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ABSTRACT

Hyperbolic neural networks (HNNs) have shown remarkable success in repre-
senting hierarchical and tree-like structures, yet most existing work relies on
the Poincaré ball and hyperboloid models. While these models admit closed-
form Riemannian operators, their constrained nature potentially leads to numeri-
cal instabilities, especially near model boundaries. In this work, we explore the
Proper Velocity (PV) manifold, an unconstrained representation of hyperbolic
space rooted in Einstein’s special relativity, as a stable alternative. We first es-
tablish the complete Riemannian toolkit of the PV space. Building on this foun-
dation, we introduce Proper Velocity Neural Networks (PVNNs) with core layers
including Multinomial Logistic Regression (MLR), Fully Connected (FC), convo-
lutional, activation, and batch normalization layers. Extensive experiments across
four domains, namely numerical stability, graph node classification, image classi-
fication, and genomic sequence learning, demonstrate the stability and effective-
ness of PVNNs.

1 INTRODUCTION

Hyperbolic geometry provides a natural representation for hierarchical data due to its exponential
representation capacity, and has proven successful across diverse applications, including computer
vision (Khrulkov et al., 2020; [Bdeir et al.| [2024} Sur et al., [2025)), temporal knowledge graphs (Li
et al.} |2024), natural language processing (Ganea et al., 2018)), knowledge-graph reasoning (Nickel
& Kielal 2017)), astronomy (Chen et al.,2025al)), graph learning (Chami et al.,[2019; |Li et al., |2024),
genomic sequence learning (Khan et al., |2025)), and fine-tuning (Yang et al.| [2024). Recently, the
focus has shifted from hyperbolic embeddings to building Hyperbolic Neural Networks (HNNs) that
operate entirely within hyperbolic space. As hyperbolic geometry admits multiple models (Cannon
et al.,|1997)), the choice of representation is central to the design of hyperbolic networks. Most recent
works rely on the Poincaré ball and hyperboloid models, which provide convenient Riemannian or
gyrovector structures (Ganea et al.|[2018;|Chen et al.,2025b; |Ungar, [2022), thereby facilitating neu-
ral network construction. However, both models are constrained spaces, which can lead to numeri-
cal instabilities. In particular, as embeddings in the Poincaré ball approach the boundary, numerical
computations become unstable and might cause the gradient to vanishing (Guo et al.| 2022]).

On the other hand, the Proper Velocity (PV) model originates from Einstein’s special relativity,
where proper velocity provides a natural parameterization for relativistic velocity addition (Ungar,
2022, Ch. 10). Algebraically, PV admits a gyrovector space (Ungar, 2022, Ch. 6), analogous to
the Mobius gyrovector space of the Poincaré ball. Unlike the constrained Poincaré ball and hy-
perboloid models, PV offers an unconstrained representation that alleviates numerical instabilities.
These properties have made the PV model particularly successful in relativistic physics and motivate
its exploration as a stable alternative geometry for HNNs. However, its Riemannian operators, in-
cluding exponential and logarithmic maps and parallel transport, remain largely unexplored, despite
being fundamental for constructing neural networks.

Inspired by the above discussions, we propose Proper Velocity Neural Networks (PVNNSs). To this
end, we first establish the complete Riemannian geometry of PV by deriving closed-form expres-
sions for the exponential map, logarithmic map, geodesic distance, and parallel transport. Building
on this foundation, we extend several fundamental neural layers into PV space, including Multi-
nomial Logistics Regression (MLR) classification, Fully Connected (FC), convolutional, activation,
and batch normalization layers. Based on these layers, one can construct different network archi-
tectures. We validate the framework through four sets of experiments, including numerical stability,



Under review as a conference paper at ICLR 2026

graph learning, computer vision, and genomic sequence learning, demonstrating both the stability
of PV embeddings and effectiveness of PVNNs. To our knowledge, the PV model has remained
largely unexplored in machine learning, and our work provides the first systematic study of its use
for representation learning. In summary, our contributions are threefold:

1. We establish the complete Riemannian geometric toolkit of the PV manifold, deriving closed-
form operators that enable its use as a new alternative to classical hyperbolic models.

2. We develop fundamental building blocks in PV space, including MLR, FC, convolutional, activa-
tion, and batch normalization layers.

3. We validate the stability and effectiveness of PVNNs through experiments on four tasks: numeri-
cal stability, graph node classification, image classification, and genomic sequence learning.

2 RELATED WORK

Hyperbolic representation. Hyperbolic embeddings have been widely explored for hierarchical
and non-Euclidean structures in networks, trees, and text (Krioukov et al.| 2010; |Wilson et al.,[2014;
Sonthalia & Gilbert, [2020; Nickel & Kiela, |2017; |Chami et al., [2019). Hyperbolic neural networks
(HNNs) explores these embeddings within deep architectures (Ganea et al., [2018), and subsequent
works extend them to graphs, knowledge bases, and vision (Chami et al., |2019; Balazevic et al.,
2019; Khrulkov et al., [2020; |Bachmann et al., 2020).

Hyperbolic models and networks. Among the multiple models of hyperbolic geometry (Can-
non et al., [1997), the Poincaré ball and the hyperboloid (Lorentz) models are most commonly
adopted. The Poincaré ball admits closed-form Mobius and Riemannian operators (Ganea et al.,
2018; [Shimizu et al., 2021), whereas the hyperboloid model provides numerically stable geodesics
and natural formulations in Minkowski space (Nickel & Kiela,|2018};|/Chen et al.,[2022; Mishne et al.,
2023). Building on these operators, researchers have adapted core Euclidean layers to hyperbolic
geometries. For instance, (Ganea et al.[(2018); |Shimizu et al.|(2021)) introduced FC and MLR layers
on the Poincaré ball via point-to-hyperplane distances, while |Chen et al.| (2022); Bdeir et al.| (2024
designed FC and convolutional layers on the hyperboloid through ambient spacetime formulations.
These modules have been applied to vision (Khrulkov et al., |2020; Bachmann et al., |2020) and se-
quence modeling (Khan et al., 2025), with recent works further developing residual architectures
and graph-specific formulations (Van Spengler et al.| 2023} [He et al., [2024; |(Chami et al., 2019; Dai
et al.l[2021).

Riemannian normalization. Normalization layers are essential for stabilizing and accelerating
training (loffe & Szegedy, 2015; [Ba et al.| [2016} [Ulyanov et al., [2016; [Wu & He, 2018)), yet their
Euclidean formulations do not generalize directly to manifolds. Early extensions adapted Rieman-
nian operators such as the exponential map, logarithmic map, and parallel transport to define batch
normalization on different manifolds (Brooks et al., 2019; [Lou et al.l [2020j |Chakraborty, 2020;
Bdeir et al., |2024). However, these approaches often lack theoretical guarantees to normalize sam-
ple statistics. More recently, algebraic structures have enabled principled and unified formulations.
Later, |Chen et al.| (2024a; [2025b; [2024c) explore algebraic structures, such as Lie groups and gy-
rogroups, to develop normalization layer which can normalize sample statistics.

3 PRELIMINARIES

Riemannian geometry. (Lee| 2018). Throughout, (-, -) denotes the standard Euclidean inner prod-
uct, and ||-|| the induced norm. A Riemannian manifold (M, g) is a smooth manifold equipped with
an inner product g, or (, ), on each tangent space T, M that depends smoothly on x € M. We use
Exp,, Log,, and PT,_,, to denote the exponential map at x, logarithmic map at x, and parallel

transport along the geodesic connecting x and y, respectively. A smooth map f : (M, g) — (Mv ,9)
is a Riemannian isometry if it preserves the metric: g, (u,v) = gy(q)(de f(u), dy f(v)) with d f as
the differential map at = and u,v € T, M.

PV space. (Ungar, 2022). Hyperbolic space is a space with constant negative curvature KX < 0 and
admits several models one can work with (Cannon et al.l [1997). The popular models include the
Poincaré ball and the hyperboloid (also known as the Lorentz model). The PV model PV% = R" is
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an alternative representation of hyperbolic geometry, which was initially named the Ungar gyrovec-
tor space and is used to describe algebraic structures of relativistic proper velocities (Ungar, [2022)).
Unlike the bounded Poincaré ball or the constrained hyperboloid, the PV model is an unconstrained
space, offering better numerical stability. Its Riemannian metric is given by App. [E.T}

9z (u,v) = (u,v) + KB2 (x,u) (x,v), Vo &PV}, Vu,vc T,PVY. (1)

_ 1 . .. R . .

Here, 8, = 717}("75"2 is the relativistic beta factor. In Ungar’s notation, the curvature is
parametrized by a positive constant s with s> = —1/K, where s plays the role of the vacuum

speed of light in special relativity (Ungar, 2022, Sec. 3.8).

