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ABSTRACT

Continuum models for ion transport through polyamide nanopores require solving partial
differential equations (PDEs) through complex pore geometries. Resolving spatiotemporal
features at this length and time-scale can make solving these equations computationally
intractable. In addition, mechanistic models frequently require functional relationships be-
tween ion interaction parameters under nano-confinement, which are often too challenging
to measure experimentally or know a priori. In this work, we develop the first physics-
informed deep learning model to learn ion transport behaviour across polyamide nanopores.
The proposed architecture leverages neural differential equations in conjunction with clas-
sical closure models as inductive biases directly encoded into the neural framework. The
neural differential equations are pre-trained on simulated data from continuum models
and fine-tuned on independent experimental data to learn ion rejection behaviour. Gaus-
sian noise augmentations from experimental uncertainty estimates are also introduced into
the measured data to improve model generalization. Our approach is compared to other
physics-informed deep learning models and shows strong agreement with experimental
measurements across all studied datasets.

1 INTRODUCTION

Highly-selective polyamide membranes are used ubiquitously across the separations industry to
recover valuable metals, such as lithium and cobalt (DuChanois et al., 2023). Owing to the rapid
growth of the electric vehicle industry, the demand for these metals is expected to double by 2025
and quadruple by 2030 (Sovacool et al., 2020). To meet this increasing demand, optimizing the
selectivity of polyamide membranes across diverse water sources is essential and of substantial
industrial interest. Models that accurately predict ion transport and selectivity without the need for
expensive experiments can play a significant role in achieving these objectives (Hegde et al., 2022).

Continuum dynamics models are frequently used to describe the underlying laws of physical
phenomena using partial differential equations (PDEs) (Li et al., 2020b; Raissi et al., 2019;
Brunton et al., 2016). Solving these PDEs yields high solution accuracy but often at the expense of
computational cost (Karniadakis et al., 2021). With ion transport across highly-selective polyamide
nanopores, which are often fabricated using chaotic chemical processes like interfacial polymer-
ization, classical numerical methods encounter highly irregular and non-homogenous boundary
conditions that necessitate high-resolution discretizations to resolve (Ritt et al., 2020b; Jimenez-
Solomon et al., 2016). Additionally, at these length-scales, ion interactions become non-negligible
and require functional relationships between interaction parameters and the governing PDE – under
nano-confinement, these typically invariant parameters start to diverge from bulk values due to
the spatial orientation constraints (Epsztein et al., 2020; Abbaszadeh et al., 2023; Geise et al., 2014)1.

To address these concerns, physics-informed neural solvers that abstract out the nature of
these complex boundaries and pore geometries can prove meaningful in deriving accurate and
generalizable models for ion transport under nano-confinement. In this work, we propose a
physics-constrained architecture that combines neural differential equations with hard inductive

1Additional research pertaining to deep learning for PDEs and continuum ion transport models is covered
in Appendix A.1.
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biases to account for charge conservation (Chen et al., 2018). In addition, we leverage established
mechanistic solvers and independent experimental data to train the neural architecture to improve
generalization across diverse concentration inputs (Bowen & Welfoot, 2002). Gaussian noise
augmentations are also introduced to the measured data to improve solver performance. This
effort is the first attempt at using physics-constrained deep learning to learn complex ion transport
dynamics and rejection behaviour across highly-selective polyamide membranes.

2 PROPOSED ARCHITECTURE

Neural Ordinary Differential Equations The continuous dynamics of the hidden layers, h, in
the neural network are parameterized using a first-order ordinary differentiatial equation (ODE):

dh(Jv)
dJv

= fθ(h(Jv), Jv; θ) (1)

for flux, Jv = {0 . . .Jv}, and h ∈ Rd, where d denotes the maximum number of ionic species
present across all datasets. Additionally, fθ : [0,Jv] × Rd → Rd. To account for mixtures with
different ions in the training and test data, masking is applied to h(0). Here, outputs of the hidden
layer correspond to scalar concentrations, h(Jv). Additionally, θ ∈ Θ, where Θ represents some
finite dimensional parameter space (Chen et al., 2018). By learning the derivative of the hidden
layer output, concentrations are uniformly Lipschitz continuous in h(Jv) and continuous in Jv ,
enabling pre-training on classical continuum models (Kidger, 2022).

