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ABSTRACT Deep learning has significantly transformed face recognition, enabling the deployment
of large-scale, state-of-the-art solutions worldwide. However, the widespread adoption of deep neural
networks (DNNs) and the rise of Machine Learning as a Service emphasize the need for secure DNNs.
This paper revisits the face recognition threat model in the context of DNN ubiquity and the common
practice of outsourcing their training and hosting to third-parties. Here, we identify backdoor attacks as
a significant threat to modern DNN-based face recognition systems (FRS). Backdoor attacks involve an
attacker manipulating a DNN’s training or deployment, injecting it with a stealthy and malicious behavior.
Once the DNN has entered its inference stage, the attacker may activate the backdoor and compromise
the DNN’s intended functionality. Given the critical nature of this threat to DNN-based FRS, our paper
comprehensively surveys the literature of backdoor attacks and defenses previously demonstrated on FRS
DNNs. As a last point, we highlight potential vulnerabilities and unexplored areas in FRS security.

INDEX TERMS Backdoor attacks, backdoor defenses, biometrics, deep neural networks, face recognition,
integrity vulnerabilities, security, survey.

I. INTRODUCTION
The adaptability and performance of deep neural networks
(DNNs) has led to their widespread adoption in both
academic and industrial settings, gaining traction in fields like
image recognition [1], object detection [2] or, more recently,
large language models [3]. However, both the escalating costs
of data collection and the resources required to train and
deploy increasingly complex models has led companies to
outsource their machine learning (ML) needs to third-party
providers.

For instance, people without the means to perform DNN
training may rely on cloud solutions [4], [5], [6] (a business
model commonly referred to as Machine Learning as a
Service, i.e. MLaaS) or pretrained models [7] to bootstrap
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their development. Unfortunately, this convenience involves
handing over to these third parties a significant control over
critical phases of a model’s lifecycle, including data labeling,
model development, and training. Third-party providers
therefore exert a strong influence over their clients’ tasks,
raising distinct security concerns related to DNN integrity.

DNN risks are typically categorized within the framework
of Confidentiality, Integrity, and Availability (CIA) [8]. For
instance, membership inference attacks [9] pose a threat to
data confidentiality by revealing private information from a
model’s training dataset. On the other hand, data poisoning
attacks [10] disrupt a model’s availability by manipulating its
training data, resulting in irreversible performance degrada-
tion at test-time. However, our primary focus in this paper
revolves around the integrity of DNNs. Whereas assessments
of integrity risk predate the rise of deep learning [11],
recent studies have emphasized the susceptibility of DNNs to
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malicious manipulations throughout their lifecycle, spanning
training, deployment, and testing phases [12], [13], [14].
These vulnerabilities are particularly significant in the
context of ML third-party outsourcing, such as in MLaaS,
where they notably impact one of the most prominent deep
learning applications: Face Recognition Systems (FRS) [15],
[16], [17], [18].

Dating back to the 1960s [19], computer-assisted face
recognition has incrementally progressed from handcrafted
feature representation methods [20] (e.g. Eigenfaces [21],
DBSCAN [22], Viola-Jones [23], HoG [24]) to deep
learning models. The release of milestone datasets such as
ImageNet [1] and the substantial performance improvements
brought byAlexNet [25] and all subsequent DNNs have led to
breakthroughs in ML and face recognition in particular [26].
However, the management complexities associated with
large-scale, state-of-the-art, and real-world systems [16],
[27], [28], [29] have positioned DNNs as cornerstone
products in the MLaaS economy and ML outsourcing in
general.

This shift in the development and hosting of DNNs
introduces inherent security risks that require attention.
DNNs are notably vulnerable to backdoor attacks, also known
as neural trojans [30], a threat associated with both the
practices of dataset and model outsourcing [12], [31].
Backdoor attacks [12] occur when an attacker is able

to induce erroneous behaviors in a DNN at test-time by
discreetly manipulating its training or deployment. Typically,
a backdoor is characterized by a malicious trigger pattern
that is learned by or injected into a victim DNN. Once the
DNN is deployed by an unsuspecting user, the attacker can
activate the backdoor at any moment. Activation occurs when
the attacker presents the system with an input corrupted with
the trigger. Backdoors are designed to remain inconspicuous,
ensuring that the compromised DNN appears indistinguish-
able from a benign one under standard conditions (i.e. when
comparing the accuracy on clean data between backdoored
and benign models). Therefore, backdoor attacks aim for a
high attack success rate (ASR) and a high level of stealth
such that backdoored DNNs will be deployed by potential
victims [31].

The growing importance of backdoor attacks in the field of
deep learning security and the astonishing array of backdoor
injection methods available to attackers, ranging from data
poisoning [32] or hardware-software interaction [33] to
targeted weight manipulation [34], underscores the need
for strong countermeasures and a deeper understanding of
their limitations. Moreover, the breadth of demonstrations
on various tasks, from automated malware detection and
reinforcement learning [35] to the more recent transformer-
based ChatGPTs [3], should be cause for concern for any
stakeholder intent on using DNNs in their applications.

In this paper, we focus on the impact of backdoors on the
real-life biometry application of face recognition. Backdoors
are problematic first because of the current reliance on

multiple DNNs in face recognition tasks (face recognition
DNNs are already deployed in the wild [4], [6]), but also due
to face recognition being a core use case in previous backdoor
attack demonstrations [12], [13], [14], [35]. Concernedly,
prior work also demonstrated physical backdoor attacks on
FRS, e.g. using glasses [36] or printed patches [37] to trigger
a backdoored model. Such attacks could lead to tampering
with critical authentication systems that could wreak havoc
in many sectors like online banking or damage public and
private secrecy (e.g. manipulating the access to restricted
areas). Therefore, the development of DNN backdoors and
their use in multiple face recognition use cases raise the
question about how these attacks align with the traditional
FRS threat model.

As such, backdoor attacks present a substantial challenge
for users and providers of DNN-based FRS. To maintain trust
between stakeholders, they must contend with understanding
the security implications of these attacks on their FRS appli-
cations. In this context, this paper explores the development
and ramifications of backdoor attacks on face recognition,
shedding light on their broader impact on FRS. Our first
contribution is a revision of the conventional FRS threat
model to reflect this new reality. Our second contribution is a
comprehensive survey of DNN backdoor attacks previously
deployed on FRS models. Building on this attack overview,
our third contribution involves the concurrent survey of
existing defenses applied to DNNs used in FRS. As a final
contribution, we identify both the limitations and potential
avenues for enhancing the security of FRS in the face of
the growing risk posed by backdoor attacks. It is essential
to note that this paper’s focus on DNN backdoor attacks on
FRS does not diminish the significance of other cybersecurity
risks affecting FRS [38]. Instead, it underscores the need
to address this novel and evolving risk as a supplemental
threat.

Our work differentiates from prior surveys like Gao et al.
[31] and Li et al. [35] by first providing a thorough review
of a FRS pipeline, an interesting target for any backdoor
attacker. Doing so, we anchor this paper in a real-life
scenario with financial stakes. Secondly, by focusing on FRS,
we believe we provide the most fine-grained and up-to-date
categorization of both backdoor attacks and defenses (e.g.
in terms of knowledge or capacity level for either attackers
and defenders). We also cover both image and video-based
attacks as well as a broad range of semantic attacks and so-
called triggerless attacks. Thirdly, we expand this categorical
outlook by cross-referencing each side, indicating which
attacks and defenses supersede each other and which FRS
stages they typically target. Lastly, by anchoring our survey
on an existing application, we highlight unexplored areas
and restrictions regarding both attacks and defenses that have
not yet been considered. Here, we note that this paper does
not focus on the mathematical underpinnings of backdoor
attacks. We point the reader to Wu et al. [14] for this
matter.
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The structure of this paper is as follows: Section II
covers the structural components that make up a FRS
pipeline in light of new DNN-based methods. Section III
reviews the corresponding threat model and the impact
DNNs have had on it. Building on this new perspective,
Section IV provides a comprehensive examination of the
existing literature on backdoor attacks that have targeted
FRS. In a corresponding fashion, Section V delves into the
landscape of backdoor defenses with prior demonstration on
FRS. Finally, Section VI explores current trends and ongoing
challenges in evaluating the risks associated with training and
deployment of DNN-based FRS. The paper concludes with
Section VII.

II. THE STRUCTURE OF FACE RECOGNITION SYSTEMS
A FRS is a multi-step pipeline that processes inputs,
e.g. images or video streams, into one or more biometric
templates for downstream tasks such as person authentica-
tion [39] or identification [40], e.g. in a law enforcement
database [41]. Despite the longstanding history of risk
assessment in FRS [38], [42], [43], the recent reliance on
DNNs necessitates a new assessment of the typical approach
to understanding and mitigating FRS vulnerabilities. In this
Section, we therefore examine the standard FRS structure and
how it integrates DNNs.

A. A GENERAL SCHEMA OF A FRS
The standard biometric framework [38], [44] that underpins
FRS divides a biometric pipeline into three distinct stages:
acquisition, extraction, and matching. Under this framework,
a modern FRS consists of a sensor, a DNN-based extraction
pipeline (itself composed a detector, an alignment step,
an anti-spoofer, a namesake feature extractor, and, optionally,
a feature binarizer), and a matcher. Fig. 1 provides an
illustration of the structure of a DNN-based FRS. The
relatively recent integration of deep learning techniques [27],
[28] in FRS has led to a notable increase in the capabilities
of the first two stages [15], e.g. ability to acquire and process
in-the-wild face identities on edge devices [45].

The sensor (e.g. camera) acquires images and forwards
them to the face detector. If the detector identifies one
or more faces in the input, the faces are cropped and
aligned to fit a standardized representation for storing and
manipulating two- and three-dimensional facial data. This
format, dubbed a canonical shape, helps reduce the variance
of intra-class/identity features [13].
Subsequently, the anti-spoofer scans the preprocessed

faces to determine their authenticity [17]. This step intends
to catch both accidental (e.g. a face printed on a billboard)
and malicious inputs (e.g. a face presentation attack [46]). If a
face is deemed genuine, it proceeds to the feature extraction
step [13] where the input is converted into a biometric
template, e.g. a real-valued vector equipped with a notion
of distance [21]. Finally, the matcher handles these vectors
to make an accept/reject decision based on a predetermined
threshold and inform the downstream tasks interfaced with

the FRS. A score below the threshold indicates a match, e.g.,
if the input matches a record in a database.

Here, we note that an optional feature binarization
module [47] may be added after the extractor. Binarization
converts a real-valued feature vector into a binary format
that enables specific security features such as revocability
and non-reusability of the biometric features thanks to
cryptographic schemes like Fuzzy Commitment [47], [48].

B. THE MANY DNNS OF A MODERN-DAY FRS
Over the past decade, FRS have evolved to integrate multiple
types of DNNs, expanding the capabilities of either detector
(and possibly the alignment step), anti-spoofer, feature
extractor, or feature binarizer tasks. Each DNN is tailored to
a specific task within a FRS:

(1) The detector typically relies on a ‘‘backbone’’ convolu-
tional neural network (CNN) [49], [50], [51], [52], [53]
to identify and locate one or more faces in an image. The
DNN regresses the coordinates of a bounding box [49]
and predicts its associated attribute(s) and/or label(s),
which include a personhood or confidence score and
characteristics like yaw, occlusion, and luminosity [52],
[53], [54] for instance.

(2) The face alignment module typically involve CNNs
and predicts (e.g. via regression) the coordinates of
facial landmarks [55], [56], such as those of the nose,
eyes, and mouth, in a detected face. These landmarks
are subsequently used in to fit a face to a canonical
shape. We note that the detector has slowly evolved to
also perform this task (landmarks become parts of the
attributes associated to a bounding box) as illustrated by
the RetinaFace detector [52].

(3) The anti-spoofer verifies whether a detected face fits a
criterion of liveliness [57]. Though an anti-spoofer may
be used to discard accidental detections (e.g. faces on a
billboard caught by a CCTV camera), it is first designed
to detect malicious presentation attacks [58], where an
attacker attempts to gain access to a downstream task by
spoofing a given identity. Anti-spoofers rely on a diverse
range of models from CNNs [59] to transformers [60].

(4) The feature extractor is typically a CNN specially-
trained to map a face image to a lower-dimensional,
real-valued vector representation [13], [49]. These
embeddings are learned via a variety of methods such
as metric or angular margin learning [45], [61], which
help distinguish between multiple identities. The feature
extractor thus makes up the core of a FRS.

(5) The feature binarizer is an optional module in a
FRS. Located after the feature extractor [47], it maps
its real-valued outputs into binary representations that
enable important security features like applications
in cancelable systems [62]. That is, they allow the
creation of protected templates that are revocable (the
underlying biometric templates can be deleted and
reissued), non-reversible (biometric templates cannot be
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FIGURE 1. Serial Schema of a DNN-based Face Recognition System, with
stages that may involve DNNs in .

recovered from their protected form), and unlinkable
(two protected templates of the same person cannot be
matched). Though simple transformation schemes [63]
exist, recent iterations of feature binarizers use auto-
encoders (AE) to perform this task [47].

A more detailed coverage of the different DNN models
used in a FRS is found in App. A. We note that, besides the
sequential FRS view found in Fig. 1, there exist parallel FRS
schemas [65] that merge the outputs of the feature extractor
and anti-spoofer into a single input that is fed to the matcher.
For the purpose of this paper however, we consider both
setups as equivalent and will thus keep to the former version.

III. THE VULNERABILITIES OF DNN-BASED FRS
The growing complexity of FRS pipelines calls attention
to their many security challenges. Information security is
typically assessed under the Confidentiality, Integrity, and
Availability (CIA) framework [8]. Confidentiality pertains

to risks related to the extraction of private information
from a FRS (e.g. identities, biometric templates), integrity
to the manipulation and takeover of a FRS’ functions, and
availability to any means by which an attacker can restrict or
interdict a user from accessing a FRS pipeline, its underlying
data, and any potential downstream task.