PV gyrovector. From an algebraic point of view, the PV space forms a gyrovector space (Ungar,
2022, Def. 6.2), which extends the Euclidean vector space to manifolds. Given z,y, z € PV’ and
t € R, PV gyroaddition Gy and scalar gyromultiplication ®y (Ungar, 2022, Ch. 3.11 and 6. 20)
are defined adl|

1- ﬁy Baﬁ
{ B, 145
. A Y
t ®y y = sinh (tsmh ! (\/K||y|)) ——— (t®y0=0). 3)
V—=K|ly|l
In particular, the PV inverse is ©yz = —x, and the PV identity is the zero vector: 0 Gy = =

xr@dy 0 =x.

For detailed reviews of Riemannian geometry, gyrovector spaces, PV gyrovector spaces, and the
hyperbolic Poincaré ball and hyperboloid models, we refer the reader to App.[B]

4 PV GEOMETRY

4.1 FROM GYRO ISOMORPHISM TO RIEMANNIAN ISOMETRY

The Poincaré ball also admits a gyrovector space, named the Mobius gyrovector space, as reviewed
in (Ungar, 2022, Sec. 6.14). Algebraically, the PV and Mobius gyrovector spaces are isomorphic.
We further show that PV and the Poincaré ball are geometrically isometric.

Let P} = {a: eR™||z|® < -1/K } be the Poincaré ball. The following bijections define the
gyrovector space isomorphism (Ungar, [2022| Tab. 6.1):

B
TRV Py PVi 22— ﬁx €Pk, mpropvy P oy~ 2753; € PV, )
x
_ 1 . . . . .
where 7, = N is the gamma factor. The isomorphism preserves the gyro operations:
Ty e (T U Y) = Tpvy Spr (T) OM TRV P (Y),  Va,y € PVE, (5)
vy ey (F QU ) =1 @M vy ey (2), Vo € PV, Vr €R, (6)

where @ and @y are the Mdbius gyro operations which are reviewed in App.[B.4]
Lemma 4.1 (Differentials). [@ The differentials of wpvy. —pr. and pr_pyy. are

do (mpyn spn ) (v) = KW (z,v)x + T+ ﬂzv, Vo € PV, Vv e T,PVy,  (7)
dy (e spyn ) (w) = —4K’y§ (y,w)y + 2'y§w, Yy € Pk, Vw € T, Pk. (8)

Let 1 be the identity map. The differentials at the origin 0 are

do(mevy pp ) = 51, do(men pyy ) = 2L ©))

Based on Lem. 4.1} we can prove that the above isomorphisms are isometries.
Theorem 4.2 (Isometries). [J]] Eq. @) are Riemannian isometries.

!The subscript U refers to the initial of Ungar.
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4.2 PV RIEMANNIAN OPERATORS

The Poincaré ball admits closed-form Riemannian operators (Ganea et al.,[2018). By Thm. we
can readily obtain the counterparts on the PV space by the properties of isometries (Chen et al.,
2024b, App. A.2).

Theorem 4.3 (PV Riemannian operators). Let m = mpyp pr.. Given x,y € PV and v €
TPV, the Riemannian operators on the PV space are

- U o (VKA +6) drx (v)
Exp,(v) = x @y Ny sinh ( 3 Hdﬂ'g; H) ||d 5 ” , (10)
Log,(y) = o(z,y)z + 7(z,y) (z, 2) @, (11)
_ 146 (L4 B2)By , -
PT,_. - K—= 12
2 _
d(z,y) = = tanh (\/—KHW(—x Du y)H> 7 (13)
with z = (—x) ®u y. For the parallel transport, © = gyry;[y, —z] (dmy(v)) with gyry; as the

Mobius gyration in App. T =7 f’é T and y = 7 fyﬂy y. Here, the scalar coefficients in the

logarithm are
(o.) = 9 tanh ™! (\/—KHW(Z)H) 28, v—K tanh™* (\/-KH’/T(Z)H)
YT VR =1 YT, Bl |

At the identity 0, the above operators can be further simplified:

Expo(1) = = sinh (V=EI) (7. Logoly) = —= sinh™ (V=R Il ) -
2
PTooy(v) = v— K- fﬁ w0y, PTomo(e) = v+ Ko (n0)
(0.) = <= siuh ™! (V=R

The above facts imply that the PV gyro operations can be expressed via Riemannian operations.
Theorem 4.4 (Gyro by Riemannian). [J]| The PV gyro operations can be rewritten as

T bu Y= EXpw (PTO—NL(LOgO(y))) ’ t Qur = EXpO(t LOgo(x)) \V/Z‘, Yy e PVTIL(7Vt eR.

5 PV NEURAL NETWORKS

Building on the above gyrovector and Riemannian tools, we introduce fundamental building blocks
for PV neural networks, including Multinomial Logistics Regression (MLR), Fully Connected (FC),
convolutional, activation, and batch normalization layers, thereby enabling the construction of con-
crete deep architectures in this space.

5.1 PV MULTINOMIAL LOGISTIC REGRESSION

The Euclidean MLR Softmax(Ax + b) is a standard classification layer in Euclidean deep learning.
As shown by [Lebanon & Lafferty| (2004); |Ganea et al.| (2018), each output of a C-class MLR can be
reformulated as the signed margin distance to a hyperplane:

ply =k | x) x exp (vk(ac)) ,  vk(x) = sign ((ak,x —pk>) llak||d (x,Ha,c,pk) , 1<kE<C, 14
where ay, pr € R" and H,, ,, = {z € R” | (ar,z — px) = 0}.

Following the Poincaré MLR (Ganea et al., [2018} Sec. 3.1), we define the PV hyperplane as
H,,= {Jc € PV% | <Logp(gc),a> = 0} , p € PV, a € T,PVy, (15)
p

(16)
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where p € PV and a € T,PV% are the MLR parameters. As the Poincaré hyperplane can be
expressed by the Mobius gyro operations (Ganea et al 2018, Eq. 22), the PV hyperplane can
also be expressed by the PV gyro operations. Besides, building PV MLR requires the PV point-to-
hyperplane distance. The following theorem provides these results.

Theorem 5.1. Let m = mpyy pr.. Given z,p € PV% and a € TPV, we have

H,,= {x € PVyk | <Logp(a:),a>p = 0} = {J; € PV | (—p®u z,dpm(a)) = 0} ,  (17)

1 (VR (o ydym(a)
dly,H,p) = inf d(y,w)= sinh™

18
wik,, VK ld,m (@] (1%)

By Thm. we define the C'-class PV MLR as
ply =k | @) o< exp (n(@)), ve(@) = sign ((~px Du @, dp7(a1))) akllpyd (2, Hopi) s (19)

where p, € PV and a;, € T, PV are the PV MLR parameters for class k. However, the
above expression has three drawbacks: (i) the parameter py, is over-parameterized, as it corresponds
to the scalar bias parameter in the Euclidean MLR; (ii) the gyroaddition in <—pk. by x, dpkﬁ(ak.)>
complicates the computation; and (iii) the parameters (py, ax ) are constrained, making optimization
costly. To address these drawbacks, we follow |Shimizu et al.|(2021)) and adopt the parameterization
pr = Expo(rezi/||zkll), ax = PToop, (21) with 2, € ToPVy = R™ and 7, € R. This parame-
terization avoids Riemannian optimization in PV MLR and further simplifies the formulation.

Theorem 5.2 (PV MLR). For x € PV, the score vi(x) in Eq. for each class k is

K o 20) — sinh(vV=RKre)y/1 —K||33||2> . 0)

lzkll . -

vg(r) = ——== sinh cosh(vV—Krp)——r
V-K 1zl

where z;, € R™ and r;, € R are parameters for class k. In particular, as K — 0~ we have

ve(z) = (, z) + by, with by, = —ri||zx||, which recovers the Euclidean MLR in Eq. .

The parameterization (2, 7)) is essential for efficiency. In the original form Eq. , computing
vy () for a batch z € R®*™ and C classes requires explicit gyroaddition —p;, @y « for each class,
producing an intermediate tensor of size b x C' X n that could cause out-of-memory errors in high
dimensions. One could instead loop over classes, but this is computationally inefficient. In contrast,
Eq. depends on inner products (x, z), which can be implemented as a matrix multiplication.

5.2 PV FULLY CONNECTED LAYER

The Euclidean FC layer is defined as y = Ax + b with A € R™*™ and b € R™. It can be expressed
element-wise as y, = {(ag, x) — by = (ag, x — pg) with ar, pr € R™ and (pg, ai) = bi. As shown
by[Shimizu et al.| (2021}, Sec. 3.2), the LHS y is the signed distance from y to the hyperplane passing
through the origin and orthogonal to the k-th axis of the output space, which can be formulated as

sign ((ex,y — 0)) d(y, Hey0) = (arw —pi), V1 <k <m, @D
where ¢;, denotes the vector whose k-th element is 1 and all others are 0.

