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ABSTRACT

Existing visual token compression methods for Multimodal Large Language Mod-
els (MLLMs) predominantly operate as post-encoder modules, limiting efficiency.
To address this limitation, we propose LaCo (Layer-wise Visual Token Compres-
sion), a novel framework for effective token compression within the vision en-
coder’s intermediate layers. LaCo introduces two core components: 1) a layer-
wise pixel-shuffle mechanism that systematically merges adjacent tokens through
space-to-channel transformations, and 2) a residual learning architecture with non-
parametric shortcuts that preserves critical visual information during compres-
sion. Extensive experiments indicate that LaCo outperforms all existing methods
when compressing tokens in the vision encoder’s intermediate layers, demonstrat-
ing superior effectiveness. In addition, compared to external compression, our
method improves training efficiency beyond 20% and inference throughput over
15% while maintaining strong performance.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs), like LLaVA (Li et al.l |2024a; [Liu et al.l 2023a;
2024;2023b), InternVL (Chen et al., 2024e:d), and QwenVL (Bai et al., 2023; Wang et al., 2024b),
have demonstrated impressive capabilities in fusing visual and linguistic modalities. These models
significantly enhance performance across a wide range of vision-language tasks, including visual
question answering, image captioning, and beyond.

Typically, most MLLMs follow the LLaVA framework, in which visual inputs are first encoded into
embeddings using a visual encoder and subsequently transformed into a representation compatible
with the large language model (LLM) through a projector. The visual embeddings are then concate-
nated with textual inputs and processed jointly by the LLM. In practice, the number of visual tokens
can vary from hundreds to thousands, significantly increasing the running time of MLLMs. Recent
studies (Shang et al.} 2024} |Ye et al.,|2024; |Chen et al., [2024b)) have shown that the visual informa-
tion often contains a considerable degree of redundancy. Therefore, visual token compression has
emerged as a growing area of interest in multimodal learning research.

Previous approaches to visual token compression in multimodal models have mainly focused on ex-
ternal mechanisms applied after the visual encoder. For instance, InternVL utilizes pixel-shuffle (Shi
et al.| 2016) to merge adjacent tokens within a grid, while QwenVL applies a two-layer MLP to ag-
gregate the neighboring tokens following the 32-layer ViT encoder. Gemma3 (Kamath et al., [2025))
adopts the average pooling technique to reduce the number of tokens generated by the SigL.IP (Zhai
et al.,2023) encoder. However, these methods do not fully exploit potential efficiency gains in visual
token compression because they neglect the opportunities within the encoder’s intermediate layers.

In this study, we propose LaCo, a Layer-wise token Compression method that incorporates the
pixel-shuffle and residual connection to effectively prune visual tokens. Specifically, our approach
inserts a Patch Merge Layer (PML) after the k-th layer of the vision encoder to perform token
compression. The PML utilizes pixel-shuffle to merge adjacent visual tokens and then employs a
two-layer MLP to map the dimensionality of the merged tokens to the original size. In addition, to
mitigate the information loss problem when compressing tokens, inspired by |Chen et al.| (2024a),
we introduce an extra non-parametric shortcut to the PML to let the model learn residuals based on
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Figure 1: (a) The solid and the dotted represent vision encoding time (VET) and tokens per second
(TPS), respectively. Layer-wise token compression achieves a 56.8% reduction in VET and a 21.6%
increase in TPS. (b) LaCo outperforms other compression methods. All methods are implemented
on AIMv2.

the space-to-channel operation. The proposed PML with residual connection effectively compresses
tokens with minimal information loss.

We evaluate the effectiveness of our methods through extensive experiments, which are conducted
following the guidance outlined by [Li et al.| (2024a). Our LaCo outperforms all existing methods
when compressing tokens within the intermediate layers of the vision encoder across all scenar-
ios. Compared to external compression, inner-layer compression with LaCo improves training and
inference efficiency by over 20% and 15%, respectively, while maintaining strong performance.
Furthermore, we conduct a comprehensive exploration of layer-wise token compression by placing
LaCo at different depths of the encoder and applying vision encoders including AIMv2 (Fini et al.
2024])), SigLIP (Zhai et al., 2023), and InternViT (Chen et al., [2024¢]), demonstrating the flexibility
and generalizability of LaCo.

Our contributions are summarized as follows:

* We propose LaCo, a layer-wise visual token compression method that integrates pixel-
shuffle and residual connections, significantly improving the training and inference effi-
ciency of MLLMs with only a minor performance drop.

* We conduct extensive experiments with various compression methods, where LaCo demon-
strates superior performance and clearly stands out.

* We perform in-depth analyses by inserting LaCo at various depths of the encoder and apply-
ing different vision encoders. This exploration not only further validates the effectiveness
of our method but also identifies the optimal layer for internal token compression.

2 RELATED WORKS

2.1 MULTIMODAL LARGE LANGUAGE MODELS (MLLMS)

Recent advancements in MLLMs have primarily focused on the integration of LLMs with advanced
visual encoders. This integration is typically achieved through a lightweight projector, facilitating
the alignment of vision and language features. For instance, models such as BLIP (Li et al.,[2023b;
Dai et al.| [2023)), MiniGPT4 (Zhu et al.| 2023)), and QwenVL (Bai et al.,[2023) utilize the Q-Former
(a cross-attention mechanism) to align and distill informative visual features. Flamingo (Alayrac
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et al.| [2022)introduces gated cross-attention layers to inject encoded visual information into the lan-
guage model, thereby enhancing multimodal reasoning capabilities. The LLaVA series (L1 et al.,
2024a; |Liu et al.| 2023a; [2024} 2023b) adopts a two-layer MLP structure to bridge vision and lan-
guage models, a design that has influenced subsequent models involving VILA (Lin et al.| |[2023),
ShareGPT4V (Chen et al., [2023), and CogVLM (Wang et al., 2023). These developments highlight
the rapid evolution of MLLMs, significantly advancing their capability to handle complex multi-
modal tasks (Lan et al.|, 2025)).

