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Abstract

Recent advances in large-scale language mod-001
eling and generation have enabled the creation002
of dialogue agents that exhibit human-like re-003
sponses in a wide range of conversational sce-004
narios spanning a diverse set of tasks, from005
general chit-chat to focused goal-oriented dis-006
course. While these agents excel at generating007
high-quality responses that are relevant to prior008
context, they suffer from a lack of awareness of009
the overall direction in which the conversation010
is headed, and the likelihood of task success in-011
herent therein. Thus, we propose a framework012
in which dialogue agents can evaluate the pro-013
gression of a conversation toward or away from014
desired outcomes, and use this signal to inform015
planning for subsequent responses. Our frame-016
work is composed of three key elements: (1)017
the notion of a "global" dialogue state (GDS)018
space, (2) a task-specific progression function019
(PF) computed in terms of a conversation’s tra-020
jectory through this space, and (3) a planning021
mechanism by which a dialogue agent may use022
progression signals to select its next response.023

1 Introduction024

All human conversation serves some purpose.025

These may range from negotiating an agreement to026

explaining a topic to maintaining a social relation-027

ship. People are generally capable of forming an028

assessment, sometimes subconsciously, whether a029

conversation is going well or not and adjusting their030

behavior accordingly. Such assessment, which un-031

derlies most human conversation, is essential in032

continuous awareness of the direction where the033

interaction is heading and whether the parties are034

in sync or not, e.g., Bernieri and Rosenthal (1991).035

In a task-oriented interaction, the participants as-036

sess if progress towards a successful outcome is037

being made. In a negotiation, parties assess if an038

agreement is likely. Even in a casual conversation,039

people intuitively sense when to continue, when to040

change the subject, or when to stop. Based on such041

Figure 1: Our framework applied to the charity solici-
tation task in Persuasion For Good (Wang et al., 2019).
Given the dialogue history (center left), the system uses
rollouts (Lewis et al., 2017) to simulate the outcome of
two response candidates (bottom, in red). Each rollout
is mapped as a path through the Global Dialogue State
space (center right) where it can be compared with sim-
ilar outcomes. The candidates are finally ranked using
the Progression Function (top), and the best is selected.

(subjective) assessment, participants adjust what 042

to say next: whether to push forward, make a 043

concession, soften the tone, digress, or say good- 044

bye. A wide range of research in conversation 045

and discourse analysis is devoted to these and 046

related issues including (Beebe and Masterson, 047

2000; Cassell et al., 2007; Friedman, 2004; Grem- 048

ler and Gwinner, 2008; Langewitz et al., 2003); 049

however, recent efforts in Dialogue State Track- 050

ing (DST) have been primarily focused on collect- 051

ing fine-grained details (e.g., slot-value pairs for 052
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travel booking or restaurant reservation) (Balara-053