For the PV model, the LHS of Eq. can be formulated by the signed point-to-hyperplane distance,
while the RHS can be formulated by the vy in PV MLR. Specifically, the PV FC layer F : PV —
PV from the n-dimensional to the m-dimensional PV spaces for the input z € PV’ returns the
output y € PV by solving the m equations:

sign (<d0,€ﬂ'(e;€), -0y $>) d(y, Hep0) = vi(x), V1<k<m, (22)

where H,, o and v (z) are given by Thm. This definition has an explicit solution.
Theorem 5.3 (PV FC layer). The output y = F(x) € PV has the closed form

1
= sinh(vV—Kuvi(x)), 1<k<m, 23
Yk Ve ( k() (23)
where vy, (x) is defined as Eq. with zi, € R™ and r, € R as the FC parameters. In particular, as
K — 0~ we have yx, — (x, zx) + by with by, = —rg||2k||, which recovers the Euclidean FC layer.
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Generalization. We can jointly express the Euclidean FC layer and activation o, which yields
the RHS of Eq. ll with o ({a, = — pk>). Accordingly, we extend the PV FC by applying the
activation into v, (z) in Eq. (22) and Eq. becomes

sinh(vV—Ko(vp(x))), 1<k<m. (24)

1
Yk =
vV—-K
5.3 PV CONVOLUTION AND ACTIVATION

Convolution. As shown by Shimizu et al.[(2021)); Bdeir et al.|(2024), Euclidean convolution consists
of linear maps between kernel weights and concatenated values in each receptive field. To define
convolution on PV space, it therefore suffices to define PV concatenation, since we already have
the PV FC layer. Because PV space is unconstrained, we define PV concatenation to coincide
w1th Euclidean concatenation. For simplicity, we consider the 1D case. For PV inputs {z; €

PV }¥_| in a 1D receptive field (where k is the kernel size), the PV convolution output y € PV}
for thls receptive field is y = F (Concat (z;,...,x)), where Concat(-) is standard Euclidean
concatenation and F is the PV FC layer.

Activation. A natural choice is to apply a Euclidean activation ¢ in the tangent space at the origin
via the mapping * — Expg (o (Logo(x)) , which has been shown to be effective in Poincaré

networks (Ganea et al., [2018). Alternatively, since PV space is unconstrained, we can apply the
activation directly in PV space as « — (). This direct PV-space activation avoids exponential and
logarithmic maps and is therefore more efficient.

5.4 PV NORMALIZATION

Recently, (Chen et al.| (2024c; |2025b) extended Batch Normalization (BN) to non-Euclidean mani-
folds through gyro-structures, referred to as GyroBN. Intuitively, subtraction, addition, and scaling
in Euclidean BN are replaced by gyrosubtraction, gyroaddition, and gyromultiplication, respectively.
We extend their framework to PV space and show that PV GyroBN can normalize sample statistics.

We first recall the Fréchet statistics. Given N samples {z;}~; C PV, the Fréchet mean and
Fréchet variance are

. 1 N
p=FM({z;}}L,) = argmin,epyn N Zi:l d?(zi,y), =N ZZ ) 2(wiy ). (25)

Given activations {z; € PV }¥ , the core operations of PV GyroBN are

.. Scaling .
Biasing N Centering
. - ~ S
Vi< N, &+ ey | ———0u|—-ndvz| |, (26)
V2 +e

where p and v? denote the Fréchet mean and variance, and 3 € PV} and s € R are parameters.
Owing to the isometry between the PV space and Poincaré ball, the PV Fréchet mean can be com-
puted via the Poincaré: map the data to the Poincaré, compute the Poincaré mean (Lou et al., 2020,
Alg. 1), and map the result back.

The following theorem guarantees that PV GyroBN can normalize sample statistics.
Theorem 5.4 (Homogeneity). [[|]] For N samples {z;}Y_, C PV, we have

Homogeneity of mean: FM ({B ®yu xl}fil) = ey FM ({xl N ) , VB ePVy (27)

1 N
Homogeneity of dispersion from 0: N Zi: d*(t @y x;,0) = N Z %(2;,0). (28)

Thm. [5.4]directly explains the PV GyroBN in Eq. (26). After the centering, the batch mean is shlfted
to the identity 0. After the biasing, it is translated to 3. After the scaling, the variance becomes s
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6 EXPERIMENTS

We evaluate PV embeddings and PV Neural Networks (PVNN) on four representative tasks:

* Sec.[6.1|evaluates the numerical advantage of the PV model against Poincaré and hyperboloid.

* Sec. compares PV, Poincaré, and hyperboloid MLRs on image classification.

* Sec.|6.3|evaluates our PV MLR, FC, and GyroBN layers on graph learning.

. Sec.@ compares fully PV convolutional networks with fully hyperboloid convolutional net-
works on genomic sequence learning.

6.1 NUMERICAL STABILITY

We study three aspects: gyro operator, Rieman-  Typle 1: Failure and violation probabilities (%) of
nian operator, and gradient behavior. All ex- ., 7 in FP32.

periments use curvature K = —1, dimension - R
1 — 16, and batch size 4096. ., | Failure rate | Violation rate
| PV PR Hj | PVR PR Hy

Gyro operator. We use scalar gyromultipli- | 0 0 0 NA 0 3250
cation r ® x as a probe of numerical stabil- 5 0 0 0 N/A 0 9236
ity across hyperbolic models. Given random 10 0 0 0 N/A 0 9976
batches x and radii r, we evaluate two met- 20 0 0 423 | NJA 0 100
rics. The failure rate is the fraction of out- 50 0 0 6442 | NA 0 100
puts that contains NaN/Inf. The violation rate 75 0 0 7963 | NJ/A 0 100
is defined only for models with manifold con- 100 0 0 8826 ) NA 0 100

. . . . 2 150 0 0 9643 | N/A 0 100
straints: Poincaré ball requires ||z||” < —1/K, 200 0 0 100 | NJA 0 100
and hyperboloid requires z? — ||z,|| = % for 1000 | o0 0 100 | NJA 0 100
x = [zg,2]]T. The tolerance is set to 1075,

As PV is unconstrained, its violation rate is reported as N/A. As shown in Tab. m PV maintains zero
failures up to » = 1000 in FP32, the Poincaré ball has zero failure and violation rates, whereas the
hyperboloid model starts to fail around r = 20 and quickly accumulates both NaN/Inf outputs and
off-manifold points under large scalar multipliers, revealing pronounced numerical instability.

;(nlgl?glnn.lan pperator. We e\{aluate the equnentlal Table 2: ||L0g0 (Expo (v)) — “H
garithmic maps by measuring the round-trip error

|| Logo(Expg(v)) — v|| for tangent vectors v with large =~ Model FP32 FP64
norm ||v|| = 10. Since this quantity is theoretically zero, Py 21%x10% 4.3x 10"t
any non-zero value reflects numerical instability. We H 1.0 x 10° 1.0 x 109
sample a batch of such vectors and report the average er- PV)  21x10°7 6.7x 10716

ror in Tab.[2l PV achieves stable behavior in both FP32
and FP64, whereas the Poincaré ball already exhibits noticeable errors in FP32 and the hyperboloid
model remains unstable in both precisions.

Gradient. To compare gradient be-  Typle 3: Gradient magnitude ||V, || across varying radii.
havior, we study the gradient of

Fo(x) = |r ®u & — || with respect Model |IV.| Range Gradient behavior
to x. Specifically, we sample 24 loga- P7 [1.1 x107,7.6 x 107*3]  Vanishing gradients
rithmically spaced radii » € [1, 1000] H, [0, NaN] Exploding gradients
and, for each radius, measure the  PVy  [1.1x107%2.1x 1079 Stable gradients

||mer(x) H on a random batch. The

range of ||Vz fr(2) || is summarized in Tab.|3| The Poincaré ball exhibits severe gradient vanishing
near the boundary. In contrast, the hyperboloid model yields gradients that vary from 0 to NaN,
reflecting gradient explosion. PV maintains gradients in a safer band.

6.2 IMAGE CLASSIFICATION

We compare our PV MLR against previous Poincaré MLRs (Ganea et all, 2018}, [Shimizu et al}

2021)) and Lorentz MLR (Bdeir et al., 2024)). Following (Bdeir et al., |2024), we train a ResNet-18
backbone 2016b) on CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton| 2009), replacing
the final Euclidean MLR with a hyperbolic MLR. The only difference across variants lies in the
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Table 4: Accuracies of hyperbolic MLRs on ResNet-18. Best results are in bold. ¢ represents the
0-hyperbolicity (lower is more hyperbolic), which comes from |Bdeir et al.| (2024} Tab. 1).