2.2 VISUAL TOKEN COMPRESSION

Visual token compression techniques have been proposed to reduce the inference complexity for
MLLMs. Mainstream models, such as Qwen (Wang et al.| [2024b), InternVL (Chen et al.| 2024d),
and Gemma3 (Kamath et al.,[2025)), utilize two-layer MLP models, pixel-shuffle operations, and 2D
average pooling operations, respectively, to achieve visual token compression. In addition to these
general approaches, several specialized methods have been designed to enhance the effectiveness
of visual token compression (Lan et al., 2024). TokenPacker (Li et al.l [2024e) downsamples visual
tokens to generate queries and then employs point-to-region attention to extract information from
the original tokens, thereby preserving fine-grained details in the compressed tokens. LDP (Chu
et al., [2023; |2024) and Abstractor (Cha et al.| [2023) use multi-layer convolutional structures to fa-
cilitate local token interactions while maintaining spatial relationships. Despite their advantages,
these methods perform compression outside the vision encoder. In contrast, our approach intro-
duces compression within the encoder itself, enabling more efficient feature learning. Moreover,
we incorporate a residual connection mechanism to mitigate information loss during compression,
thereby achieving better performance with reduced computational overhead.

3 METHODOLOGY

In this section, we first briefly introduce MLLMs and formulate the visual token compression prob-
lem. Afterwards, the patch merge layer with residual skip connection is proposed to mitigate the
information loss problem during compression.

3.1 MULTIMODAL LARGE LANGUAGE MODELS (MLLMS)

MLLMs, typically exemplified by LLaVA (Li et al.,2024a)) encompass a visual encoder, a projector,
and an LLM. MLLM:s process a pair of visual and textual inputs, denoted as (T, V'), where T is the
textual input and V' is the visual input. The visual encoder extracts features from V' and converts
them into N visual tokens F,, = {v1, va, .., vy }. These tokens are subsequently projected into the
textual embedding space. The textual inputs 7" are mapped to M text tokens Fy = {t1,ta, ...t}
via the text encoder, generally N > M. The visual and text embeddings are concatenated and used
as input to the LLM, which performs autoregressive generation to produce the output sequence.

3.2 VISUAL TOKEN COMPRESSION

Since the visual tokens have a high level of redundancy (Shang et al., 2024} |Ye et al., [2024; |Chen
et al.,2024b), compressing visual tokens is necessary for reducing the memory usage and improving
the training and inference efficiency. Formally, given a set of visual tokens E,, a compression
module C is aimed to reduce the number of visual tokens from N to N (N < N). The compressed
results are represented as E, = {01,02,..., 05}

C:E,= E, (1

where N = |E,|, N = | E,| are the set size of E, and E,,, respectively. C is typically referred to as
the patch merge layer (PML), which will be discussed in Sed3.3]

Layer-wise Token Compression. In previous methods, PML is typically placed downstream of the
vision encoder, indicating that visual token compression is executed subsequent to the processing of
the vision encoder. As illustrated in Fig[2] we further insert the PML within an intermediate k-th
layer of the vision encoder. Specifically, assuming that the vision encoder consists of L layers, from
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(a) Token compression after the vision encoder (b) Layer-wise token compression with residual connection

Figure 2: Comparison between encoder-level and layer-level visual token compression. The left
presents compressing tokens subsequent to the encoder, which has low efficiency, while the right
demonstrates compressing tokens in the intermediate layers with PML and residual connection.

the first to the k-th layer, the token set £, is encoded. Immediately after the k-th layer, the PML

converts F, to Ev, with the compression ratio . The compressed tokens EU are then fed into the
remaining layers from k + 1 to L for further encoding. The process is formulated as follows:

B = PML(EF,r) @)
EA‘U = ENCk+1:L(E5)7

where ENC and PM L represent the vision encoder and patch merge layer, respectively. E¥ and

A~ N k
E* denote the original and compressed visual token sets, which satisfies | E¥| = “f—;‘

3.3 PATCH MERGE LAYER (PML)

Basic Patch Merge Layer. Among existing visual token compression methods, we choose to utilize
pixel-shuffle to implement the basic PML. Since it shows great performance in token reduction (Lu
et al. |2025). The pixel-shuffle (Shi et al., [2016) operation first merges adjacent tokens with a grid.
Then, a two-layer MLP maps the merged tokens back to the original embedding dimensionality:

E, = MLP(PS((E,,r)), 3)

where P.S means the pixel-shuffle operation. For instance, E,, with shape N x C'is first reshaped
to H x W x C and then converted to g X % x r2C' by pixel-shuffle, where H x W = N.
After reshaping back to % x r2C, it is fed into the MLP and converted to % x C, achieving the
compression with ratio r.

Residual Connection. Existing visual token compression methods, such as pixel-shuffle, convolu-
tional architectures, and TokenPacker, often suffer from the information loss problem. The problem
is more pronounced when PML is placed into an intermediate layer of the vision encoder. To allevi-
ate this limitation, motivated by Chen et al.|(20244a)), we propose incorporating a residual connection
into the PML. Specifically, the residual pathway consists of a non-parametric shortcut implemented
via a space-to-channel operation, followed by a channel averaging step to align the channel dimen-
sion. The process is formulated as:

E, = RC(EX,r) = CA(PS(E,.7)), @)

v

where RC represents the residual connection and C'A denotes the channel averaging operation. The
process is similar to the PML but introduces no parameter. Therefore, the midline in Eq[2]is updated
as follows: .