man et al., 2021) without concern for the overall di-054

rection and quality of the conversation, even though055

the latter is critical for achieving human-level dia-056

logue interaction.057

As such, we approach dialogue state tracking at058

a higher level, focusing instead on what we call the059

Global Dialogue State (GDS). Given a conversa-060

tional task (e.g., negotiation), the global state of a061

dialogue reflects the most likely outcome (e.g., a062

strong agreement or a stalemate) given the history063

of the dialogue up to the current turn. In contrast064

to traditional DST, the global state remains invari-065

ant to the specific details discussed at each turn066

(e.g., names, dates, quantities) that are typically067

the concern of slot-filling models. Rather, global068

dialogue states are influenced by the contexts in069

which these details occur (e.g., “I would love to070

donate $5 to this charity!” vs. “I would never do-071

nate $5 to this charity”). Thus, the global state of072

a dialogue can be measured in terms of its seman-073

tic similarity to other groups of dialogues for the074

same task, which can be naturally formulated as a075

cluster-assignment problem in the dialogue embed-076

ding space. That is, a dialogue which is assigned077

at the current turn to a cluster of highly successful078

outcomes may assume a high likelihood of success,079

and likewise a dialogue assigned to a cluster of un-080

successful outcomes may assume a low likelihood081

of success. It follows from this that the path of a082

dialogue through the global state space can be used083

to derive a Progression Function (PF) to provide084

turn-level estimates of task success, which can in085

turn be used by a dialogue agent to inform its next086

response.087

2 Related Work088

Our work lies at the intersection of dialogue state089

tracking and response planning. As previously090

noted, we approach dialogue state at a much higher091

level than is typically seen in the DST literature.092

Our concept of global dialogue state is not mutually093

exclusive with traditional DST approaches, which094

we refer to from here on as local DST. Rather,095

an effective dialogue system might integrate local096

and global DST approaches to enable simultane-097

ous tracking of user intents and slot-value pairs098

(needed for interfacing with external resources) and099

the overall likelihood of conversational success.100

2.1 Dialogue State Tracking 101

Local DST approaches are used in task-oriented 102

(also called goal-oriented) dialogue systems. Lo- 103

cal DST is responsible for identifying user intent 104

(e.g., search for restaurants) and extracting slot- 105

value pairs (e.g., location, price range). Recent 106

DST systems perform state tracking in a diverse 107

set of domains, including food ordering and travel 108

resevations (Lertvittayakumjorn et al., 2021; Qin 109

et al., 2021; He et al., 2018). Datasets such as 110

MultiWOZ (Budzianowski et al., 2018; Eric et al., 111

2020; Zang et al., 2020) and SGD (Rastogi et al., 112

2020) provide large-scale testbeds for training sin- 113

gle DST systems that generalize across many task 114

domains. However, local DST is generally not 115

deployed in open-domain end-to-end dialogue sys- 116

tems that focus on social interaction and user en- 117

gagement, recent examples including DialoGPT 118

(Zhang et al., 2020), Meena (Adiwardana et al., 119

2020), and BlenderBot (Roller et al., 2021; Xu 120

et al., 2021). In open-domain models, the task is 121

unconstrained and thus it makes little sense to em- 122

ploy traditional slot-based dialogue state trackers. 123

Instead, these models track state implicitly in their 124

latent representations of dialogue history. Unlike 125

local DST, global state tracking is applicable in 126

both the task-oriented and open-domain end-to-end 127

settings. 128

2.2 Dialogue Response Planning 129

Many approaches exist for planning in dialogue 130

response generation. Planning helps a dialogue 131

agent maintain coherence over multiple turns and 132

stay on track to complete its goal. Lewis et al. 133

(2017) introduce Dialogue Rollouts, allowing a 134

negotiation agent to simulate the remainder of a 135

conversation based on each of multiple candidate 136

responses and select the one which yields the best 137

outcome. Yarats and Lewis (2018) follow up by 138

separating semantic planning and surface realiza- 139

tion for response generation by first producing a 140

latent semantic representation of the dialogue plan 141

and then conditioning on it during generation with 142

Rollouts. Similarly, Jiang et al. (2019) implement 143

a look-ahead module to implicitly predict multi- 144

ple future turns in an end-to-end encoder-decoder 145

architecture, experimenting with negotiation and 146

restaurant reservation settings. These works all 147

experiment in task domains where goal achieve- 148

ment is explicitly measurable, which is not true 149

in the general case. Thus we propose to combine 150
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such methods with our progression function which151

provides estimates of goal completion likelihood.152

Particularly, in this paper we demonstrate the use153

of Rollouts with the PF as a reward signal.154

3 Framework155

The goal of our system is to construct a global di-156

alogue state space for a task-specific dataset and157

learn a progression function to estimate how well158

an ongoing dialogue is progressing toward the de-159

sired outcome of the task. The quantity output160

by the progression function is an estimate of a161

dialogue-level attribute which indicates task suc-162

cess (e.g. satisfaction in a customer service task).163

In many task domains, the success of a conversa-164

tion cannot be completely measured by a single165

attribute. For example, in the charity solicitation166

task we use in our experiments, donation amount167

is the primary success attribute. Here, there are168

cases where the conversation appears to go very169

well, but ultimately no donation is made for unex-170

pected reasons such as the solicitee not being able171

to afford to donate. One could reasonably expect172

such an outcome to be “acceptable” in the context173

of a solicitation task since the solicitee has engaged174

with the solicitor and displayed interest, and we175

cannot reasonably expect the solicitor to force a do-176

nation out of someone who cannot afford it. Thus177

we introduce the “acceptability score”, a synthetic178

attribute that measures success by considering mul-179

tiple factors (e.g., donation amount and sentiment).180

For any dialogue dataset, the acceptability score181

combines multiple dialogue-level attributes in a182

way sensitive to their covariance with the primary183

success attribute:184

ACCD = primD +

|vD|∑
i=1

Cov(prim, attri) · vDi

(1)