Model Method CIFAR-10 (§ = 0.26) CIFAR-100 (6 = 0.23)
P Poipgaré MLR (Ganea et al... 2018 Eq. 25) 95.09 + 1.51 49.66 £ 1.17

K Unidirectional MLR (Shimizu et al.| 2021/ Eq. 6) 95.12 £ 0.20 77.19 £0.10
H% Lorentz MLR (Bdeir et al.; 2024, Thm. 2) 95.02 +0.12 74.59 £+ 0.09
PVix  PVMLR 95.13 + 0.56 7753 +£0.18

Table 5: Accuracies of hyperbolic networks on graph learning. Best results are in bold. ¢ represents
the d-hyperbolicity (lower is more hyperbolic).

Model Method ]();sia(s)gz gjri)olr; (lguil\gic)i) ( 5C:0rf 1)
K% KNN (Mao et al.|[2024) 79.41+0.55 92.10+0.97 69.36 +£0.76  52.26 +1.99
pn HNN (Ganez_i et al.|[2018) \ 79.90 + 0.01 82.16 + 2.95 69.28 +0.85  49.68 +1.25
K HNN++ (Shimizu et al.[[2021)  80.57 +0.23  88.40+0.17  73.68 +=0.39  52.06 +0.90
H% LNN (Bdeir et al.|[2024) 79.90 + 0.01 75.20 +1.08 68.82+0.88 53.34+1.65
PV% PVNN 81.15+0.23 97.96+0.42 74.33+0.22 51.42+1.33

geometry of the classifier head. More details are provided in App.[C.2] Tab. ] reports the 5-fold
results, showing that PV MLR achieves accuracy comparable to or exceeding that of hyperbolic
baselines, with the largest gains observed on CIFAR-100, where the decision boundaries are more
complex.

6.3 GRAPH LEARNING

Data and Setup. We study node classification on four standard graph datasets: Disease (Anderson
& May, [1991)), Airport (Zhang & Chenl 2018)), Cora (Sen et al., 2008)), and PubMed (Namata et al.,
2012). All models share the same architecture consisting of two FC layers with nonlinear activations
followed by an MLR classifier; they differ only in the underlying hyperbolic model. Baselines
include KNN (Mao et al.l [2024) for the Klein ball, HNN/HNN++ (Chami et al., 2019} [Shimizu
et al., |2021)) for the Poincaré ball, and LNN (Bdeir et al., 2024) for the hyperboloid model. Our
PVNN uses PV FC layers and a PV MLR classifier. More details are provided in App.

Main results. For a fair comparison, we use a tangent activation in each model and set 0 = 1
for the PV FC layer in Eq. (24). Tab. [5] summarizes the 5-fold results. On the three more hyper-
bolic datasets (Disease, Airport, and PubMed), PVNN consistently achieves the best performance,
with especially large gains on Airport where it improves over the strongest baseline by 5.86%. On
the weakly hyperbolic, near-Euclidean Cora dataset, PVNN remains comparable to Poincaré- and
hyperboloid-based networks. Overall, these results suggest that PV geometry is more effective on
strongly hyperbolic graphs, while remaining competitive on nearly Euclidean ones.

Tangent vs. Riemannian. A natural construction of hyperbolic layers is to work in the tangent
space. To validate the benefits of our Riemannian PV layers, we compare our PV FC with a tangent-
space FC of the form Expg(A Logg(x)) + b, and our GyroBN with a tangent BN (TBN) given by
Logo (BN (Expq(x))), where BN denotes standard Euclidean batch normalization (Ioffe & Szegedy,
2015). We denote these variants by PVNN+TFC and PVNN+TBN, respectively. As shown in Tab.[6]
PVNN+TFC closely tracks PVNN on Disease, PubMed, and Cora, but degrades substantially on
the strongly hyperbolic Airport graph, indicating that tangent FC layers are less reliable when hy-
perbolicity is high. Nevertheless, PVNN+TFC remains competitive with or stronger than several
hyperbolic networks in Tab. [5] underscoring the effectiveness of the PV model. For normalization,
PVNN-+GyroBN further improves over the PVNN baseline on Airport and PubMed, and is generally
stronger than TBN. On the weakly hyperbolic Cora graph, however, PVNN+GyroBN underperforms
the baseline PVNN, suggesting that when hyperbolicity is very low and PV embeddings bring lim-
ited benefits, the additional curvature-aware normalization may introduce unnecessary complexity.
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Table 6: Results of Tangent FC (TFC) vs PV FC, and Tangent BN (TBN) vs GyroBN.

Method Disease Airport PubMed Cora

PVNN+TFC 81.06+0.23  86.39+£0.50 74.42+0.45 51.94+232
PVNN 81.15+0.23 97.96+042 7433+£0.22 51.42+1.33
PVNN+TBN 80.57+0.23 9871036 73.16 £0.15  42.66 +2.42

PVNN+GyroBN 80.77+0.19 99.18+0.18 74.50+0.09 44.30+1.27

Table 7: Comparison of methods in calculating mean and variance in PV GyroBN layer. Time is
measured in milliseconds per training epoch.
| Disease Airport PubMed Cora

Acc Fit Time | Acc Fit Time | Acc Fit Time | Acc Fit Time

Tangent 81.15+0.63 26.08 98.84 +0.29 55.48 73.74 4+ 0.90 3.10 40.98 £1.82 7.12
Euclidean 81.24 £0.63 25.80 98.78 £0.30 55.19 74.15+0.42 2.99 40.34 £1.42 7.29

Fréchet 1 iter 80.77 £0.19 29.79 89.44 +0.92 65.19 74.30 + 0.46 3.38 39.44 £2.64 7.67
Fréchet 2 iters | 81.1540.23 30.12 92.82 £0.97 67.37 73.60 £ 0.72 3.49 40.30 £ 0.98 8.21
Fréchet 5 iters | 81.24 +0.36 30.90 98.15 4+ 0.62 82.28 73.34+1.13 4.02 40.20 £ 3.49 9.15
Fréchet 10 iters | 80.86 + 0.00 30.49 98.78 +0.15 105.79 74.08 +0.52 3.96 40.36 £1.61 9.77

Fréchet co 80.77 £0.19 31.29 99.18 £0.18 12237 | 74.50 £0.09 4.46 44.30 £1.27 9.27

Method

Table 8: Ablations on PVNN with or without exponential map for the input PV feature.

Expgo Disease Airport PubMed Cora
X 81.05 £ 0.36 96.87£0.2 73.80 £0.28 51.06 +1.42
4 81.15+0.23 97.96+042 7433+0.22 51.42+1.33

Table 9: Ablations on architectural components.

Method Disease Airport PubMed Cora

Tangent Act. 81.15 £ 0.23 97.96 £0.42 74.33+0.22 51.42+1.33
Euc. Act. 81.34 +£0.30 99.03 +£0.29 72.54 £+ 3.92 43.52 +5.09
FCo 81.24 £ 0.36 99.03 £ 0.47 73.94 £ 0.36 51.36 £ 0.62

FC o + Tangent Act. 81.24+0.36 99.124+0.36 74.10+£0.55 52.84+1.31

Overall, these results indicate that Riemannian constructions are more beneficial than tangent con-
structions on strongly hyperbolic graphs.

Ablations on batch normalization. PV GyroBN in Eq. (26) uses Fréchet mean and variance, which
requires iterative solvers. We also consider two efficient variants. A tangent variant computes batch
statistics in the tangent space at the identity via

I

)

N N
1 1
p=Expg | 7D Logo(wi) | . v* =+ |[Logo(xi) ~ Logo(s)
=1 =1

and a Fuclidean variant computes standard Euclidean mean and variance directly in the uncon-
strained PV space. Tab.[/|shows that Tangent and Euclidean are up to 2x faster while achieving
similar accuracies on Disease and PubMed. Although Fréchet-based GyroBN attains the best accu-
racies, it is more computationally expensive.

Ablations on PV embedding. In the main experiments, the input features are first lifted to PV via
Expg and then processed by PVNN. Since PV space is unconstrained, we also consider a variant that
feeds the Euclidean features directly as PV coordinates. Tab.[§]compares these two settings. Across
all datasets, using Expy, yields higher accuracy, with especially clear gains on Airport and PubMed,
indicating that the exponential map remains beneficial even though PV space is unconstrained.

Ablations on activation. We ablate two types of nonlinearities in PVNN: the internal nonlinearity
o in the PV FC layer (fixed to tanh), and explicit activations applied either directly in PV (Euc.
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Table 10: Comparison (MCC) of hyperbolic and Euclidean convolutional networks on TEB datasets.

