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Abstract

KV cache techniques in Transformer models001
aim to reduce redundant computations at the ex-002
pense of substantially increased memory usage,003
making KV cache compression an important004
and popular research topic. Recently, state-005
of-the-art KV cache compression methods im-006
plement imbalanced, per-head allocation algo-007
rithms that dynamically adjust the KV cache008
budget for each attention head, achieving ex-009
cellent performance in single-GPU scenarios.010
However, we observe that such imbalanced011
compression leads to significant load imbal-012
ance when deploying multi-GPU inference, as013
some GPUs become overburdened while others014
remain underutilized. In this paper, we pro-015
pose FairKV, a method designed to ensure fair016
memory usage among attention heads in sys-017
tems employing imbalanced KV cache com-018
pression. The core technique of FairKV is019
Fair-Copying, which replicates a small sub-020
set of memory-intensive attention heads across021
GPUs using data parallelism to mitigate load022
imbalance. Theoretical analysis provides in-023
sights, while experiments on popular models,024
including LLaMA 70b and Mistral 24b model,025
demonstrate that FairKV increases throughput026
by 1.66x compared to standard tensor paral-027
lelism inference. Our code will be released as028
open source upon acceptance.029

1 Introduction030

1.1 Background and Motivation031

Large-scale Transformer-based models are at the032

core of modern artificial intelligence. To support033

fast inference, these models rely on a key-value034

(KV) cache(Vaswani et al., 2017; Dai et al., 2019;035

Rae et al., 2019) that stores key and value embed-036

dings from previously generated tokens, trading037

memory usage for reduced redundant computation.038

This cache prevents redundant computations and039

is crucial for efficient sequence generation. How-040

ever, the huge memory usage of the KV cache041

becomes a bottleneck for inference systems, and 042

a great number works have investigated KV cache 043

compression(Ge et al., 2024; Liu et al., 2023; Xiao 044

et al., 2024; Li et al., 2024; Cai et al., 2024; Feng 045

et al., 2024; Fu et al., 2024; Adnan et al., 2024). 046

Traditional KV cache compression methods 047

(StreamingLLM(Xiao et al., 2024), SnapKV(Li 048

et al., 2024) and PyramidKV(Cai et al., 2024)) natu- 049

rally allocate an equal (fair) KV cache budget to all 050

attention heads. This fair allocation simplifies the 051

design and ensures uniform memory usage across 052

heads. Recently, SOTA works of KV cache com- 053

pression methods (AdaSnapKV(Feng et al., 2024) 054

and HeadKV(Fu et al., 2024)) introduce imbal- 055

anced per-head KV cache compression algorithms 056

that dynamically adjust the KV cache budget for 057

each attention head. These methods compress the 058

KV cache more effectively and achieve SOTA per- 059

formance in single-GPU scenarios. 060

Unfair head load Problem: Our investigation 061

reveals that although imbalanced per-head KV 062

cache compression techniques reduce overall mem- 063

ory usage, they result in an uneven per-head KV 064

cache load distribution during multi-GPU infer- 065

ence, which we refer to as the unfair head load 066

problem. In systems using tensor parallelism, one 067

of the most common parallel strategies, this non- 068

uniform KV cache usage forces some GPUs to han- 069

dle a disproportionate share of memory-intensive 070

attention heads. This imbalance increases GPU 071

idle time, elevates inference latency, and ultimately 072

degrades system throughput. Despite extensive 073

research on load balancing in parallel inference 074

systems, no prior work has identified or addressed 075

this specific imbalance caused by imbalanced KV 076

cache compression. Addressing this imbalance is 077

crucial for achieving efficient, low-latency infer- 078

ence in large-scale Transformer models, particu- 079

larly in multi-GPU settings. 080
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1.2 Our solution081