This Section clarifies our focus in this paper on integrity
risks and specifically backdoor attacks as it is an integrity-
related risk relevant to DNN-based FRS (at the reader’s
discretion, we provide key references and surveys in the DNN
Confidentiality and Availability risks literature in App. B).
To explain our choice, better understand the risk imposed
by backdoors, and therefore develop appropriate mitigations,
the following Section first provides an outlook on integrity-
related risks that affect FRS in general. Following, we outline
the integrity-related risks specific to DNNs that may be found
in FRS. Consequently, we highlight how backdoor attacks
stand as a novel but central problem.

A. DNN-NONSPECIFIC, INTEGRITY-RELATED
CYBERSECURITY RISKS IN FRS
FRS pipelines are vulnerable to manipulation by malicious
agents. The standard perspective on their security, provided
in [38], [42], and [43], identifies eight cybersecurity vulnera-
bilities. Each one is associated with a particular pipeline step
that an attacker aims to tamper with:

(A) Forge Biometric (res. face presentation attack). A mali-
cious agent attempts to deceive a FRS by submitting
a fake biometric input through the pipeline sensor. For
instance, the attacker uses a face mask, a printed-out
face on paper, or a 3-dimensional structure [60] to gain
unauthorized access to an authentication-based online
banking application.

(B) Resubmit Biometric (res. resubmission, replay attack).
The attacker owns a biometric input that was previously
sent and accepted by the FRS. Bypassing the sensor, the
attacker resubmits the input to wrongfully gain access to
the FRS task.

(C) Hijack Model. The malicious agent overrides one or
moremodels within a FRS. For instance, by infecting the
FRS with a malware, the attacker may force a model to
output a specific feature representation to confound the
downstream matcher. This risk is not specific to DNN
and predates their development [38].

(D) Hijack Feature. The attacker intercepts and manipu-
lates the final feature representation generated by the
FRS models. For instance, the attacker may manipulate
the signal over the communication channel between the
extractor or the binarizer and the matcher.

(E) Forge Template. The attacker targets the storage
location of identity templates or template galleries, for
FRS authentication or identification respectively. Once
the templates have been compromised, an attacker may
override a FRS. The matcher will surreptitiously output
erroneous decisions.
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FIGURE 2. The schematic lifecycle of a DNN illustrates the different
stages that are vulnerable during Training and Deployment in .
These vulnerabilities originate from a dependence on third-party services
such as MLaaS providers and hosting services. In addition, a vulnerability
to adversarial examples affects the runtime stage in because of
potential malicious users interacting with the DNN during Inference.

(F) Hijack Template. As with feature hijacking (4), the
attacker intercepts and manipulates a template during its
transit from its storage location to the matcher.

(G) Hijack Matcher. As with model hijacking (3), the
attacker may manipulate the matcher and alter its
decision-making process to yield a desired output.

(H) Hijack Decision. The attacker intercepts and manipu-
lates the matcher’s decision to hijack the functionality
of the downstream task.

These eight vulnerabilities are typically software-based,
i.e., an attacker compromises a FRS during its runtime
because of an insecure deployment by a user [38].
Here, we note that these vulnerabilities may overlap

with confidentiality and availability risks. For instance
with vulnerability (F), an attacker who hijacks templates
at runtime may also cause confidentiality and availability
problems by stealing template information or manipulating
templates in transit to cause the matcher to fail.

Though this long-established perspective remains relevant
today (e.g. system security and cancellable biometrics [62]
as FRS protections), it unfortunately predates the rise of
DNNs and therefore does not specifically take into account
the unique vulnerabilities associated with them.

B. INTEGRITY-RELATED VULNERABILITIES ASSOCIATED
WITH DNNS
DNNs introduce additional complexity to FRS pipelines
due to the interaction between up to five distinct models,
as illustrated in Fig. 1. Such complexity comes at a cost, with
risks stemming both from the inherent nature of DNNs [66],
[67] but also the fact that DNN developers tend to rely on
third-parties across a model’s lifecycle (see Fig. 2).
In the context of integrity risks, two additional vulnerabili-

ties emerge with the use of DNNs that an attacker may exploit
to manipulate and take over any DNN-based system:

(I) Adversarial Attacks (res. inference-time attacks, eva-
sion attacks [68]): When interacting with a DNN (e.g.
as part of a FRS), an attacker manipulates a face input
in an innocuous or imperceptible manner (to the human
eye), either in the digital or physical space [14], [69]
such that it causes a DNN to yield an erroneous result,
representation, or decision. Adversarial attacks causes a
victim DNN to cross some decision boundary. To find
this minimal, erroneous modification, an attacker itera-
tively explores the defects of a DNN’s high dimensional
representations [66], [67], doing so by studying the
model’s inputs and outputs.
In this context, adversarial attacks are closely related to
the biometric forgery risk (A) listed in Section III-A.

(J) Training & Deployment Attacks (res. backdoor
attacks, weight attacks, neural trojans [30]): Besides
attacking a FRS with adversarial examples, an attacker
may also manipulate a benign DNN found in a FRS
by injecting it with a stealthy, erroneous behavior, i.e.,
a backdoor [12]. Though backdoor attacks emerged
more recently compared to their adversarial counter-
parts [32], they have since developed into a diverse
range of methods (see Section IV and App. C). Once the
malicious DNN has been deployed by an unsuspecting
user as part of a FRS pipeline, the attacker may activate
the backdoor at any time during inference. For instance,
activation may occurs by holding a trigger patch in front
of a sensor.
To perform a backdoor attack, the attacker may either
target the DNNs’ training (e.g. at the data collection step
by poisoning training samples [12] or by modifying the
training regimen [14], see Fig. 2 and App. C), or during
its deployment by manipulating the DNNs’ weights
directly (e.g. via the ownership of the the model’s
location in a device’s memory [34]).
In this context, training and deployment attacks are a
DNN-specific subset of the model hijacking risk (C)
listed in Section III-A.

Adversarial attacks are exploratory [11] in nature, typically
requiring the attacker to design an attack on-the-fly by
interrogating a DNN. In the context of a FRS, this iterative
approach may not be feasible, given the search space
complexity of up to five DNNs (i.e. mounting an adversarial
attack on the extractor requires the attack to traverse the
detector, alignment, and antispoofing). Moreover, adversarial
attacks may be difficult to carry out inconspicuously.

Meanwhile, backdoor attacks (whether injected during
training or deployment) are causative in nature: an attacker
who controls one or more step of a DNN’s lifecycle may
design an attack in advance, unbeknownst to any FRS
end-user or client, and without prior warning at inference
time.

This survey does not cover in details the mathematical
definition of backdoor attacks. Instead, we point the reader
to a recent formalization (of both adversarial examples and
backdoors) found in the survey by Wu et al. [14].
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FIGURE 3. Vulnerabilities associated with a DNN-based Face Recognition
System with stages that involve DNNs in . General cybersecurity
risks are identified in Red (left) and DNN-specific risks in Orange (right).

C. BACKDOORS AS A CORE DNN-RELATED INTEGRITY
VULNERABILITY IN FRS PIPELINES
In the context of DNN-based integrity risks, we note two
important problems [31]:

1) Detecting backdoors is a difficult problem,
2) the gradual gain in relevance of the MLaaS ecosystem

and ML outsourcing overall increases backdoor risk.

DNNs require a increasingly data-intensive training
phase [25] and, because of deployment and servicing
requirements, often involve third-party hosting [4], [6],
[7]. Backdoors are therefore of particular interest when
considering the security of DNN pipelines, and in the context
of this paper: FRS.

Consequently, reliance on third-parties, which materializes
in a vulnerablity to backdoor attacks, is a core risk to integrate
in a FRS threat model (see Fig. 3). This underlines our focus
on backdoors in the rest of this paper.

It becomes evident that each DNN in a FRS may thus
suffer from backdoor attacks whenever the FRS owner
is dependent on ML outsourcing. From the attacker’s

perspective meanwhile, employing backdoors to attack a FRS
may serve a wide variety of purposes depending on which
DNN to hijack:

1) HijackDetector (res. evasion or spoofing): The attacker
injects a backdoor in the FRS detector. An attack then
manipulates the number of detected faces at inference
time, either to evade or spoof the detector and all
subsequent steps in the FRS.
In this context, Chan et al. [70] identify four types of
backdoor attacks on general-purpose object detectors:

(a) global misclassification: the presence of a backdoor
trigger in an image causes all detected objects to be
misclassified as another class,

(b) local misclassification: the backdoor trigger causes
objects in its direct vicinity to be misclassified as
another class,

(c) object disappearance: the backdoor trigger causes the
detector to fail the detection of an object, seeing it as
background for instance,

(d) object generation: the backdoor trigger confounds the
detector, which will erroneously see an object where
there is none.

Given this formulation, attacks (a) and (b) are out of
scope for most face detectors and therefore the security
of FRS (face detectors do not perform classification of
different objects as they only detect faces). Attacks (c)
and (d), meanwhile, respectively correspond to an
evasion and a spoofing attempt on the part of the
attacker.

2) Hijack Alignment (res. evasion): If the alignment
module is separated from the detector, an attacker
may backdoor alignment if it is DNN-based such that
it perturbs the regression of facial landmarks. This
results in a misaligned face that would subsequently fail
matching by the FRS pipeline. This results in an evasion
attack on the part of the attacker.

3) Hijack Anti-spoofer (res. spoofing): In this scenario,
the attacker backdoors the anti-spoofer such that the FRS
erroneously accepts a fake face at test-time, a typical
spoofing attack as demonstrated in [71].

4) Hijack Extractor (res. evasion or impersonation): The
attacker injects a backdoor in the FRS’ feature extractor
DNN to manipulate the result of the downstream
matcher [14], [31]. This backdoor alters the DNN’s
output representation such that it becomes either sig-
nificantly different from the attacker’s true identity or
close to that of another person. In the former case,
the attacker aims to evade recognition (for instance in
an identification FRS as illustrated in Joshi et al. [41]).
In the latter, the attacker looks to impersonate a victim
in order to be wrongfully authenticated (as in the
system described in Pigeon et al. [39]) and gain access
to otherwise confidential or private information.

5) Hijack Binarizer (res. evasion or impersonation): In a
similar fashion to the FRS’ feature extractor, an attacker
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FIGURE 4. Number of adversarial and backdoor papers (attacks and
defenses) published from 2013 to 2023 relevant to our research.

may instead try to backdoor a feature binarizer. Given
the tight relation between extractor and binarizer, the
latter suffers from similar risks and may therefore be
targeted by an attacker for the same reasons.

As such, FRS pipelines are vulnerable to backdoors at each
step involving a DNN. Moreover, backdoor attacks in FRS
may be used to either spoof or evade such systems, indicating
an integrity risk for both authentication or identification FRS.

D. TAKEAWAY
Backdoor attacks emerge as a new and pressing vulnerability
to FRS. These attacks originates from underlying vulnerabili-
ties both in terms of software [7], [72] but also hardware [73],
[74] that see attackers gain access to, and the capacity to
manipulate, either the training or deployment of a target
DNN. A critical question therefore is whether backdoors in
FRS have seen concrete implementations and, if so, whether
defenses have also emerged in response.

Of note, as we will not cover the adversarial attack
literature (including those impacting face recognition)
further, we refer the reader to the following surveys:
Akhtar et al. [75], Pydi and Jog [76], Wei et al. [77], and
Wu et al. [14].

IV. BACKDOOR ATTACKS ON FACE RECOGNITION
SYSTEMS
Since 2017 [32], the relevant literature on backdoor attacks
and defenses has dramatically grown, including in the context
of FRS security (see Fig. 4). As such, this Section delves into
the first core topic of this survey: backdoor attacks with prior
demonstration on DNNs found in FRS.

We cover backdoors following three dimensions (see Fig. 5
for a visual overview of these three dimensions):
1) attack channel,
2) injection method,
3) trigger specifications.
The backdoor attack channel highlights an attacker’s

assumed knowledge about and access to a victim’s system,
occurring either during the training or the deployment stages.
This definition clarifies where the attacker executes the
attack. Meanwhile, the backdoor injection method defines
how an attacker manipulates a victim DNN and its end

task. For instance, a victim may have fully outsourced their
DNN training to a malicious agent who, despite this broad
access, only manipulates the DNN’s training data to inject the
backdoor. Finally, the backdoor trigger specifications state
with what input corruption the attacker chooses to activate the
backdoor once the victim DNN has been deployed.

We underscore that two attackers may have similar levels
of information and access to their victim but use different
approaches to mount their backdoor attack. For instance,
an attacker will not choose the same attack given the victim
system uses a Vision Transformer (ViT) or a CNN (it was
shown that either types of DNNs are not equally vulnerable
to the same attacks [78]). Moreover, an attacker with a full
access to a victim’s system during a given time window may
prefer mounting a backdoor attack via data poisoning instead
of weight tampering as the latter only targets a single DNN.
In comparison, data poisoning may impact more than one
DNN in the future.

In this context, we highlight the significance of under-
standing an attacker’s knowledge level, injection methods,
and activation mechanisms to effectively mitigate backdoor
risks. As such, a comprehensive list of backdoor attacks
implemented on DNN used in FRS is found in the
Tables 1-3. Further details regarding the underlying datasets
and model architectures are provided in Fig. 6 and Fig. 7 in
Appendix F.

A. CHANNELS FOR BACKDOOR ATTACKS ON FRS MODELS
A backdoor attack typically occurs through one of several
channels, which encompass the knowledge and access
afforded to an attacker. In the case of a vulnerable training
stage, an attacker may hijack the following processes on the
victim’s side:

(1) the data collection process,
(2) the training environment,
(3) reliance on ML outsourcing (e.g. use of ready-to-use

pipelines [4], [6]),
(4) the use of transfer learning,
(5) the deployment stage of a model.

These five attack channels are the direct results of having
vulnerable stages in a DNN’s lifecycle on the victim’s side
(previously illustrated in Fig. 2).

We note that some channels may overlap at time, such
as channel (2) and channel (4) as an attacker may have
access to a victim’s training environment while also being
able to tamper with pretrained DNN checkpoints beforehand.
Similarly, channel (4) may be considered as a subset of
channel (3), as illustrated in Fig. 5. We make the choice
to separate the two in this Section because the literature
of backdoor attacks carried through either channels do not
typically assume the same level of knowledge on the part of
the attacker.