In addition to masking, polynomial positional encodings are used. The embeddings are con-
catenated with the masked concentration vector prior to being passed into the neural network. To
integrate over the neural ODE, we use the Dormand–Prince 5(4) numerical method (Calvo et al.,
1990) and backpropagate through the solver using the continuous adjoint method (Chen et al., 2018).

The network is comprised of five linear layers and tanh(·) non-linearities applied to each
output. Following the last linear layer, no point-wise activations are used. The network is trained
using Adam with a batch size of 32 and an initial learning rate of 10−3 (Kingma & Ba, 2014). The
learning rate is halved every 200 epochs for a total of 1000 epochs. For all experiments conducted,
we evaluate the hidden state dynamics and their derivatives on the GPU using PyTorch, which were
obtained from Python’s scipy.integrate package (Virtanen et al., 2020; Paszke et al., 2019).

2.1 INDUCTIVE BIASES

Charge Conservation Electroneutrality in ion-fluid systems is a conservation law that necessitates
a solution’s net charge remain neutral under equilibrium conditions (Alkhadra et al., 2022). Within
the nanopores, local electroneutrality can break down (de Souza et al., 2021); however, in the bulk
fluid, ∀Jv , the following constraint holds:

d∑

j=1

zjhj(Jv) = 0 (2)

where z ∈ Zd is a vector of valences. To encode electroneutrality into the neural network as a hard
constraint, we evaluate the orthogonal projection of the hidden layer output: z

⊥

h⊥ = z

⊥

h − z

⊥

h∥.
By using h⊥ instead of appending the inductive bias to the loss as a soft constraint, the model
enforces inter-ionic coupling between ions, substantially improving generalization performance.

2.2 TRAINING AND AUGMENTATIONS

Pre-training on Continuum Models To pre-train the neural architecture, we use simulated data
generated from the well-established Donnan-Steric Pore Model with Dielectric Exclusion (DSPM-
DE). We use an iterative, under-relaxed numerical scheme to solve the PDE (Geraldes & Brites
Alves, 2008) (model and implementation details are provided in Appendix A.2):

Ji = −DiKi,d∂xCi +Ki,cCiJv −
Ki,dDiCiziF

RT
∂xψ, x ∈ [0,∆xe] (3)
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In DSPM-DE, four latent variables are most often used to parameterize the nanoporous membrane:
Z = {rp,∆xe, ζp, χd}. We apply our previously-developed approach using global optimization
with simulated annealing and the Nelder-Mead local search to regress average values of the four pa-
rameters across the training data (Rehman & Lienhard, 2022). Details are provided in Appendix A.2.

During pre-training, the d-dimensional concentration vector was sampled using low-discrepancy
Sobol sequences and projected to log-space to improve model predictions at lower concentrations
(Joe & Kuo, 2008; Wang et al., 2021b). The MSE loss used for pre-training is:

Lcm(h,hcm) =
1

kd

k∑

i=1

d∑

j=1

[
hj(Jv,i)− hcm

j (Jv,i)
]2

(4)

Fine-tuning on Measured Data Following pre-training, the network was fine-tuned using exper-
imental data comprising 850 ion concentration measurements. To improve generalization, we use
measured uncertainties across the training data to fit Gaussian statistics to individual data points. To
evaluate the loss function, values of output concentration are sampled from this distribution2:

Lexp(h,hexp) =
1

nd

n∑

i=1

d∑

j=1

[
hj(Jv,i)− hexp

j (Jv,i)
]2
, hexp

j (Jv,i) ∼ N (µij , σ
2
ij) ∀i, j (5)

All datasets analyzed the same polyamide membrane (DuPont’s FilmTec™ NF270) for ion separa-
tion (Al-Zoubi et al., 2007; Micari et al., 2020; Al-Zoubi & Omar, 2009; Epsztein et al., 2018). To
weight the measured data more heavily than the simulated data during training, n≪ k.