To address the unfair head load problem, we pro-082

pose FairKV. Our approach targets the fair mem-083

ory usage among attention heads in imbalanced084

KV cache compression systems. FairKV mainly085

employs two techniques to address this issue: best-086

effort assignment and fair-copying. Best-effort As-087

signment is responsible for distributing attention088

heads across GPUs to achieve a relatively balanced089

workload. Fair-Copying involves replicating cer-090

tain attention heads to participate in the assignment,091

thereby reducing the workload of the replicated092

heads.093

Technique I: Best-effort Assignment. Best-effort094

Assignment works as follows. We first analyze the095

KV cache consumption of each attention head un-096

der imbalanced compression. Based on this analy-097

sis, our allocation algorithm assigns attention heads098

to GPUs such that the aggregate memory and com-099

putational load is balanced across GPUs in a best-100

effort manner. This method requires no additional101

overhead and can be integrated into existing multi-102

GPU inference systems easily, offering a practical103

improvement in load balancing without modifying104

the underlying KV cache compression scheme.105

Technique II: Fair-Copying. While best-effort106

assignment offers a straightforward solution, some107

attention heads remain significantly more memory-108

intensive, leading to persistent bottlenecks. To109

further improve load balance, we propose another110

technique called Fair-Copying, which utilizes Data111

Parallel techniques to enhance the effectiveness of112

the assignment. In this technique, we set a repli-113

cation budget that allows the algorithm to attempt114

replicating attention heads. By utilizing data par-115

allelism to reduce the load on the replicated heads,116

these replicated heads participate in the assignment117

alongside the original ones, thereby expanding the118

search space and enabling finer-grained partition-119

ing. This replication method minimizes additional120

overhead while substantially reducing GPU idle121

time and inference latency.122

Key Contributions. This paper makes the follow-123

ing key contributions:124

1) To the best of our knowledge, we are the first125

to reveal the unfair head load problem: imbal-126

anced per-head KV cache compression causes127

significant load imbalance in multi-GPU in-128

ference environments.129

2) To address the unfair head load problem,130

we propose FairKV, which includes two131

mechanisms—best-effort assignment and fair- 132

copying. 133

3) Theoretical analysis provides insights, while 134

experiments on popular models, including 135

LLaMA 70b and Mistral 24b model, demon- 136

strate that FairKV increases throughput by 137

1.66x compared to standard tensor parallelism 138

inference. Our code will be released as open 139

source upon acceptance. 140

2 Related Work 141

Inference efficiency for large language models is 142

critically limited by both memory bandwidth and 143

computational power. KV cache compression (Ge 144

et al., 2024; Zhang et al., 2024; Yang et al., 2024), 145

a widely adopted optimization technique, reduces 146

memory for storing previous key-value states in 147

attention layers. It can generally be classified into 148

two categories: Balanced (Fair) Per-Head Com- 149

pression and Imbalanced (Unfair) Per-Head Com- 150

pression. 151

Balanced (Fair) Per-Head Compression meth- 152

ods applies the same strategy to all attention heads. 153

For instance, StreamingLLM (Xiao et al., 2024) 154

retains the initial k sink tokens along with the re- 155

cent window. H2O (Zhang et al., 2024) further 156

prioritizes important cache entries based on accu- 157

mulated attention scores, while SnapKV (Li et al., 158

2024) selects entries using attention scores from 159

the observation window. Recently, Pyramid (Yang 160

et al., 2024; Cai et al., 2024) recognize distinct at- 161

tention distribution patterns across different layers. 162

However, these methods disregard the varying im- 163

portance of different heads in actual computations. 164

In contrast, Imbalanced (Unfair) Per-Head Com- 165

pression algorithms, like Ada-SnapKV (Feng et al., 166

2024) and HeadKV(Fu et al., 2024), dynamically 167

adjust the KV cache budget per attention head 168

based on the current layer’s computational and 169

memory requirements. Ada-SnapKV determines 170

the budget for each head during inference, with a 171

fully dynamic allocation. HeadKV, however, pre- 172

allocates a fixed base budget for each head accord- 173

ing to its importance and then adds a dynamic bud- 174

get. This tailored cache allocation offers more flex- 175

ibility and optimization potential. Table 3 in the ap- 176

pendix show that Ada-SnapKV outperforms other 177

methods on multiple tasks in the LongBench v1 178

(Bai et al., 2024), demonstrating the effectiveness 179

of Imbalanced (Unfair) Per-Head Compression ap- 180

proach. 181
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Table 1: Cosine Similarity of Retained KV Cache in Per-Head KV Compression across LongBench Sub-datasets

KV Budget Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Coding Avg Max Min Std
NtrQA Qasper MF-en HpQA 2WMQA Musiq GovRp QMSum MNews TREC TriQA SAMSum LCC RB-P

Llama-3.3-70B-Instruct
128 0.974 0.977 0.977 0.979 0.980 0.979 0.971 0.979 0.974 0.974 0.978 0.969 0.975 0.977 0.976 0.980 0.969 0.003
256 0.961 0.965 0.967 0.970 0.971 0.969 0.958 0.966 0.962 0.962 0.968 0.949 0.964 0.968 0.964 0.971 0.949 0.006
512 0.955 0.962 0.962 0.965 0.968 0.964 0.954 0.960 0.955 0.957 0.964 0.944 0.959 0.965 0.959 0.968 0.944 0.006
1024 0.950 0.961 0.959 0.961 0.966 0.959 0.953 0.956 0.943 0.956 0.962 0.947 0.949 0.962 0.956 0.966 0.943 0.006