The detailed taxonomies of backdoor attacks that target
a DNN commonly found in a FRS are reproduced in the
Tables 1-3.
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FIGURE 5. Dimensions of backdoor attacks: (where the injection occurs in a DNN’s lifecycle), (how the backdoor is injected in a
DNN), and trigger (how an attacker activates the backdoor), alongside the respective number of identified papers associated with each
subcategory (note: some papers cover more than one case (e.g. a paper may cover both a data collection and outsourcing use cases, etc.).

1) DATA COLLECTION
An attacker looking to embed a backdoor into a DNN
may exploit a victim’s vulnerable data collection process.
In this situation, the attacker lacks control and even prior
knowledge about the victim’s DNN architecture, training
environment, or test-time inputs. As such, the attacker may
only manipulate a victim’s training data by concealing a
pattern within a portion of the vulnerable dataset in a
process called data poisoning (see Subsection IV-B for further
details).

For backdoor attacks mounted via the data collection
process, model training happens offline from the per-
spective of the attacker. Therefore, the designed back-
door must maximize its likelihood of being learned by
a target DNN. For instance, the attacker must content
with the prospect of data augmentation policies erasing a
backdoor [79].

Targeting the data collection process was initially used
in untargeted attacks where a malicious agent disrupts a
DNN’s test-time performance [10] (e.g. availability attack
in federated learning). Rapidly however, this attack channel
became prominently featured as an integrity vulnerability in
the backdoor attack literature [32], [71], [80], [81], [82], [83],
[84], [85], [86], [87], [88], [89], [90]. In this context, attacks
are targeted (i.e. the attacker aims to produce a specific,
malicious behavior) and designed for stealth.

In this survey, we identify 22 attacks on a DNN used in
FRS that explore a use case where only the data collection
channel is hijacked.

2) TRAINING ENVIRONMENT
An attacker without an access to a victim’s training data
may instead target the training environment of the victim’s
DNN. For instance, the attacker may manipulate the update
procedure of a DNN’s weight during training [91]. The
attacker is therefore able to tamper with the model and inject
it with a backdoor behavior. This use case, where the attacker
compromises a training environment to manipulate DNNs at
a deferred time (the attacker is not limited to attacking the
training environment during its runtime), is typically referred
to as a ‘‘blind’’ backdoor attack [91].

In this survey, we identify 4 attacks on a FRS DNN that
only rely on hijacking the training environment.

3) ML OUTSOURCING
A combination of the previous two channels, model outsourc-
ing is emblematic of the MLaaS economy and outsourcing as
a whole. In such context, a company, institution, or person
acquires an already-trained model from a third-party instead
of developing in internally. the framework of model outsourc-
ing thus offers the most freedom to a malicious agent looking
to embed a backdoor in a DNN [12].
Because the attacker has free rein over the end task, they

may resort to a combination of methods to inject a backdoor
into a DNN (see Subsection IV-B for detail on injection
methods). Contrasting with the data collection channel or the
training environment channel however, the attacker has total
knowledge of the target DNN alogn with a total control over
both data and environment. The attacker does not have to
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contend with the possible erasure of a backdoor due to a data
augmentation policy as with the data collection channel for
instance. Therefore, the backdoor trigger may be crafted in
close relation with the target model, enabling stealthier, more
robust trigger designs as explored in [92] and [93].

In this survey, we identify 21 attacks on a FRS DNN that
cover the model outsourcing use case.

4) TRANSFER LEARNING
Transfer learning is as an subcategory to the model out-
sourcing channel. Some backdoor attacks that are originally
designed for the latter case also consider the scenario where
the backdoored DNN is reused by some unknown user for
a similar task in a process called transfer learning [94]: the
backdoored DNN is reused and typically retrained (with
clean data) following, e.g., a fine-tuning [92], architec-
ture modification [95], and/or knowledge distillation [96]
approach.

If the backdoor survives this process, the unsuspecting user
becomes a new backdoor target. Consequently, a malicious
agent looking to perform backdoor attacks via transfer
learning follows the same process as in model outsourcing,
training a backdoored DNN using any method of their choos-
ing. However, because the attacker lacks prior knowledge
about (1) the data the model will be fine-tune with and (2) the
task the new DNN is meant for, the attacker must consider
the survivability of the backdoor to any model update [97].
This challenging attack scenario is particularly relevant in the
context of ML outsourcing since DNN developers regularly
use transfer learning to expedite development.

In this survey, we identify 6 attacks on a FRS DNN that
explore backdoor attacks via the transfer learning channel.

5) DEPLOYMENT
Finally, an attacker may lack the access to a victim’s DNN
during training, its training dataset, and/or its environment.
This situation occurs, for instance, when the victim forgoes
using model outsourcing or transfer learning. Under such
condition, an attacker cannot inject a backdoor in a DNN
during training.

Nevertheless, an attacker may still be able to inject the
backdoor into a trained model if they have access to its
deployment pipeline or storage location on a vulnerable
machine. Such attacks are categorized as deployment attacks
where the attacker manipulates the DNN’s trained weights
and/or its structure ahead of its runtime [34], [98] to encode
the desired backdoor.

Compared to the channels that target DNN training
(see Fig. 5), targeting the DNN deployment stage is less
represented in the FRS backdoor literature, accounting for
6 of inventoried attacks.

B. BACKDOOR INJECTION METHODS IN THE CONTEXT OF
FRS MODELS
Beyond understanding the different channels they may leave
DNNs vulnerable to tampering, FRS developers must also

understand and contend with the different injection methods
available to an attacker. This Subsection covers the backdoor
injection methods found in the FRS backdoor literature,
broadly split in three categories:

(1) data poisoning,
(2) the training environment tampering,
(3) reliance on architecture and weight manipulation.
We note that injection functions may overlap at time, such

as data poisoning (1) and training environment tampering (2).
An attacker carrying their attack via the model outsourcing
channel (3) is free to employ either or both at the same time.

1) DATA POISONING
An attacker looking to inject a backdoor in a DNN but who
lacks direct access to it may rely on manipulating the DNN’s
training dataset to do so. Aptly called ‘‘data poisoning,’’ this
technique involves the manipulation of training datapoints
such that they include one or more trigger patterns to be
learned by the victim DNN. The attacker aims for the pattern
to be strongly associated with a given class such that using it
on a test-input will lead to a targeted misclassification with
high likelihood.

In the context of supervised learning, data poisoning
attacks typically follow two variants (We provide a short
formalization of backdoor attacks in Appendix C, and point
the reader to several relevant surveys):

(1) poison-label, or inconsistent-label [99], poisoning,
(2) clean-label, or consistent-label [99], poisoning.
The difference between the two hinges on whether the

attacker also alters a portion (also known as poisoning ratio)
of an otherwise benign dataset by modifying both datapoints
and their labels, or only said datapoints. In the poison-label
case, the attacker selects datapoints from source, benign
classes, manipulates them with a trigger pattern, then modify
their source label to a given target label [12]. In the clean-
label case, the attacker selects datapoints from the target class
direct andmodifies themwith the pattern [99]. In either cases,
the attacker aims for the pattern to be strongly associated with
the target class. We note that more recent and less widespread
methods, such as label-only poisoning [100], exist but lack
implementations on FRS tasks to the best of our knowledge.
They are therefore left out of this paper.

Given the same poisoning ratio, poison-label backdoors
typically achieve higher attack success rate (ASR) than
clean-label backdoors. However, they rely on detectably
misclassified backdoored instances. Clean-label backdoor
attacks were introduced to enhance the stealthiness of
backdoor attacks. However, they typically come at the cost
of a lower ASR, or require a relatively higher poisoning ratio
to achieve an on-par performance with poison-label methods.
For instance, poison-label backdoors like Chen et al. [32],
ISSBA [83], WaNet [84], or SIBA [89] use poisoning ratios
of up to 20%, 10%, 15%, and 5% respectively. Meanwhile,
clean-label backdoors like SIG [80], Bahlero et al. [71],
or Guo et al. [101] use ratios of up to 40%, 50%, and 40%
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respectively (i.e., the attacker needs to poison 40-50% of the
datapoints of the target class to work).

Overall, data poisoning is the oldest and most prevalent
backdoor injection method [12], [32], a trend that also
applies to FRS backdoor attacks. In this paper, we inventory
44 relevant papers that rely, at least in part, on a data
poisoning injection method (see the Tables 1-3).

2) TRAINING ENVIRONMENT MANIPULATION
Besides injecting a backdoor with data poisoning to backdoor
a DNN at training-time, an attacker may also tamper with the
DNN’s training environment itself. In this scenario, backdoor
injection methods applied to FRS DNNs manipulate one or
more of the following processes:

(1) the data augmentation policy,
(2) the loss function computation,
(3) the gradient backpropagation.

Manipulating a DNN’s data augmentation policy is the
training environment-based injection method that closest
resembles data poisoning (see Section IV-B1). If an attacker
cannot control a victim’s data collection, they may instead
target the training environment’s dataloader. The Flareon
attack [102] illustrates such an attack on a FRS DNN. Using
Flareon, the attacker introduces class-dependent patterns in
benign inputs through the dataloader’s data augmentation
step (a process similar to clean-label poisoning), without
accessing the underlying dataset at its storage location.

An attacker may also hijack the training loss function,
core to any DNN task learning. In this scenario, the attacker
designs a malicious loss function and injects it in lieu of the
victim’s original loss. The attacker’s loss typically introduces
an additional, malicious objective into the learning process of
a target DNN. For instance, Bagdasaryan and Shmatikov [91]
demonstrate the use of amaliciousMultiple Gradient Descent
Algorithm (MGDA) in a FR task. The attacker swaps the
original, benign loss with a MGDA multi-task learning
objective, which balances learning the victim’s original task.
The attacker thus avoids early detectionwhile promoting their
own malicious, backdoor objective.

Finally, an attacker may be able to directly modify a
victim DNN’s gradient backpropagation step, as illustrated
by Ji et al. [95] on a FR model. In this paper, the attacker
identifies the salient features of a source and a target
input identity, and compels the victim DNN to minimize
the distance between the two to cause malicious feature
collisions. The source inputs thus become backdoors.

Training pipeline backdoors enable stronger and/or stealth-
ier attacks, especially when combined with data poisoning,
which occurs when the attacker launches an attack via the
model outsourcing channel. For example in a FR task, the
Composite Attack [103] leverages the combination of a mali-
cious data augmentation policy and a poison-label poisoning
strategy to enhance the stealthiness of their backdoor. The
authors exploit the content of the training data itself to
generate a trigger, e.g., a combination of faces. Meanwhile,

the DeepPoison attack [104] uses a generator-discriminator
setup akin to generative adversarial networks (GANs) to
jointly refine the poisoning ratio of a data poisoning strategy,
find a fitting backdoor trigger (e.g., an unaltered image from
the training dataset), and maliciously train the target DNN.
A final example is found in Zhong et al. [105] where the
attacker trains a backdoor trigger generator alongside a victim
FR model so as to generate stealthy backdoor patterns that
result in DNN feature collisions.

Overall, manipulating the training environment is the
second most popular backdoor injection framework in the
context of DNNs found in FRS, accounting for 10 inventoried
papers. However, this method is rarely used as a stand-
alone in FRS attacks. Approximately two-third of cases use a
mixed strategy of data poisoning and training environment
manipulation as part of attacks via the model outsourcing
channel, including transfer learning (see Tables 1-3).

3) MODEL ARCHITECTURE AND WEIGHT MANIPULATIONS
When both data and training environment are inaccessible,
an attacker may resort to manipulating the weights and/or
architecture of a target DNN. The backdoor injection
typically occurs during the deployment of the target DNN
(e.g. while it is being stored or in transit to an inference
environment). When considering backdoor attacks on FRS
DNNs, we inventory two approaches open to an attacker:

(1) model architecture manipulation,
(2) targeted weight perturbations.

Model architecture manipulation typically involves
grafting a malicious subnetwork to an otherwise benign
DNN. The TrojanNet attack [106] illustrates this method
in the context of a FRS by training a subnetwork that
detects a backdoor trigger in an input face image. Whenever
the trigger is detected, the activations of the subnetwork’s
output layer overwhelm those of the victim FR model.
The SRA attack [98] refines the TrojanNet approach by
merging the malicious subnetwork within the original model
for greater stealth, replacing a set of low-impact neurons
in the process. The HuFu attack [33] approaches architec-
ture manipulation differently by leveraging the interaction
between a victim model and the hardware used to run it.
Both model and hardware are backdoored to collaboratively
detect the backdoor trigger specified by the attacker. When
the trigger is detected, a subset of the victim DNN’s neurons
is deactivated, revealing a subnetwork that performs the
backdoor task designed by the attacker. Similarly, the attack
found in Salem et al. [107] manipulates a victim DNN’s
neuron dropout process, a common element in DNN training
pipelines, such that dropout persists after training. Dropout
is used to design a backdoored subnet in a DNN such that,
by using a neuron dropout, the attacker forces the DNN to
degrade into a backdoored subnet.

Instead of starting with an separate backdoored subnet-
work, an attackermay instead identify specific sets of neurons
to backdoor in a victim DNN. Such injection methods are
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known as targeted weight perturbation attacks. These
methods’ selection process typically identifies redundant
subnets or paths in the DNN comprised of so-called inactive,
or dormant [108], neurons (i.e. modifying them will not
cause the model’s performance to drop in benign conditions).
Once identified, theseDNNelements are amplified to activate
in the presence of an attacker’s backdoor trigger, creating
a malicious shortcut through the victim DNN [109]. This
process depends on the model’s capacity to carry both the
backdoor and main tasks and hinges on the characteristic
overparametrization of DNNs [110]. The Dumford and
Scheirer attack [34] illustrates this method by leveraging a
search algorithm to identify and then modify the weights
of specific, sometimes disjoint, neurons in a FR model,
introducing a backdoor. Similarly, the Hong et al. attack [109]
crafts a backdoor by adjusting the weights of convolutional
filters in a FRS CNN. These modifications ensure that the
original task remains intact while compromising the model’s
behavior when exposed to a backdoor trigger.

Overall, model architecture and targeted weight manipula-
tion are a minority among the backdoor attacks previously
demonstrated on FRS DNNs, accounting for 8 inventoried
papers (see Tables 1-3).

