TAPVid-3D:
A Benchmark for Tracking Any Point in 3D

Skanda Koppula*!2, Ignacio Rocco*!, Yi Yang!, Joe Heyward',
Jodo Carreiral, Andrew Zisserman!?, Gabriel Brostow?, Carl Doersch!
'Google DeepMind ~ *University College London  *University of Oxford

Abstract

[ We introduce a new benchmark, TAPVid-3D, for evaluating the task of long-range
Tracking Any Point in 3D (TAP-3D). While point tracking in two dimensions
(TAP-2D) has many benchmarks measuring performance on real-world videos,
such as TAPVid-DAVIS, three-dimensional point tracking has none. To this end,
leveraging existing footage, we build a new benchmark for 3D point tracking fea-
turing 4,000+ real-world videos, composed of three different data sources spanning
a variety of object types, motion patterns, and indoor and outdoor environments.
To measure performance on the TAP-3D task, we formulate a collection of metrics
that extend the Jaccard-based metric used in TAP-2D to handle the complexities of
ambiguous depth scales across models, occlusions, and multi-track spatio-temporal
smoothness. We manually verify a large sample of trajectories to ensure correct
video annotations, and assess the current state of the TAP-3D task by constructing
competitive baselines using existing tracking models. We anticipate this benchmark
will serve as a guidepost to improve our ability to understand precise 3D motion
and surface deformation from monocular video.

1 Introduction

For robots, humans, and other agents to effectively interact with the physical 3D world, it is necessary
to understand a scene’s structure and dynamics. This is a key ingredient to any general embodied
intelligence: the ability to learn a world model to understand and predict the structure and motion of
arbitrary scenes. It is attractive to leverage the vast amounts of monocular video data that is available
cheaply, and use such signals to understand the geometry and 3D motion in real-world footage. But
how well can current perception algorithms actually do this?

The field has seen many efforts to measure 3D and motion understanding from videos, each con-
tributing a part of the overall goal. For example, monocular depth estimation is a widely recognized
task [8} 136} 161]]. However, success in depth estimation alone doesn’t reveal whether the model
understands how surfaces move from one frame to the next, and may not respect temporal continuity.
For instance, a basketball spinning on its axis is often not visible in a sequence of depth maps.
On the other end of the generality spectrum, 3D pose tracking, e.g. for rigid objects [15} 134] and
people [[13| |48]], evaluates precise motion, but requires a known 3D model of each object, with
articulations. Building parametric models and pose estimation methods for all animal classes is
infeasible, much less for all the objects that a robot might encounter in, for example, an unseen, busy
construction site.

An alternative and more general approach for 3D understanding observes that the world consists of
particles, each of which individually follows a 3D trajectory through space. Measuring the motion of
these points provides a way to measure 3D motion without requiring any 3D shapes to be known
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a priori. To this end, in TAPVid-3D, we focus on providing the community with a benchmark
consisting of real world videos and three-dimensional point tracking annotations, spanning a wide
variety of objects, scenes, and motion patterns.

Prior work on 2D understanding has shown that this kind of point-wise motion can be extremely
valuable: both optical flow and the longer term two-dimensional Tracking-Any-Point (TAP) tasks have
been applied to video editing [64]], controllable video generation [57]], robotic manipulation [53} 58],
and more [9} [18]]. TAP is an occlusion-aware, temporal extension of optical flow, which itself has
a 3D extension called scene flow [37, 139, |40]. While useful, scene flow suffers from the same
challenges as optical flow, namely, that it captures instantaneous motion and does not evaluate correct,
occlusion-aware association of pixels over long sequences. A new three-dimensional TAP benchmark
would provide a way to measure progress on many of these tasks: our TAPVid-3D benchmark targets
evaluating general motion understanding, for models performing both dense and sparse particle
tracking, in two and three dimensions.

Unfortunately, all the currently-used evaluations for TAP on real-world videos assess only 2D
tracking ability (e.g. the TAP-Vid suite [10], BADJA [3], CroHD [51], and JHMDB [19]]), and
cannot evaluate the performance of 3D point tracking due to lack of access to the ground-truth
metric position trajectories. While evaluations based on synthetic environments, like Kubric [14]],
RGB-Stacking [[10], and Point Odyssey [68], could potentially provide 3D point tracking annotations,
these introduce a significant domain gap with real-world scenes and are therefore less representative
of model performance on real-world tasks.