Meta-Llama-3-8B
128 0.904 0.935 0.932 0.919 0.933 0.914 0.929 0.919 0.938 0.919 0.928 0.934 0.933 0.932 0.926 0.938 0.904 0.009
256 0.873 0.912 0.913 0.897 0.917 0.887 0.912 0.891 0.923 0.896 0.909 0.911 0.915 0.909 0.905 0.923 0.873 0.013
512 0.886 0.916 0.917 0.909 0.924 0.902 0.917 0.904 0.933 0.909 0.917 0.908 0.925 0.915 0.913 0.933 0.886 0.011
1024 0.912 0.932 0.934 0.930 0.937 0.930 0.931 0.927 0.949 0.929 0.935 0.922 0.944 0.932 0.932 0.949 0.912 0.009

Mistral-Small-24B-Instruct-2501
128 0.970 0.973 0.974 0.974 0.975 0.973 0.971 0.975 0.970 0.959 0.975 0.971 0.971 0.973 0.972 0.975 0.959 0.004
256 0.960 0.963 0.965 0.965 0.967 0.965 0.959 0.965 0.960 0.944 0.967 0.951 0.960 0.965 0.961 0.967 0.944 0.006
512 0.954 0.958 0.960 0.958 0.964 0.958 0.951 0.959 0.959 0.945 0.963 0.936 0.955 0.962 0.956 0.964 0.936 0.007
1024 0.954 0.961 0.961 0.959 0.965 0.957 0.951 0.959 0.963 0.954 0.962 0.937 0.959 0.962 0.957 0.965 0.937 0.007

However, a significant challenge arises when182

applying Imbalanced (Unfair) Per-Head Compres-183

sion in tensor parallelism, which has become the184

preferred method for inference in large language185

models (Lu et al., 2017; Shazeer et al., 2018;186

Shoeybi et al., 2020; Rajbhandari et al., 2020). The187

non-uniform distribution of KV cache across heads188

causes computational load imbalance, degrading189

overall inference efficiency. This highlights the190

urgent need for balancing per-head KV cache.191

Table 2: GPU Utilization of Different Models. We
applied Ada-SnapKV to three models, setting the KV
cache budget to 128, 256, 512, and 1024, and measured
its GPU utilization under tensor parallel sizes of 2, 4,
and 8.