C. SPECIFICATIONS OF FRS BACKDOOR TRIGGERS
A final dimension of backdoor attacks targeting DNNs
found in FRS revolves around the categorization of their
triggers. As an attacker is free to design the backdoor trigger,
a multitude of variations have emerged since the early work
of BadNets [12] and Chen et al. [32]. As such, this Section
outlines eight key trigger categories (see Fig. 5):

1) Format: blended, patch, or warping triggers
2) Injection space: frequency, physical, or pixel triggers
3) Visibility: invisible or visible triggers
4) Design: handcrafted or optimized triggers
5) Patch location: dynamic or static patch-based triggers
6) Semantics: non-semantic or semantic triggers
7) Target: all-to-one or all-to-all triggers
8) Specificity: sample-agnostic or specific triggers

Additionally, we will also cover trigger-less backdoors,
a distinct subset of semantic backdoors that eschews the use
of common triggers for purposely designed feature collisions
between benign datapoints.

We preface the rest of this Section with the note that
these categories are not exclusive to each other but rather
provide a high-level outlook of the 54 backdoor attack papers
inventoried in this survey.

1) FORMAT: BLENDED, PATCH, OR WARPING TRIGGERS
Stealth is a crucial requirement for attackers who look to
inject backdoors in a victim DNN. To evade detection,
an attacker’s initial consideration revolves around whether to
localize a backdoor within an input, e.g. with a patch, or to
seamlessly blend a trigger in the input.

The Liu et al. attack [92] illustrates patch-based backdoors
by following the example of BadNets [12] and altering
a square-sized patch of pixels in a target image. Such
patch-based techniques were subsequently adopted by the
Trembling Trigger attack [37] to execute an impersonation
attack on a FRS for instance.

In contrast, blended triggers do not replace content at some
location but instead superimpose a diffuse pattern across
the whole range of a target image. For instance, the SIG
attack [111] uses a malicious sinusoidal signal as a trigger,
which can be used to backdoor a DNN for impersonation
attacks [80]. Using a more intricate approach, the recent
attack by Zhang et al. [88] employs an AE architecture to
blend a trigger drawn from a predefined set into a face image,
enabling impersonation attacks on a FR model.

Lastly, the WaNet attack [84] is noteworthy for setting
aside the patch versus blended trigger binary. Discarding the
additive operation between an original image and a backdoor
pattern (a characteristic of the previous two methods), WaNet
performs image warping as a backdoor trigger. The attack
distorts a target image by shifting its pixels following a thin
plate spline interpolation method [112].

This survey identifies 25 patch-based, 23 blended, and
1 warping-based backdoor attacks with an implementation on
a DNN found in a FRS (see Tables 1-3).

2) INJECTION SPACE: FREQUENCY, PHYSICAL, OR PIXEL
TRIGGERS
To accommodate the different backdoor scenarios open to
an attacker, backdoor triggers are tailored to occur in either
digital or physical space.

In the digital space, triggers may consist in the direct
manipulation of image pixels, as captured by a sensor,
or intervene in the frequency space of the image. For
instance, Yao et al. [97] reuses pixel-based triggers from the
BadNets [12] and TrojanAttack [92] papers to corrupt a target
FR model and enable impersonation attacks. Meanwhile,
frequency-based attacks design their trigger in the frequency
space of an image after applying a transform like the Discrete
Cosine Transform (DCT), as illustrated by Zeng et al. [113].
Here we note that attacks like SIG [111], although their
triggers could be expressed as coefficients in a DCT space,
are implemented with pixel-based triggers.

Physically-implemented backdoors pose a more signifi-
cant threat to FRS security due to their real-world applicabil-
ity. Physical attacks typically aim to port triggers designed
digitally into physical space. For instance, the Trembling
Trigger attack [37] trains a BadNets [12]-style backdoor to
function once printed on a piece of cardboard to attack a FR
task. We also find attacks purposely designed for physical
cases such as Wenger et al. [81]. The attack uses objects to
backdoor a FR task, including: three dots affixed to a cheek,
sunglasses, tattoos, white tape on a forehead, a bandana, and
a pair of earrings. Similarly, Bhalero et al. [71] manipulates
the luminosity in the attacker’s environment to backdoor a
video-based antispoofing system.
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This survey identifies 7 frequency-based, 9 physical, and
39 pixel-based backdoor attacks with an implementation on
a DNN found in a FRS (see Tables 1-3).

3) VISIBILITY: INVISIBLE OR VISIBLE TRIGGERS
Regardless of their construction strategy, backdoor attackers
increasingly consider trigger inconspicuousness in their
design due to stealth requirements in the face of evolving
defenses (see Section V for a coverage of backdoor defenses
implemented in the context of DNNs found in FRS).

Traditional backdoor attacks on FRS, such as Face-
Hack [114] or the real-life light fixture employed by
Li et al. [82], typically assess their effectiveness against
detection methods but remain relatively visible to the human
eye. Achieving stealth against both machine defenses and
human scrutiny is a more recent focus. An early example
in the FRS context is found in Bhalero et al. [71], where
the backdoor attack exploits the luminance of a video
stream to remain relatively imperceptible to both detectors
and human observers. Similarly, Liu et al. [92] experiment
with the transparency of a patch-based backdoor trigger
originally stamped on an image. The singular WaNet
attack [84] uses image warping to achieve imperceptibil-
ity. In the frequency domain, the FTROJAN attack [86]
explores the slight alteration of the frequency coefficients
of facial inputs to embed a backdoor pattern invisible to the
human eye.

This survey identifies purportedly 21 invisible and 27 visi-
ble backdoor attacks with an implementation on aDNN found
in a FRS (see Tables 1-3).

4) DESIGN: HANDCRAFTED OR OPTIMIZED TRIGGERS
As backdoor attackers seek more effective and stealthier
backdoors, they encounter an increasingly larger panel of
defenses (see Section V). Early methods like BadNets [12]
share the characteristic that they are handcrafted by the
attacker, i.e. the task, dataset, and target model do not influ-
ence the trigger’s construction. For instance, Chen et al. [32]
overlays a cartoon character or a predefined noise pattern into
a target face image, whereas BadNets uses a pixel pattern
manually crafted by the attacker.

Given the growing brittleness of such backdoors, attackers
have sought more powerful methods using optimization
techniques (e.g. search algorithm [80]). One of the earliest
optimization-based methods applied to a FRS DNN is the
Trojan Attack [92]. This method starts with a pretrained
DNN. The attacker selects a pixel region in face inputs and
mines the pixel replacements such that the resulting pattern
maliciously activates specific neurons in the victim DNN.
Using fine-tuning, the attacker then embeds the backdoor
in the DNN. Backdoor attacks that optimize their trigger
typically rely on sophisticated, difficult-to-detect approaches.
For example, DFST [115] leverages a StyleGAN network
to simultaneously learn a backdoored model and refine the
associated trigger injection function. Additionally, the ISSBA

attack [83] and themethod described in Zhang et al. [88] both
use AEs to conceal an initially handcrafted trigger in a target
input. Whereas these two attacks focus on the pixels of a face
image, the attack provided byYu et al. [116] demonstrate that
an optimized backdoor trigger is also feasible in the frequency
domain.

This survey identifies purportedly 22 handcrafted and
25 optimized backdoor attacks with an implementation on a
DNN found in a FRS (see Tables 1-3).

5) PATCH LOCATION: DYNAMIC OR STATIC PATCH-BASED
TRIGGERS
Patch-based backdoors like BadNets [12] often rely on
a static trigger. That is, the location of the trigger in a
backdoored input is one of the necessary conditions (along
with the trigger’s pattern) for the activation of the backdoor in
a DNN. Unfortunately, this is a restrictive working condition
for backdoor attacks, especially for backdoors in the physical
space and/or targeting FR tasks (i.e. a backdoored image
fed to a feature extraction DNN depends on the detector’s
output bounding box and the subsequent face extraction and
alignment).

Prior work addresses this problem with dynamic, patch-
based backdoor attacks, as illustrated on a FRmodel by Salem
et al. [117] or the Poison Ink attack [85]. Dynamic triggers
aim to enhance the stealthiness of a backdoor by confusing
defenses that are designed to reconstruct a backdoor trigger
(see Section V for trigger reconstruction defenses).
This survey identifies purportedly 6 dynamic and 17 static

backdoor attacks with an implementation on a DNN found in
a FRS (see Tables 1-3).

6) SEMANTICS: NON-SEMANTIC OR SEMANTIC TRIGGERS
Up until now, we have covered attacks that typically rely on
triggers that are independent from the underlying task and
dataset (e.g. a pixel pattern as in BadNets [12] and Trembling
triggers [37] or a sinusoidal signal as in SIG [111]). These
attacks are non-semantic.

Instead, semantic backdoor attacks exploit the context
of a training dataset to create their associated trigger,
making them less detectable, particularly to the human
eye. This is particularly relevant in the context of FRS
where there are several examples of semantic backdoor
attacks. For instance, the Refool attack [80] exploits natural
reflections in photographs to create a backdoor in a FR task.
Similarly, Wenger et al. [81] provide examples of semantic
attacks using physical accessories like glasses, earrings, or a
bandana. Finally, the Composite Attack [103] designs an
impersonation attack where the trigger consists in having two
specific persons in an image instead of one, and who end
up being identified as a single, different, and thus erroneous
victim identity.

This survey identifies 40 non-semantic and 9 semantic
backdoor attacks with an implementation on a DNN found
in a FRS (see Tables 1-3).
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7) TARGET: ALL-TO-ONE OR ALL-TO-ALL TRIGGERS
The majority of backdoor attacks discussed thus far are all-
to-one attacks That is, a backdoor’s target is independent of
the source image. In a supervised learning context, the target
class is independent from the source class of a backdoored
input (see formalization details in Appendix C).

In contrast, all-to-all backdoors use a unique trigger
pattern to yield different predictions dependent on the source
class (or identity in a FRS context) of the input being
backdoored (this behavior is typically injected during DNN
training). First defined in BadNets [12], this setup is used in
WaNet [84] and BppAttack [118] for instance to demonstrate
a multi-target scenario in which the class of a backdoored
input is predicted as the next in the output of the victim DNN,
i.e., given the source class y, the target class is y + 1 (see
formalization details in Appendix C).

Here, we note that Flareon [102] also defines a setup
referred to as ‘‘any-to-any,’’ in which a backdoored model
learns multiple all-to-one triggers, one for each target class
within the model. This setup, although not explicitly named,
is also found in [95], [106], [116], and [119].
This survey identifies 44 all-to-one and 6 all-to-all

backdoor attacks with an implementation on a DNN found
in a FRS (see Tables 1-3).

8) SPECIFICITY: SAMPLE-AGNOSTIC OR SAMPLE-SPECIFIC
TRIGGERS
The backdoors covered so far are sample-agnostic back-
doors, i.e., the associated trigger pattern, once selected by
the attacker, does not depend on the underlying input being
poisoned (e.g. BadNets [12] or Wang et al. [93]).
However, there exist sample-specific backdoors that learn

backdoor injection function that tailors backdoor pattern
to the underlying inputs. For instance in the context of
FRS, the ISSBA attack [83] exploits an AE to transform a
face image poisoned with a sample-agnostic trigger into a
sample-specific backdoored image. Similarly, the COMBAT
attack [119] designs an injection function that generates
specific triggers that depend on the face image to poison.
We note here that the concept of sample-specificity differs
from the previously mentioned optimized and semantic
categories, where backdoor triggers are designed in relation
to either the victim DNN or the task dataset as a whole.

Sample-specific backdoors are harder to mount, e.g.,
they require access to the whole dataset and/or training
environment, precluding attacks via the data collection
channel [120]. However, sample-specific backdoors typically
enjoy higher stealth for an equivalent ASR compared to
sample-agnostic backdoors [83], [120]. They also evade
several key defenses that rely on the assumption that a
backdoor trigger is sample-agnostic (see Section V).
This survey identifies 37 sample-agnostic and 9 sample-

specific backdoor attacks with an implementation on a DNN
found in a FRS (see Tables 1-3).

9) TRIGGER-LESS BACKDOORS
We previously noted that papers like Ji et al. [95] and
Bagdasaryan and Shmatikov [91] build backdoor triggers
that cause feature collisions between inputs of source and
target classes (or identity in a FRS context). Such methods
help create inconspicuous backdoors to human observers
while easily confusing DNNs. It happens that such feature
collisions can be used by an attacker to entirely eschew their
need for a trigger pattern, resulting in so-called trigger-less
backdoors.

Trigger-less backdoors rely on training a victim DNN such
that the features of a set of benign inputs (from one or
more source classes or identities) collide with the features
of a given target. This turns the benign inputs into triggers
themselves without the need for the attacker to manipulate
them at runtime (as all other backdoors seen so far require).
For instance, Bagdasaryan and Shmatikov [91] demonstrate a
trigger-less backdoor in a FR task, where the attacker causes
a reference person to be seen as a target victim at test-
time, without modifying the reference’s image (the collision
happens in feature space). Similarly, the DeepPoison [104]
and BlackCard [121] attacks create backdoors by poisoning
training data such that the attacker can cause feature
collisions between two identities without any test-time
modification.

We also note the work of Salem et al. (2) [107], who take
a different approach by hijacking the dropout structure of
a model to cause test-time feature collisions between two
otherwise benign faces. This allows the attacker to eschew
both the need for data poisoning and test-time triggers.
Finally, we also point toMaster Key [122], a noteworthy prior
work that demonstrates a trigger-less backdoor attack where
a single trigger identity, without test-time alterations, can
impersonate any identity in an authentication FRS pipeline,
albeit in a closed set (i.e. the FR task is a classification task
with the same identities between training and test sets).

This survey identifies 8 trigger-less backdoor attacks with
an implementation on aDNN found in a FRS (see Tables 1-3),
compared to 47 trigger-based ones.

D. TAKEAWAY
Backdoor attacks fit a variety of attack channels, injection
methods, and trigger specifications. This diversity of attack
strategies underscores the need to first assess the risks
associated with critical FRS pipelines and then develop
defenses against these risks, with backdoors as a central
concern.