Task Dataset Euclidean CNN HCNN-S PVCNN

Retrotransposons LINEs 70.63 £ 1.24 76.12+2.16 83.34 +0.67
SpOSon: SINEs 85.15+ 1.64 85.45+1.16 94.37 + 0.59

DNA transposons hAT-Ac 87.45 £ 0.90 89.61+£1.34 92.72+0.56

processed 60.66 £ 0.82 68.30£0.93 71.61£0.28

Pseudogenes unprocessed  51.94+2.69  56.10 £0.56  62.19 & 0.85

Act.) or in the tangent space (Tangent Act.). Tab. [9]reports the results. Tangent-space activations
outperform Euclidean activations except Disease and Airport. FC ¢ performs similarly to Tangent
Act., and the combination FC o + Tangent Act. achieves the best accuracies.

6.4 GENOMIC SEQUENCE LEARNING

Setup. Khan et al.| (2025) recently proposed hyperbolic convolutional neural networks (HCNN )
on the hyperboloid for DNA sequence learning, demonstrating that HCNNs outperform Euclidean
CNN s on this task. Following [Khan et al.| (2025), we evaluate on the TEB dataset for DNA trans-
posable element prediction. To ensure a fair comparison between hyperboloid and PV convolutional
layers, all models share the same backbone network architecture, which consists of two convolu-
tional blocks followed by an FC layer and a final MLR classifier (Khan et al.,[2025]). We use a single
curvature shared for all layers. More details are provided in App.

Results. Tab. [];O]reports 5-fold Matthews correlation coefficient (MCC). PVCNN achieves the best
performance on all TEB tasks, with particularly strong gains on SINEs, where it improves over
HCNN-S by about 9 MCC points. These results demonstrate the benefits of PV convolutional net-
works.

7 CONCLUSIONS

This work introduces Proper Velocity Neural Networks (PVNNs), leveraging the unconstrained PV
model as an alternative to the constrained Poincaré and Lorentz geometries. We establish the full
Riemannian toolkit on PV space and develop core neural layers, including MLR, FC, convolutional,
activation, and normalization layers. Through four sets of experiments on numerical stability, graph
node classification, image classification, and genomic sequence learning, PVNNs demonstrate both
improved stability and competitive or superior performance compared with strong hyperbolic base-
lines. Our study provides the first systematic treatment of the PV manifold for deep learning, posi-
tioning it as a stable and practical geometry for future research on hyperbolic neural networks. As
future work, we plan to extend PVNNs to more advanced architectures such as residual networks
(He et al.|, |2016a; Van Spengler et al., 2023; He et al., | 2024)) and transformers (Vaswani et al.| 2017}
Hu et al.| |2023), to further exploit PV space for large-scale representation learning.

REPRODUCIBILITY STATEMENT

All theoretical results are established under explicit assumptions, with complete proofs in App. [E]
The experimental details are presented in App.|Cl The code will be released upon acceptance.

ETHICS STATEMENT

This work uses only publicly available benchmark datasets, which contain no personally identifiable
or sensitive information. We do not identify ethical concerns.
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Operation Euclidean space  Riemannian manifold
Straight line Straight line Geodesic
Subtraction W=y—=x 77 = Log, (y)

Addition y=x+ Iy y = Exp, (a%)

Parallelly moving v = v PT,y(v)

Table 12: The geometric reinterpretations of Riemannian operators.

LIST OF ACRONYMS

HNNs Hyperbolic Neural Networks
PVNNs Proper Velocity Neural Networks
PV Proper Velocity

FC Fully Connected 1
MLR Multinomial Logistics Regression I

A USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used primarily for language polishing and minor text editing.
In limited cases, they also assisted in translating certain mathematical formulations into PyTorch
code. All generated outputs were carefully reviewed and, where necessary, corrected by the authors.
The authors take full responsibility for the final content of this paper.

B PRELIMINARIES

B.1 RIEMANNIAN GEOMETRIES

For an in-depth discussion on Riemannian geometry, one can refer to|Lee|(2018)).

Riemannian manifold. A Riemannian manifold (M, g), abbreviated as M, carries a smoothly
varying Riemannian metric g, : T, M x T, M — R on each tangent space 7, M. The induced

norm is ||v||; = \/g=(v,v). As an inner product, g, is also denoted as (-, ) .

Geodesic. Straight lines are generalized to constant-speed curves that are locally length-minimizing
between points x,y € M, known as geodesics. The shortest distance between two points is called
the geodesic distance, denoted as d(-, -).

Exponential and logarithmic maps. For ¢ € M and v € T, M, let -, , denote the unique
geodesic with 7, ,(0) = x and 4, ,(0) = v. The exponential map Exp, : T,M DV — M is
defined by Exp_(v) = 74(1), where V is an open neighborhood of the origin in 7, M. Its local
inverse, defined for y in a neighborhood & C M of z, is the logarithmic map Log, : & — T, M,
satisfying Exp, o Log,, = I;;. On hyperbolic geometry, exponential and logarithmic maps are
globally defined (Leel [2018]).

Parallel transport. Given a geodesic v from z to y, the parallel transport of a tangent vector
v € Ty M along the geodesic is the unique vector PT,_,,(v) € T,M obtained by transporting v
along + so that its covariant derivative along v vanishes. Parallel transport defines a linear isometry
between T M and T, M.

Tab. [I2] compares the corresponding operators in Euclidean and Riemannian geometries.

Isometry. The isometries generalize the bijection into the Riemannian In_geometry. If {M, g} and

{./\/l, g} are both Riemannian manifolds, a smooth map f : M — M is called a (Riemannian)
isometry if it is a diffeomorphism that satisfies

gw(vv w) = gf(w)(dxf(v)a dif(“’))?
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where d,. f(-) : T,M — Tf(x)ﬂ is the differential map of f at x € M, and v,w € T, M are two
tangent vectors.

B.2 GYRO-STRUCTURES

This subsection briefly reviews the gyrovector space (Ungarj, 2022), which generalizes the vector
structure to manifolds. It has shown great success in building hyperbolic neural networks |Ganea
et al.|(2018));/Chami et al.| (2019); Shimizu et al.| (2021)).

We start from the gyrogroup. Intuitively, gyrogroups are natural generalizations of groups. Unlike
groups, gyrogroups are non-associative but have gyroassociativity characterized by gyrations.

Definition B.1 (Gyrogroups (Ungar, 2022)). Given a nonempty set G with a binary operation & :
G x G — G, (G, ®) forms a gyrogroup if its binary operation satisfies the following axioms for any
r,y,z € G:

(G1) There is at least one element e € G called a left identity (or neutral element) such that ez = .
(G2) There is an element ©x € G called a left inverse of x such that ©x © x = e.

(G3) There is an automorphism gyr|[z,y] : G — G for each z,y € G such that
@ ydz)=(r®y) ®gyr[r,y]z (Left Gyroassociative Law).
The automorphism gyr[z, y| is called the gyroautomorphism, or the gyration of G generated by x, y.

(G4) Left reduction law: gyr[z, y] = gyr[z & y, y].

Definition B.2 (Gyrocommutative Gyrogroups (Ungar, [2022))). A gyrogroup (G, ®) is gyrocom-
mutative if it satisfies

x @y =gyrlz,yl(ly®x) (Gyrocommutative Law).

Similarly, the gyrovector space generalizes the vector space,

Definition B.3 (Gyrovector Spaces (Chen et al.| 2025b)). A gyrocommutative gyrogroup (G, ®)
equipped with a scalar gyromultiplication ® : R x G — G is called a gyrovector space if it satisfies
the following axioms for s,t € R and z,y, z € G:

(V1) Identity Scalar Multiplication: 1 ® z = .

(V2) Scalar Distributive Law: (s +t) @ t = s@z &t Q x.

(V3) Scalar Associative Law: (st) @ z = s ® (t ® z).

(V4) Gyroautomorphism: gyr[z, y](t ® z) = t ® gyr[z, y]z.

(V5) Identity Gyroautomorphism: gyr[s ® x,t ® x] = I, where I is the identity map.

Remark B.4. Nguyen| (2022)) presented a similar definition, except that (V1) is defined as 1 ® = =
2,03z =t®e = e,and (—1) ® x = Sx. However, as implied by [Ungar| (2022}, Theorem 6.4),
0®@zr=t®e=e,(—1)®z = Sz are redundant.

Definition B.5 (Real Inner Product Gyrovector Spaces (Ungar, [2022)). Let (G, ®, ®) be a gyrovec-
tor space and let (-, -) denote the Euclidean inner product on R™ with associated norm ||-||. We call
(G,®,®, (-, -)) areal inner product gyrovector space if the following conditions hold.

(V6) G C R™ and inherits the inner product (-, -} and norm ||-||.

(V7) Inner product gyroinvariance: <gyr[:1:7 ylu, gyr|z, y]v> = (u,v), Vz,y,u,v € QqG.