Model KV Cache Budget TP = 2 TP = 4 TP = 8

LLaMA-3.3-70B-Instruct

128 92.5 81.6 64.7
256 87.5 74.1 57.2
512 86.4 70.5 55.7

1024 87.2 71.2 58.2

Meta-LLaMA-3-8B

128 92.1 84.4 70.8
256 91.8 82.0 68.5
512 90.6 81.6 68.8

1024 90.9 82.1 69.8

Mistral-Small-24B-Instruct

128 93.2 86.3 75.2
256 91.7 82.9 71.9
512 91.2 82.0 70.8

1024 91.2 82.1 70.8

3 Preliminary192

3.1 Observation of KV Cache Selection193

We examined per-head KV cache eviction pat-194

terns across multiple datasets using different mod-195

els (LLaMA-3.3-70B-Instruct, Meta-LLaMA-3-196

8B, and Mistral-Small-24B-Instruct) and several197

subsets from LongBench v1 for our experiments198

and set the KV budget for the attention heads to199

128, 256, 512, and 1024 as our basic experimental200

setup.201

The per-head KV cache compression algorithm 202

results in varying KV cache budgets across differ- 203

ent attention heads, leading to imbalanced work- 204

loads when combined with tensor parallelism. The 205

results, summarized in Table 2, show a clear trend: 206

Decreasing GPU Utilization with Larger TP 207

Sizes: For instance, in LLaMA-3.3-70B-Instruct 208

with KV cache budget 128, GPU utilization drops 209

from 92.5% (TP=2) to 81.6% (TP=4) and further 210

to 64.7% (TP=8). A similar trend is observed 211

in Meta-LLaMA-3-8B, where GPU utilization de- 212

clines from 92.1% (TP=2) to 84.4% (TP=4) and 213

70.8% (TP=8) under the same KV cache budget. 214

Impact of KV cache Budget: Lower KV cache 215

budgets generally yield better GPU utilization. For 216

example, in Mistral-Small-24B-Instruct with TP=4, 217

GPU utilization is 86.3% at KV=128 but decreases 218

to 82.9% at KV=256 and further to 82.1% at 219

KV=1024. Similarly, in LLaMA-3.3-70B-Instruct 220

with TP=4, GPU utilization drops from 81.6% 221

(KV=128) to 71.2% (KV=1024). This suggests that 222

larger KV cache budgets lead to greater workload 223

imbalance among attention heads, which negatively 224

impacts GPU efficiency. 225

Additionally, as shown in Table 1, we use co- 226

sine similarity to quantify the difference in KV 227

cache allocation between a subset and the remain- 228

ing datasets. Finally, we averaged the metrics 229

across all subsets to obtain an overall indicator. 230

Our analysis indicates that eviction patterns remain 231

largely consistent across datasets, confirming that 232

the statistics for retained KV cache can guide op- 233

timization. Furthermore, the allocation pattern of 234

the KV cache budget is influenced by the specific 235

model used. Given this dataset-invariant nature, 236

optimization strategies can be designed based on 237

these profiles without requiring per-dataset recali- 238
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Figure 1: Impact of Batchsize and KV Cache Budget on Inference Latency

bration.239

3.2 Empirical Performance Analysis240

To optimize the distribution of GPU workload, we241

built an empirical model mapping batch size, re-242

tained KV cache count, and inference latency. Mea-243

surements were taken across various configurations244

on a multi-GPU setup.245

We conducted experiments on the LongBench v1246

dataset by systematically varying both batch size247

and KV cache budget parameters. Specifically, we248

controlled these variables independently to eval-249

uate their individual and combined effects. We250

simulated the inference scenario of LLaMA 70b251

on a single layer and obtained the latency during252

decoding one token. The experimental results, as il-253

lustrated in Figure 1, demonstrate the performance254

characteristics under different configurations.255

For the batch size latency model (Figure a), we256

observe that latency (L) increases approximately257

linearly with batch size (B) across different budget258

configurations. The relationship can be expressed259

as L ≈ αB+β, where α represents the slope and β260

the initial offset. The graph shows four distinct bud-261

get levels (128, 256, 512, and 1024), with higher262

budget values corresponding to steeper slopes in263

the linear relationship. Similarly, the KV cache la-264

tency model (Figure b) demonstrates a comparable265

linear pattern, where latency (L) increases propor-266

tionally with the KV cache budget (C). This can be267

represented as L ≈ γC + δ, where γ and δ are the268

slope and offset parameters respectively. The data269

presents five different batch sizes (32, 64, 128, 256,270

and 512), with larger batch sizes showing more271

pronounced slopes in their linear relationships. In 272

both cases, the approximately linear nature of these 273

relationships is particularly noteworthy, as it sug- 274

gests predictable scaling behavior in the system’s 275

performance characteristics. 276

4 Design of FairKV 277

4.1 Overview 278

During inference with tensor parallelism, per-head 279

KV cache compression algorithms can lead to im- 280

balanced GPU workloads, which in turn reduces 281

inference efficiency.To address this issue, we de- 282

signed FairKV, a load-aware static approach that 283

uses a search algorithm to reassemble and rearrange 284

attention heads across layers, thereby balancing the 285

load among GPUs. Moreover, FairKV leverages 286

fair-copying mechanism to expand the search space 287

via replication of attention heads and DataParallel 288

techniques, enabling a more fine-grained balancing 289

of GPU loads and enhancing GPU utilization dur- 290

ing inference. Figure 2 visually illustrates the core 291

concept of FairKV. 292

The FairKV algorithm requires predefining the 293

model and the KV cache budget to be used. It 294

then samples a dataset to analyze the proportion 295

of KV cache budget allocated to attention heads 296

across different layers for that model, summarizing 297

the findings into a statistical profile. Based on this 298

data, we first replicate attention heads to expand 299

the search space. Next, we perform a constrained 300

search to determine the optimal attention head ar- 301

rangement. Finally, the model weights are loaded 302

according to this arrangement for inference. 303
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Figure 2: Illustration of different head allocation strategies for multi-GPU inference in large-scale transformer
models. The figure shows the following strategies: (1) Static Head Allocation (SHA), where attention heads
are evenly distributed across GPUs without considering computational load; (2) Load-Aware Head Allocation
(FairKV-NoDP), where attention heads are allocated based on their computational load, ensuring a balanced GPU
utilization; (3) Load-Aware Head Allocation with DataParallel (FairKV-DP), where heads are replicated across
GPUs for improved load distribution and efficiency;