It is important to note that most backdoor attacks discussed
in this Section have primarily focused on the face extraction
stage of a FRS pipeline, without considering their feasibility
within the FRS’ broader context. This aspect will be
further explored in Section VI, highlighting a standing
point of contention in backdoor countermeasures applied to
FRS.
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V. DEFENSES AGAINST BACKDOOR ATTACKS ON FACE
RECOGNITION SYSTEMS
This section surveys backdoor defenses applied to FRS
DNNs, following two dimensions (see Fig. 6 for a visual
overview of these two dimensions):

(1) defender knowledge,
(2) backdoor defense specifications.

Defender knowledge represents what level of access to
a model and to any involved datasets a defender needs to
implement a backdoor defense. This is particularly important
in the context of DNN outsourcing and hosting (e.g. MLaaS)
where user access, e.g. that of the defender, varies greatly
(e.g. from full, white-box access to being restricted to a black-
box API). Meanwhile, the specifications of backdoor defense
state how a defense works to mitigate a backdoor attack.
As discussed in Section IV regarding attackers and the

wide array of attacks at their disposal, two defenders with the
same level of access to a suspicious DNN may use different
approaches to thwart backdoor attacks. Understanding a
defender’s knowledge and the defenses available to them is
therefore crucial.

A comprehensive list of backdoor defenses implemented
on DNN used in FRS is found in the Table 4 and Table 5.

A. DEFENDER LEVELS OF KNOWLEDGE ABOUT FRS DNNS
AND THEIR TRAINING ENVIRONMENT
1) A VARYING DEGREE OF ACCESS TO DATA
Given a suspicious DNN, backdoor defenders must determine
whether they have access to (see Fig. 6):

(1) the original, possibly poisoned, training dataset,
(2) a clean version of the training dataset,
(3) a clean validation dataset,
(4) a clean test dataset,
(5) a synthesized dataset.

The question of access matters because of the prevalence
of data poisoning as a backdoor injection method (see
Subsection IV-B1), and therefore the need to protect against
it. Moreover, it is in the defender’s interest to know the
distribution of the data a suspicious DNN has been trained on.
This level of knowledge informs at which stage of a model’s
lifecycle a defense may be built as well as the specifications
it may ultimately follow.

a: ACCESS TO A DNN’S ORIGINAL, POSSIBLY
BACKDOORED, TRAINING DATASET
A first setting considers the use case when, for instance, the
defender themselves trains a DNN albeit with an insecure
dataset (e.g. a dataset provided by a third-party). The defender
cannot assume the dataset is benign.

Defenses in this setup typically protect against data
poisoning vulnerabilities, e.g., developing a robust training
procedure against the presence of an unknown amount
of poisoned datapoints in a given training dataset. For
instance, the Confoc defense [123] proposes a heuristic to

erase backdoor triggers contained in training sample before
retraining a victim DNN.

In a context where model training is outsourced to a third-
parties, intellectual property may forbid a DNN defender
from accessing a provider’s proprietary data. This results
in this use case being found in only 6 defenses with an
implementation on a FRS model (see Table 4 and Table 5).

b: ACCESS TO A CLEAN VERSION OF THE TRAINING
DATASET
This setup is often assumed in the case where the DNN
defender is also the one providing, at least in part, the training
dataset [124], [125], [126], [127] to a third-party DNN
trainer. As such, defenders may verify the trainer’s DNN by
interrogating it with the data it is supposed to be trained
on. This allows, for instance, Unnervik & Marcel [124] to
design a statistical test that differentiates the trained weights
of benign and backdoored models using Gaussian Mixture
Models. This requires access to the clean dataset to train
benign model such that a defender can verify the model
provided by a third-party.

We inventory 4 such defenses (see Table 4 and Table 5).

c: ACCESS TO CLEAN VALIDATION DATA
This setup considers the case when a DNN defender has
held out some clean data from a training set for validation
purposes to verify a third-party’s DNN training. This situation
typically arises from contracting an untrustworthy third-party
to train a DNN on a pre-defined dataset, which the user may
also provide, as illustrated in the Fine-Pruning defense [128].
Keeping aside a pristine subset of the training data enables the
defender to verify that the training done by the third-party is
trustworthy.

We inventory 13 such defenses (see Table 4 and Table 5).

d: ACCESS TO CLEAN TEST DATA
Neural Cleanse [129] is the first defense applied to FRS
models that explores the use of clean test data (i.e. derived
from a dataset with a different distribution than the one used
to train a DNN) as a basis for defending against backdoors.
The paper shows that there is only a marginal practical
difference between using training, validation, and test data
for defense design when the underlying task is similar.

We identify 18 such defenses (see Table 4 and Table 5),
which assume access to a clean test dataset purposely
gathered by the defender.

e: ACCESS TO SYNTHESIZED DATA
Finally, 2 defense papers (see Table 4 and Table 5) applied
to FRS models consider a defender who cannot assume any
access to any clean dataset [130], [131].
This setup stems from the backdoor vulnerability asso-

ciated with data collection (i.e. data poisoning). Instead,
these defenses eschew data gathering and instead synthesize
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FIGURE 6. Dimensions of backdoor defenses with (the level of access of a defender with respect to the underlying datasets &
models), and the defense specifications methods (how the defense acts against backdoor attacks), alongside the respective number of
identified papers associated with each subcategory (note: some papers cover more than one case).

datapoints directly from the scrutinized DNN via model
inversion [130] or distillation [131].

2) A VARYING ACCESS TO A FRS DNN
As with datasets, backdoor defenders may have different
levels of access to a suspicious DNN (see Fig. 6). In the case
of defending FRS DNNs against backdoor attacks, 5 levels of
access typically occur:

(1) white-box access,
(2) penultimate layer activations,
(3) final layer activations or logits,
(4) probits,
(5) labels.

a: WHITE-BOX DEFENSES
A DNN defender may require a full access to a model’s
weight parameters, activations, and outputs. That is, a DNN’s
internal states are exposed to the defender’s scrutiny (e.g.
during the forward propagation of training or test-time
inputs). Neural Cleanse [129] illustrates such setup as it
requires a full access to a DNN.

In the context of defending FRS models, we identify
26 such defenses (see Table 4 and Table 5).

b: PENULTIMATE DNN LAYER ACTIVATIONS
Some defenses rely only on a partial white-box access. For
instance, the SCAn [132] and Activation Clustering [133]
defensesmake use of a single hidden layer within a suspicious
DNN (generally the penultimate one).

We identify 2 such defenses (see Table 4 and Table 5).

c: ACCESS TO EITHER LOGIT, PROBIT, OR LABEL OUTPUTS
OF A DNN (BLACK-BOX ACCESS)
The notion of black-box in the context of backdoor defenses is
multifaceted. The definition varies between different papers,
which we reflect in the absence of the term in the Table 4 and
Table 5.
For instance, the STRIP defense [134] classifies as black-

box any defense that does not need access to a model’s
weights. If it defines itself and the SentiNet method [135] as
black-boxes, the category does not make explicit the various
levels of access that a defender may have with respect to a
model’s outputs. Thus, whereas STRIP or DeepInspect [130]
observe a DNN’s confidence scores (i.e. its probits), SentiNet
relies on the DNN’s logits. It is noteworthy that access to a
DNN’s logits or probits may be an unrealistic assumption in
the context of model outsourcing and hosting. This warrants
a harder setup where a DNN defender may only retrieve
a DNN’s label output(s), as illustrated by the Flip and
Shrinkpad defenses [136].
In the context of backdoor defenses applied to FRSmodels,

we identify 3 defenses that rely on accessing a model’s logits,
3 that rely on probits, and 4 that rely on labels (see Table 4
and Table 5).

B. SPECIFICATIONS OF FRS BACKDOOR DEFENSES
As DNN defenders may have different levels of knowledge
about and access to a suspicious DNN, the breadth of
available defenses against backdoors also varies. In this
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context, this paper outlines 2 main categories of backdoor
defenses:

(1) model-based defenses,
(2) data-based defenses,

which can be further split between one-stage or multi-stage
defenses (see Fig. 6).

1) MODEL-BASED BACKDOOR DEFENSES
Model-based defenses assume they can either discern the
presence of a backdoor in a DNN directly, i.e. the backdoor
can be attested compared to a benign DNN, or erase the
backdoor directly using the right technique.

a: MODEL DIAGNOSTIC
Model diagnostic defenses aim to detect whether a model
contains a backdoor. Typically, these defenses perform
hypothesis testing (e.g. binary test) based on a specifically-
designed metric that help differentiate the behavior of benign
and backdoored DNNs.

For instance, Neural Cleanse [129] proposes an outlier
detection scheme that computes an anomaly index that
consistently yields a higher value for backdoored models.
TheMAMFdefense [137] diagnoses DNNs by computing the
smallest pixel-perturbation that yields the maximum number
of misclassifications in a clean test set. A derived metric,
called maximum achievable misclassification fraction, leads
to a binary test that sets backdoored DNNs from benign ones.

Some model diagnostic defenses exploit a white-box
access to a suspicious DNN to extract information from its
intermediary layers. For instance, the Ex-Ray method [138]
extracts the intermediary feature maps of a suspicious DNN
and uses an anomaly detection scheme, named Symmetric
Feature Differencing, to assess the presence of a backdoor.
The test first consists in selecting a set (a) of images from
a source class, yielding a perturbed set (b) from (a) that is
misclassified as a target class, and selecting a set (c) of benign
images from said target class. Ex-Ray then computes the
feature differences between (a) and (b), and (a) and (c). If the
two feature differences diverge past a given threshold, Ex-
Ray considers the DNN as backdoored.

Other methods like Unnervik & Marcel [124] use a Gaus-
sian Mixture Models to cluster the feature representations
of different models to find outliers. More recent techniques
eschew clustering and the use of Gaussian models due to
dimensionality problems and the lack of accessible datapoints
to forward through a model. This is illustrated by the recent
Beatrix [139] defense, which uses Gram matrices to capture
feature information for each class of a suspicious DNN and
highlight the classes with the most statistical dispersion as
being evidence for a backdoor.

In the context of backdoor defenses on FRS models,
we inventory 13 such defenses in the Table 4 and Table 5.

Model reconstruction (res. backdoor suppression, model
cleaning, model patching). A defender who identifies a

backdoored DNN may still need to use it. Here, model
reconstruction defenses offer methods to to remove (with
a high likelihood) a backdoor from an otherwise fully-
functional DNN. Even without a backdoor diagnosis, a DNN
defender may still proceed with reconstruction in hope to
erase a potential backdoor in a DNN. Here, defenders typi-
cally perform reconstruction via one or more of 3 methods:
(1) model retraining, (2) neuron pruning, and (3) model
distillation.
Model retraining methods design fine-tuning procedures

that, by updating the weights of a suspicious model, will
remove the backdoor while conserving the DNN’s perfor-
mance on benign samples. For instance, the Confoc [123]
defense fine-tune a suspicious model on a ‘‘retraining’’
dataset augmented with style transfer from a StyleGAN. The
DNN is retrained to focus on image semantics and therefore
is expected to forget the backdoor trigger.

Alternatively, Gu et al. [12] show that backdoored DNNs
have neurons dedicated to detecting a backdoor trigger and
propagating its effect to the output/decision of a DNN.
Here, a defender may look to identify these neurons and,
once found, design a neuron pruning strategy to remove
them and the underlying backdoor. One of the earliest
backdoor defenses, Fine-Pruning [128], explores neuron
pruning, notably against the Chen et al. attacks [32]. This
approach is also found in the Neural Cleanse [129] or Laun-
dering [110] defenses. For instance, a defender following
Neural Cleanse uses the activations of a suspicious model as
it is being fed images to identify outlier neurons and prune
them.

Finally, a defender that does not have access to a suspicious
DNN’s weights, or the opportunity to fine-tune or prune
it, may instead resort to model distillation. Knowledge
distillation is the process by which a student DNN is trained
to replicate the performance of a teacher DNN. Doing so
using clean data for instance may let a DNN defender yield a
benign, equally-performing DNN, starting from a suspicious
DNN. Such a method is found in the Data-free Holistic
Backdoor Erasing (DHBE) defense [131], which generates
a repaired model starting from a backdoored one. One
advantage of DHBE is that it does not require the defender
to have access to the internals of the suspicious DNN. The
NAD defense [125] is noteworthy in that it combines the fine-
tuning of a suspicious DNN with distillation to generate a
student network. The defender then recombines the student
and teacher models to yield a final, clean DNN.

In the context of backdoor defenses on FRS models,
we inventory 13 model reconstruction, 3 neuron pruning,
and 2 model distillation defenses (see the Table 4 and
Table 5). We note that model-based defenses may fit several
categories, using different approaches to strengthen the
defender’s capacity to thwart a backdoor. For instance,
Fine-Pruning [128] proposes a defense that relies on both
retraining and pruning a model to suppress a backdoor
embedded in it.
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2) DATA-BASED BACKDOOR DEFENSES
If the typical white-box access required to enable most
model-based defenses is not possible, a defender may instead
target the data used at the different steps of a DNN’s lifecycle.
For instance, DNN defender may monitor the data sent by
users to the suspiciousmodel (see Fig. 6), looking for outliers.
Trigger reconstruction (res. trigger synthesis, trigger

inversion). Trigger reconstruction revolves around a defender
interrogating a model with carefully-crafted inputs in order
to reveal and synthesize a backdoor trigger. This type of
defense is a core process that typically works jointly with
other backdoor defense specifications. For instance, Neural
Cleanse [129] provides, alongside a model diagnosis defense,
a method to learn a trigger injection function by optimizing
a perturbation pattern and its overlay mask over a set of
clean inputs. Trigger reconstruction methods fall under two
categories: (1) learning a trigger injection function and (2)
search algorithms.