185

where primD is the primary success attribute (e.g.186

donation amount) value for dialogue D, vD is the187

vector of all other attribute values (e.g., sentiment)188

for dialogue D, and Cov(prim, attri) is the training189

set covariance between the primary success indica-190

tor and the i’th other attribute. We define the output191

of the progression function to be an estimate of the192

acceptability score.193

To learn the progression function, dialogue-level194

attribute annotations must exist for use in this pur-195

pose. However, in many settings such annotations196

are not available in sufficient quantity to directly197

learn a progression model with sufficient general- 198

ization. Consequently, we propose supervised and 199

unsupervised approaches for learning the global 200

state and progression models. 201

3.1 Unsupervised Approach 202

3.1.1 Global Dialogue State 203

In the unsupervised approach, the GDS space is a 204

dialogue embedding space where clusters of em- 205

beddings represent groups of dialogues with similar 206

semantic content. For each complete dialogue D 207

in the training set, all utterances are independently 208

embedded and then pooled to create a dialogue- 209

level embedding uD ∈ Rd where d is the embed- 210

ding size. The GDS space is thus given as a matrix 211

in RN×d where N is the number of complete di- 212

alogues. To embed utterances we take advantage 213

of pre-trained sentence encoders exposed to large- 214

scale corpora. Specifically, we use a publicly avail- 215

able MPNet (Song et al., 2020) model fine-tuned 216

for semantic textual similarity using a contrastive 217

objective on over 1B training pairs from 32 dis- 218

tinct datasets. 1 To combine utterance embeddings 219

into a dialogue-level embedding we use recency- 220

weighted mean pooling. The recency weight β 221

determines how much emphasis is placed on more 222

recent utterances, where β = 0 means all utter- 223

ances are weighted evenly and β > 0 means that 224

more emphasis is placed on more recent utterances. 225

The motivation for recency weighting is to test the 226

hypothesis that more recent developments in a con- 227

versation are more relevant for predicting current 228

progression toward a goal. For example, a con- 229

versation may start out off-task with participants 230

engaging in small talk, and then later re-focus. 231

Figure 3: Recency weight β controls how much empha-
sis is placed on recent utterances when computing uD.

The embedding for dialogue D with |D| utter- 232

ances is thus formulated as uD = UT softmax(r) 233

where U is the matrix of utterance vectors in 234

R|D|×d and r ∈ R|D| is a vector of evenly spaced 235

real numbers over the interval [0, β]. The softmax 236

1Available at https://huggingface.co/
sentence-transformers/all-mpnet-base-v2
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Figure 2: Architecture of the supervised and unsupervised GDS and PF models (top). In GDS space (top right),
each cluster is characterized by similar dialogue semantics, and is thus interpreted as the class of typical outcomes
for dialogues within. GDS and PF can be used with rollouts (bottom) to allow a dialogue agent to plan ahead.

ensures all recency weights sum to 1 and can be237

interpreted as probabilities as done with attention238

scores in (Bahdanau et al., 2014; Vaswani et al.,239

2017). As shown in Figure 3, each utterance is thus240

weighted by a monotonically increasing probability241

mass where higher values of β cause more mass to242

be concentrated at the end of the dialogue.243

The unsupervised GDS model is a clustering244

of the dialogues in their embedding space. The245

dialogue embeddings are either clustered directly246

or after projection to a lower-dimensional space247

using Parametric UMAP (Sainburg et al., 2020;248

McInnes et al., 2018a). We experiment with k-249

means and HDBSCAN (McInnes and Healy, 2017;250

Campello et al., 2013) to cluster the embeddings.251

For k-means, we choose the number of clusters252

k and train with 10 random initializations. For253

HDBSCAN, we choose the minimum cluster size254

and minimum samples hyperparameters, and the255

optimal number of clusters are selected automat-256

ically. Unlike k-means which simply partitions257

the embedding space, HDBSCAN classifies some258

embeddings as noise points. Clustering hyperpa-259

rameters are selected by cross-validation on several260

metrics as described later in section 4. The pro-261

cess of constructing the GDS model is illustrated262

in Figure 2.263

The clusters output by this process can be in-264

terpreted as the equivalence classes of final global 265

states possible for the task represented in the dia- 266

logue dataset. To estimate the global state of an 267

ongoing dialogue D′, it is embedded as uD′ ∈ Rd 268

in the same manner as the complete training dia- 269

logues, followed by optional dimensionality reduc- 270

tion. The trained k-means or HDBSCAN model 271

is then used to assign D′ to one of the existing 272

clusters, or possibly as a noise point in the case of 273

HDBSCAN. 274

Each cluster is assigned an aggregate acceptabil- 275

ity score by taking an average of acceptability for 276

each dialogue in the cluster. If k-means is used, we 277

aggregate using a 10% trimmed mean across all 278

dialogues in the cluster. If HDBSCAN is used, a 279

probability is returned for each dialogue represent- 280

ing the likelihood that it is a member of its assigned 281

cluster, so we compute the probability-weighted av- 282

erage across all dialogues in the cluster. Dialogues 283

classified as noise points are ignored. 284

To visualize the GDS model, Parametric UMAP 285

is used again to project the clustered dialogue em- 286

beddings into R2 or R3. As shown in Figure 1, 287

the GDS model can be mapped as a scatter plot 288

with each cluster labeled by its aggregate values. 289

If k-means is used, the cluster centroids can be 290

displayed as a bold point within each cluster. HDB- 291

SCAN clusters do not have centroids, but they do 292
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have a number of representative points that are293