Many applications stand to benefit from direct evaluation of three-dimensional point tracking ca-
pabilities and improvements to such models. For example, robotic manipulation tasks are likely to
be easier with accurate 3D motion estimates, to understand the changing relative world position of
the gripper, any objects, and the background. Video generation models would be more useful if
creators were able to condition on exact motion tracks describing the 3D movement of both objects
and the camera, as a director would do on a stage. Standard scene understanding tasks like velocity
estimation, motion prediction, and object parts segmentation are simpler given the 3D motion tracks
of individual points. Many visual odometry, mapping, and structure from motion pipelines rely on
accurate 3D correspondences; with the ability to track 3D point correspondences from any pixel, such
pipelines could be made more robust and accurate, even with many moving objects. Overall, the task
of three dimensional point tracking provides a strict superset of information as compared to its 2D
counterpart, is likely to be more useful in downstream applications, and provides a greater test of
physical world motion understanding.

To this end, we introduce TAPVid-3D: a real-world benchmark for evaluating the Tracking Any Point
in 3D (TAP-3D) task. The benchmark contributes: (1) a unification of three distinct real-world video
data sources, with pipelines to generate, standardize, and validate consistent ground-truth (x, y, z)
3D trajectories and occlusion information, (2) formalization of the TAP-3D task, with new metrics
to measure accuracy of 3D track estimation, and (3) an assessment of the current state of TAP-3D,
formed from the first real-world video evaluations of the nascent set of early 3D TAP models.

2 Related work

Tracking Any Point. In recent years, long-range tracking of local image points has been formalized
as the Tracking Any Point task (TAP) and evaluated using the, now standard, TAPVid benchmark [[10],
among others. Success on TAP consists of tracking the 2D trajectory of any given (z,y) query point,
defined at a particular frame ¢, throughout the rest of a given video. By definition, the query point
is considered visible at the query frame, and associated to the material point of the scene which is
observed at (x,y,t). However, this material point may become occluded or go out of the image
boundaries. To handle this, TAP models also must predict a binary visibility flag v for each timestamp
of the video. The tracked (z,y) positions and visibility estimates are scored jointly using an all-
encompassing average Jaccard metric. Most current TAP models [[10-12} 17} 22] are limited to
tracking in 2D pixel space. Recently, some works have started exploring the extension of the TAP
problem to 3D (TAP-3D) [56,60]]. However, most TAP benchmarks containing real-world videos,
such as TAPVid-DAVIS [10]], Perception Test [42]], CroHD [51] and BADJA [3]], don’t have 3D
annotations, and therefore evaluations are still performed on the 2D tracking task. Concurrent to our
work, Wang et al. [56] introduced both a synthetic (LSFOdyssey) and a real benchmark (LSFDriving)



for evaluating TAP-3D. However, their real benchmark is limited to the driving domain and only
contains 180 test clips with 40 frames each. Our proposed TAPVid-3D benchmark is substantially
larger and more diverse, containing 4000+ clips with durations between 25 and 300 frames.

Scene flow estimation. The scene flow estimation problem, introduced by Vedula et al. [54]], seeks
to obtain a dense, instantaneous, 3D motion field of a 3D scene, analogously to the way optical flow
estimates a dense 2D motion field across consecutive frame pairs of a 2D video. The TAP-3D task is
related to the scene flow problem in a similar way in which the TAP task is related to the optical flow
problem. While scene flow seeks to obtain dense instantaneous motion estimation, TAP-3D seeks to
obtain longer-range tracking, spanning tens or hundreds of frames. Furthermore, TAP-3D does not
seek to produce dense fields of tracks, but is rather interested in tracking a sparse set of query points,
which is more computationally tractable. From work in TAP-2D, we have observed that having
motion representations with longer temporal context is useful for downstream tasks such as robotic
manipulation, while having sparser spatial coverage is sufficient for many tracking applications.

Pose estimation. Closely related to point tracking is pose estimation and keypoint tracking. Many
benchmarks have been proposed for 2D and 3D pose estimation [16} 27, 55/166]. 3D pose estimation
tasks and benchmarks largely focus on specific categories of moving objects, and for objects that
are articulated: e.g. humans [20, [55]], hands [52]], animals [38, 65], and even jointed furniture [32].
For general motion and scene understanding, we aim to learn motion estimation across any object or
scene pixel, expanding the generality of the task.

Static scene reconstruction. Static scene reconstruction, a fundamental problem in computer
vision, has been advanced through techniques like Structure-from-Motion (SfM) and monocular
depth estimation. Significant contributions include COLMAP [44] for state-of-the-art reconstructions
and MVSNet [63], which enhances multi-view stereo depth estimation with deep learning. These
studies collectively advance robust and precise static scene reconstruction. Evaluation of the local
features and depth are crucial for static scene reconstruction methods. [45] provided a comparative
evaluation of hand-crafted and learned features, while MegaDepth [28] improved single-view depth
prediction using large scale multi-view Internet photo collections. Despite significant progress,
static reconstruction struggles with dynamic environments, highlighting the need for dynamic scene
methods.