3 RESULTS AND DISCUSSION

Downstream Task Prediction To evaluate the performance of our framework, we compare ion
rejection predictions with those from the continuum model and measurement data in the test set
(Fig. 1A). Rejection values closer to 1 signify perfect selectivity between the ion and the polyamide
membrane. Ion rejection can also undertake values below 0, which signify counter-ion entrainment
through the pore to satisfy the electroneutrality condition in the product flow (Gilron et al., 2001).
Negative rejection is frequently observed in ion transport across polyamide nanopores (Alkhadra
et al., 2022), and here, we illustrate the neural solver’s ability to capture this phenomena and
generalize it more accurately than the baseline DSPM-DE method.

In Fig. 1B, a sample initial condition from the test set is propagated through the neural solver
and DSPM-DE. Since the baseline method requires knowledge of the hydrated ionic radii and
membrane charge (a parameter with high sensitivity to local concentration and composition) − both
of which can possess large uncertainties − error in these parameters propagates into ion rejection
(Rehman & Lienhard, 2022). Since the neural ODE eliminates the need for these parameters by
treating the polyamide like a black-box, predictive performance is substantially improved.

Other Architectures We compare our approach to other deep learning methods and mechanis-
tic models in Table 1. We test physics-informed neural networks (PINNs)3 (Raissi et al., 2019),
ResNets (He et al., 2015), and U-Nets (Ronneberger et al., 2015). For the mechanistic models, we
use DSPM-DE as the baseline method (Bowen & Welfoot, 2002). We also evaluate the solution-
friction (SF) method on the test data using ion-specific friction factors regressed from the training
set (Wang et al., 2021a). Since inter-species diffusion coefficients for all ions in the training and
test data were unavailable in the literature, the Maxwell–Stefan framework could not be used for
comparison purposes. The projection operator, noise augmentations, and training procedure were
all held constant for the comparison, as were the approximate number of parameters used in the
deep learning models. Hyperparameter tuning was also performed on all the learning architectures
to ensure a fair comparison between rejection predictions.

2Hinge loss terms based on the Hofmeister series were originally included in the loss function but provided
mixed results (Somrani et al., 2013). Given that ion rejection has been seen to diverge from the Hofmeister
series under certain conditions, it was removed entirely from the loss function (Luo & Wan, 2011).

3To evaluate the PDE loss in the PINN case, DSPM-DE was used to solve the Nernst-Planck equations.
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Figure 1: Left: Parity plot illustrating superior predictive performance of the physics-constrained
neural ODE over the classical mechanistic solver across all test data. Right: For a given test compo-
sition, ion rejection is predicted as a function of normalized flux by the neural solver and DSPM-DE.

Table 1: Downstream task test error using alternate deep learning methods and continuum models.

# Params Test Error

Deep Learning Methods
Neural ODE (Our Work) 1.05 M 7.1%
PINN (Raissi et al., 2019) 1.12 M 9.7%
ResNet (He et al., 2015) 1.23 M 9.2%

U-Net (Ronneberger et al., 2015) 1.01 M 10.2%

Continuum Models
DSPM-DE (baseline) (Bowen & Welfoot, 2002) 4 17.8%

SF (Wang et al., 2021a) d + 4 24.8%

Across the test data, we find that the physics-constrained neural ODE outperforms the PINN,
ResNet, and U-Net. This is largely attributed to the smooth concentrations predicted by the neu-
ral ODE, which are advantageous in bounding test error when unseen concentrations and fluxes are
observed (Cuomo et al., 2022). Despite this, the other models still exhibit lower test error than the
baseline DSPM-DE method, reiterating the importance of relaxing the simplifications encoded into
classical mechanistic models. Similarly, in agreement with expectation, the SF method produces
the largest error on the test set as a result of the overparameterized friction factors (see Appendix
A.1 for details). Despite the fewer latent variables in DSPM-DE, it still exhibits higher prediction
accuracy than the SF model. Overall, the neural ODE provides the best performance in predicting
ion transport across the polyamide nanopores across diverse input concentrations.