(V8) Scaling property: Hljgif =np vz eG\{0},Vs e R\{0}.
(V10) Let||G|| = {£]|z]| | x € G} C R. The set||G|| forms a one-dimensional real vector space
with respect to the vector addition and scalar multiplication induced by @ and ® on G.

(V11) Homogeneity property: ||s ® z|| = |s| ®||z||, Vz € G,VseR.

(V12) Gyrotriangle inequality: ||z & y|| <||z|| ®|ly]|, Vz,y € G.

When a gyrovector space (G, @, ®) is a subset of the real inner product vector space R™ and satisfies
additional axioms with respect to||-||, it forms a real inner gyrovector space. This is analogous to the
relationship between inner product spaces and vector spaces.

Definition B.6 (Gyrovector Space Isomorphisms (Ungar, 2022)). Let (Gp,®1,®1) and
(G2, B2, ®2) be real inner product gyrovector spaces. A map ¢ : G; — G4 is a gyrovector space
isomorphism if it is bijective and satisfies

d(x @1 y) = ¢(x) D2 0(y), Va,y € G, (29)
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Table 13: Riemannian operators on the Poincaré ball and the hyperboloid (K < 0).

Operator Poincaré ball P Hyperboloid H;,
Definition P = {z € R" |||z|* < -1/K} Hy = {z e R"" | (z,2), = 1/K, 2, > 0}
go(w,0) (M) Gy, =2 (1,0) = (v, w3) — vea
) 14+ K|zl .
d(x,y) —~ _tanh! |K|||—z ®&Mm yl| cosh™! (K (x,y)ﬁ)
G (R
2 _ —rPMY cosh™ (8
Log,, 1 — - _tanh™! Kl|[|—x &M y — Bx), = K (x,1
By g e (VIRIl=e el gt S =) B K (@),
A || v sinh(«)
Exp, v x ®m | tanh | /| K|—2 cosh(a)z + ———v, a=/I|K||lv|,
( ( 2 ) VK] z
A Kyvy
PTz%y(U) Aé( gyr[y7 —([]1} U= 1+ K <.277 y>£ (:L + y)
Pt ®1 ) =t®s d(x), Vre Gy,VieR, 30)

and it keeps the inner product of unit gyrovectors invariant,

(6(2).0(y) _ (x,9) Vi, y € Gy with z # 0,y # 0. 31

le@)|[[llee)] — l=lliyl’

A useful property is that gyrovector space isomorphisms preserve the gyration, inverse, and identity.

Proposition B.7. Let (G, ®1,®1) and (G2, ®2, ®2) be real inner product gyrovector spaces with
gyrations gyr, and gyr,, respectively. If ¢ : G1 — Ga is a gyrovector space isomorphism, then for
all z,y, z € Gy,

o (gyry [z, y]z) = gyra[o(a), d(y)]é(2), (32)
d(e1) = e, (33)
p(E17) = S20(), (34)

where ey and ez are the gyro identities in G1 and G4, respectively.

Proof. The gyration properties have been shown by Ungar (2022, Ch. 6.21). The proofs for the
gyro identity and gyroinverse follow directly from the isomorphism and the uniqueness of inverse
and identity (Ungar}, 2022, Thm. 2.10). O

B.3 PV GYRATION

As shown by [Ungar| (2022, Egs. 3.220 and 3.221), the PV gyration for any z,y, 2 € PV is given
by
Ax + By

5 (35)

gyr[z,ylz =z +
where the coefficients are
A= (1= B)K (@ 2) = (14 B) (1 + By)BaBy K (y, 2) + 2826, K> (2,) (y, 2) ,
B =(1-BBK (y,2) + (L4 o) (1 + By) BBy K (2, 2)
D =1+ B:) 1+ By) (1= BaByK (w,y) + BuBBy) -

Here, 51» = m

B.4 POINCARE BALL AND HYPERBOLOID

is the relativistic beta factor.

The Poincaré ball is defined as P’ = {z € R™ | ||z||> < —1/K} with sectional curvature K < 0.
The hyperboloid, also known as the Lorentz model, is defined as

"K:{xG]R”H |<x,x>L:1/K,xt>O}, (36)
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where (z,y), = —xy: + (2s,ys) is the Lorentz inner product. Here, z; € R and z, € R"”
denote the time component and space components. The induced norm ||-|| . is the Lorentz norm. Let
Hi € {]P’}}(, H7% }. Given z,y € H% and tangent vectors v, w € T,H', Tab.|l13|summarizes the
Riemannian operators.

The gyro-structure over the hyperbolic space can be defined by its Riemannian operators (Ganea
et al., 2018; [Chen et al., 2025b). Let ¢ = O for the Poincaré ball and e = 0 = [1/\/[k[,0"]" for
hyperboloid. Given z,y, z € H% and ¢t € R, the gyroaddition and gyromultiplication are defined as

TOyy = Esz (PTe%z (LOge y)) ) (37)
t ®y x = Exp, (t Log, x), (38)
gyr[z,ylz = Oy (z By y) Ou (v Bn (y Bw 2)) 39)

On the Poincaré ball P, such gyro-structure is known as the Mdbius gyrovector space (Ungar,
2022, Ch. 6.14):

(1 —2K(z,y) — K|yl?) =+ 1+ K|z|?) y

R 7 (40)
M 1 — 2K (x,y) + K2||z2|y|?

tanh <ttanh_1(mnx”)) T
tRMmx = Nzl “h

VIK] [Eal

2
gyrule, yle =z + Az + By), @
with

A=—K*(z,2)|lyll” - K (y, ) + 2K (z,y) (y. 2), 43)
B = —K2(y,2)all® + K (z,), @9
D=1-2K (z,y) + K2|z||*|ly||*- “5)

Here, Oz = —1 ®m @ = —2 is the gyroinverse and 0 is the gyro identity: 0 &y @ = x, Vo € P}
Interestingly, the Mobius gyration has a similar expression as the PV gyration.

As shown by |Chen et al.|(2025b, Props. 24-25), the hyperboloid gyroaddition and gyromultiplication
also admit closed-form expressions:

Z, Y= 6,
Y, T = 6’
= 1 D-KN
. VIKIDFEN | (46)
2(Aszst+Ayys) | therwise.
" D+KN
cosh (t6)
R R . 47)
sinh (t0) Otherwise
(EA

Here, § = cosh™'(\/|K|z;), A, = ab® — 2Kbs,, — Kan, and A, = b(a® + Kn,) with the
following notation:

a=14+|Kl|z, b =1+ /|K|ys,
2 2
ng = ||z y Ty =lysll y Sy = (Ts,9s),
D = a’p? — 2K absgy + K2nxny,
N = a2ny + 2abszy + b2n,.

(48)

In particular, the gyro identity is 0 and the gyroinverse is ©px = —1 Q@ & = [z, —2/ ] ".
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Table 14: Summary statistics for the node classification datasets.
Dataset #Nodes #Edges #Classes #Features

Disease 1044 1043 2 1000

Airport 3188 18631 4 4

PubMed 19717 44338 3 500
Cora 2708 5429 7 1433

C EXPERIMENTAL DETAILS

C.1 COMMON IMPLEMENTATIONS

As we use trivialization tricks in our MLR, FC, and GyroBN layers, all parameters in PVNN lie in
Euclidean space and are optimized using standard Euclidean optimizers.

C.2 EXPERIMENTAL DETAILS ON IMAGE CLASSIFICATION

C.2.1 DATASETS

CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009) datasets contain 60K 32x32 colored im-
ages from 10 and 100 different classes, respectively. We use the dataset split implemented in Py-
Torch, which has 50K training images and 10K testing images.

Following|Bdeir et al.|(2024)), we use data augmentation that includes random cropping with padding
of 4 pixels and random horizontal flipping.

C.2.2 IMPLEMENTATION DETAILS

We implement the experiments using the official codeE| of Bdeir et al.|(2024). All models share a
common backbone, which consists of a ResNet-18 encoder followed by a hyperbolic MLR classifier.
The output embedding of the ResNet-18 backbone is mapped to the target hyperbolic space via the
exponential map at the identity e, that is, Exp, (). Here, e = 0 for the Poincaré and PV spaces, and
e = 0 for the hyperboloid model. All models are trained from scratch. Optimization is performed
using SGD (Robbins & Monrol [1951) with an initial learning rate of 0.1, a momentum of 0.9, and
a weight decay of 5 x 10~%. Training is conducted with a batch size of 128 for 200 epochs. The
learning rate is decayed by a factor of v = 0.2 at epochs 60, 120, and 160. The curvature parameter
is fixed at K = —0.3.

C.3 EXPERIMENTAL DETAILS ON GRAPH LEARNING

C.3.1 DATASETS

Disease (Anderson & May, [1991). It represents a disease propagation tree, simulating the SIR
disease transmission model, with each node representing either an infection or a non-infection state.