Dynamic scene reconstruction. 3D reconstruction of dynamic scenes and objects is a widely
studied problem in computer vision. Over the years, several methods have proposed solutions to
this problem, starting with Non-rigid Structure-from-Motion methods (NRSfM) [2} 16]]. While these
methods have shown some success modelling simple motions like facial expressions and skeletal
motions, they fail to generalize to arbitrary motions. More recently, deep-learning based methods
have been used to perform 3D reconstruction of dynamic scenes. One line of works exploit Monocular
Depth Estimation models [43] and performs test-time optimization on each given video to obtain
smoother reconstructions, under the assumption that the frame rate of the camera is high with respect
to the speed of the depicted object (quasi-static scene assumption) [26 36/ 167]]. While these methods
are more general than the classic NRSfM counterparts, they still require costly test-time optimization
and fail to model rapid motions. Other lines of work attempt to fit a neural-scene representation to
each video, such as neural-radiance fields [29, 30] or 3D Gaussian Splatting [62]. However, these
methods require a costly per-video optimization, and typically make smoothness and local-rigidity
assumptions about the motion of the points in the scene. We believe the development of TAP-3D
methods should significantly help for the problem of dynamic scene reconstruction, as these models
can run in a feed-forward manner, without requiring test-time optimization, and don’t need any
explicit motion prior assumptions as they can learn these from data.

Table 2] summarizes the focus areas of measurement for common scene understanding benchmarks.
On the bottom row is the proposed TAP-3D task, and corresponding benchmark, TAPVid-3D, which
brings to the table a more complete test of dynamic scene understanding in one simple evaluation.

3 TAPVid-3D

We build a real-world benchmark for evaluating Tracking Any Point in 3D (TAP-3D) models. To do
this, we leveraged three publicly available datasets: (i) Aria Digital Twins [41]], (ii) DriveTrack [3}50]]



Long Term Pixel Level Pixel Level Non-rigid No Prior

Benchmark Type Continuity D Occlusion Motion Surfaces 3D Model
Monodepth X v X X v v
2D Point Tracking (TAP) v X v v v v
Scene flow X 4 X v v v
3D Pose Tracking v v X 4 X X
3D Object Box Tracking 4 4 X X X v
3D Point Tracking (TAP-3D) v v v v v v

Table 1: The proposed TAPVid-3D benchmark provides a unique set of characteristics, not covered
in previous tasks or benchmarks. It extends the temporal continuity, occlusion modeling, and motion
estimation capabilities of TAP benchmarks into 3D. We give examples of each type of benchmark in
each row.

Long Term Pixel Level Pixel Level Non-rigid No Prior

Benchmark Type Continuity Occlusion Motion Surfaces 3D Model
Monodepth [7]28!49] X v X X v v
2D Point Tracking (TAP) [10] v X v v v v
Scene flow [24])[59] X v X v v v
3D Pose Tracking [33/155] v v X v X X
3D Object Box Tracking [31/50] v v X X X v
3D Point Tracking (TAP-3D) v v v v v v

Table 2: The proposed TAPVid-3D benchmark provides a unique set of characteristics, not covered
in previous tasks or benchmarks. It extends the temporal continuity, occlusion modeling, and motion
estimation capabilities of TAP benchmarks into 3D. We give examples of each type of benchmark in
each row.

and (iii) Panoptic Studio [21]. These data sources span different application domains, environments,
and video characteristics, deriving ground truth tracking trajectories from different sensor types. For
instance, Aria Digital Twins is a dataset of egocentric video, and is more close to bimanual robotic
manipulation problems, where the camera is robot mounted and sees the actions from a first person
view. DriveTrack features footage captured from a Waymo car navigating outdoor scenes, akin to
tasks in robotic navigation and outdoor, rigid-body scene understanding tasks. Finally, Panoptic
Studio captures third-person views of people performing diverse actions within an instrumented
dome. It presents complex human movement which aligns more closely with NRSfM-adjacent tasks.
We believe that, combined, these data sources present a diverse and comprehensive benchmark of
TAP-3D capabilities for many potential downstream tasks. We describe our pipeline to extract ground
truth metric 3D point trajectories from each source in the next sections, with samples in Figure

Table E] shows the summary statistics across the entire dataset, and for the dataset subdivisions
corresponding to each constituent data source. As there are comparatively a large number of videos
(for reference, the commonly used TAPVid-DAVIS in TAP-2D has 30 videos, whereas TAPVid-3D
has two orders of magnitude more), we release two splits: aminival split, with 50 videos from each
data source, and a full_test split, containing all videos in the benchmark, without the minival
videos. The minival is intentionally lightweight, and likely most useful for online evaluation during
training.