4 CONCLUSIONS AND FUTURE WORK

In this work, we develop the first physics-constrained neural ODE solver for ion transport across
polyamide nanopores. Our solver encodes electroneutrality into the architecture and trains on a mix-
ture of simulated data and experimental measurements augmented with Gaussian noise to achieve an
average test error of 7.1%, compared to 17.8% from classical PDE solvers. The model also outper-
forms other deep learning models when rejection prediction is used as the downstream task. Next
steps include generating new ion rejection profiles using complex mixtures to identify high-value
separations using polyamide membranes. Additionally, we hope to quantify the model’s predictive
accuracy in the high-salinity regime for applications to metal recovery from hypersaline brines.
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A APPENDIX

A.1 RELEVANT WORK

Machine Learning for PDEs A substantial amount of literature is dedicated to using neural net-
works to learn PDEs (Raissi et al., 2019; Raissi & Karniadakis, 2018; Long et al., 2018; Bar-Sinai
et al., 2019). These efforts include applications to fluid simulation (Wiewel et al., 2019), flame prop-
agation (Kochkov et al., 2021; Brandstetter et al., 2022), and shallow wave dispersion (Brandstetter
et al., 2022). Some approaches investigate finite-dimensional solution operators to learn the gov-
erning PDE, but intrinsically depend on domain geometry and spatiotemporal discretization (Zhu
& Zabaras, 2018). Other work has considered learning infinite-dimensional neural operators for
mesh-independent applications (Li et al., 2020a; Lu et al., 2021). Specific to ion transport, prior
research has focused on the development of deep learning models for membrane fouling prediction
(De Jaegher et al., 2021) and multi-scale transport (Rall et al., 2020); however, studies investigating
multi-ion transport across polyamide nanopores remain elusive, and the primary focus of this work.

Continuum Ion Transport Models The Donnan-Steric Pore Model with Dielectric Exclusion
(DSPM-DE) is one of the most frequently used models for quantifying ion transport across
polyamide nanopores (Bowen & Welfoot, 2002). DSPM-DE solves the extended Nernst-Planck
PDEs in conjunction with electroneutrality constraints that serve as a closure model for the elec-
tric potential. Other variants close the PDE using solutions to the Poisson-Boltzmann equations
(Schmuck & Bazant, 2015). In DSPM-DE, the boundary conditions are highly simplified, assuming
cylindrical nanopores and equilibrium partitioning relationships to quantify selectivity mechanisms
(Rehman & Lienhard, 2022). The solution-friction (SF) model similarly solves the extended Nernst-
Planck PDEs; however, it makes no assumptions about pore geometry and regresses friction factors
from data to quantify restricted transport within the nanopores (Wang et al., 2021a). Although the
model eliminates assumptions around pore structure, regressing friction factors often overparameter-
izes the model making generalization challenging. Other models like the Maxwell-Stefan framework
attempt to capture inter-species coupling through experimentally-measured binary diffusion coeffi-
cients (Krishna & Wesselingh, 1997). Although measurable in bulk solutions, determining these
coefficients inside the polymer matrix is often not feasible, meaning that the model often resorts to
simplifications similar to those used in DSPM-DE and SF models (Rehman et al., 2021).

A.2 MECHANISTIC MODEL AND PARAMETER ESTIMATION

DSPM-DE solves the extended Nernst-Planck PDE inside the active layer of the polyamide:

Ji = −DiKi,d∂xCi +Ki,cCiJv −
Ki,dDiCiziF

RT
∂xψ, x ∈ [0,∆xe] (6)

Here, Ci is the solute concentration, Ji is the solute flux, and ψ is the electric potential. F , R,
and T are Faraday’s constant, the universal gas constant, and absolute temperature, respectively.
Ki,c and Ki,d are convective and diffusive hindrance coefficients used to capture reductions in the
bulk diffusion coefficient, Di, under nano-confinement. Polynomial expressions for Ki,c and Ki,d

can be derived from perturbation theory solutions to the Navier-Stokes equations assuming ions
behave like hard spheres in cylindrical pores, where Ki,c ∈ [0, 1] and Ki,d ∈ [0, 1] (Deen, 1987;
Mavrovouniotis & Brenner, 1988).

By removing hindered transport assumptions (i.e. using bulk diffusion coefficients and set-
ting Ki,c = 1 and Ki,d = 1), the extended Nernst-Planck PDE can also be used to solve for ion
transport in the boundary layer. Mass transfer correlations are also needed to calculate the Sherwood
number as a function of system geometry and flow characteristics (Labban et al., 2017). The PDEs
are solved simultaneously, with electroneutrality conditions applied to each spatial domain:

d∑

i=1

ziCi = 0

d∑

i=1

ziCi + χd(Ci) = 0 (7)

The first equation prescribes electroneutrality in the boundary layer film and product flow, while
the second equation enforces electroneutrality inside the polyamide. χd(C) is the volumetric
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charge density of the polyamide membrane and a function of local composition (Ritt et al., 2020a).
Adsorption isotherms have been frequently used to quantify these functional dependencies.