E¥ = PML(E®,r) + RC(E¥*, 7). (5)
The PML with residual connection achieves efficient compression while mitigating the information
loss.
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Figure 3: Detailed overview of the training stage. The left figure represents stage-1, which only learn
the projector and PML. The right part depicts the stage-1.5 and stage-2, training with all parameters.

3.4 TRAINING STRATEGY

We follow the training strategies proposed in LLaVA-OneVision (Li et al., [ 2024a), which comprises
three stages and is based on the curriculum learning principle of increasing difficulty gradually.

o Stage 1: Language-Image Alignment focuses on aligning visual features with the textual
embedding space of the language model, enabling cross-modal understanding.

» Stage 1.5: High-Quality Knowledge Learning aims to refine the model’s generation capa-
bilities by leveraging high-quality, curated multimodal data.

 Stage 2: Visual Instruction Tuning is oriented toward teaching MLLM to solve a diverse set
of visual tasks with preferred responses. This stage is composed of two phases: (a) Single-
Image(SI) Training: learning visual tasks using a single image. (b) OneVision Training:
equipping MLLM with the abilities to process diverse inputs, such as video, single-image,
and multi-image.

The first stage only learn the projector while the other two stages train MLLM with all parameters.
Unlike this, due to the introduction of the inner PML, we also train the PML parameters alongside
the projector during Stage 1. The remaining stages remain unchanged in our training pipeline. The
training stages are depicted in Fig[3]

4 EXPERIMENTS

In this section, we first introduce the experiment settings. Then, we compare LaCo with other com-
pression methods and evaluate inner-layer and external compression with various encoders. Finally,
we analyze the results of placing LaCo at the different layers.

4.1 EXPERIMENT SETUP

Experiments Configuration. We use three vision encoders: AIMv2 (Fini et al.,2024), SigL.IP (Zhai
et al.,[2023), and InternViT (Chen et al.,|2024¢), which are widely adopted in MLLMs. The projector
architecture follows the design employed in LLaVA-OneVision. We utilize Qwen2.5-0.5B as the
LLM with consideration of the compute budget. All models are trained for 1 epoch with a batch
size of 512. In Stage-1, the learning rate is set to be le-3. In both Stage 1.5 and Stage 2, the vision
encoder is fine-tuned with a learning rate of 2e-6, while the remaining modules are optimized using
a learning rate of le-5. We adopt the cosine learning rate schedule with the minimum value of le-7

Baselines and Models. For baseline comparisons, we implement LaCo and three representative
approaches, including Pixel-Shuffle (Chen et al., |2024d), TokenPacker (L1 et al., 2024e) and the
LDPv2 (Chu et al., 2024). All methods are employed at the 1/4 layer of the AIMv2. We also
compare inner-layer and external compression across three widely used vision encoders involving
AIMvV2 (Fini et al., 2024), SigLIP (Zhai et al., 2023), and InternViT (Chen et al., |2024€)), with
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Table 1: LaCo outperforms Pixel-Shuffle (Chen et al., 2024d)), LDPv2 (Chu et al., 2024), and To-
kenPacker (Li et al., |2024e) on single-image benchmarks. LaCo achieves comparable results to
LLaVA-OV-0.5B (Li et al.|, [2024a)) with significantly improved efficiency. All compression methods
use AIMv2 as the vision encoder and are placed at the 1/4 layer.

ChartQA
DocVQA
InfoVQA
MMBench
MMMU
MMStar
S-Bench
S-QA
RW-QA

a
(S|
—
<

PT
IT
VET
TPS
Avg.

Method

Single-Image Training Setting

LLaVA-OV-0.5B - - 1384 185 | 542 610 750/71.2 448/41.3 438 312 363 634 678 537 | 52.8
Pixel-Shuffle 108 184  29.0 274 | 565 137 13.1/13.0 19.4/20.0 369 327 306 509 665 435 | 364

LDPv2 109  18.6 30.1 274 | 563 139 124/13.0 19.3/20.0 352 334 303 493 647 450 | 360
TokenPacker 1.5 20.0 33.6 26.8 | 563 13.6  12.6/13.0 19.2/20.0 350 32.0 307 499 665 447 | 36.1
LaCo 108 18.6 293 274 | 593 559 63.8/65.0 33.6/340 552 357 377 647 69.2 552 | 531

One-Vision Training Setting

LLaVA-OV-0.5B - - 1378 183 | 57.1 614 73.7/70.0 46.3/41.8 52.1 314 375 655 672 556 | 544
Pixel-Shuffle 108 141 294 27.5 | 57.6 140 12.0/120 20.4/20.0 38.8 341 307 522 593 444 | 363

LDPv2 109 13.7 29.7 27.6 | 579 144 12.0/120 20.520.0 367 33.6 286 51.0 625 455 | 362
TokenPacker 1.5 147 33.6 269 | 585 145 122/120 20.0/20.0 381 337 296 519 606 465 | 36.6
LaCo 10.8 139 29.5 27.6 | 61.8 592 62.4/640 347/340 587 352 395 620 667 554 | 53.6

LaCo applied for token compression. Furthermore, to explore the effects of compression at different
layers, we place LaCo at the 1/12, 1/6, 1/4, and 1/2 layers of the vision encoder, exemplified by the
AIMV2.

Training Datasets. We follow the training datasets as LLaVA-OneVision (Li et al., [2024a). In the
pretrained stage-1, the LCS-558K (Liu et al., [2023b)) is used to tune the projector and the PML.
In the stage-1.5, we utilize the 4M high-quality knowledge data, including re-captioned detailed
description data, document/OCR data, and Chinese language data. The visual instruction tuning
data for stage-2 also comes from LLaVA-OneVision, comprising 3.2M single-image instruction
data in SI phase and 1.6M mixed data in one-vision phase. For unpublished data, we adopt similar
data under the training guidance of LLaVA-OneVision.