Dataset split #clips (minival) #trajs per clip #frames per clip #videos #scenes resolution fps

Aria Digital Twins 1956 (50) 1024 300 215 2 512 x 512 30

DriveTrack 2457 (50) 256 25 — 300 2457 252 1920 x 1280 10

Panoptic Studio 156 (50) 50 150 156 1 640 x 360 30
TAPVid-3D 4569 (150) 50 — 1024 25 — 300 2828 255 Multiple  10/30

Table 3: Overview statistics of the TAPVid-3D benchmark dataset, for all three constituent splits and
in total. Clips in the benchmark are temporally sampled from their original video.

4



Figure 1: Random samples from TAPVid-3D: on the top row, we visualize the point trajectories
projected into the 2D video frame; on the bottom row, we visualize the metric 3D point trajectories.
From left to right, we show one example from each constituent data source: ADT, DriveTrack and
Panoptic Studio.

3.1 Aria Digital Twins

This split employs real videos captured with the Aria glasses [1] inside different recording studios,
which mimic household environments. Accurate digital replicas of these studios, created in 3D
modeling software, are used to obtain pseudo-ground truth annotations of the original footage. This
includes annotations such as segmentation masks, 3D object bounding boxes and depth maps. We
leverage these annotations to extract 3D trajectories from given 3D query points. In particular, given
avideo V = {I;}4=1,r with T frames and W x H spatial resolution, with corresponding object
segmentation masks {S;} € Z" > and depth maps {D;} C RW>*#  extrinsic world-to-camera
pose§]{(P%,,):} C R3*4, camera intrinsics K € R**%, and a query point g = (x4, yq, tq), We first
extract the query point’s 3D position Qcanﬂ in the camera coordinate frame, with

(Qcam)tq :K_l(xqayml)T 'th(xibyq)‘ (1)

Additionally, we obtain the object ID of the query point from the segmentation mask ¢;q =

St,(Tq,Yq), and use it to retrieve the 3D object pose of the query object (Py3),, which con-
verts points from world coordinate frame to the object coordinate frame. This allows us to compute

the query point position in the object’s frame of reference as
QObj = ( ;l;j)tq (stam)tq (Qcam)tq . (2)

In this way, we fix the query point to the corresponding object, and then obtain its track across the
whole video by leveraging the object’s pose annotation. For any timestamp ¢, the position of the

query point can be then obtained by

(Qcam)t = (P;Zm)t(Pib])thbj' (3)
To compute the visibility v of the query point at any time, we first employ aHpretrained semantic
segmentation model to obtain the semantic masks of the operator’s hands { H;}, as these are not

modelled in the digital replica. Then, we compute the visibility v by verifying that the query point’s
depth is close to the observed depth, and it does not lie on the hands segmentation mask H, so

“We use the notation P; to represent the SE(3) transform from coordinate frame a to frame b.
"We use the notation Qcq:m and Qop; to denote the position of the 3D point @Q in the camera and object
coordinate frames, respectively.



ve = L(|[(Z(Qeam) — De(u, v)| < 0) - (1 = Hy(u,v)), )

where (u,v) = Hg((Qcam):) is the pr(}](ectlon of the query point (Qcqm )+ to the image plane
accordmg to the given camera intrinsics and Z((x,y, z)) = z is the function that extracts the

z-component of a 3D point. This approach allows us to compute the 3D trajectory {(Qcqm )¢} and
visibility flag {v:} of the query point across the whole video.

3.2 DriveTrack

The DriveTrack split is based on videos from the Waymo Open dataset [50]], and the 2D point
trajectory pipeline used in DriveTrack [3]]. In particular, each frame I; in a video sequence V' has
a corresponding, time-synchronized point cloud {C;} from the Waymo car’s LIDAR. The subset
of points that correspond to a randomly selected, single, tracked vehicle (Qcqm )¢, are subselected
from the entire point cloud (Qcam )¢, C Ct, at a certain sampling time ¢4 using a manually-annotated
3D bounding box around the chosen object. These object-specific points are then tracked across the
whole video using: (i) a vehicle rigidity assumption, and, (ii) the pose and position of the object’s
annotated 3D bounding box through the entire video sequence. Specifically, the tracked points
in object coordinate frame @),; are first computed using (2), and then the trajectories in camera
coordinate frame {(Qcam )¢} are obtained using (3).

Visibility flag is estimated by first computing the dense depth map D, of the corresponding camera
video frames through interpolation of sparse LIDAR values as in [3]]. This is compared to the point’s
depth computed from the 3D point trajectory given by (Qcam ), as in the first term of @). If the point
depth (distance from the camera center to the query point) is greater than the depth provided by the
depth map (with a 5% relative threshold margin), it is marked as not visible.