Lastly, boundary conditions are prescribed at the solution-membrane interface. Three equi-
librium partition coefficients, ϕS, ϕDi, and ϕDo, are used to evaluate ion selectivity as a function of
steric, dielectric, and Donnan exclusion terms (a schematic diagram is presented in Fig. 2):

γi(0
−)Ci(0

−)

γi(0+)Ci(0+)
= ϕi,Sϕi,Diϕi,Do (8)

Here, γ is the ion activity coefficient, which is used to capture the departure from ideality of ions in
solution. In this work, the Pitzer-Kim model is used to evaluate these coefficients (Pitzer, 1973). 0−
and 0+ denote the solution-side and membrane-side at the interface, respectively. Calculating each
partition coefficient’s contributions is summarized in previous work (Rehman & Lienhard, 2022).
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Figure 2: Physical representation of individual ion selectivity mechanisms used to quantify boundary
conditions in the DSPM-DE model. (A) Steric rejection separates ions based on their size relative
to the pore radius, rp. (B) Dielectric exclusion captures the partial or complete shedding of ion
hydration shells prior to entering the membrane pores with fictitious image forces created at the
membrane interface. Image charges are repulsive for both cations and anions, given that the dielec-
tric constant of the solvent, ζb, is larger than the dielectric constant of the membrane matrix, ζm.
The cross section shows a thin film of water molecules with a constrained orientation aggregated
near the pore walls, where the dielectric constant of the solvent is reduced to ζp. The thickness of
the layer of water molecules is denoted by δ. ζb and ζm were set to 78.54 and 4.5, respectively,
in the reported work. (C) The Donnan exclusion mechanism fractionates ions based on charge, e.g.
negatively-charged ions are repelled by a negatively-charged membrane, whereas positively-charged
ions are attracted into the pores.

To solve the above system of equations, two under-relaxation update schemes are used (Geraldes &
Brites Alves, 2008). The first applies to the electric potential:

ψ(n+1) = ψ(n−1) + ηψ

[
ψ(n) − ψ(n−1)

]
(9)

where the superscript denotes the iteration step. The under-relaxation factor, ηψ ∈ [0, 1]. Since the
governing PDE can be very stiff (due to order of magnitude differences in input concentrations),
convergence of the DSPM-DE method is highly sensitive to the under-relaxation parameter. A
relatively low value of ηψ = 0.10 was used across all simulations to guarantee convergence.

A second under-relaxation parameter is also required to ensure that ion concentrations con-
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verge. The update step is:

C
(n+1)
i = C

(n−1)
i

[
1 + ηC min

(
1,

∣∣∣∣
C

(n−1)
i

C
(n)
i − C

(n−1)
i

∣∣∣∣

)](
C

(n)
i − C

(n−1)
i

C
(n−1)
i

)
(10)

where ηC ∈ [0, 1]. Similarly, a low value of ηC = 0.175 was set across simulations to ensure
convergence. This update formulation also guarantees that C(n+1)

i remains non-negative at each
iteration.

This procedure, in conjunction with the four latent membrane variables: Z = {rp,∆xe, ζp, χd},
can be used to solve for output concentrations in the product flow. To quantify the latent variables,
Z , we minimize the following objective function using a hybrid global-local optimization method:
simulated annealing combined with the Nelder-Mead local search (Rehman & Lienhard, 2022):

argmin
Z

Ns∑

i=1

Nw∑

j=1

[
Rmod
i,j (Z)−Rexp

i,j

]2

σ2
i,j

(11)

whereNs andNw are the total number of ions and flux measurements taken, respectively. Here, σ2
i,j

is the variance estimate across experimental trials. Using this approach, in Table 2, we summarize
the converged latent parameters using all data points in the training set. These values were used to
generate simulated data needed for pre-training the physics-constrained neural ODE.

Table 2: DSPM-DE parameters used for pre-training the physics-constrained neural solver.

rp [nm] ∆xe [µm] ζp [-] χd [mol/m3]

0.51 1.27 43.56 −51.23
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