, and regularization
temperature ∈ {4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0}, and report the best result for each policy.

For aggregating token-level confidence scores, we use the sum of the first 5 tokens by default in
π0-FAST. In contrast, for OpenVLA, we use the average score across the entire token sequence,
since its output length is fixed to the action dimension of the training data. Additionally, only the
text-masking variant is applied in OpenVLA, as it does not take state input.
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B DETAIL RESULTS ON SIMULATION EXPERIMENTS

Table 8: Performance comparison on all 24 RoboCasa tasks (Nasiriany et al., 2024). We report
the average success rate (%) over 50 trials, trained with varying numbers of demonstrations. For
clarity, the 24 tasks are grouped into three categories: pick-and-place, open-and-close, and others.
Results for our methods are averaged over 3 random seeds, while baseline results are taken as reported
in the original paper (Bjorck et al., 2025). † indicates reproduced performance, and ∗ indicates results
with additional joint training before applying our test-time scaling framework.

Model
30 Demos 100 Demos 300 Demos

Pick and Place Open and Close Others All Pick and Place Open and Close Others All Pick and Place Open and Close Others All

GR00T N1 0.4 26.0 26.0 17.4 2.2 52.8 43.5 32.1 22.6 68.3 60.0 49.6

π0-FAST† 5.3 51.3 39.2 30.9 17.0 60.7 46.6 40.2 43.2 74.7 67.4 61.2
+ MG-Select (Ours) 7.2 53.7 38.9 32.0 22.6 63.2 48.9 43.7 46.5 76.1 64.3 61.3
+ MG-Select* (Ours) 14.2 53.2 39.7 34.6 31.0 67.3 50.1 48.1 46.9 81.0 64.9 62.9

Table 9: Performance comparison on SIMPLER-WidowX (Li et al., 2024). We report both task
success rate and grasp success rate (%) over 24 trials on 4 pick-and-place tasks. Results for our
methods are averaged over 3 random seeds, while baseline results are taken from the SIMPLER paper
(Li et al., 2024) and the respective original papers (Liu et al., 2025; Qu et al., 2025). † indicates
reproduced performance, and ∗ indicates results with additional joint training before applying our
test-time scaling framework.

Model Spoon on Towel Carrot on Plate Stack Cubes Eggplant in Basket Average
Grasp Success Grasp Success Grasp Success Grasp Success Grasp Success

RT-1-X 16.7 0.0 20.8 4.2 8.3 0.0 0.0 0.0 11.5 1.1
Octo 34.7 12.5 52.8 8.3 31.9 0.0 66.7 43.1 46.5 16.0
RoboVLM 70.8 45.8 33.3 20.8 54.2 4.2 91.7 79.2 62.5 37.5
SpatialVLA 20.8 16.7 29.2 25.0 62.5 29.2 100.0 100.0 53.1 42.7

π0-FAST† 83.3 66.7 83.3 70.8 91.7 41.7 8.3 8.3 66.7 46.9
+ MG-Select* (Ours) 87.5 69.4 83.3 75.0 79.2 43.1 26.4 13.9 69.1 50.3

C DETAIL RESULTS ON EFFICIENT DEPLOYMENT

Table 10: Execution latency comparison of vanilla MG-Select and MG-Select with Single Prefill.
We report the average execution latency per episode of vanilla MG-Select and MG-Select with single
prefill. Results were measured across a varying number of N candidates from 2 to 16.

N MG-Select (s) MG-Select + Single Prefill (s)
1 20.2 20.2
2 30.4 22.7
4 43.4 23.7
8 62.0 24.3

16 76.0 30.4

D LLM USAGE DISCLOSURE

We acknowledge the use of large language models (LLMs) in preparing this manuscript. LLMs were
employed solely to refine writing quality, including grammar correction, vocabulary suggestions, and
typographical checks. All substantive ideas, analyses, and conclusions in this paper are entirely the
work of the authors.
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