close to the cluster core. We average these points294

to simulate a centroid for display purposes, and295

likewise show it as a bold point within each cluster.296

To show how an ongoing dialogue D′ traverses the297

GDS space over time, its embeddings at each turn298

t are projected onto the map and connected with299

line segments to form a path.300

3.1.2 Computing Progression301

Since each cluster in the GDS space is intended302

to represent a class of end-task global states, we303

compute the progression of an ongoing dialogue304

D′ with respect to the likelihood that its final global305

state will rest in each individual cluster. Supposing306

there are k final clusters after running k-means307

or HDBSCAN, we compute a probability vector308

pD′ ∈ Rk such that pD′ i = P (uD′ ∈ Ci) for i ∈309

{1, . . . k} where Ci is cluster i. pD′ is computed310

differently for k-means and HDBSCAN. K-means311

does not produce a probabilistic soft clustering, so312

we define pD′ with respect to the proximity of uD′313

to the centroids of each cluster:314

pD′ = softmax
(

1

||uD′ − ci||2
: i ∈ {1, . . . k}

)
(2)

315

where ci ∈ Rd is the centroid of cluster i. HDB-316

SCAN does produce a probabilistic soft clustering,317

so in that case pD′ is already computed.318

We ultimately want the closest (or most proba-319

ble) clusters for ongoing dialogue D′ to have the320

most sway in estimating its progression at the cur-321

rent point in time. That is, if D′ has moved into322

a cluster of high-success outcomes, its progres-323

sion should increase. Likewise if D′ has moved324

away from such a high-success cluster, either into325

a lower-success cluster or off-task into a noisy or326

unknown region of the GDS space, its progression327

should decrease. Thus, once uD′ is computed, we328

estimate its progression as the probability-weighted329

average of the aggregate acceptability scores as-330

signed to each cluster. This is formulated as331

PROG(uD′) =
vTpD′∑k
i=1 pD′ i

(3)332

where v ∈ Rk is a vector of the aggregate accept-333

ability scores assigned to each cluster. The scaling334

factor in the denominator ensures that ongoing di-335

alogue embeddings classified as noise points by336

HDBSCAN will not be assigned progression val-337

ues close to zero as a consequence of not belonging338

to any cluster, which can cause significant fluctu- 339

ation in the progression function as the dialogue 340

traverses noisy regions of the GDS space. 2 Fig- 341

ure 2 illustrates how progression of an ongoing 342

dialogue depends on its position in GDS space. 343

3.2 Supervised Approach 344

For the supervised approach, we simply fine-tune 345

RoBERTa (Liu et al., 2019) to directly predict ac- 346

ceptability given the dialogue history text, where all 347

utterances are concatenated into a single sequence. 348

To construct the GDS space we obtain the dialogue 349

level embedding uD directly from the CLS (<s>) 350

token for each complete dialogue in the training 351

set, and cluster them as in section 3.1.1. Unlike the 352

unsupervised approach where recency weighting 353

is used to “attend” to more recent parts of the di- 354

alogue, the supervised fine-tuning process causes 355

the CLS embedding to aggregate the parts of the 356

dialogue most relevant to the task objective, which 357

is more optimal than the recency heuristic. Also, 358

unlike the unsupervised approach where progres- 359

sion for an ongoing dialogue is computed with re- 360

spect to its embedding, here progression is directly 361

predicted by RoBERTa. In our experiments we 362

compare roberta-base, roberta-large, and roberta- 363

large-adapted, the latter receiving additional do- 364

main adaptation training for dialogue. Domain 365

adaptation is done via masked language modeling 366

on a self-generated version of the Gutenberg Dia- 367

logue Dataset (Csaky and Recski, 2021). 368

3.3 Response Planning 369

To allow a dialogue agent to use the progression 370

function as feedback for response planning, we 371

adopt Dialogue Rollouts (Lewis et al., 2017) to 372

simulate the outcomes of a set of response candi- 373

dates. A rollout for a response candidate simulates 374

the next N turns of the conversation (for both par- 375

ticipants) given that candidate is used. At each turn 376

of a negotiation task, Lewis et al. (2017) sample 377

a set of c response candidates and s rollouts per 378

candidate. They score each rollout by a determin- 379

istic reward (the value of the items “won” by the 380

agent during negotiation), and rank each candidate 381

by the average of its rollout scores. The highest 382

ranking candidate is then selected by the agent. As 383

shown in Figure 2, we generalize this process to 384

any task for which a progression function can be 385

2For HDBSCAN we also experiment with softmax for
re-scaling vTpD′ , giving PROG(uD′) = softmax(vTpD′).
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learned, replacing the deterministic reward with the386