Airport (Zhang & Chen, 2018). It is a transductive dataset where nodes represent airports and
edges represent the airline routes from OpenFlights.org.

PubMed (Namata et al., 2012). This is a standard benchmark describing citation networks where
nodes represent scientific papers in the area of medicine, edges are citations between them, and node
labels are academic (sub)areas.

Cora (Sen et al., 2008). It is a citation network where nodes represent scientific papers in the area
of machine learning, edges are citations between them, and node labels are academic (sub)areas.

Tab. [[4] summarizes the statistics of the datasets.

https://github.com/kschwethelm/HyperbolicCV
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Table 15: Summary of the hyperbolic layers used in the graph node classification models.

Model FC layer Activation MLR
PVNN PV FC in Thm. Logo (0 (Expg(2))) PV MLR in Thm,
KNN Logo(W Exp0 Logo( (Expo( ))) Euclidean MLR after xp

HNN Logo (W
HNN++  Poincaré FC (
LNN Lorentz FC (

Logg (o Exp0 Poincaré MLR

Logg (o (Exp T Poincaré MLR 'W
Lorentz actlvatlon Chen et al. m Lorentz MLR (Bdeir et al.

Table 16: Hyperparameters for PVNN that vary across graph datasets.

Hyperparameter Disease Airport PubMed Cora

Learning rate 0.01 0.01 0.05 0.05
Dropout 0.4 0.4 0.6 0.6

C.3.2 IMPLEMENTATION DETAILS

We adopt the official code of HGCI\ﬂ (Chami et al., [2019) to conduct experiments. The feature
of each node is embedded into the hyperbolic space via the exponential map at the identity. The
hyperbolic network consists of two FC layers: the first maps the input feature dimension to a 16-
dimensional hidden representation, and the second maps from 16 to 16. Each FC layer is followed
by an activation function. An MLR layer is then used for classification. All models are trained using
the Adam optimizer 2015). We evaluate performance every 10 epochs and employ early
stopping with a patience of 200 evaluations, restoring the checkpoint with the best test accuracy.
Tabs. [16] and [17] summarize the hyperparameters for PVNN. For KNN [2024), HNN
(Ganea et al.| 2018), HNN++ (Shimizu et al.| 2021), and LNN 12024), we follow their
original papers to implement the experiments. Tab. [T3] summarizes the hyperbolic layers used in
each model.

C.4 EXPERIMENTAL DETAILS ON GENOME SEQUENCE LEARNING
C.4.1 DATASETS AND PREPROCESSING

We use the Transposable Elements Benchmark (TEB) datasets 2025). This benchmark
provides seven DNA sequence classification datasets spanning three prediction tasks: retrotrans-
posons, DNA transposons, and pseudogenes. We focus on five among them, as summarized in
Tab. [T8] We follow their original train/validation/test splits and preprocessing.

Table 18: Statistics for the TEB datasets.

Prediction task Species Max length  Dataset Train / Val / Test
Retrotransposons  Plant 1000 LINEs 22502 /203071782
500 SINEs 21152/1836/1784
DNA Transposons  Plant 1000 hAT-Ac 17322/ 1822/ 1428
Pseudogenes Human 1000 processed 17956 /1046 / 1740

1000 unprocessed 12938 /766 / 884

C.4.2 IMPLEMENTATION DETAILS

For the Euclidean CNN and the hyperbolic CNN baseline (HCNN-S), we directly use the results
reported in the original paper (Khan et al [2025] Tab. 2). Our PV CNN architecture follows their
implementatiorﬂ Each DNA sequence is represented as a length L sequence with 4 input channels.
The first PV convolutional block maps the 4 input channels to 32 channels, and we stack two PV

*https://github.com/HazyResearch/hgcn
*nttps://github.com/rrkhan/HGE
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Table 17: Hyperparameters for PVNN that are shared across graph datasets.

Setting Epochs Batch size Weight decay Curvature
Value 2000 128 5x 1074 -0.3

Table 19: Hyperparameters for TEB.

Setting Value
Optimizer Adam
Learning rate le™*
Weight decay 2e2
Batch size 100
Dropout 0.1

Adam (81, 32)  (0.9,0.999)

convolutional blocks in total. Each block consists of two PV convolution layers with PV batch
normalization, followed by a PV tangent ReLLU nonlinearity. The final PV feature is concatenated,
and passed through an FC layer, and finally classified with a PV MLR head. The curvature is
initialized at ' = —0.3 and learned during training. We train for 100 epochs with a step learning-
rate schedule, using milestones at epochs 60 and 85 with decay factor 0.1. For PV FC layer, o in
Eq. (24) is set tanh. All other hyperparameters are summarized in Tab. [T9]

C.5 HARDWARE

All experiments are conducted on an NVIDIA A6000 GPU.

D CONNECTIONS TO THE HYPERBOLOID

This section discusses the connections between the PV model and the hyperboloid model. We first
show the isometry between the two models. Then, we show that several current hyperboloid network
layers can be rewritten by PV layers.

Proposition D.1 (PV-hyperboloid isometries). [[]| The following maps are Riemannian isometries
between the hyperboloid model HY}, and the PV model PV :

Ty vy, Hy S [ij = as € PV, (49)
n lz)* - % n
7T]P’V}’<—>H}”< PVK S5 X K| € HK' (50)
X

Implications. The PV-hyperboloid isometries in Prop. [D.] imply that several standard layers in
hyperboloid networks can be rewritten as PV layers composed with TH?. PVT. and TPV S H?. -
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The Lorentz activation (Bdeir et all 2024, Eq. 13), Lorentz FC layer Sec. 3.1)
and Lorentz concatenation (Bdeir et al}[2024] Eq. 32) are

L Act thD _ | Vllo@o)|* - }(] , (51)
Ts i o(xs)
LEC (FtD — \AIW:vs +0l|* - }<| , (52)
s i Wazs+b
\/Zf\il xzz,t + %
HCat({z;} Y ) = Tls e HEY (53)
L o

S

where 2 = [z¢,2]]" € H} and 2; = [2;4,2/,]" € Hf, for1 <i < N. Then Prop.implies
that the above Lorentz layers can be rewritten in terms of PV layers as follows:

LAct(z) = mpvy, —mp, (0 (mmy, —pvy, (), (54)
LFC(z) = mpvy, —smp, (0(Wrmap, vy (2) +0)), (55)
HCat({xi}f\il) = TpVR HY (COHC&t(WH%_,PV% (.Il), ey THR PV (:L’N))> . (56)

These identities show that many hyperboloid constructions effectively operate by mapping to PV
space, applying Euclidean building blocks there, and mapping back through mpyr _,pr . This per-
spective naturally motivates designing networks directly in PV space, instead of repeatedly switch-
ing between equivalent models. Moreover, even if one follows the pattern HY, — PV — PV —
H7% to construct FC layers, the intermediate map should be the PV FC layer from Thm. rather
than a naive linear map, since PV is a non-linear Riemannian manifold and intrinsic layers must
respect its geometry.

E PROOFS

E.1 PROOF OF EQ. (1)

The PV line element at 2z € PV, can be written in terms of the curvature parameter K < 0 as

Qa(u) =||ul® + K82 (z,u)*, Yue T,PVEL ~R", (57)

where 8, = —————. This is equivalent to the expression in [Ungar (2022, Eq. 7.76) after
B e q p g q )
substituting s> = —1/K. Given u,v € T,PV', the bilinear form g, (u,v) is obtained by the
polarization identity:
9z (u,v) = % (Qm(u +v) — Qu(u— v)) . (58)
We first expand the two terms in the polarization identity:
Qulu+v) =llu+v|* + KB2 (a,u+v)°
=l +2 (0} +lol? + K82 (G, 0) + 2 (2, w) (2,0) + (2,0)°)
) ) 5 (59)
Qulu = v) =[lu—v]]* + KB2 (&, u —v)
= Jlull® = 2 (u,0) +Jol]* + KB2 ({,u)* = 2 (@, u) (2,0) + (,0)%).
Taking the difference yields
Qu(u+v) — Qu(u —v) =4 {u,v) + 4K B2 (x,u) (x,v). (60)
Substituting this expression into the polarization identity, we obtain
(U, v =1 (Uu+v)—Qrlu—2v
9u (u, v) 4 (Q ( ) — Qa )) 61)

= <u7 U) + Kﬁazs <$’u> <‘T7’U> )
which coincides with the expression of the PV metric in Eq. (I).
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E.2 PROOF OF LEM. [l

Proof. Differential of py» _,pr . Consider the curve ¢ : (—¢,¢) — PV’ which satisfies c(0) = =
and ¢/(0) = v. By definition of the differential,

d

= 3| EvEork (c(t)). (62)

t=0

dz(mpyy ey ) (V)