4.2 MAIN RESULTS

To validate the effectiveness of our proposed LaCo, we compare it with three representative visual
token compression approaches, including Pixel-Shuffle (Chen et al. 2024d), LDPv2 (Chu et al.,
2024), and TokenPacker (L1 et al., 2024e). All methods are applied at the 1/4 layer of the AIMv2
vision encoder, with Qwen2.5-0.5B used as the language model.

Evaluation on Single-Image Benchmarks. As demonstrated in Tab[I] LaCo consistently outper-
forms the comparison methods across all evaluated scenarios. Specifically, compared to LaCo,
Pixel-Shuffle, LDPv2, and TokenPacker exhibit performance dropping by over 30% in terms of
average metrics in both single-training and one-vision training. Although they demonstrate compet-
itive performance when applied externally, their effectiveness diminishes significantly when used to
compress tokens in the intermediate layers of vision encoders, highlighting the superiority of our
layer-wise design. LaCo further improves upon Pixel-Shuffle by introducing residual connections,
which play a critical role in preserving informative visual features during compression. Notably, on
challenging benchmarks such as DocVQA (Mathew et al., |2020), InfoVQA (Mathew et al.,|2021)),
and MMBench (Liu et al.,|2023d), where accurate task completion relies on rich contextual informa-
tion, Pixel-Shuffle, LDPv2, and TokenPacker suffer from performance degradation due to substan-
tial information loss. This further indicates the effectiveness of LaCo in preserving critical visual
content during token compression. Moreover, we present extensive case studies in Appendix A to
demonstrate the superiority of LaCo in handling diverse complex tasks.

We also report the efficiency of these methods in terms of Pre-training Time (PT), Instruction
Tuning Time (IT), Vision Encoding Time (VET), and Tokens Per Second (TPS), where PT and
IT evaluate training efficiency, VET and TPS quantify inference efficiency. TokenPacker exhibits
the lowest overall efficiency, while LDPv2, Pixel-shuffle, and LaCo demonstrate comparable per-
formance in terms of efficiency. However, LaCo achieves significantly better results in effectiveness
while maintaining high efficiency.
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Table 2: LaCo outperforms Pixel-Shuffle (Chen et al., 2024d), LDPv2 (Chu et al.l 2024), Token-
Packer (Li et al.| [2024¢), and LLaVA-OV-0.5B (Li et al.| 2024a) on multi-image benchmarks.

o =
< = &= « - a 2 14 2
s & s ©T & ¢ E o 5 & 2|% g £ 2 ¢t
> > ~ 3 - > = o = = = S z = = = 2 .
g =z 2 : £ 2 g =2 | & & 5 =2 %3 s = E 3z | F
=] = z & (=4 @ = > ) ) @ < = = = = = @ <
Method
| in-domain multi-image | in-domain multi-view | out-domain |
LLaVA-OV-0.5B 17.1 487 634 354 488 364 65.0 298 | 60.0 48.0 264 622 705 | 521 396 60.0 255 29.1 454
Pixel-Shuffle 278 723 637 352 474 389 580 293 | 60.5 487 26.1 60.2 575 | 388 386 260 274 267 | 435
LDPv2 273 762 619 461 49.0 372 60.1 286 | 60.5 485 252 603 642 | 382 361 244 262 220 | 440
TokenPacker 276 733 617 440 478 368 569 287 | 604 485 269 597 582 | 383 343 255 264 251 433
LaCo 30.0 850 732 439 485 388 605 306 | 60.5 489 303 597 725 | 413 444 343 319 304 | 48.0

Evaluation on Multi-Image Benchmarks. For multi-image benchmarks, the models evaluated are
identical to those used in the single-image setting. Therefore, we omit the efficiency metrics in Tab2]
for brevity. As shown in the table, LaCo achieves superior performance compared to methods Pixel-
Shuffle, LDPv2, and TokenPacker, surpassing them by 10.3%, 9.1%, and 10.9% respectively in
average benchmark metrics. This fully demonstrates the effectiveness of LaCo in handling complex
tasks such as multi-image reasoning, identifying differences, and understanding 3D environments.

Table 3: LaCo outperforms Pixel-Shuffle (Chen et al.| [2024d)), LDPv2 (Chu et al.| |2024), Token-
Packer (L1 et al.| [2024¢), and LLaVA-OV-0.5B (Li et al., 2024a)) on video benchmarks.

Method |EgoSchema NextQA PercepTest S-bench VideoMME| Ave.
| test mc val video  wo/w-subs |
LLaVA-OV-0.5B 26.8 57.2 49.2 442 44.0/43.5 (442
Pixel-Shuffle 21.4 44.8 42.7 33.0 36.1/42.4 36.2
LDPv2 21.6 42.6 41.6 31.2 34.9/41.3 (350
TokenPacker 22.4 452 41.2 31.6 36.1/41.8 |359
LaCo 29.6 57.8 474 44.5 41.0/46.0 |44.6

Evaluation on Video Benchmarks. Tab[3] demonstrates the results on video benchmarks. LaCo
outperforms Pixel-Shuffle, LDPv2, and TokenPacker by 23.2%, 27.4%, and 24.2%, respectively, in
comparative evaluations. The results highlight the superiority of LaCo in handling temporal-spatial
information.

As shown in Tables 1-3, LaCo exhibits significant inference efficiency advantages over LLaVA-OV
while maintaining competitive performance. With only 25% of the token consumption required
by LLaVA-OV, LaCo achieves comparable results on single-image benchmarks and outperforms
LLaVA-OV in both multi-image and video benchmarks. More critically, LaCo improves VET by
78.6% and TPS by 50.8%. Appendix C compares LaCo with state-of-the-art multimodal models on
larger architectures.