4.2 Search Space304

Fair-copying leverages Data Parallel techniques to305

expand the search space by replicating some re-306

dundant heads, with the goal of achieving more307

effective search outcomes. Experiments were con-308

ducted with selective head replication, and the re-309

sults demonstrated improved latency distribution310

across GPUs. Allowing for limited redundancy311

provides an effective way to enhance parallel effi-312

ciency without excessive computational overhead.313

4.3 Mathematical Model for Hybrid314

Parallelism in FairKV315

This section presents a comprehensive mathemati-316

cal formulation of the FairKV system for optimiz-317

ing multi-GPU inference in large language models318

with KV cache compression.319

4.3.1 System Parameters320

The system parameters are defined to model the321

components involved in the FairKV strategy, for322

each transformer layer l ∈ L:323

• Hl = {h1, ..., hn}: attention heads324

• G = {g1, ..., gm}: available GPUs325

• wi: workload for head hi326

• rij : replication factor of head hi on GPU gj 327

4.3.2 Decision Variables 328

The decision variables are crucial for determining 329

the optimal assignment of attention heads to GPUs: 330

xij =

{
rij if head hi is assigned to GPU gj

0 otherwise
(1) 331

4.3.3 Parallelism Constraints 332

The hybrid parallelism approach in FairKV com- 333

bines Tensor Parallelism and Data Parallelism to ad- 334

dress the challenges posed by head-wise KV Cache 335

compression. Tensor Parallelism ensures that the 336

computational workload is distributed across multi- 337

ple GPUs by partitioning the attention heads, while 338

Data Parallelism introduces redundancy by allow- 339

ing selective replication of attention heads across 340

GPUs. This hybrid approach aims to balance the 341

computational load, ensuring that no single GPU 342

becomes a bottleneck due to uneven KV Cache 343

compression rates. 344

Head Distribution Each head must have at least 345

one GPU assignment to ensure that all computa- 346
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tions are accounted for.347 ∑
j∈G

⊮(xij > 0) ≥ 1 ∀i ∈ Hl,∀l ∈ L (2)348

Data Parallelism Total replication factor for349

each head:350 ∑
j∈G

rij ≤ Rmax ∀i ∈ Hl, ∀l ∈ L (3)351

The total replication factor for each head across352

all GPUs must not exceed a predefined maximum,353

Rmax. This prevents over-replication, which could354

lead to increased communication overhead and re-355

duced efficiency.356

4.3.4 Optimization Objective357

The primary goal of the FairKV strategy is to min-358

imize the maximum processing time across all359

GPUs. This is formulated as:360

minmax
j∈G

∑
l∈L

∑
i∈Hl

xijwi

rij
(4)361

4.3.5 System Efficiency362

System efficiency is calculated to evaluate how well363

the GPUs are utilized. The formula for efficiency364

is:365

E =
1

|G|
∑
j∈G

∑
l∈L

∑
i∈Hl

xijwi

rij

maxk∈G
∑

l∈L
∑

i∈Hl

xikwi
rik

(5)366

4.4 Optimizer Design367

We introduce a recursive backtracking algorithm368

that systematically explores possible head distribu-369

tions while ensuring workload balance.370

This approach systematically searches for the371

best head distribution by iterating over all valid372

partitions. By ensuring balanced allocation, the al-373

gorithm minimizes inference latency across GPUs,374

leading to improved system efficiency.375

4.5 Key Innovations376

Workload-aware Redistribution A static yet opti-377

mized head allocation strategy balances GPU work-378

loads efficiently.379

Hybrid Parallelism Selective head replication380

combines tensor and data parallelism.381

Latency-driven Optimization Backtracking min-382

imizes inference latency, improving GPU utiliza-383

tion.384

Algorithm 1 Backtracking-Based Partitioning Al-
gorithm

Input: List of heads L, max GPU load m
Output: Optimal partitioning of L
Initialize result set R
procedure BACKTRACK(index, current)

if index == |L| and |current| ≤ m then
Add current to R return

end if
Add L[index] to current and recurse

BACKTRACK(index+ 1, current)
Remove last element from current
for n = 2 to m− |current|+ 1 do

Split L[index] into n parts and add to
current BACKTRACK(index+ 1, current)