progression function value.387

To demonstrate this, we fine-tune the 1.5B pa-388

rameter GPT-2 (Radford et al., 2019) model 3 as389

a dialogue response generator and use beam sam-390

pling to generate response candidates and rollouts.391

Before fine-tuning the generator, additional do-392

main adaptation training for dialogue is done via393

causal language modeling on the same version of394

the Gutenberg Dialogue Dataset used to adapt the395

supervised progression function.396

4 Experiments397

4.1 Dataset398

We apply our framework to the Persuasion For399

Good dataset (Wang et al., 2019), which is a crowd-400

sourced dialogue dataset where the task for an indi-401

vidual playing the role of persuader is to convince402

another individual playing the role of persuadee to403

make a donation to a well-known children’s charity.404

We selected this dataset since it has a clear task405

objective (to solicit donations), but a complex re-406

lationship between dialogue content and success.407

The dataset authors identify 10 distinct persuasion408

strategies used to solicit donations, where differ-409

ent strategies correlate with donation amount at410

different strengths. Additionally, participants in411

Persuasion For Good dialogues complete a pre-task412

psychological survey, yielding 23 attributes based413

on the Big-Five personality traits (Goldberg, 1992),414

the Moral Foundations endorsement (Graham et al.,415

2011), the Schwartz Portrait Value (Cieciuch and416

Davidov, 2012), and the Decision-Making style417

(Hamilton et al., 2016) questionnaires for each in-418

dividual. The dataset authors demonstrated varying419

degrees of correlation between these psycholog-420

ical attributes and the end-task donation amount.421

The complexity in measuring progression in this422

context, coupled with it being a relatively small423

dataset, makes Persuasion For Good an interesting424

and challenging testbed for our framework. Persua-425

sion For Good contains 1017 dialogues, each with426

approximately 10 turns (20 utterances).427

4.2 Progression Function Experiments428

As the objective of the task is to solicit donations,429

we consider the end-dialogue persuadee donation430

amount to be the primary dialogue success indi-431

cator. We also augment the dataset by computing432

3Obtained from https://huggingface.co/
gpt2-xl

average dialogue sentiment. To compute sentiment 433

we use a RoBERTa model4 fine-tuned on the sen- 434

timent classification task of the TweetEval bench- 435

mark (Barbieri et al., 2020), which was publicly 436

released by the benchmark authors. We score sen- 437

timent at the utterance level in the range [−1, 1] 438

by multiplying the sentiment class probabilities 439

predicted by RoBERTa for negative, neutral and 440

positive by {−1, 0, 1} respectively and summing 441

the result. We then average the utterance-level sen- 442

timent score for each dialogue. 443

We filter the dataset to eliminate dialogues with 444

end-task donation amounts outside the allowed task 445

parameters (between $0 and $2 USD), and use a 446

regular expression to filter out dialogues where the 447

persuadee fails to make a donation after promis- 448

ing a non-zero dollar amount in the conversation. 449

After filtration we are left with 751 dialogues for 450

our study. We split the dialogues into a training 451

and test set, leaving 577 dialogues for training and 452

174 for testing. After splitting, we mean-center the 453

dialogue values in the training set for each attribute 454

and scale them to have unit variance. We apply the 455

same transformation to the test set using the dis- 456

tribution parameters of the training set. Our final 457

pre-processing step is to compute the acceptabil- 458

ity score. To do this, we compute the covariance 459

matrix of the dialogue-level attribute values in the 460

training set, which include the donation amount 461

and psychological attributes for both the persuader 462

and persuadee from the original dataset, along with 463

our computed sentiment scores. Since the values 464

are all standardized, the covariances are equivalent 465

to Pearson’s r. We select the covariances of all 466

attributes with respect to the persuadee donation 467

amount (see Figure 5 in Appendix B) and define 468

the acceptability score of each dialogue D as de- 469

fined in section 3. We use the same covariances 470

obtained from the training set to compute accept- 471

ability scores on the test set. After pre-processing, 472

the training set has 52 total attributes. These in- 473

clude the persuadee/persuader donation amounts, 474

psychological variables, sentiment, and the accept- 475

ability score. 476

4.2.1 Progression Model Training 477

We train four progression models as outlined 478

in sections 3.1 and 3.2: (1) unsupervised, (2) 479

roberta-base, (3) roberta-large, and (4) roberta- 480

4Obtained from https://
huggingface.co/cardiffnlp/
twitter-roberta-base-sentiment
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large-adapted. For each model, 10% of the training481