4.3 GENERALIZATION TO DIFFERENT ENCODERS

To evaluate the generalization capability and efficiency improvements of our approach, we further
conduct experiments using three vision encoders involving AIMv2, SigLIP, and InternViT (referred
to as InViT). We compare token compression performed within an intermediate layer of the vision
encoder to compression applied externally. Specifically, we apply our proposed LaCo both at the
1/4 layer of the encoder and subsequent to the encoder. Qwen2.5-0.5B is used as the LLM.

As shown in Tab AIMv2-LaCo@1/4 reduces PT, IT, and VET by 7.7%, 26.5%, and 48.8% respec-
tively, while increasing TPS by 15.0% compared to AIMv2-LaCo@1 (LaCo applied subsequent to
the encoder). Similarly, when applied to SigLIP and InternVIT, the training and inference efficiency
improvements reach 29.3%-26.6% and 22.8%—-30.5%, respectively. In terms of effectiveness, the re-
sults show mixed outcomes. For SigLIP, inner-layer compression (LaCo @ 1/4) outperforms external
compression by 2.7 in average accuracy. AIMv2 and InternViT both exhibit slight declines, de-
creasing by 5.0% and 4.9%, respectively. Specifically, performance drops much only on DocVQA,
InfoVQA, and ChartQA benchmarks while even gets improved on ScienceQA and RealWordQA.
We attribute this phenomenon to the fact that tasks on DocVQA, InfoVQA, and ChartQA require
rich and fine-grained visual information to achieve good results. Inner-layer compression inevitably
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Table 4: Performance comparison between LaCo@1/4 and LaCo@1 in AIMv2 (Fini et al.; [2024),
SigLIP (Zhai et all [2023), and InternViT (Chen et al., |2024e) on single-image benchmarks.
Layer-wise token compression achieves comparable results with significantly improved efficiency.
LaCo@x means placing LaCo at the x-th layer of the vision encoder.

=
3 & S E 2 5 3 =
» a = = = g = & H « < .
£ & @3 &|8 2 g £ g & g & 9 =z | @
Model & = > = < o a = = = = » ) & <
Single-Image Training Setting
SigLIP-LaCo@1 145 29.6 1465 180 | 565 13.0 12.2/12.0 19.9/20.0 27.1 328 272 440 625 467 | 342
SigLIP-LaCo@1/4 | 11.9 222 573 240 | 56.8 133  12.3/13.0 19.6/200 40.1 33.1 332 554 651 452 | 375
InViT-LaCo@1 140 286 1076 19.0 | 608 675 76.6/76.0 41.7/41.1 561 362 386 652 703 542 | 56.7
InViT-LaCo@1/4 123 223 434 255 | 592 59.7 68.8/70.0 34.6/350 529 348 389 626 692 51.1 | 533
AIMv2-LaCo@1 117 258 580 240 | 609 632 735/740 39.6/39.0 556 351 386 664 70.7 56.1 | 56.0
AIMv2-LaCo@1/4 | 10.8 193 293 274 | 593 559 63.8/650 33.6/34.0 552 357 377 647 692 552 | 53.1
One-Vision Training Setting
SigLIP-LaCo@1 145 265 146.3 18.2 574 13.8 11.8/12.0  20.1/20.0 346 344 308 47.1 525 450 34.8
SigLIP-LaCo@1/4 11.9 15.8 57.4 24.8 579 15.9 11.7/12.0 ~ 20.1/20.0 479 344 338 578 604 46.0 38.6
InViT-LaCo@1 140 232 107.7 19.0 | 625 695 75.3/76.0 41.2/41.0 579 349 407 669 655 545 56.9
InViT-LaCo@1/4 12.3 16.2 43.7 24.8 61.0 61.7 66.9/68.0 36.1/36.0 549 362 389 653 67.6 522 54.1
AIMv2-LaCo@1 11.7 18.9 57.6 240 | 622 656 71.8/73.0 40.1/41.0 60.1 362 409 679 643 542 | 564
AIMv2-LaCo@1/4 10.8 139 295 27.6 | 61.8 592 624/640 347/340 587 352 395 620 667 554 | 53.6

Table 5: Performance comparison between LaCo@1/4 and LaCo@1 in AIMv2 (Fini et al.| [2024),
SigLIP (Zhai et al.,|2023)), and InternViT (Chen et al.,|2024¢)) on multi-image benchmarks.

InViT-LaCo@1
InViT-LaCo@1/4

AIMv2-LaCo@1
AIMv2-LaCo@1/4

294 810 738 376 495 401 646 303 | 60.8 491 30.1 575 72.8 | 405 435 363 348 400 | 484
293 802 723 369 473 379 616 302 | 608 488 30.0 563 753 | 39.6 435 448 332 49.6 | 488
304 828 757 424 499 373 66.1 302
300 850 732 439 485 388 605 306

60.6 49.1 31.3 595 73.0 | 405 449 425 359 418 | 49.7
60.5 489 303 597 725 | 413 444 343 319 304 | 480
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| in-domain multi-image | in-domain multi-view | out-domain |
SigLIP-LaCo@1 269 675 58.1 354 482 348 570 292 | 605 484 198 580 558 387 422 250 249 256 | 420
SigLIP-LaCo@1/4 284 780 674 289 483 373 582 296 | 605 487 255 59.6 622 385 390 308 313 260 | 443

reduces more information than external compression, thus performing worse. However, it is still
useful to apply inner-layer token compression when the compute budget is limited.