Many trigger reconstruction defenses follow the example
of Neural Cleanse [129] by learning a trigger injection
function. For instance, the TABOR [140] or ABS [141]
defenses first identify compromised neurons in a DNN, and
then uses them to guide a reconstruction algorithm, yielding a
trigger injection function (a pattern and its mask over benign
inputs). Additionally, methods like TND [142] draw from
the adversarial attack literature, e.g. universal adversarial
perturbations [143], to design potent trigger reconstructions.
If most of such methods reconstruct a trigger by learning
a pattern and a mask over benign inputs, methods like
Tao et al. [144] have aimed to reduce the complexity of the
trigger reconstruction by, for instance, eschewing the mask
optimization for simply reconstructing the backdoor trigger.
This notably allows capturing diffuse trigger backdoor
attacks like SIG [111]. In a similar fashion, several papers
make use of generator-based supplemental DNNs to learn
and perform the trigger reconstruction step of their overall
defenses. For instance, DeepInspect [130] uses a conditional-
GAN to learn the potential trigger patterns associated
with each class of a suspicious model. NNoculation [145]
meanwhile uses a CycleGAN to extract the trigger patterns
from suspicious inputs sent to a DNN. Such generator-based
methods do not always rely on large models, as shown by
MESA [146], which uses a 3-layer perceptron as a generator.
Some defenses rely on a search algorithm instead of

an optimization process. For instance, NEO [147] follows
a heuristic that iteratively blocks sections of an image,
replacing it with its dominant color, to find backdoored
inputs. Once a set of suspicious inputs is collected, the
method searches the images for the trigger’s position.
TAD [148] designs a similar search process, looking for and
counting potential patch-like and diffuse trigger patterns in
input images sent to the defended DNN.

In the context of backdoor defenses on FRS models,
we inventory 14 defenses that learn a trigger injection
function and 2 that reconstruct a trigger via search algorithms
(see the Table 4 and Table 5).

Data purification (res. input sanitization, poison-
backdoor mismatch). A defender that cannot use a model-
based defense or perform backdoor detection at the input level
may try to indiscriminately clean the inputs sent by users to
the defendedDNN. In practice, the defender alters the content
of incoming inputs such that the original semantics are left
untouched while destroying the trigger contained within.

For instance, the Flip and ShrinkPad defenses [136]
use simple data transformation techniques (e.g. flipping an
input or shrinking and padding its content with random
pixels) to greatly decrease the performance of backdoored
inputs as they are sent by a malicious agent. Similarly,
DeepSweep [149] draws from a library of attack instances to
refine an input pre-processing policy to eliminate potential
backdoor patterns at test-time. Meanwhile, more complex
defenses may rely on supplemental, often generative, DNNs
to perform input purification. For instance, Februus [150]
iteratively refines a mask over an incoming input to a
suspicious DNN and, using an inpainting GAN, regenerates
the input’s content at the mask’s location. BDMAE [151]
innovates over Februus by using aMasked-AE to perform the
inpainting step while relying on a two-step heuristic search to
define the associatedmask.Moreover, BDMAEdemonstrates
its effectiveness in a label-only black-box setting.

We inventory 6 data purification defenses implemented on
FRS models (see the Table 4 and Table 5).

a: TRAINING-TIME FILTERING
Whenever training a DNN is susceptible to data poisoning,
a defensive approach is to filter outliers from its training
dataset. As such, a DNN defender in charge of training a
DNN with an untrustworthy dataset may remove suspicious
training datapoints by observing their interactions with the
learning DNN.

Some training-time filtering defenses design an outlier
detection scheme based on the internal representations of a
training DNN. For instance, the Spectral Signature [152] and
Activation Clustering [133] defenses extract a DNN’s feature
maps during training and, after performing dimensionality
reduction via singular value decomposition or principal
component analysis, cluster training datapoints based on
their representations. A cluster-based binary test then enables
setting aside poisoned datapoints. As this process yields two
sets, i.e. clean and a poisoned sets, the DNN defender may
then choose to retrain the infected DNN on the clean one
(e.g. following amodel reconstructionmethod). Additionally,
the ABL defense [153] builds on Spectral Signature and
Activation Clustering to design an active filtering defense.
Poisoned data are removed during learning such that a second
training run is not necessary. ABL changes the training
loss to incorporate a local gradient ascent technique in the
early training epochs, and switches to including a global
gradient ascent process in the later ones. Early on, the defense
identifies the datapoints that converge suspiciously quickly,
i.e. their associated loss drops surprisingly early below some
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given threshold. Afterwards, the loss includes a gradient
ascent targeting the identified datapoints so as to unlearn the
backdoor.

A defender may look to filter a dataset before using it
for training their end task DNN. For instance, the defender
may train one or more models on the likely-backdoored data
and use them to clean the training dataset for some later
use. Two methods previously demonstrated on FRS DNNs
are Meta-Sift [126] and D3 [127]. Meta-Sift exploits the
property that DNNs robustly learn backdoors to generate an
ensemble of backdoored models, called ‘‘Sifters,’’ that score
each training samples. These scores allow the detection and
removal of poisoned inputs under an outlier detection scheme.
Meanwhile, D3 relies on a trigger reconstruction GAN built
atop a suspicious DNN. The reconstruction is stamped on
clean inputs, which are used to extract clean and possibly
poisoned feature representations from the backdoored DNN.
Afterwards, inputs that match the internal representations of
a possible backdoor are removed from the training dataset.

We inventory 6 training-time filtering defenses imple-
mented on FRS models (see the Table 4 and Table 5).

b: TEST-TIME FILTERING
In the case a DNN defender must defend against a potentially
backdoored DNN (e.g. after outsourcing its training), they
may look into filtering test-time inputs sent by possibly
malicious users. Test-time filtering differ from data purifica-
tion in that the defender assumes the capacity to distinguish
poisoned from benign inputs, an assumption absent in data
purification methods (the defender is blind to the presence
of a backdoor, choosing instead to purify all incoming DNN
inputs).

A defender may perform test-time filtering by extracting
abnormal patterns from incoming inputs and testing them
on held-out benign data, as illustrated in Sentinet [135].
Sentinet takes an image input to a DNN classifier and
performs a heuristic search to find the most salient patch
area in the image. The area is then extracted and stamped on
benign inputs to check for suspiciously robust and targeted
label flips. Using a score derived from the number of
misclassifications caused by the suspicious pattern (versus
a dummy one) at the same location, Sentinet then strikes
the input as backdoored if it fails to meet some acceptance
threshold.

Other test-time defenses with a white-box access to
a model detect abnormal feature representations instead.
Similar to Spectral Signature [152] and Activation Cluster-
ing [133], the SCAn defense [132] extracts intermediary
representations from a suspicious DNN as inputs to a
separate outlier detection scheme. The Raid defense [154],
meanwhile, decomposes a suspicious DNN into its feature
extractor and classifier subnetworks and trains a new classi-
fier atop the extractor using clean validation data. An outlier
detection scheme then compares the predictions of the two
classifiers given the same input feature representation.

Jin et al. [155] propose to exploit the robustness of
backdoors to perturbations to identify poisoned test inputs.
By manipulating a DNN’s weights (e.g. adding Gaussian
noise) or neurons (e.g. shuffling weights, switching neurons,
inversing activations), a defender expects DNN inputs to be
misclassified. However, the authors observe that backdoored
inputs are surprisingly robust to model mutations. The
authors therefore derive an outlier detection scheme at test-
time by generating a suite of mutated models against which
to test incoming inputs. Similarly, the Scale-Up defense [156]
observes that backdoored inputs are surprisingly robust to
image saturation (i.e. light intensity). This originates from
semantics being less robust than backdoor triggers to image
manipulation, which in turn allows building a test-time outlier
detection.

Finally, some methods explore stacking multiple binary
tests to create more robust defenses. For instance, the
CleaNN defense [157] uses two anomaly detectors: one at
the input level using frequency analysis to detect suspicious
patterns in an image; the other at one of the suspicious
DNN’s intermediary layers so as to capture abnormal features
associated with the image’s representations. Any of the two
detectors being triggered leads to the defense rejecting the
input.

We inventory 15 training-time filtering defenses imple-
mented on FRS models (see the Table 4 and Table 5).

3) ONE-STAGE VS. MULTI-STAGE BACKDOOR DEFENSES
Backdoor defenses vary in the number of stages they involve.
In the case of one-stage defenses, the STRIP method [134]
leverages a clean test dataset to generate perturbed inputs to a
suspicious DNN. By computing the entropy associated with
each input, it designs a simple binary test to detect poisoned
inputs in real-time; a low entropy indicates a high likelihood
of a backdoored input.

Multi-stage defenses are more sophisticated, as illustrated
by the NNoculation method [145]. In NNoculation, a DNN
defender with a white-box access to a suspicious DNN
operates in 4 distinct stages: (1) the defender duplicates
the DNN and retrains the copy on clean validation data,
augmented with Gaussian noise; (2) the defender deploys
both models as an ensemble and looks for divergences in their
predictions to quarantine suspicious inputs; (3) the defender
trains a Cycle-GAN on clean validation and quarantined
data to reconstruct a potential trigger; (4) Using the Cycle-
GAN as a generator, the defender retrains the original DNN
and its duplicate to become robust to the reconstructed
backdoor trigger. Another example is found in the BDMAE
method [151], which trains a Masked AE to iteratively erase
and reconstruct the content of incoming inputs to a suspicious
DNN, with the aim of destroying any trigger contained
within.

We inventory 7 one-stage and 31 multi-stage defenses
implemented on a FRS model (see the Table 4 and
Table 5).
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4) OTHER SPECIFICATIONS
As with defenses against adversarial attacks, backdoor
defenses are broadly split between empirical and certified
defenses. Empirical defenses are methods that rely on
demonstrably effective heuristics (e.g. Neural Cleanse [129])
without providing provable guarantee of their effectiveness.
This lack of guarantees gave rise to certified defenses in the
adversarial literature [158]. All defenses cited thus far in this
survey are empirical defenses. To the best of our knowledge,
no certified backdoor defenses has been implemented on
FRS models so far. We therefore left the distinction out of
this paper’s backdoor specification categories (see Table 4
and Table 5). However, we highlight some recent works into
provably-robust backdoor defenses. These certified defenses
typically rely on Randomized Smoothing [159], [160],
a technique borrowed from the adversarial attack literature,
which uses data augmentation with Gaussian noise to certify
the accuracy of DNNs. We also note the singular certified
backdoor defense framework proposed by Xie et al. [161] is
applied in the context of federated learning.

Another left-out category is the distinction between
offline and online backdoor defenses. We find that the
distinction typically subsumes in the other, previously-
defined specifications. Whereas offline defenses are used
prior to a DNN’s deployment, online defenses actively
monitor and modify user interactions with FRS models to
preventmalicious agents from exploiting their vulnerabilities,
e.g. backdoors. Moreover, some multi-step defenses mix
both such as NNoculation [145], which uses clean but
noisy validation data to perform the offline retraining of a
suspicious model. Then, using both the suspicious model and
its retrained version, the defense monitors and quarantines
outlying, typically-backdoored inputs in an online fashion.

C. THE LIMITED COVERAGE OF BACKDOOR DEFENSES
So far in this paper, we have provided a comprehensive
list of backdoor attacks and defenses without looking at
their interactions. We provide in the Tables 1-5 additional
information on which attacks defeats which defense and
vice-versa.

A first observation is the limited applicability of current
backdoor defenses. We find that out of 54 attacks, only
10 have demonstrably been defeated in the literature.

Moreover, the defenses referenced in this survey mainly
focus on defending against: patch-based, agnostic, all-to-
one, and non-semantic backdoors. For instance, besides the
Composite Attack [103], which is defeated by Ex-Ray [138],
the effective defenses target non-semantic backdoors like
BadNets [12] or Chen et al. [32]. This highlights a lack of
coverage of existing backdoor defenses, especially in the
context of FRS security.

Additionally, we note that most backdoor attacks defended
against are relatively old. The newest attack defended against
by Ex-Ray [138] is the HTBA attack [162] from 2019.

A second observation relates to defenses being overwhelm-
ingly white-box. Indeed, 26 out of 39 referenced defenses
requires a full access to a DNN. This is an untenable access
requirement in multiple scenarios that reflect the reality of
ML outsourcing and third-party hosting. Incidentally, we find
that an increasing number of defenses considers a limited
knowledge setup with respect to dataset access, with 18 out
of 39 defenses requiring only access to some test data.

Finally, we note that, to the best of our knowledge,
the defense literature as a whole misses a comprehensive
coverage of the intrinsic limitations of defenses as well as the
costs (complexity, runtime, etc.) involved. We did not find
any comprehensive defense benchmark.

D. TAKEAWAY
In this Section, we evidence that backdoor defenses fit a
variety of categories, as illustrated in the Table 4 and Table 5.
Moreover, we show that (1) no one-size-fits-all defense
exist and that (2) defense development is currently lagging
behind the current attack literature. This realization especially
matters in the context of defending DNN-based FRS, the
context of this work, and the need for black-box backdoor
defenses in the MLaaS industry and ML outsourcing in
general.

VI. CURRENT TRENDS AND OPEN PROBLEMS
A. EMERGING TRENDS IN THE BACKDOOR LITERATURE
1) SYNTHETIC FACE DATASETS AND THEIR VULNERABILITIES
Stemming from privacy or ethical concerns, labeling prob-
lems, or dataset bias [163], the generation of artificial face
recognition datasets (e.g. via GAN [164] or Diffusion [165]
DNNs) has gained an increasing importance in recent
years [163], [164], [166].
Unfortunately, generative DNNs do not provide protection

for DNN users against backdoors. As hinted by the use
of GANs in trigger reconstruction backdoor defenses (see
Subsection V-B), recent works have demonstrated that
generative models are both vulnerable to backdoors and to
becoming vectors for data poisoning attacks [167], [168].
Such models can indeed be trained to generate backdoored
data for an unsuspecting victim [169], [170].

To the best of our knowledge, there is no demonstration
of backdoored data synthesis in a face recognition task,
raising questions about the practicality of such attacks.
Given this possible vulnerability however, it remains an
open question whether training-time filtering methods, like
Meta-Sift [126] and D3 [127], are effective on generated,
backdoored datasets.

2) DEFENDING AGAINST NOVEL BACKDOOR ATTACK
METHODS
Beyond the context of backdoor attacks on face recogni-
tion tasks, recent works have explored designing stronger
triggers based on imperceptibility, sample-specificity, and
sparseness [88], [89], and sometimes benign processes
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commonly found in image classification (e.g. compression
algorithms [116]) to defeat existing defenses.

Additionally, recent works demonstrated stronger attacks
in the physical world (a key concern in face recognition)
such as the BATT attack [171], which claims to defeat a
variety of model-based and data-based defenses such as
Neural Cleanse [129], SentiNet [135], Fine-Pruning [128],
and NAD [125]. As a consequence, prospective users of
outsourced FRS (or of the DNNs therein) should consider
the current state of backdoor defenses. No one-size-fits-all
method exists yet.