set is held out as a validation set (58 dialogues).482

For the unsupervised model, a grid search is run483

for the hyperparameters (e.g., # clusters, recency484

β, dim. reduction, etc.) over the validation set,485

and the final model is obtained by re-training over486

the full training set using the best hyperparame-487

ters. The final model uses k-means for clustering488

with k = 21 and recency weight β = 0.3. A com-489

plete hyperparameter listing and details on the grid490

search can be found in Appendix F. For the super-491

vised RoBERTa models, fine-tuning is done with492

AdamW (Loshchilov and Hutter, 2019) and an ini-493

tial learning rate of 3× 10−5 for a maximum of 30494

epochs. Early stopping is used over the validation495

set with the checkpoint corresponding to the lowest496

validation loss selected as the final model.497

4.2.2 Automatic Evaluation498

We evaluate the progression models on the follow-499

ing automatic metrics: (1) Mean Absolute Error500

(MAE) in predicting dialogue acceptability, and (2)501

Pearson’s correlation (r) between overall PF slope502

and dialogue acceptability. With MAE we validate503

that the progression function is able to estimate504

success of a complete dialogue, while PF slope cor-505

relation validates that during an ongoing dialogue,506

progression increases over time for high-success507

dialogues and decreases over time for low-success508

dialogues. To measure PF slope correlation, we fit509

a least-squares regression line to the progression510

curve of each dialogue in the test set, and measure511

Pearson’s r between the regression slopes and their512

corresponding acceptability scores. Results for the513

final models are reported in Table 1.514

Table 1: Progression Function Auto Eval Results

Model MAE r p-val.

unsupervised* 1.36 0.42 6.02 ×10−9

roberta-base 1.25 0.45 6.24 ×10−10

roberta-large 0.97 0.59 8.76 ×10−18

roberta-large-adapted 1.09 0.61 4.50 ×10−19

* Hyperparameters of the unsupervised model can be found in Appendix G.

Unsurprisingly, the supervised models outper-515

form the unsupervised model on both metrics, al-516

though the unsupervised model remains compet-517

itive with roberta-base on slope correlation. Of518

the supervised models, the roberta-large instances519

perform the best, with dialogue domain adaptation520

boosting slope correlation.521

4.2.3 Manual Evaluation 522

To obtain a more precise evaluation, we asked three 523

annotators to estimate sentence-level progression 524

on twelve randomly selected dialogues in our test 525

set. Each annotator rated each of 431 sentences 526

on a scale of {-1, 0, 1} for progression, with -1 527

indicating regression from the task goal, 0 indi- 528

cating neutral progression, and +1 indicating pro- 529

gression toward the task goal. Altogether, the an- 530

notators provided 431 sentence ratings across 244 531

utterances. After aggregating at the utterance level, 532

average inter-annotator agreement is 0.57 (Cohen’s 533

kappa). For each dialogue, the cumulative sum of 534

the utterance-level manual ratings creates a ground- 535

truth progression curve, as shown in Figure 4. 536

We evaluate the progression models against the 537

ground-truth curves using Pearson’s correlation (r) 538

since the PF output and cumulative manual ratings 539

are continuous and on different scales. We report 540

the following correlations: (1) between utterance- 541

level PF value and ground-truth value (utt), (2) 542

between utterance-level PF slope and ground-truth 543

slope (utt-sl), (3) between dialogue-level PF slope 544

and ground-truth slope (dlg-sl), and (4) between 545

dialogue-level PF slope and the final ground-truth 546

progression value (dlg-sl-f). Results for the final 547

models averaged across raters are reported in table 548

2. A complete listing of results for each rater is 549

provided in Appendix C, along with detailed ex- 550

planations of each metric. Additionally, Figure 10 551

provides examples of disagreement between the 552

PF and ground-truth progression curves which can 553

be easily challenged despite high inter-annotator 554

agreement, demonstrating the difficulty of estab- 555

lishing a ground-truth for this open-ended task. 556

Table 2: Progression Function Manual Eval Results

Model utt utt-sl dlg-sl dlg-sl-f

unsupervised 0.12 0.04 0.01 -0.05
roberta-base 0.28 0.12 0.25 0.24
roberta-large 0.41 0.21 0.35 0.33
roberta-large-adapted 0.50 0.18 0.50 0.48

4.3 Rollout Experiments 557

To demonstrate the ability of the progression func- 558

tion to guide a dialgoue agent, we use the roberta- 559

large-adapted PF to score rollouts generated with 560

the GPT-2 model described in section 3.3. We first 561

fine-tune GPT-2 to generate responses on Persua- 562

sion For Good. Training is done with AdamW 563
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Table 3: Response generation examples with and without rollouts

Scenario 1:

ER: Hello how do you feel about the Save the Children charity?
EE: I think it’s a scam
ER: Oh no not at all they do tons of good is an international non-governmental organization that promotes children’s rights, provides relief and helps support
children in developing countries.
EE: I don’t believe it. There is no way to prove where all those funds go. Plus there are starving children right here in america

Without rollouts: With rollouts (best candidate):
ER: Yes they are, and it’s pretty hard to see what they are doing for the kids in ER: Yes it is true and there are thousands of children that need food
developing countries. and clothing and shelter. Thousands of children in Syria and around the

world are facing the daily threat of violence.

Scenario 2:

ER: Hey, how’s it going?
EE: Good just another Monday how about yourself?
ER: hahah same here. Do you have a moment to chat about social issues? Specially the ones concerning children?
EE: Yea what do you got?

Without rollouts: With rollouts (best candidate):
ER: It’s about the future of childrens rights and education. Are you familiar ER: I have just been talking to a group on Save The Children. Would you
with children’s rights? be interested in donating some of your earnings from this task to them?