Table 6: Performance comparison between LaCo@1/4 and LaCo@1 in AIMv2 (Fini et al.| [2024),
SigLIP (Zhai et al.} 2023)), and InternViT (Chen et al., 2024¢) on video benchmarks.

|EgoSchema NextQA PercepTest S-bench VideoMME | Avg

Model
\ test mc val video  wo/w-subs |

SigLIP-LaCo@1 20.6 40.4 41.6 314 36.1/41.0 |34.5
SigLIP-LaCo@1/4 23.3 49.6 432 34.6 37.3/44.3 (379
InViT-LaCo@1 29.0 61.4 46.8 45.8 43.6/47.8 |45.7
InViT-LaCo@ 1/4 27.8 59.9 46.9 40.6 42.2/46.6 (439
AIMv2-LaCo@1 30.0 61.6 47.9 47.4 43.1/48.1 |46.5
AIMv2-LaCo@1/4 29.6 57.8 47.4 44.5 41.0/46.0 |44.6

For multi-image benchmarks, TabE] shows the detailed results. As seen from the table, the per-
formance gap between inner-layer and external compression narrows significantly under the multi-
image setup, which can be verified on both AIMv2, SigLIP, and InternViT encoders. Among the
three encoders, AIMv2 gets the best performance while SigLIP ranks relatively lower.

Tabl6] demonstrates the results on video benchmarks. While inner-layer compression still has room
for improvement compared to external token compression, it delivers competitive performance while
significantly improving training efficiency. This suggests that LaCo has strong potential for deploy-
ment in resource-constrained scenarios involving long visual sequences such as videos.
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4.4 IMPACT OF LACO PLACEMENT DEPTH
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Figure 4: Performance and efficiency percentage variations of internal versus external token com-
pression within AIMv2. LaCo@x means placing LaCo at the x-th layer of AIMv2.

To further investigate the trade-off between performance and efficiency when placing LaCo at dif-
ferent depths of the vision encoder, we conduct experiments using AIMv2 as the vision encoder and
Qwen2.5-0.5B as the language model. Specifically, LaCo is inserted at four distinct layers: 1/12,
1/6, 1/4, and 1/2 of the total encoder depth.

As shown in Figl4] the first three bar groups summarize the relative performance drop across differ-
ent compression layers. The last two groups illustrate the corresponding improvement in inference
efficiency. The results show that compressing vision tokens within intermediate layers improves
TPS by over 10% and reduces VET up to 60%, despite some performance degradation. Moreover,
as the compression layer decreases, performance drops more rapidly, whereas inference efficiency
gains become increasingly marginal. It’s a good idea to choose to compress tokens in the 1/2 layer
of the vision encoder, striking a balance between performance and efficiency. It is worth noting
that compressing tokens at the 1/12 layer achieves higher performance compared to compression at
the 1/6 layer. This indicates that early compression preserves more useful visual information when
compressing at shallower layers (< 1/6) of the vision encoder. In addition, we give the detailed
evaluation results of layer-wise and external token compression in Appendix B.

CONCLUSIONS

We demonstrate that compressing visual tokens within the intermediate layers of the vision encoder
holds significant potential for improving the efficiency of MLLMs. To this end, we propose LaCo,
a novel token compression method that leverages pixel-shuffle operations and residual connections
to merge visual tokens with minimal information loss. Experimental results validate LaCo’s ef-
fectiveness, showing over a 20% improvement in training efficiency and a 15% increase in infer-
ence throughput while maintaining strong performance—surpassing existing methods in terms of
information preservation. Nonetheless, several directions remain open for future exploration. For
instance, investigating adaptive compression ratios(r) across different layers or tasks could further
enhance flexibility and performance. We plan to explore these avenues in our future work.
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A EVALUATION BENCHMARKS.

We evaluate our model on three different benchmark groups:

 Single-Image Benchmarks: including (a) Chart, Diagram, and Document Understand-
ing: AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022), DocVQA (Mathew
et al.;,2020), and InfoVQA (Mathew et al.| [2021)); (b) Perception and Multi-discipline Rea-
soning: MMBench (Liu et al.| [2023d), MMMU (Yue et al., 2024), MMStar (Chen et al.,
2024c), SeedBench(image) (Li et al., [2023a), and ScienceQA(S-QA) (Saikh et al., [2022));
(c) Real-world Understanding and Visual Chat: RealWorldQA(RW-QA) (xAl 2024). It
consists of 10 benchmarks.

* Multi-Image Benchmarks: including (a) in-domain multi-image: Spot the Differ-
ence (Jhamtani & Berg-Kirkpatrick, 2018), Image Edit Instruction(IEI) (Li et al., 2024c),
Visual Storytelling(VST) (Ting-Hao et al., [2016), Text-rich VQA(TR-VQR) (Liu et al.|
2023c)), Multi-image VQA(MI-VQA) (Raj et al.| 2021), Raven Puzzle (Chia et al.,|[2024),
Q-Bench (Wu et al., [2023), and NLVR2 (Suhr & Artzi, 2019); (b) in-domain multi-view:
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3D Dialogue (3D-Chat) and Task Decomposition (3D-TD) from 3D-LLM (Hong et al.,
2023)), ScanQA (Azuma et al.,[2021), ALFRED (Shridhar et al.,[2019), and nuScenes (Cae-
BLINK (Fu et al., 2024b), MMMU (mult-
image) (Yue et al., 2024)), MuirBench (Wang et al.| [2024a)), and MathVerse (Zhang et al.|
2024al). It comprises 18 benchmarks.

sar et al) [2019); (¢) out-domain tasks:

* Video Benchmarks: containing 5 benchmarks: EgoSchema (Mangalam et al.| [2023),
NeXTQA (Xiao et al [2021), PerceptionTest (Puatruaucean et al., 2023), Seed-
Bench(video) (Li et al., |2023a)), and VideoMME (Fu et al., |2024a)).