B. LIMITATIONS OF THE BACKDOOR LITERATURE ON
FACE RECOGNITION
1) FACE CLASSIFICATION IS NOT REALISTIC
The majority of backdoor attacks and defenses that use face
recognition as a use case lack practicality for two reasons:

(1) modern face recognition is not a classification task,
(2) face recognition is an open-set problem.

Though early methods like EigenFaces [21] classified
identities, the current ubiquity of large-scale datasets and
deep learning methods cannot accommodate an ever-rising
number of class-identities. This is why embedding methods
based on contrastive or angular-margin learning, like Arc-
Face [61] or CosFace [64], play a key role in the field at the
moment.

Consequently, the wide array of backdoor attacks found in
this paper (see Tables 1 & 2) may only have a limited impact
on real-life face recognition DNNs and thus FRS pipelines.
Nonetheless, recent works like Carlini & Terzis [172] demon-
strate the feasibility of backdooring contrastive learning,
albeit not in the context of face recognition.

Additionally, modern face recognition tasks and thus FRS
pipelines typically function in an open-set condition [173]:
the training-time and test-time identities fed to a given
DNN are disjoint (i.e. the data distributions differ). However,
the backdoor literature that uses face recognition as a use
case typically follows a closed-set setup where training-time
and test-time identities are identical. For instance, the PTB
attack [174] selects 100 identities from theYTF dataset [175].
To the best of our knowledge, no implementation of a
backdoor on an open-set face recognition task yet exists.

2) FACE RECOGNITION (AS A TASK) IS ONLY A PART OF FRS
The backdoor literature overwhelmingly focuses on face
extractor DNNs as models in isolation, and rarely does
so with antispoofing. By eschewing the broader context of
FRS pipelines, as illustrated in Section II, prior backdoor
attacks and defenses do not consider the sequential set of
tasks (face detection, extraction and alignment, antispoofing,
feature extraction, and, optionally, binarization) and the
backdoor risk associated with each of them. For instance,
if backdooring a contrastive learning-based face extractor
in an open-set situation is a hard problem, an attacker may

instead look to backdoor the antispoofing DNN in a FRS such
that it lets through fake face images.

To the best of our knowledge, no prior work explores the
survivability of a backdoor trigger through a FRS pipeline,
an important consideration as a backdoored model may exist
behind several layers of extraction and image augmentations.
Moreover, no existing paper in the backdoor literature takes
into account the broader context of FRS pipelines, i.e., their
vulnerabilities and the constraints they set on both attackers
and defenders.

3) BACKDOOR DEFENSES MAY MOVE THE GOALPOST OF
SECURITY
We noted in Section V that several defense methods rely on
supplemental DNNs. For instance, black-box data purifica-
tion defenses like NNoculation [145] or BDMAE [151] make
use of an inpainting process based on a generative DNN.

However, as noted in Section VI-A1, generative models
are also vulnerable to backdoor attacks. They cannot be
considered secure. This matters both because generative
machine learning may provide a false sense of security
despite that several backdoor defenses rely on using gen-
erative DNNs sourced online and pre-trained by a possibly
untrustworthy third-party (e.g. BDMAE [151] sources a
pre-trained Masked-AE). Additionally, even if training such
supplemental models was possible for a defender, accessing
the required data may be out of reach as facial data may
involve privacy and confidentiality safeguards (See App. D).

Such backdoor defenses are consequently moving the
goalpost of security by relying on third-party DNNs that must
be defended from backdoors too.

C. FUTURE RESEARCH DIRECTIONS
1) CATCHING UP WITH THE BACKDOOR STATE-OF-THE-ART
Because face recognition is a typical use case in the backdoor
literature, future works that aim to assess the security of FRS
against backdoors should draw from recent developments
that may not be reflected in this paper (as mentioned in
Section VI-A). Future research may look into (1) better
assessing the applicability of backdoor attacks on FRS and
(2) verifying the effectiveness of existing defenses on more
novel attacks. A benchmark of backdoor defenses, covering
defenses’ applicability, complexity, and runtime for instance,
is a missing work that would provide future directions for the
backdoor defense literature.

2) A NOTION OF SURVIVABILITY OF BACKDOORS
Because a single DNN within a FRS may be vulnerable
to backdoor attacks in the context of ML outsourcing (e.g.
of either the detector, antispoofing or feature extractor),
the backdoor attack literature should consider whether a
trigger is robust enough to reach the malicious DNN in the
FRS. For instance, an attack in physical space on a FRS
feature extractor must go through detection, alignment, and
antispoofing before reaching its target.
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As such, a notion of ASR on a given DNN is insufficient.
Backdoor success must also take into consideration the
success rate of the backdoor trigger through all possible
layers of models and pre-processing before reaching its end
goal.

3) BACKDOOR ATTACKS AND DEFENSES ON OPEN-SET
FACE RECOGNITION AND DISCRIMINATIVE FEATURE
EMBEDDING
Future work in the backdoor literature should draw from the
face recognition state-of-the-art to inform its use cases. Face
recognition does not fit a simple classification task anymore.
In this context, novel backdoor attacks may draw from
prior works on master face attacks [176] and their hardness
in open set conditions [177]. For instance, Guo et al. [122]
demonstrate the effectiveness of a backdoor on an open-set
face recognition DNN based on a Siamese network (this use
case does not extend to angular margin training methods and
DNNs such as CosFace [64]).

The security of other DNN training methods (e.g. self-
supervised learning [35]) that may be used in a face
recognition context is therefore an important point to address
in the future.

4) BACKDOORS ATTACKS AND DEFENSES FROM
PRECEDING MILESTONES TO FUTURE FRONTIERS IN A FRS
FRS are complex systems that may be outsourced wholly or
in parts to malicious third-parties. It is thus worth considering
new kinds of attacks that exploit the intricacies of FRS to
carry backdoor triggers to their DNN targets. For instance,
it is conceivable that a backdoored detector, as illustrated by
the BadDet attack [70], eventually finds its way into a FRS.
Additionally, antispoofing tasks may also be backdoored as
the task is similar to a binary classification. In a similar vein,
backdoors on autoencoders [178] may find their way in face
embedding binarizers as they are currently envisioned for
facial fuzzy commitment schemes [47].
Beyond the existing structure of current FRS as outlined

in Section II, defenders must also consider a future where
the structure of a FRS changes. Additional bricks to a DNN-
based FRS cannot be considered safe due to a novelty
factor.

For instance, something we did not cover in this survey is
the open problem of deepfakes and their detection as they do
not fit the same threat model (physical versus digital [60]).
However, with the recent explosion of diffusion methods and
the possibility of seamless forgeries and synthetic faces [165],
security stakeholders will need to look for stronger, more
robust defenses. Here, we note that the inclusion of a
deepfake-detection DNN in a FRS could happen in the future
as the task is close if not overlapping with the current state
of face presentation attacks [60]. Securing FRS should thus
explore how potential novel FRS structures may be impacted
by out-of-domain backdoor attacks, and therefore how to
prevent them.

5) MORE ROBUST DEFENSES IN A BLACK-BOX CONTEXT
Following the previous point, the complexity of FRS may
also work in the favor of defenders, using the outputs of the
different stages of a FRS pipeline may feed a defense process.

However, DNN defenders must first face the prospect
of both black-box and backdoored FRS pipelines. Without
knowing whether a DNN in a FRS is backdoored and without
white-box access when the whole FRS pipeline is outsourced
to a third-party, DNN defenders must explore novel, strong
defenses to protect themselves frommalicious agents without
falling into the pitfall of several black-box defenses that rely
on outsourced DNNs.

VII. CONCLUSION
This survey provides a comprehensive integrity-related threat
model of FRS pipelines, and the classification of both
backdoor attacks and defenses that affect them. We cover
the level of knowledge and access required by both attackers
and defenders, where in a pipeline and when in its lifecycle
attacks and defenses occur, and how attacks and defenses
have answered each other. Additionally, this survey high-
lights that backdoor defenses are lagging behind the attack
literature and that backdoor attacks and defenses typically
do not consider FRS pipelines in their entirety. The security
analysis of such systems, and the role and applicability of
backdoor attacks and defenses, are therefore only partially
understood.

It is therefore critical for future research to better
understand the landscape of backdoor attacks and defenses
that affect FRS pipelines. Future research ought to consider
the security and complexity of FRS as a mesh of specialized
models that each serves a complementary purpose. The
uncovered limitations of the current research, which limit the
applicability and relevance of both attacks and defenses in a
real-life context, must be addressed.

APPENDIX A
DESCRIPTION OF FRS PIPELINE BLOCKS
Face Detector. The first DNN module of a FRS is the
detector. It is responsible for scanning an input image or video
(e.g. frame-by-frame) to identify one or more faces. The
detector DNN that is trained with a multi-task approach [49],
which involves predicting various attributes and labels. These
include regressing the coordinates of the bounding boxes
around detected faces (e.g. top-left corner coordinates, box
width and height), computing a confidence score indicating
whether a face is present within these boxes (e.g. personhood
score), and optionally regressing or classifying other facial
characteristics like face landmarks [52], [53], [54] (e.g.
nose, eye and mouth corners, etc.), three-dimensional face
topology [52], luminosity, yaw, accessories, etc. Face detec-
tion models are typically adapted from the broader object
detection literature, with networks such as Fast-RCNN [50],
YOLOv2Face [51], RetinaFace [52], or MTCNN [53].
Detectors are built upon convolutional neural networks

(CNN) [49], [50], [51], [52], [53], although recent
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developments have explored the use of vision transform-
ers [179]. These CNNs serve as the backbone of detector
models, with additional subnets referred to as necks and/or
heads attached. The backbone is generally pre-trained on a
domain-independent task, i.e. the backbone is at first agnostic
to the face detection task [18]. The backbone and subnets
are then concurrently fined-tuned. Backbone and subnets
typically fit four kinds of setups:

1) Featurized Image Pyramid: An image is duplicated at
different downsized scales. A feature map is computed
for each version and propagated to a subnet specific to
that scale. This allows regressing bounding box corrdi-
nates at each of these scales (e.g. with MTCNN [53]).

2) Single-Shot Feature Map: The detector’s subnets use
the final layer output of the backbone to detect faces at
different scales (e.g. YOLOv1-Face [180]).

3) Pyramidal Feature Hierarchy: The detector’s subnets
leverage the feature maps from the intermediary layers
of the backbone to perform multi-scale regression of
bounding box coordinates (e.g. SSD [181]).

4) Feature Pyramid Network: The subnets rely on the
backbone’s feature maps, as in (3), but an additional
residual operation. This operation (e.g. upscale +
addition) connects each feature map with its backward
neighbor in the backbone architecture (e.g. the feature
map of the layer n is upscaled and added back to the
feature map of layer n−1), allowing multi-scale feature
sharing for better face detection (e.g. DF2S2 [182]).

Regardless of the backbone configuration, face detection
is generally performed in a multi-step or one-step fashion.
Multi-step detectors are typically older designs that first
generate a set of face regions of interest (RoI) and then
refine them. Conversely, more recent single-step detectors
have eschewed the initial RoI-generating step in favor of
performing face detection directly [183]. Single-shot detec-
tion methods typically fall into two subtypes: anchor-free
and anchor-based [13]. Anchor-free detectors directly regress
the true coordinates of bounding boxes (e.g. YOLOv1-
Face [180]) whereas anchor-based detectors regress a relative
position with respect to canonical bounding box coordiates
(res. anchors) defined for each feature map used in the
backbone network (e.g. RetinaFace [52]).
To delve deeper into the object and face detection literature,

we point to the following surveys [18], [183], [184].
Alignment. Alignment initially involved the task of

regressing facial landmarks in a detected face image [55],
[56]. However, DNN-based face detectors have increasingly
taken on this role thanks to advances in multi-task learning.
For example, RetinaFace regresses facial landmarks along
with a three-dimensional topology [52]. As such, alignment
corresponds less and less to a module dedicated to the
regression of facial landmarks and instead only aligns the
detected face and its landmarks to a standardized shape (e.g.
a specific ratio between the location of the right eye, nose tip,
and border of the face [185]). This shape, pre-defined by the

FRS developer, is known as a canonical shape [186]. This pre-
processing stage reduces facial variance, which enhances the
accuracy of subsequent feature extractors since downstream
DNNs must ignore non-biometric features.

Fitness to a canonical shape can be achieved through
geometric methods such as affine transformations [26]
(e.g. rotation and scaling based on face landmarks) or
by using three-dimensional topologies or masks, as seen
in RetinaFace [52]. We note that alignment can also be
performed by a separate, learned module appended to the
detector, such as the Spatial Transformer Network [187] or
the APA method [188].

We point the reader to the following surveys for more
details on alignment: [189], [190], [191].

antispoofing. As face detector operate in real-world
environments, they run the risk of detecting erroneous inputs.
An accidental detection may take the form of a face printed
on a bus driving by a CCTV camera, for instance. However,
an input may also be malicious, such as presentation attacks
(res. spoof, PA), where an attacker attempts to gain an
unauthorized access to a secure device [58]. It is critical
for an authentication FRS to include face antispoofing
(FAS) measures. These measures typically involve liveness
detection and/or personhood authentication to ensure that the
detected face is not only real but also alive. This is crucial
because PAs either impersonate someone or evade detection.
Spoofing may occur as a digital (e.g. print, replay, channel
attacks) or a physical (e.g. mask, cosmetics, tattoo, glasses)
attack.

Whereas antispoofing has historically focused on detecting
biometric features using handcrafted methods (e.g. eyeblink
detection [192], infrared assessment [193]), more recent
developments have explored hybrid (DNN + handcrafted
features) or full deep learning solutions [60].

Due to the complexity of FAS and the need to adapt to
diverse situations (e.g. luminosity, location) and potentially
yet-unseen spoofing methods, FAS has evolved along several
dimensions. Given possibly multimodal inputs (e.g. RGB,
thermal), FAS is approached from either a binary supervision
or pixel-wise supervision perspective [60]. In the former,
DNNs aim to extract and discriminate between spoof and
benign (res. bonafide) features in a classification setup.
In the latter, DNNs generate pixel-wise masks (e.g. depth,
reflection maps) to assess the liveness of a detected face.
Additionally, FAS has been explored in the context of
domain adaptation and domain generalization [60]. Domain
adaptation methods train FAS models given some knowledge
of the target domain to bridge the gap between known,
training data and real-world observations. Instead, domain
generalization works from the perspective that DNNs must
learn generalized feature representations regardless of the test
data. Of the two, domain generalization is the most recent
and challenging case, as it requires DNNs to handle unknown
attacks.