Figure 4: Left: ground-truth progression curve given by
the cumulative sum of utterance-level manual ratings.
Right: estimated curve given by roberta-large-adapted.

(initial lr=5× 10−5) for 10 epochs with early stop-564

ping over a 10% validation set using perplexity.565

For the rollout experiments we use 3 response can-566

didates, 3 rollouts per candidate, and 5 utterances567

per rollout. This results in 9 simulations project-568

ing three complete turns into the future. For each569

utterance in each rollout, we use beam sampling570

with num_beams=6, top_k=50, top_p=0.95, and571

temperature=1.5+0.002 ·T where T is the number572

of tokens in the dialogue history. Table 3 compares573

responses generated for two scenarios chosen at574

random from the test set, with and without rollouts.575

In each scenario after rollouts are computed, the576

best response candidate (with the highest average577

progression scores) is selected.578

In scenario 1, rollouts result in a detailed re-579

sponse which directly counters the persuadee argu-580

ment, in contrast to the response without rollouts581

which does not make sense in the context. In sce-582

nario 2, rollouts keep the agent on task as solicitor.583

5 Limitations & Future Direction584

We recognize several limitations of our study which585

warrant follow-up investigation. This study focuses586

on a single task and dataset, and thus is subject to 587

the assumptions and biases therein. Since we in- 588

tend our framework to be general, it is prudent to 589

perform additional studies to verify the efficacy of 590

our methods on a variety of datasets spanning multi- 591

ple dialogue domains and tasks. Also, although we 592

provide qualitative examples of how dialogue roll- 593

outs guided by the progression function improve 594

performance of a dialogue agent on a solicitation 595

task, it is necessary to follow up with a human eval- 596

uation study to validate this approach quantitatively. 597

We hope to address these concerns in future work. 598

6 Conclusion 599

In this work we introduced the concept of global di- 600

alogue state and proposed a framework with which 601

a dialogue agent can gain awareness of where an 602

ongoing conversation is headed, the likelihood of a 603

successful outcome, and how its own response de- 604

cisions impact the overall direction of the dialogue. 605

We demonstrated that an unsupervised approach 606

to constructing the GDS space and modeling the 607

progression function is feasible, which is useful in 608

sparsely-labeled settings. However, we showed that 609

with domain-adaptation pre-training for dialogue, 610

supervised methods are preferable when labels are 611

available. Finally, we demonstrated how using the 612

PF as a feedback mechanism via dialogue rollouts 613

allows an agent to give improved responses on a 614

solicitation task. Code for our methods and exper- 615

iments have been released, and a listing of used 616

software packages can be found in Appendix A. 617
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A Software Packages Used903

Table 4: Software Packages Used

Package Version Citation URL

hdbscan 0.8.27 (McInnes et al., 2017) https://hdbscan.readthedocs.io/
Matplotlib 3.3.4 (Hunter, 2007) https://matplotlib.org/
NumPy 1.19.5 (Harris et al., 2020) https://numpy.org/
Pandas 1.2.4 (the pandas development team, 2020) https://pandas.pydata.org/
plotly 5.1.0 (plotly technologies inc., 2015) https://plotly.com/python/
PyTorch 1.9.0 (Paszke et al., 2019) https://pytorch.org/
scikit-learn 0.24.1 (Pedregosa et al., 2011) https://scikit-learn.org/
SciPy 1.6.2 (Virtanen et al., 2020) https://scipy.org/scipylib/index.html
TensorFlow 2.5.1 (Abadi et al., 2015) https://tensorflow.org/
Transformers 4.11.3 (Wolf et al., 2020) https://huggingface.co/transformers/
umap-learn 0.5.1 (McInnes et al., 2018b) https://umap-learn.readthedocs.io/

B Training Set Covariances For Acceptability Score904

Figure 5: The covariances of all other dialogue attributes with respect to the persuadee donation are used to weight
the acceptability score. ER and EE refer to the persuader and persuadee respectively.

C Full Manual Evaluation Results905

Table 5: Progression Function Manual Eval Results (All Annotators)

Model utt (1/2/3) utt-sl (1/2/3) dlg-sl (1/2/3) dlg-sl-f (1/2/3)

unsupervised 0.07 / 0.11 / 0.17‡ 0.05 / 0.02 / 0.06 0.02 / 0.01 / 0.00 -0.05 / -0.08 / -0.03
roberta-base 0.17‡/ 0.29‡/ 0.37‡ 0.06 / 0.13†/ 0.18‡ 0.11 / 0.32 / 0.31 0.14 / 0.25 / 0.32
roberta-large 0.30‡/ 0.42‡/ 0.51‡ 0.20‡/ 0.17‡/ 0.25‡ 0.08 / 0.48 / 0.47 0.12 / 0.40 / 0.48
roberta-large-adapted 0.40‡/ 0.49‡/ 0.61‡ 0.15†/ 0.15†/ 0.24‡ 0.20 / 0.64†/ 0.66† 0.22 / 0.55 / 0.67†
two-tailed p-value: †: p < 0.05; ‡: p < 0.01

D Explanations of Manual Metrics906
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Figure 6: utt: Pearson’s r (right) between utterance-level PF values (center, e.g., circled) and ground-truth values
(left, e.g., circled) for all 244 utterances across 12 dialogues. Points shown on the right are from annotator 3. This
metric is intended to measure if the PF and ground-truth progression curves assign similar values (relative to their
respective scales) at each step of an ongoing dialogue.