Finally, to determine the 2D query points ¢ = (x4, Y4, t) We sample t, uniformly among the visible
timestamps v;, and then obtain (24, y,) = Ik ((Qcam)t, )-

3.3 Panoptic Studio

The original Panoptic Studio dataset [21]] consists in video sequences captured inside a recording
dome using stationary cameras, and depicting different actors performing various actions such as
passing a ball or swinging a tennis racket, featuring complex non-rigid motions. To obtain 3D
trajectories, we leverage the pretrained dynamic 3D reconstructions from Luiten et al. [35]. These
have been obtained by first performing a rigid 3D reconstruction through 3D Gaussian Splatting 23],
fitting a set of 3D Gaussians { (i, X;)¢, }i=1,...,nv to the first timestamp t, of each sequence using
the multiple cameras available in the dome. Then, these Gaussians are displaced and rotated in a
as-rigid-as-possible manner to model the motion occurring in the subsequent frames of the video. For
more details, please refer to [35]. Using these pretrained splatting models, we render pseudo-ground-
truth depth maps {D, } for each sequence. Then, given an query point ¢ = (x4, yq, tq), We unproject
the point to 3D following (T)), obtaining (Qcam )¢, and retrieve the index i* of the closest Gaussian

center at that time using the poses {(P%,,,):}, so that i* = _arlgmigﬂ (Qcam)t, — (Plom)e, (i), ||2-
1=1,...

Note that due to the distance between (Qcam)t, and (P, )¢, (1i- )z, their projections onto the
image plane will not match exactly. To account for this dlfference, we adjust the query point’s 2D
position as (z4,y,) = Hx (P2, )t, (1 )t,- Then, the query point’s 3D track come by following the

cam

motion of the ¢* Gaussian center, s0 (Qcam )t = (P2, )t (fi* ).

Visibility {v; } is estimated as in (@) (omitting the second term), by comparing the depth of our 3D
query point with the observed depth from D;. We only track points across the foreground deforming
characters, as tracking background points is trivial given that the cameras in this dataset are stationary.

3.4 Data Cleanup and Validation

While the aforementioned procedures generally produce high quality trajectories, small amounts
of noise from the underlying dataset sources can cause issues in a small fraction of sequences.
These minor inaccuracies, for example, can be caused by small misalignement between Aria Digital
Twins synthetic annotations and the real world video, LIDAR sensor noise, insufficiently constrained
Gaussian splats, or numerical error. We minimized these errors through automated methods, and then
manually checked a sampling of the videos to ensure accuracy.



Firstly, since trajectories are descriptors of surface motion, their motion should be localized to their
associated object. We use instance segmentation models to generate object masks for each frame [25],
filtering out errant trajectories that exceed these boundaries when not occluded. In DriveTrack
specifically, the tracked bounding box is an approximation to the true object mesh, but such errors are
fixed with tight segmentation masks (trimming 2-3% of initial trajectories).

Secondly, we observed that some trajectories have a ‘flickering’ visibility flag. This is not unique
to TAPVid-3D, as we notice this in the widely used Kubric [[14] and DriveTrack [3]. However, to
mitigate this in our dataset, we oversample trajectories in the annotation generation pipeline, and
filter trajectories whose visibility state changes more times than 10% of the total number of video
frames. More details can be found in the supplementary.

3.5 Metrics

To accompany the TAPVid-3D dataset, we adopt and extend the metrics used in TAP-2D [10] to the
3D tracking domain. These metrics measure the quality of the predicted 3D point trajectories (APD),
the ability to predict point visibility (OA), or both simultaneously (AJ).

The APD (< 47,,) metric measures the average percent of points within § error. If Pti is the ¢’th
point prediction at time ¢, P/ is the corresponding ground truth 3D point, and v} is the ground-truth

point visibility flag, then:

1 i pi i i
APD3D£vgvt'1(HPt — P/|| < d3p(F})), o)
where 1(-) is the indicator function, || - || is the Buclidean norm, V"= 3, , v{ is the total number of

visibles, and 03 (P ) is the threshold value.

The value of this threshold is relative to ground-truth depth; and is defined by unprojecting a pixel
threshold d2p C {1,2,4,8,16} to 3D space using the camera intrinsic parameters: d3p(P}) =
Z(P})-62p/f, where f is the camera focal length. We argue that points that are closer to the camera
are of higher importance than those that are far away, which is enforced by the definition of J3 Dﬂ
Note that by using this definition, the APD3p metric defined in (3) is numerically equivalent to the

APD;p metric from [10]] when the point estimations Pj all have correct depths.