Remove last n elements from current
end for

end procedure

5 Evaluation 385

In this section, we primarily conduct a detailed 386

evaluation of the FairKV method proposed in the 387

previous sections, assessing whether FairKV can 388

effectively improve inference efficiency in hybrid 389

parallelism approaches during Per-Head KV cache 390

Compression. 391

5.1 Experimental Setup 392

We used Python 3.10.16 as the programming lan- 393

guage and implemented FairKV on PyTorch. We 394

leveraged AdaKV from KVPress as the per-head 395

KV cache compression algorithm and tested our ap- 396

proach using Llama models (Touvron et al., 2023) 397

of different sizes as well as the Mistral model (Jiang 398

et al., 2023). 399

Model and Hardware Configurations We used 400

the LLaMA-3.3-70B-Instruct model, the Meta- 401

LLaMA-3-8B model, and the Mistral-Small-24B- 402

Instruct-2501 model as our experimental models. 403

Our hardware environment consists of four Nvidia 404

A100-80G GPUs and 960GB of CPU memory. 405

Dataset Configurations We used LongBench v1 406

(Bai et al., 2024) as the evaluation dataset. Long- 407

Bench v1 is a bilingual, multi-task benchmark for 408

long-text understanding, enabling a more rigorous 409

evaluation of long-text comprehension. 410

Baseline To the best of our knowledge, this study 411

is the first to highlight the issue of GPU workload 412

imbalance caused by per-head KV cache compres- 413

sion algorithms in tensor parallelism. Therefore, 414
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Figure 3: Throughput Gain Rates of FairKV on different models, where the throughput of the baseline model is
regarded as 1.0.

we chose the situation of conducting tensor paral-415

lel inference with Per-Head KV Compression but416

without FairKV as the baseline. By comparing the417

cases with and without FairKV, we can determine418

whether FairKV can improve GPU utilization and419

reduce inference latency.420

Evaluation Metrics The purpose of the evalua-421

tion experiments is to verify the following two ques-422

tions: First, whether FairKV can effectively reduce423

inference latency, and second, whether FairKV can424

effectively increase GPU utilization. Therefore, our425

evaluation metrics are the following two aspects:426

inference time and GPU utilization.427

5.2 Performance Evaluation428

Performance evaluation is a critical component in429

assessing the effectiveness of the FairKV method430

in improving multi-GPU inference efficiency for431

large language models. This subsection outlines the432

key metrics and methodologies used to evaluate the433

performance of FairKV, ensuring a comprehensive434

understanding of its impact on system efficiency.435

5.2.1 Throughput Improvement436

We evaluated the performance of FairKV across437

different models. Specifically, we selected a di-438

verse set of models, including LLaMA-3.3-70B-439

Instruct, Meta-LLaMA-3-8B, and Mistral-Small-440

24B-Instruct, and set the tensor parallel size to441

either 4 or 8 with RC fixed at 4. Throughput gains442

relative to SHA were measured under KV cache443

budgets of 128, 256, 512, and 1024. As shown in444

Figure 3, FairKV accelerates various models, and445

due to the inherent characteristics of each model,446

its throughput under SHA conditions differs. As a447

result, the acceleration effect of FairKV may vary.448

Among them, FairKV achieves the highest benefit449

of up to 1.66 on the Llama-3.3-70B-Instruct model.450

We also evaluated the performance of FairKV 451

under different tensor parallel sizes. Firstly, we 452

observed that FairKV provides acceleration ben- 453

efits under all tensor parallel size conditions. By 454

comparing subfigures a, b, and c, we can see that 455

as the tensor parallel size increases, the accelera- 456

tion effect of FairKV significantly improves under 457

the same model and KV cache budget conditions. 458

This suggests that FairKV is more likely to achieve 459

better acceleration performance when the tensor 460

parallel size is larger. 461

As the KV cache budget increases, the accelera- 462

tion effect of FairKV shows a slight improvement 463

for Meta-LLaMA-3-8B and Mistral-Small-24B- 464

Instruct, while for LLaMA-3.3-70B-Instruct, the 465

acceleration effect initially improves significantly 466

and then slightly decreases. Overall, across these 467

three models, the acceleration effect of FairKV 468

tends to improve as the KV cache budget increases. 469

In general, FairKV demonstrates acceleration 470

benefits across different models, tensor parallel 471

sizes, and KV cache budgets. At the same time, 472

the effectiveness of FairKV is influenced by these 473

factors, and the results may vary accordingly. 474

Figure 4: Ablation Test Among Standard Model,
FairKV w/o Fair-copying and FairKV with Fair-copying
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Figure 5: GPU Utilization with different Data Parallel
Size on LLaMA-3.3-70B.