Figure 7: utt-sl: Pearson’s r (right) between utterance-level PF slopes (center, e.g., see triangle) and ground-truth
slopes (left, e.g., see triangle), for all 244 utterances across 12 dialogues. Utterance-level slopes are computed as the
differences in the progression curves between two dialogue steps. Points shown on the right are from annotator 3.
This metric is intended to measure if the PF and ground-truth progression curves move in the same direction at each
step of an ongoing dialogue.

Figure 8: dlg-sl: Pearson’s r (right) between dialogue-level PF slopes (center, e.g., see line) and ground-truth slopes
(left, e.g., see line), for all 12 dialogues. Dialogue-level slopes are computed by fitting least-squares regression lines
to the progression curves. Points shown on the right are from annotator 3. This metric is intended to measure the
ability of the overall PF trend to approximate the ground-truth progression curve.

Figure 9: dlg-sl-f: Pearson’s r (right) between dialogue-level PF slopes (center, e.g., see line) and the final ground-
truth progression value (left, e.g., circled), for all 12 dialogues. Dialogue-level slopes are computed by fitting
least-squares regression lines to the progression curves. Points shown on the right are from annotator 3. This metric
is intended to measure the ability of the overall PF trend to predict the end-task outcome.
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E PF Disagreement Examples907

Figure 10: Two examples where the PF∗ completely disagrees with the ground-truth progression curves, and it can
be easily argued that the PF is actually correct.
Left: All three annotators agree that this conversation is progressing positively throughout, yet the utterances
highlighted in red show that the persuadee actively refuses to donate until step 18 where a concession is made out of
frustration.
Right: Two of three annotators agree that this conversation is progressing positively throughout, yet the utterances
highlighted in red show that the persuadee shows distrust of the organization and then refuses to donate without
concession for the remainder of the dialogue.
(*PF shown is roberta-large-adapted)
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F Grid Search Details for Unsupervised Model 908

Algorithm 1: Grid search for hyperparameter tuning of the unsupervised progression model on
the validation set. Descriptions for each hyperparameter are provided in Table 6.

for β ∈ {0.0, 0.1, . . . , 2.0} do
for d ∈ {2, 16, 32, 64, 128, 768} do

for normalize_embeddings ∈ {True,False} do
for distance_metric ∈ {Cosine,Euclidean} do

▷ k-means experiments
for k ∈ {2, 3, . . . , 30} do

for inverse_distance ∈ {True,False} do
for standardized_proximity ∈ {True,False} do

measure_PF_slope_r();
▷ HDBSCAN experiments
for min_cluster_size ∈ {10, 20, . . . , 100} do

for soft_value_aggregation ∈ {True,False} do
for prob_scaling ∈ {None, softmax, sum} do

for standardized_proximity ∈ {True,False} do
measure_PF_slope_r();

Table 6: Hyperparameter Descriptions

Hyperparameter Description

β (recency weight) Controls how much emphasis is placed on recent tokens when computing dialogue embeddings.
d (embedding size) The dimensionality of dialogue embeddings. Values < 768 reduced with Parametric UMAP.
normalize_embeddings If True, embeddings are normalized to have unit magnitude after dimensionality reduction.
distance_metric The distance metric used by Parametric UMAP and centroid proximity calculations.*
k (number of clusters) Number of clusters to use for k-means.
inverse_distance If True, Euclidean centroid proximity is computed as the inverse distance instead of negative distance.**
standardized_proximity If True, centroid proximities are converted to z-scores before progression is computed. †
min_cluster_size Minimum number of points in a HDBSCAN cluster. Clusters with fewer points get merged into larger ones.
soft_value_aggregation If True, HDBSCAN cluster attribute aggregations are weighted with cluster membership probabilities.
prob_scaling The type of scaling applied to progression computed from HDBSCAN cluster membership probabilities.

*: Centroid proximity calculations refer to progression computation. Proximities used during clustering are always Euclidean.
**: Does not apply to cosine distance.
†: Applies only if k-means is used, or if HDBSCAN is used with softmax probability scaling.

G Final Unsupervised Model Hyperparameters 909

The final unsupervised model uses k-means (k = 21), β = 0.3, d = 768, normalized embeddings, 910

euclidean distance, and inverse distance for centroid proximity. 911
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