In addition, it is important to distinguish between occluded and visible points, because downstream
algorithms often want to rely exclusively on predictions which are based on visual evidence, rather
than on the guesses that might be very wrong. To this end, we adopt the occlusion accuracy metric
(OA) from [10], which computes the fraction of points on each trajectory where 9! = v{, where o} is
the model’s (binary) visibility prediction.

Finally, we define 3D-AJ, 3D Average Jaccard, following TAP, which combines OA and APD3p.
The AJ metric calculates the number of true positives (number of points within the d3p threshold,
predicted correctly to be visible), divided by the sum of true positives and false positives (predicted
visible, but are occluded or farther than the threshold) and false negatives (visible points, predicted
occluded or predicted to exceed the threshold). Mathematically, it is defined as:

Zi,t Ut Uy O

Zi,t vf + Zi,t((l — vf) @%) + Zi,t (Uzlt a7 (1 - 0‘%))) ’

where o = 1(|| P} — P}|| < d3p(P})) indicates whether the point prediction is below the distance
threshold.

Alsp = (6)

Note the relationship between this and prior metrics: if the depth estimates for a given point are
perfect, then this metric reduces to 2D-AlJ, as there will be no depth errors. It is also related to a
common Monodepth’s metric § < 1.25%, which also places a hard threshold on the relative depth of
the estimated point w.r.t. the ground truth; if the video is a single frame (occlusion-free) and the query
points are dense, then there should be no 2D errors, and our metric will behave like a Monodepth
metric. For general sequences, however, the algorithm must output correct tracking and correct
depth—i.e., a full 3D trajectory—in order to be considered correct by our metric.

*A similar depth-adaptive threshold approach is used in Monodepth literature [43]).
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Figure 2: [llustrative TAP-3D results of BootsTAPIR+ZoeDepth. We compare the ground-truth 2D
and 3D tracks (blue solid) with the predicted tracks (red dotted). (a) Accurate tracking. (b) Noisy
depth estimations result in a noisy 3D track. (c) Inconsistent depth scales across time (scale drift). (d)
Inconsistent depth scales across space don’t allow a single global scale factor to properly fit all tracks.

Finally, one additional complication is scale ambiguiry. As in monocular depth literature [43]], we
globally re-scale predictions to match ground truth, before computing the metrics. We do this by

multiplying predictions P by the median of the depth ratios || P}|| /|| P¢|| over all points and frames,
which we call global median rescaling. Note, however, that some algorithms may be more adept at
estimating the relative depth of individual points: algorithms trained in simulation, for instance, may
be able to estimate the depth change for a single point just by analyzing the frequencies. With a slight
change to the rescaling, we can accomodate such methods even when they don’t produce consistent
scale between points. Therefore, we define the per-trajectory rescaling, which rescales each track

P? separately multiplying by ||Pfq Il/ ||15,fq ||, where t, is the query timestamp. Finally, we explore a
hybrid approach—which considers scaling in local neighborhoods to better account for object-object
interactions—in supplementary.

4 Baselines on TAPVid-3D

We construct our main baselines by a combination of state-of-art 2D point trackers and monocular
depth estimators. In particular, we use: (a) for 2D tracking, several state-of-the-art models such
as CoTracker [22], BootsTAPIR model [12], and TAPIR [11]]; and (b) for depth regression, both
the monocular depth estimation model ZoeDepth [4] and the SfM pipeline COLMAP [46,47]]. To
convert the frame pixel space predictions into metric x, y-position coordinates, we unproject using
the camera intrinsics and the z-estimate provided by ZoeDepth. In the case of COLMAP, we import
the 2D trajectories produced by the TAP methods before running the SfM reconstruction pipeline.
Results for the corresponding baseline methods are shown in Table[d] We provide inference settings
and details on used compute resources in the supplemental material.

In the lower half of Table[d] we provide results on the minival split, including the one very recently
released work [60]] that targets the nascent TAP-3D task. As SpatialTracker [60] was released three
days before writing and submission of the current manuscript, we were only able to evaluate this
method on minival for the moment. In pursuit of methods that jointly learn 2D and depth tracking,
we additionally trained a 3D version of TAPIR (TAPIR-3D), trained only on the synthetic Kubric
dataset [14]]. TAPIR-3D predicts x, y, z jointly per trajectory. Using an optimal per-trajectory depth
scaling, TAPIR3D achieves an 3D-AJ of 9.4 AJ, slightly trailing our TAPIR + ZoeDepth baseline
when using. More details are in the supplemental.

Comparing Tables[5|and ] we find that the 3D tracking performance of our baselines are significantly
lower compared to their effective 2D tracking abilities. We show examples in Figure 2] illustrating
common failure modes regressing 3D trajectories, noting that while the 2D trajectories look accurate,
their understanding of total scene geometry and correct 3D motion is poor.