5.2.2 GPU Utilization Improvement475

We used LLaMA-3.3-70B-Instruct to evaluate the476

impact of FairKV on GPU utilization. In Figure477

4, we conducted ablation tests among standard478

model, FairKV without Fair-copying and FairKV479

with Fair-copying. The result indicate that both480

FairKV with or without Fair-copying significantly481

improves GPU utilization compared to standard482

model, demonstrating that the FairKV method can483

effectively balance GPU loads. Moreover, FairKV484

with Fair-copying shows further improvement over485

FairKV without Fair-copying. Then, to measure486

the impact of the parameter on the FairKV with487

Fair-copying group, we set the size of parallel size,488

which is also the count of copied heads (CH), to 1,489

2, 3, and 4. We measured the GPU utilization for490

these groups under KV cache budgets of 128, 256,491

512, and 1024, with the results shown in Figure492

5. The results suggesting that incorporating only a493

small number of copied heads via Data Parallel can494

enhance the performance of the FairKV strategy495

greatly. We also observed a positive correlation496

between the performance of FairKV and CH; as497

CH increases, the GPU utilization curve becomes498

less steep, indicating that while increases in CH499

yield significant benefits when CH is small, the500

incremental gains diminish when CH is larger.501

6 Conclusion502

In this paper, we propose FairKV, a novel opti-503

mization technique designed to improve inference504

efficiency by dynamically adjusting the allocation505

of attention heads in Tensor Parallelism. FairKV506

leverages the statistics of the retained Key-Value507

(KV) cache to partition attention heads based on 508

their computational load, ensuring a balanced work- 509

load distribution across GPUs. 510

Our method has been extensively evaluated 511

across various configurations, demonstrating con- 512

sistent performance improvements. Specifically, 513

FairKV significantly reduces inference latency and 514

improves GPU utilization, regardless of the number 515

of GPUs used, the model size (including different 516

versions of LLaMa and Mistral), or the KV cache 517

budget. This versatility highlights the robustness 518

of our approach, making it effective across differ- 519

ent settings and resource constraints. Experimental 520

results show that FairKV achieves up to a 66% 521

increase in inference throughput, with minimal im- 522

pact on model accuracy. These findings confirm 523

that FairKV is a promising solution for optimizing 524

large-scale model inference in real-world, real-time 525

applications. 526

Future work will explore the adaptability of 527

FairKV to dynamic KV cache budgets and inves- 528

tigate its potential for scaling to models such as 529

Mixture of Experts (MoE), where the computa- 530

tional load can vary significantly across different 531

tasks. These enhancements aim to further extend 532

the applicability of FairKV to a broader range of 533

models and dynamic environments. 534

7 Limitations and Future works 535

Although FairKV provides significant improve- 536

ments in inference efficiency, there are a few limi- 537

tations that need to be addressed. First, FairKV is 538

designed for a single machine with multiple GPUs 539

and does not account for scenarios involving dis- 540

tributed systems across multiple machines. Second, 541

the current method primarily focuses on the par- 542

allelization of the inference process without con- 543

sidering the separation of the prefill and decode 544

stages, which is critical in certain real-time applica- 545

tions where the inference process is more complex 546

and involves sequential decoding. Additionally, 547

FairKV relies on the accuracy of the KV cache 548

statistics for optimal head allocation. This means 549

that the effectiveness of KV cache compression de- 550

pends on the statistical properties of the cache, and 551

any deviations from these properties could reduce 552

the method’s performance. We will address these 553

limitations in future work. 554
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Method
Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Coding

Ave. Score
NtrQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRe LCC RB-P

KV Budget = 128
StreamingLLM 13.57 11.48 24.47 34.25 25.35 11.31 20.06 17.39 17.80 30.50 50.14 35.33 3.00 5.50 15.50 60.25 23.49

Pyramid 13.91 13.05 18.71 27.43 14.36 6.35 17.93 17.25 19.52 21.00 89.09 38.03 1.11 5.00 61.93 57.00 26.35
SnapKV 12.23 11.88 17.93 25.32 12.41 8.20 17.88 16.84 19.44 22.00 90.97 37.83 2.50 5.50 61.62 57.54 26.26

Ada-SnapKV 13.52 12.79 18.30 28.94 14.13 9.35 19.04 17.26 19.94 25.00 91.44 37.96 1.54 4.00 63.34 56.39 27.06