B VISUAL RESULTS

To further validate the practical effectiveness of our approach in visual comprehension, we evaluate
it on diverse real-world tasks requiring complex reasoning, as demonstrated in Fig[5} Equipped with
pixel-shuffle and residual connections, LaCo demonstrates superior performance across challeng-
ing scenarios, consistently outperforming existing methods like Pixel-Shuffle, LDPv2, and Token-
Packer. This aligns with findings that information-aware designs enhance practical applicability in
multimodal tasks, particularly in tasks demanding rich contextual understanding.

C DETAILED EVALUATION OF LAYER-WISE COMPRESSION

We detail the evaluation of the experimental results applying our proposed LaCo at the different
layers of AIMv2. The results are demonstrated on Tab[7} TabJ8| and Tab[9] which represent the
model performance on single-image, multi-image, and video benchmarks, respectively.

Table 7: Performance and efficiency comparison between LaCo@1/12, LaCo@1/6, LaCo@1/4,
LaCo@1/2 and LaCo@1 on single-image benchmarks.

=
S 3 3 E 2 5 % =

= a £ P = g = 7 g « =4 .

L 5 =B £ | S £ g £ e & & & ¢ =z | @

Method & = > = < o a = = = = % % [ <

Single-Image Training Setting
LaCo@1/12 | 109 18.0 235 282 | 59.1 50.6 53.9/55.0 28.2/29.0 509 346 392 625 695 533 | 503
LaCo@1/6 10.9 18.5 262 277 59.5 469 51.7/54.0 25.7/29.0 453 36.0 362 618 68.4  50.5 48.5
LaCo@1/4 108 193 293 274 | 593 559 63.8/650 33.6/340 552 357 377 647 692 552 | 53.1
LaCo@1/2 11.0 200 390 263 59.3 60.8  68.1/70.0 38.5/39.0 569 364 37.5 65.5 70.6 542 54.9
LaCo@1 11.7 258 580 240 | 609 632 73.5/740 39.6/39.0 556 351 386 664 70.7 56.1 | 56.0
One-Vision Training Setting

LaCo@1/12 | 109 134 230 281 | 61.0 534 51.6/53.0 29.0/29.0 549 360 375 657 659 539 | 51.0
LaCo@1/6 10.9 13.7 266 275 60.6 517 51.8/54.0 28.1/29.0 543 35.1 37.1 644 652 485 49.8
LaCo@1/4 10.8 139 295 276 | 61.8 592 624/640 347/340 587 352 395 620 667 554 | 53.6
LaCo@1/2 11.0 14.5 389 265 61.8 620 67.0/68.0 389/39.0 60.1 35.8 39.1 67.6 669 55.0 555
LaCo@1 11.7 189 576 240 | 622 656 71.8/73.0 40.1/41.0 60.1 362 409 679 643 542 | 564

Table 8: Performance comparison between LaCo@1/12, LaCo@1/6, LaCo@1/4, LaCo@1/2 and

LaCo@]1 on multi-image benchmarks.

o =
< = &= < = g 3 4 g
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Method
in-domain multi-image | in-domain multi-view | out-domain |
LaCo@1/12 | 300 79.7 734 440 490 380 603 306 | 608 490 304 565 700 | 39.7 458 346 31.0 351 47.7
LaCo@1/6 294 873 727 359 484 393 615 309 | 605 489 300 60.1 682 | 41.3 439 355 314 318 | 47.6
LaCo@1/4 300 850 732 439 485 388 605 306 | 60.5 489 303 597 725 | 41.3 444 343 319 304 | 480
LaCo@1/2 299 848 761 436 481 364 650 301 60.7 489 313 592 750 | 412 458 326 31.7 400 | 489
LaCo@1 304 828 757 424 499 373  66.1 302 | 60.6 49.1 313 595 73.0 | 405 449 425 359 418 | 497

Specifically, Tab[7|shows the performance of applying LaCo at different layers of AIMv2 on single-
image benchmarks. From the table, we observe that compressing tokens within the encoder leads to a
training and inference efficiency improvement exceeding 20% and 10%, respectively. Furthermore,
as the compression layer is placed closer to the input (i.e., at shallower layers), the acceleration
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effect becomes more pronounced. Compared to external token compression, when performing token
compression within the encoder, the model exhibits a more significant performance drop on three
benchmarks: ChartQA, DocVQA, and InfoVQA. However, its performance remains comparable or
even surpasses that of external compression on other benchmarks, particularly showing improved
results on benchmarks MME and RealWorldQA. This is because tasks ChartQA, DocVQA, and
InfoVQA require detailed information for reasoning, and internal compression inevitably leads to
some loss of information, resulting in performance degradation.

Table 9: Performance comparison between LaCo@1/12, LaCo@1/6, LaCo@1/4, LaCo@1/2 and
LaCo@1 on video benchmarks.

|EgoSchema NextQA PercepTest S-bench VideoMME | Avg

Method

test mc val video  wo/w-subs ‘
LaCo@1/12 29.5 59.5 46.7 41.7 40.6/46.1 |44.2
LaCo@1/6 26.2 57.3 46.6 423 39.2/45.3 |42.9
LaCo@1/4 29.6 57.8 47.4 44.5 41.0/46.0 |44.6
LaCo@1/2 29.1 59.8 47.6 443 42.7/46.7 |45.1
LaCo@1 30.0 61.6 479 47.4 43.1/48.1 |46.5

As shown in Tab[§] while layer-wise token compression still has room for improvement compared
to external compression, it achieves competitive performance on most multi-image benchmarks.
Internal compression exhibits a significant performance drop only on MathVerse, MuirBench, and
SciVerse, which are relatively more challenging and require rich information for reasoning. Tab{]
demonstrates the performance on video benchmarks. Compared to external compression, layer-wise

compression achieves comparable results.