Aria DriveTrack PStudio Average
Baseline 3D-AJ1T APDT OA 1 3D-AJ1T APD1 OA 1 3D-AJt APD1 OA T 3D-AJ1 APDT OA ¢

Static Baseline 4.9 10.2 554 3.9 6.5 808 5.9 11.5 758 4.9 94 707

TAPIR + COLMAP 7.1 11.9 726 8.9 147 804 6.1 10.7 752 74 124 76.1

CoTracker + COLMAP 8.0 123 786 11.7 191 81.7 8.1 135 772 9.3 15.0 79.1
BootsTAPIR + COLMAP 9.1 145 786 11.8 186 838 6.9 11.6 81.8 9.3 149 81.4
TAPIR + ZoeDepth 9.0 143 797 5.2 8.8 816 10.7 182 787 83 13.8  80.0

CoTracker + ZoeDepth  10.0 159 87.8 5.0 91 826 112 194 80.0 87 14.8 834
BootsTAPIR + ZoeDepth 9.9 16.3 86.5 5.4 92 853 11.3 190 827 88 14.8 84.8
BootsTAPIR + DepthAnythingV2 3.7 69 865 74 124 854 5.6 10.3 82.7 55 9.9 849
CoTracker + DepthAnythingV2 3.6 6.6 87.8 7.1 12.6  82.6 5.6 10.5 80.0 5.4 9.9 835
TAPIR + DepthAnythingV2 3.3 61 796 6.9 115 817 5.3 9.8 787 5.1 9.1 80.0
TAPIR-3D 2.5 48 860 3.2 59 833 3.6 7.0 789 3.1 59 828

SpatialTracker [60] 9.9 16.1 89.0 6.2 11.1  83.7 109 192 786 9.0 15.5 83.7

BootsTAPIR + COLMAP* 7.3 11.5  76.3 9.3 151 83.5 6.2 10.6  78.7 7.6 124 795
BootsTAPIR + ZoeDepth* 8.6 14.5 86.9 5.1 8.7 835 102 17.7 82.0 8.0 13.6 84.1
SpatialTracker [60]* 9.2 15.1 899 5.8 10.2  82.0 9.8 17.7 784 8.3 14.3 83.4

Table 4: We compare the performance of several 2D-TAP models [L1, 12} 22] combined with
ZoeDepth [4], Depth Anything V2 [61], and COLMAP [46]] on the TAPVid-3D benchmark. We
report the proposed 3D-AJ as well as the APD and OA metrics. Rows marked with * indicate
evaluation on the minival split. Occlusion Accuracy (OA) measures accuracy of point visibility
classification, Average Position Error within Delta measures the point position error, and the headline
metric, 3D Average Jaccard (3D-AJ), combines these two as a measure of overall performance on the
TAP-3D task.

Aria DriveTrack  PStudio Total
2D-AJ 1 2D-AJ 1 2D-AJ1T 2D-AJT APD1T OA?
TAPIR [11] 48.6 57.2 48.7 53.2 67.4 80.5
CoTracker [22] 54.2 59.8 51.0 57.2 74.2 84.5
BootsTAPIR [12] 54.7 62.9 52.4 59.1 74.7 85.6

Table 5: Evaluating the 2D point tracking performance of our baseline models on TAPVid-3D data,
by projecting the ground truth 3D trajectories onto the 2D frame.

Limitations and Responsible Usage. The three data sources in our benchmark do not cover all
possible domains where users may want to infer dynamics, and automatic annotations may be
imperfect, e.g. where the underlying sensor readings have noise (despite our filtering). Furthermore,
we inherit some limitations from TAP and monocular depth: we only evaluate tracking for solid,
opaque objects. From an ethical perspective, Aria and Panoptic were collected in lab settings
with consenting participants, while DriveTrack’s Waymo videos come from public roads in 6 US
cities. This paper may inherit biases from these datasets, e.g., participants are lab researchers or the
populations of those 6 US cities. This dataset is not intended for training, but care should be taken in
training data to avoid biases. As a benchmark, the broader impacts are similar to those in prior vision
and tracking works: there may be very long term applications to activity recognition and surveillance.