KV Budget = 256
StreamingLLM 14.25 12.92 28.75 31.80 19.19 11.39 22.86 17.26 22.73 44.00 52.80 38.77 4.00 9.00 16.11 59.79 25.35

Pyramid 13.57 17.36 19.29 30.95 18.10 8.21 20.30 17.65 20.90 26.00 90.94 40.02 4.73 4.50 64.71 55.06 28.27
SnapKV 14.82 16.32 18.44 29.53 14.25 9.26 20.32 17.56 21.70 28.50 91.49 40.15 4.12 5.00 64.60 54.78 28.18

Ada-SnapKV 15.19 15.97 20.05 35.08 16.31 8.32 21.31 17.99 22.11 33.00 91.68 41.28 5.93 5.50 66.14 54.76 29.41

KV Budget = 512
StreamingLLM 14.47 16.86 34.18 31.88 18.76 11.80 26.01 18.20 25.10 53.00 60.04 41.23 4.00 9.50 19.74 57.87 27.66

Pyramid 15.67 21.59 23.56 35.63 24.36 9.77 22.18 19.05 23.25 34.00 91.11 42.44 4.61 17.50 65.87 54.41 31.56
SnapKV 15.22 22.90 23.41 33.00 22.54 8.91 22.63 18.31 23.50 35.00 91.39 41.85 4.50 15.50 66.79 53.75 31.20

Ada-SnapKV 17.72 24.22 25.38 38.00 23.47 9.25 23.55 18.91 23.82 43.00 92.14 42.81 6.34 15.00 66.12 55.32 32.82

KV Budget = 1024
StreamingLLM 13.36 21.55 41.70 32.80 22.63 12.88 28.40 19.36 25.93 62.00 75.54 41.76 2.00 11.00 22.91 57.05 30.68

Pyramid 16.67 29.11 28.74 40.13 27.89 13.43 24.63 20.36 25.01 43.00 91.86 43.48 6.78 52.50 65.34 54.87 36.49
SnapKV 19.57 31.67 31.52 42.04 27.89 12.94 25.31 19.66 25.12 48.50 91.37 42.83 5.99 56.00 66.56 53.97 37.56

Ada-SnapKV 19.74 30.47 31.42 40.82 28.98 16.07 25.35 20.57 25.57 53.50 91.76 43.81 4.63 53.50 65.75 55.90 37.99

KV Budget = 2048
StreamingLLM 16.86 31.83 48.22 33.59 29.36 15.74 30.11 20.89 26.68 65.50 92.49 44.12 5.25 21.00 39.75 56.66 36.13

Pyramid 21.16 36.66 37.56 43.28 36.25 19.72 27.90 21.73 26.35 53.00 92.36 44.61 6.94 89.50 64.23 53.11 42.15
SnapKV 21.24 39.86 38.21 45.96 35.36 21.20 28.68 21.49 26.50 58.00 92.36 44.06 6.31 88.50 64.26 53.73 42.86

Ada-SnapKV 22.42 40.26 40.13 49.60 38.23 19.70 28.49 21.76 26.77 61.50 92.35 44.04 8.27 85.00 64.11 54.09 43.55

Table 3: Comparison of Common KV Cache Compression Methods.

A Value of Per-Head KV Cache662

Compression Methods663

Table 3 presents the performance of common KV664

cache compression methods on the LongBench665

v1 (Bai et al., 2024) dataset. We tested differ-666

ent KV cache compression methods on Llama-3.1-667

8B-Instruct with KV Cache budgets set to 128,668

256, 512, 1024, and 2048. As described in Ta-669

ble 3, across various KV cache budget settings,670

Ada-SnapKV (the optimized version of SnapKV671

based on Ada-KV) achieved higher average scores672

than other methods on multiple tasks in the Long-673

bench v1 dataset.674

B Common KV Cache Compression675

Methods with Tensor Parallelism676

Figure 6 shows the combination of common KV677

cache compression methods with tensor paral-678

lelism. As can be seen from the figure, the tra-679

ditional Balanced (Fair) Per-Head Compression680

methods result in a balanced computational load681

after the partitioning in tensor parallelism. In these682

methods, each part of the parallel computation683

bears a relatively equal amount of work. On the684

contrary, the Imbalanced (Unfair) Per-Head Com-685

pression methods lead to an unbalanced computa-686

tional load.687

10



Figure 6: Common KV Cache Compression Methods with Tensor Parallelism
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