Insights into face antispoofing can be found in the
following surveys [17], [60], [194].
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Feature extractor. Once an input face successfully passes
the antispoofing step, it is processed through a feature
extractor model that transforms the image into a lower-
dimension representation (typically a real-valued vector or
floating-point array) for comparison purposes. To learn
lower-dimensional face recognition (FR) representation,
feature extractors tend to be based on classifier backbones
such as the ResNet architecture [61]. DNN meant for feature
extraction are typically trained in one of two setups: closed-
set and open-set [13].

In the closed-set setup, the identities found in the training
and testing sets are identical. This scenario is a typical
classification problem where each identity corresponds to
a class label. Standard losses such as cross-entropy loss,
contrastive loss, or triplet loss are common to learn separable
features. In an open-set setup however, the identity domains
between training and inference differ. This transforms the
problem into one of metric learning, where a FR DNN
learns to separate features following angular margin losses,
e.g. based on cross-entropy such as (e.g. Arcface [61],
Cosface [64], or Magface [195]). Initially trained in a classi-
fication fashion, a DNN learns to output logits that maximize
the difference between the feature representations of different
identities while minimizing the feature differences of the
same identity. Once training is complete, the DNN’s last
fully connected layer is removed, leaving behind the DNN’s
feature representation structure. This trimmed DNN now
generates face embeddings that can be used for biometric
applicationswith unknown identities, leveraging the notion of
distance that equips the DNN’s feature representations (e.g.
via cosine similarity).

Feature extraction serves as the core of a FRS, providing
its discriminative power and versatility for various tasks.
Besides metric learning and angular margin training, feature
extractors may also be trained via embedding learning, often
with the use of generativemodels. For instance, training a face
generator with either auto-encoders or generative adversarial
networks results in a discriminative encoder network that
can be used for FR [49]. Furthermore, these methods enable
disentangling the different features associated with identities
in a dataset, allowing the creating of feature representation
that are invariant to task-irrelevant chracteristics such as age,
pose, etc. (e.g. D2AE [196], DR-GAN [197]).

The surveys [13], [16] provide a comprehensive coverage
of face feature extraction, models, and datasets, including
angular margin loss functions and contrastive methods.

Feature binarizer (Optional). When FRS require binary-
valued inputs, e.g. for cryptographic purposes, an optional
binarization stepmay be appended to the extractor to generate
a binary-valued encodings [63]. Here, recent work has
explored the use of DNNs for binarization like AEs [47].
Matcher. Once a FRS has detected a face, assessed the

liveliness, and extracted its feature, these features can be
used for a downstream tasks given they pass the matcher.
Two primary setups exist in this context: face authentication

and face identification. Face authentication corresponds to a
1 : 1 setup where a detected face is compared to a stored
template to determine whether or not they match, for instance
to authenticate an access to a banking application. In contrast,
face identification operates in a 1 : N setup, where the
detected face is compared to a gallery of candidate faces.
The goal is to find whether it matches an identity in the
gallery.

APPENDIX B
OTHER DNN ATTACKS IN THE CIA TRIAD CONTEXT
This survey focuses on integrity-related attacks in the context
of the CIA triad [8]. However, the breadth of confidentiality
and availability attacks should not be understated. In this
appendix, we provide the readers with notes and citations
related to those two categories.

A. CONFIDENTIALITY-RELATED ATTACKS
Confidentiality attacks on DNN aim to unveil private infor-
mation about a DNN, such as its training data or weights. This
crucial, especially in the context of face recognition, where
face data has privacy and also legal implications such as
under the European Union’s GDPR framework [198]. In this
context, we highlight two types of attacks: membership
inference and model stealing.

1) MEMBERSHIP INFERENCE ATTACKS
A first type of privacy leakage affecting DNNs pertains
to the data they have been trained on. Membership
inference attacks are a suite of methods that extract sensitive
information about a DNN’s training data [199], e.g., whether
a given image has been used to train a model. Additionally,
more sophisticated attacks also aim to directly reconstruct
training samples [200]. Though several defenses against
membership inference have emerged [201], we note that no
single method has yet to be proven robust against an ever
growing attack literature [202].
Membership inference attacks are especially prevalent in

the vision domain [203] where it has been demonstrated
on a wide array of tasks [203]: clasification, generation,
segmentation, etc. Here, we note that the membership
inference literature makes heavy use of face recognition
tasks as a core use case [203]. Moreover, contrary to the
backdoor literature attack, membership inference methods
have explored attacking face extractors in an embedding
setting rather than classification [204].

2) MODEL STEALING ATTACKS
If trained data can be inferred or reconstructed,model weights
may also be stolen. Model stealing attacks (res. model
inversion) encompass an ensemble of techniques aimed at
extracting the functionality of a target DNN [205], even in a
black-box setting [206]. Recent work by Oliynyk et al. [207]
categorizes model stealing under two categories: whether
theft targets exact model properties like its architecture
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or weights, or some approximate model behavior (e.g.
accuracy).

In the context where defending against model stealing
is an open problem [207], we underscore that prior work
on DNN model stealing typically rely on face recognition
tasks as a core use case [205], [206]. As such, model
stealing is particularly relevant in the context of FRS
security.

B. AVAILABILITY-RELATED ATTACKS
Availability attacks on DNN aim to perturb the model’s
function to irrecoverably impact its performance such that
it stops functioning as intended [208]. In this context,
we highlight two types of attacks: data poisoning and
energy-latency.

1) DATA POISONING ATTACKS
Data poisoning attacks typically rely on similar attack
channels as backdoor attacks (e.g. data collection). However,
they aim for a different behavior: instead of targeted
misclassification for backdoor attacks, data poisoning attacks
aim to manipulate a training dataset to cause a decrease of
the victim DNN’s overall performance at test-time [209],
[210]. As such, they are untargeted/indiscriminate [211] and
visible (no stealth is involved) as the DNN’s degradation is
general.

Data poisoning attacks and defenses have been demon-
strated in the past on face recognition tasks [209]. These
attacks also find a strong use case in the context of
federated learning [212], [213], which are ripe for attacks
via the data collection channel. Here, we find prior work
on poisoning face recognition tasks in a federated learning
context [214].

2) ENERGY-LATENCY ATTACKS (SPONGE EXAMPLES)
Shumailov et al. [215] evidences a new type of availability
attack under the name of sponge examples or energy-latency
attacks. Like adversarial examples, sponge examples are
mined following an optimization process. However, instead
of causing misclassifications, sponge examples maximize
the energy expenditure of a DNN. The goal is to increase
DNN latency, causing a denial of service (DoS) attack that
may be critical to some systems such as in autonomous
driving.

If Shumailov et al. [215] demonstrates the effectiveness
of sponge examples against GPU and ASIC hardware,
Wang et al. [216] showed that mobile device (e.g.
mobile CPUs) are also affected. Additionally, Shapira
et al. [217] expands on the work of Shumailov et al.
[215] by demonstrating that sponge examples can also
be used against object detection besides object classi-
fication (Shumailov et al. also explores attacking NLP
tasks).

Lastly, Cinà et al. [218] bridges the gap between sponge
and data poisoning by demonstrating that sponge examples

can be injected in a model at training time, which exposes
a DNN user to an attacker in a ML outsourcing context.
The paper concludes with future research directions pointing
towards bridging sponge attacks and backdoor attacks,
where a specific pattern learned by a backdoored DNN
could trigger latency issues once stamped on a given
model.

Here we note that, to the best of our knowledge,
no sponge attack has been demonstrated on DNNs trained
on a task found in a FRS pipeline (e.g. face detection,
recognition, etc.).

APPENDIX C
FORMALIZATION OF BACKDOOR ATTACKS
We provide in this Appendix a short formalization of
backdoor attacks. For a more expansive formalization of
trigger-based backdoors, we point the reader to Wu et al.’s
survey [14]. To the best of our knowledge, there is no
comprehensive formalization of triggerless backdoors.

A. TRIGGER-BASED BACKDOORS
A trigger-based backdoor attack on a classification task
involve an attacker who is able to influence the training or
deployment of a target DNN such that the DNN associates
the presence of a given trigger pattern t , added to a source
input xcl of class ycl, with an erroneous label ypo.

In the common backdoor injection method of data
poisoning, the attacker modifies a portion β ∈ (0, 1] of a
clean training dataset Dcl

train with a poisoning function p :

X → X along with a label flip function c : [κ] → [κ]. cl

denotes clean data, X is the input space of a DNN fθ with
parameters θ , and [κ] = {1, . . . , κ} is the number of classes
predicted by a DNN fθ .

Section IV distinguishes data poisoning between two
main cases: poison-label or clean-label. In the former case,
an attacker poisons inputs from different source classes with
p and flips their ground truth labels to a single target class
ypo with c. In the latter case, the attacker poisons inputs from
the target class itself and c is the identity function. As such,
a backdoor attack via data poisoning can be summarized as
follows:

Dcl
train = {(xcl

i , ycl
i )}

n
i=1 ⊂ X × [κ] (1)

xpo
i = poison(xcl

i ) (2)

ypo
i = c(ycl

i ) =

{
yi ∈ [κ], yi ̸= ycl

i (Poison-label)
ycl
i (Clean-label)

(3)

where xpo is an input altered with p, and ypo is the attacker’s
target label specified by c. Both poison-label and clean-label
cases yield a poisoned training set P = {(xpo

i , ypo
i )}mi=1.

In the data collection backdoor channel case, the attacker
injects P in the unsuspecting victim’s data C. In the
outsourcing case, the attacker is able tomergeP and C (which
they own) to generate a backdoored dataset Dpo

train = C ∪ P
with which the attacker freely trains the victim DNN f po

θ .
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TABLE 6. Model architectures typically used in the backdoor literature (in
the context of FRS-related subtasks).

We note that in the training environment injection setup,
the attacker cannot proceed with the backdoor injection
method as described above. We refer the reader to the
methods involved for further details (see Tables 1-3).

B. TRIGGER-LESS BACKDOORS
To provide a summary formalization of trigger-less backdoor
attacks, we draw inspiration from Ji et al. [95] and the
DeepPoison [104] method.
Trigger-less backdoors typically involve the use casewhere

the attacker provides the backdoored model (outsourcing
channel) and is free in its choice of injection method (data
poisoning, etc.). The attacker aims to build a model that
misclassify inputs xs of a source class ys as inputs of a target
class yt without modifying xs at test-time. To do so, the
attacker designs a method that:

(1) generates sets of semantic neighbors of the source and
target class, Xs and Xt ,

(2) trains a victim DNN f po
θ s.t. the the features associated

with Xs are close to those of Xt , this leads to
misclassifications of inputs of class ys as yt on hold-out
sets.

Step (1) mines a set of adversarial perturbations such
that, given a reference, benign DNN f for instance, the
perturbations over Xs yield the same features as those of
Xt . The perturbed set Xs, when reintegrated in the original
training dataset Dcl

train is used to train a victim DNN f po
θ

following a multi-task loss function that trains a model to
emulate a benign behavior on clean data alongside the hidden,
malicious backdoor behavior. We note that steps (1) and (2)
can either happen sequentially [95] or simultaneously [104].
In the latter, DeepPoison concurrently trains aGANalongside
f po
θ such that the set of perturbations overXs is refined during
the training of f po

θ .

APPENDIX D
ETHICAL AND PRIVACY CONCERNS
Mentioned in Section VI-A1, face recognition involves
ethical and privacy concerns stemming from the use of
private, facial data. Because of this context, some existing
backdoor defenses may not be possible depending not only
on a given defender’s capabilities but also local legal and
privacy considerations For example, the GDPR framework
impacts the use of FRS in the EU [198]. Though face data
may fall under legitimate use, they are used to construct
biometric templates as part of a FRS. In that regards, such
data is considered sensitive and must be safeguarded.

Under this consideration, processing and saving user face
data or a FRS’ templates may be limited. For instance,
performing offline verification on such biometric templates
or accessing user data in transit may not be allowed
beyond an authorized research context (as per Article 9(1)(j)
GDPR [198]). This may limit a defender’s capacity to both
filter data but also run post-mortems once an attack (which
carries beyond the realm of backdoors) is detected in an
industry environment. Nonetheless, we note the constant need
for developing privacy-preserving defenses, an longstanding
topic in biometry [38], notably with respect to backdoor
attacks.

As a final note, we highlight that a changing legal
framework with respect to machine learning usage may
also introduce new attack surfaces. When considering the
sensitive data used to train DNNs found in a FRS, legislations
like GDPR [198] enforce a right to be forgotten which may
obligate FRS providers to recurringly retrain their DNNs,
increasing the risk of data poisoning for instance. Such
a jurisdiction-dependent FRS threat model is a topic that
backdoor defenders must take into account.

APPENDIX E
BACKDOORS ACROSS DIVERSE FIELDS
As noted in Section I, backdoor attacks and defenses expand
far beyond facial recognition such as with acoustics, NLP,
3D point cloud or reinforcement learning [35] or federated
learning [161].

Here, we note that backdoor attacks have also affected
fields that may intersect with more complex recognition
systems than FRS. For instance, a recognition system may
combine both facial and voice or other physical markers
to perform multi-modal authentication [43], [60]. In such
situation, one may assume multimodality is a guarantee of
higher security. However, the existence of backdoors beyond
the image medium [35] undermines this idea of security.
Similarly, face recognition tasks that exploit signal beyond
the visible spectrum (e.g. infrared sprectrum [60]) may
also be attacked. We surmise the development of backdoor
attack demonstrations on such systems is likely in the
future.
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TABLE 7. Face datasets used in the backdoor literature.

APPENDIX F
ACCOMPANYING TABLES
Tables 1-3 inventory 54 backdoor attacks that use a FRS
model as one of their use case. Table 4 and Table 5 inventory
39 backdoor defenses in the same context.
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