5 Conclusion

We introduce TAPVid-3D, a new benchmark for evaluating the nascent Tracking Any Point in 3D
(TAP-3D) task. We contributed (1) a pipeline to annotate three distinct real-world video datasets
to produce 3D correspondence annotations per video, (2) the first metrics for the TAP-3D task,
which measure multiple axis of accuracy of 3D track estimates, and (3) an assessment of the current
state of TAP-3D, by evaluating commonly used tracking models. We believe this benchmark will
accelerate research on the TAP-3D task, allowing the development of models with greater dynamic
scene understanding from monocular video.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have done our best to accurately describe the dataset presented, the ground
truth, and what it measures. Our goal of improving 3D understanding and “world models” is
aspirational, and only time will tell whether models developed for this benchmark actually
tackle this problem.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Due to space constraints, we include only a brief discussion of in our con-
clusions which we believe includes the most critical limitations, and we aren’t aware of
significant flaws beyond those shown in the paper. We believe the underlying datasets have
videos which are reasonably independent, although they are in specific domains that aren’t
fully general (which is mentioned in the paper), and privacy and fairness are discussed with
ethical issues. Computational efficiency is not a concern, as the evaluations are inexpen-
sive. We believe that our target audience—researchers working on 3D understanding and
tracking—will be able to infer the limitations of 3D point tracking to the same extent that
we are, and so we focused on presenting the details of our dataset and metrics in a way that
would make them most clear.

. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [N/A]

Justification: No theoretical results.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will make our datasets publicly available. The baselines we ran are based
on publicly-available code, and we specify the details of hyperparameters used to run
them, and we have done our best to describe our extensions that enable evaluation on our
datasets. The main novel algorithm—Depth TAPIR—will be released including pretrained
checkpoints.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have included all scripts we used to generate the dataset from its underlying
sources, as well as the datasets themselves.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included the core ideas in the main paper and implementation details
in the supplementary, which we believe should be sufficient to reproduce our results.
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7.

10.

Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: As is common in computer vision benchmarks, we don’t expect the error
distributions to follow well-defined distributions so that error bars can be easily derived in
closed form, and it’s difficult to ensure that all meaningful factors of variation are included
in any randomized trials. Furthermore, the dataset consists of thousands of videos, each with
tens or hundreds of thousands of points that are evaluated; we expect that results may be
statistically significant with only a few fractions of a percent improvement, which wouldn’t
actually enough to establish that a more-complex algorithm is actually worthy of publication.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: While we do not include the compute resources used for running the model
baselines in the main paper, due to space constraints, we include this in the supplemental
materials, and this is indicated the main paper as well, in Section E}

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There were no human participants beyond those used in the underlying
datasets; these datasets are already public and either compensated the participants for their
time following local laws (Pittsburgh, London), or they are public driving videos in the
case of DriveTrack, in an on-road scenario where people already expect that cars may be
filming. We are not aware of any data deprecations for these datasets, and have referenced
their licenses which allow for our use. The paper briefly discusses dataset representativeness
(though it is limited by space constraints). We inherit the dataset statistics from the existing
datasets. Panoptic studio is based on two specific researchers; we used a portion of the Aria
dataset without prominent people, although hands are visible and the paper does not give
a breakdown in terms of representativeness. DriveTrack videos come from public roads
in San Francisco, Phoenix, Mountain View, Los Angeles, Detroit, and Seattle, meaning
the full dataset is very US and urban/suburban-centric. In terms of ethics considerations,
this is fundamental research that’s relatively far from direct applications: it has potential
uses in safety-critical applications, in surveillance or other human-monitoring applications
(though point tracking is not person-specific), and also in graphics where it could be used
deceptively; however, these are common to many visual tracking algorithms and benchmarks
and we believe that a detailed discussion is beyond the scope of the paper.

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We included a description of the intended (positive) uses of this dataset, to
develop 3D and physical understanding from video, but also a brief discussion of broader
impacts, which covers 1) a disclaimer that the dataset may inherit biases from other datasets,
and so it alone cannot guarantee generalization across different cultures or demographics,
and 2) a mention of the possible negative consequences from misuses that are similar to
misuses of tracking technology, e.g. surveillance. However, we believe that these are
“indirect paths” according to the guidelines, and so we don’t believe these need to be
described in detail.

Guidelines:
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11.

12.

13.

14.

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: As required by the datasets and benchmarks, the dataset is being made public,
including all code and data required to reproduce our results; there is no clear way to control
its use once it is available. We are not releasing any new videos, only annotations, meaning
that safety risks from scraping data is a minimal concern.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited the creators and original owners of the core datasets
that we have extended for this dataset. We preserve their licensing terms, and will include it
in our licensing terms for our benchmark extension, during our code and annotations release.
We aim to to make sure that it is straightforward for future users to comply with all terms.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The dataset and benchmark is the core contribution of this paper, and so we
spent most of the paper providing details on how it’s collected. Our public release includes
the full dataset as well as documentation to ensure other researchers can use it as easily as
possible.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [N/A]

16



15.

Justification: This paper includes no crowdsourcing or human subjects research. Manual
verifications of automatic results were done by members of our own research team.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [N/A]

Justification: Again, there was no crowdsourcing or human subjects research, so IRB
approval was not required.
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