D EVALUATION ON LARGER MLLMS

Table 10: Performance comparison between LaCo-7B and other MLLMSs on single-image bench-
marks.

=
=3
S 3 3 E 2 5 % <
= " a = 4 > 2 = 7 £ « =1
= £ 8 E g £ = = = 2 o = @
Method > = < ) a = = = = % ) & <
GPT-4V (OpenAl|2023} - - | 782 785  -/884 - 750 568 571 499 757 614 | -
GPT-40 (OpenAl]|2024) - - | 942 857 /928 - - 691 - 762 - 586 | -
InternVL-2-8B (Chen et al.|2024¢) - - | 838 83  -9l6 748 817 493 594 760 970 644 | 76.1
LLaVA-OV-7B (Li et al.||2024b} 1389 157 | 814 80.0 90.2/87.5 70.7/688 80.8 488 617 754 960 663 | 749
LaCo@1/4-7B 302 220 | 742 60.1 429/440 31.8/320 616 453 452 676 719 588 | 566
LaCo@1-7B 582 193 | 81.7 802 88.3/89.0 63.6/630 80.7 50.8 585 765 850 705 | 73.6

Table 11: Performance comparison between LaCo-7B and other MLLMs on multi-image bench-
marks.

@ =
< 5 g < - a ] 4 g
S 8 . % & ¢ E oo 03 2 :|l¢ g £ 2 t
> = = g o = = o =) = & 3 z = = = 2 .
2 = 2 s 2 2 @ a 2 5] = % | s 3 E 3 2
= = z £ =] @ = > & ] @ < H 2 = = = @ <
Method
| in-domain multi-image | in-domain multi-view | out-domain
GPT-4V (OpenAli2023] 1.0 52.0 888 17.1  76.5 125 545 109 | 312 354 326 103 63.7 | 51.1 627 603 623 669 | 444
Mantis-7B {Jiang et al.12024] 112 525 874 257 699 176 452 12.5 2.6 14.7 16.1 140 462 | 464 595 272 361 293 | 341
LLaVA-N-Tter-T4B (L1 et al.12024d] 245 950 9L1 599 767 405 786 333 | 706 522 345 620 767 | 52.1 664 334 407 327 | 56.7
LLaVA-OV-7B (Li et al.}2024b} 222 902 894 533 745 392 801 317 | 628 526 30.1 61.0 795 | 482 642 676 418 79.1 59.3
LaCo@1/4-7B 293 905 794 611 717 406 70.1 312 | 628 526 31.6 628 670 | 443 581 654 411 371 | 554
629 527 346 641 815 | 507 736 753 549 513 | 61.8

LaCo@1-7B 31,50 950 907 625 762 422 808 323

To investigate the performance of LaCo on larger-scale MLLMs, we construct the LaCo-7B mul-
timodal model using AIMv2 as the vision encoder and Qwen2.5-7B as the language backbone.
Specifically, LaCo@ 1/4-7B denotes applying LaCo to the 1/4 layers of AIMv2, while LaCo@1-7B
represents applying LaCo subsequent to AIMv2. Additionally, we compare LaCo-7B against var-
ious open-source and closed-source multimodal models, with results presented in Tab[I0] Tab[TT}

and Tab[12]
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Tab[I0] presents the comparison of LaCo-7B with other MLLM:s on single-image benchmarks. Al-
though LaCo@ 1/4-7B shows performance degradation compared to LLaVA-OV-7B, it achieves sig-
nificant improvements in inference efficiency, with VET reduced by 78.3% and TPS increased by
40.1%, respectively. Notably, LaCo@1-7B outperforms GPT-4V across various benchmarks and
surpasses GPT-40 on SeedBench and RealWorldQA. Compared to open-source models, LaCo@1-
7B achieves comparable performance while reducing VET by 58.1% and improving TPS by 22.9%
over LLaVA-OV-7B.

Tab[TT] shows the comparison on multi-image benchmarks. LaCo@1/4-7B exceeds GPT-4V and
Mantis-7B in terms of average metrics while performing comparably to other open-source MLLMs.
LaCo@1-7B achieves the best performance among all models, demonstrating its strong capabili-
ties in complex tasks such as multi-image reasoning, difference identification, and 3D environment
understanding.

Table 12: Performance comparison between LaCo-7B and other MLLMs on video benchmarks.

Method |EgoSchema NextQA PercepTest S-bench VideoMME | Ave.
\ test mc val video  wo/w-subs |
GPT-4V (OpenAl|2023) - - - 60.5 59.9/63.3
GPT-40 (OpenAll[2024) - - - - 71.9/77.2
LLaVA-N-Video-32B (Zhang et al.|[2024b) 60.9 71.3 59.4 - 60.2/63.0
LLaVA-OV-7B (Li et al.[|2024b) 60.1 79.4 57.1 56.9 58.2/61.5 |62.7
LaCo@1/4-7B 419 64.9 479 40.7 46.9/55.1 |49.3
LaCo@1-7B 52.7 77.1 57.3 57.3 58.8/62.0 |61.0

Tab[I2] presents the comparison on video benchmarks. LaCo@ 1-7B performs comparably to GPT-
4V on SeedBench and VideoMME, though it still lags behind GPT-40 on VideoMME. Compared
to open-source MLLMs, LaCo@1-7B shows overall comparable performance with advantages on
SeedBench. The performance of LaCo@ 1/4-7B still has room for improvement, indicating that
internal token compression within vision encoders warrants further investigation to achieve better
results, particularly in larger model architectures.
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