Using mpyn _pn (2) = 22— 2 with B, = ————, we write
g mpvy ey (T) = 1550 B rER

Bet)
n _ pn = = 63
mevn sen (c(t)) = h(t)c(t), h(t) T (63)
Let () =||e(£)]|*, so that By = (1 — Kr())~'/2. Then
r(0)=2(xv), Bl = 51— Kr(0) 2K (0) = KB} (z,v). (64)
Differentiating h(t) at ¢ = 0 gives
Bio Be
HO)y=—49 _ g ). 65
(0) 0+ 5,7 0+ 4. (z,v) (65)
Finally, differentiating h(t)c(t) at t = 0 yields
do (mpvn —pn ) (v) = B (0)x + h(0)v
8 . (66)
g Pz .
TN AR R A
In particular, at z = 0 one has 89 = 1 and (x,v) = 0. Thus, we have
Bo 1
dO(’]T]PV;"{*)P;"{)(U) = 1 n BOU = i’U. (67)

Differential of mpr ,py» . Consider the curve ¢ : (—¢,¢) — P} which satisfies ¢(0) = y and
¢’(0) = w. By definition of the differential,

d

= AT TPy PV, (c(t)). (68)

t=0

dy(mpy —pvy ) (W)
Using the explicit expression mpy pyr (y) = 2v7y with , = m, we obtain
y
e pvy (c(t) = 272 c(b).- (69)
Let r(t) = |c(t)||” so that 42, = (1 + Kr(t))~". Then

d Kr'(0)

'(0)=2 — 2y = = 2K . 70
r ( ) <yaw> ’ dt ’t_o ch(t) (1 ¥ KT(O))2 ’Yy <ya ’LU> ( )
Differentiating 273( t)c(t) att = 0 yields
dy(mey —pyy, ) (W) = 2 d‘ 752’(1‘,)2/ + 2’7510
r At (71)

= —4K~, (y,w)y + 2v;w.
In particular, at y = 0 we have o = 1 and (y, w) = 0. Thus, we have

do(mpr pvr ) (w) = 2w. (72)
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E.3 PROOF OF THM.

Proof. 1t suffices to show that for any « € PV and v, w € T, PV,
75 (da (g ) (0), o (e ey, ) () ) = 957 (0, 0),
where y = mpyn pn ().
We first recall the following equations from Eq. (I), App.[B-4] and Lem. &1}
Y (w,w) = (v,w) + KB% (x,v) (x,w), VzePVy, Vo,w e TPV},
gf(u, z) = ()\5)2 (u, 2y, YyePy, Vu,ze TPk,
B

mpyn pr (T) = 115 z, VaePVig,
Be B3 n n
dz(ﬂ-PV?(—}P;‘()(,U) = 1+ 6 v+ Km <.’I’,'U> Z, Va € ]PVK,V'U S TI]P)VK
Let 5
B B
= P g P
‘T 1t . (1+ fa)?

Then d, (mpyy, ey )(v) = av + b (z, v) @ and dy (Tpvy ey ) (w) = aw + b (z, w) z. Thus,
9y (dw(WPV%~%P%)(U)7dw(WPV;f»P;)(UO)

(/\ff)z {av + b (z,v) z,aw + b (z,w) x)

(Af)z (a2 (v, w) + ab (z, w) (v, z) + ab (z, v) (z, w) + b (z,v) (z, w) <z,x>)

= ()\K)2 (a2 (v, w) + (2ab + bngHQ) (z,v) <x,w)),

(73)

(74)

(75)

(76)

Using y = mpy» pr () and the relation between )\yK , Bz, and ||x|| from App. we simplify the

coefficients. First,

2 Bw Bw
Kll® = & ({2 o)

2
- Kol
5o
(AL,

where we use 32 = W Hence

g —1 20

2

which implies )\ff = W = 1;5 2 . Therefore
2 2
()= (52) (i) =1
Y e 1+ B,
Next, we compute
B By 2K,
2ab =2 K L = £
1+ 8 (T+8.)  (1+45)°
6 40432
-1
e = K2 e = k=)
(1+8.) (1+ Bs)
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which brings us to

2ab + 12||z]|? = 1+6 (2 1+ ) + 62— 1)
B o
(1+ Be)* (1+8.)%
Multiplying by (Aff )2 = (%)2 yields
2 2 4
() o o) = (52 ) K s = w2 )

Substituting these identities into the expression for gp gives

9y (dm (mevy—~py ) (v), da (szwz)(w) = (v,w) + KB (z,0) (z,w) = g;" (v,w).  (83)

O
E.4 PROOF OF THM.[43]
Following the notation in the main theorem, we further denote:
T=m(z) €Pi, y=m(y) €Pk, v=dn(v)e€ TPk, (84)
Recalling Eq. (@) and Lem. [#.1] we have the following:
B
w(x) = z, VzePV%, 85
(2) 143, K (85)
TN y) =275y, vy € Pk, (86)
dry(v) = K—2— e (x,v)x + B v, VxePVy, Ve TPV, 87)
(14 B2)? 1+6,
dﬁy_l(w) = —4K7g (G, w) g+ 275111, vy € P, Vw € TyPk. (88)
Next, we derive the expressions for each PV operator.
E.4.1 PV EXPONENTIAL MAP
We recall from Tab. [13]that the Riemannian exponential on the Poincaré ball is
1 V-KXE|o||\ ©
ExpL(7) = T ®u tanh e — (89)
V-K 2 ligdl

By the Riemannian isometry and the gyrovector isomorphism of , for any z € PV} and v €
T,PV% we have

Bxp, (v)  n ! (Expf(0))

( ) -1

1
=xhuym ——— tanh

V=R o)\ ® ©0)
NE

2 ol J -
The above equalities follow from the following facts.

(1) Isometry.

(2) Gyrovector isomorphism.
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Let

B

u =

1
V-K 2 (il

1]

— K||5
- (mun )

We have

1 V=EXE |||
|| = ——— tanh | Y2z 190}
vV—K 2

K|~
Let t = Y2200 g6 that /=K ]|u|| = tanh(t). Then

= tanh(t)

2 tanh(t) v

\o}

1 v

= sinh (2t) —,
[l
. _ v
= sinh (V=K [o])) T

|
. h(mmm)'l)
sin ﬂz v

B

=

The above equalities use:

(1) 1 — tanh?(t) = 1/ cosh®(t);
(2) sinh(2t) = 2sinh(¢) cosh(t);

K _ 14B:
(3) MK = L=

E.4.2 PV LOGARITHMIC MAP

We recall from Tab. [T3]that the Riemannian logarithm on the Poincaré ball is

5 tanh”! (mn;u)

L E} 7l = > = — U

K _ 2
where \;' = TR We define

oD

92)

93)

(94)

95)
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By the Riemannian isometry of 7, we have
Log, (y) = dz (") (Logk(5))

5  tanh! (ﬁkuzu) )
— z
V=R 1]l

= Oé(ffay)df(ﬂ_l) (%),

= dz(71)

where
oy tad! (x/—K||2||)
R VS S N

The differential of 7! at 7 = 7(z) is

dz (7N (h) = —AK~2 (z,h) T 4+ 272h, Yh € TP,

where vz = m Using 7 = lfﬁm and the relation 1 — K||z||> = é, we have
_ By B gy —1 g —1
K||z|* = K 25 |l=|* = 5 | = 5
(1+52) (1+52) B: (1+ Ba)
— 52 -1 269:
1+ K||z)|* =1+ == = .
7l +B.7 145
Hence )
= 1 :1+6$ é—lz<1+6w) :(1+5z)2
O+ K|z|)P 26 ] ‘ 2B; 463
Substituting these into dz(7~1)(h) yields
-1 _ (1—’_51’)2 = = 1"‘5&:
A+B)? s 146
— KT g+ h
R
1+ 5
= ih—K(J;,h)x,

x

(96)

C0)

(98)

99)

(100)

(101)

where the last equality uses that ¥ = Bo_ g, Applying Eq. 1} with h = Z and using that

1482
z = 7(z) is collinear with z = (—x) @y y, we obtain

Log,(y) = a(z,y)(dr.) " ()
— alz,y) (1+5$2—K<x,z>x) .

Since z = 7(z) and 7 is given by Eq. @), z and z are collinear and

_ B
i=pn o P=g

which also implies (z, Z) = p (z, z). Substituting these into Eq. (102)) yields
1+ s

x

Loe, ) = aevy) (*5 s Kp a.2) o)

= a(z,y) ! _g &sz + (—~Ka(z,y)p) (z, 2) x.
( )x
o(z,y

(z,y)
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Using the definition of a(z,y) in Eq. 1i together with \X = 125 < and p = a straightfor-

1+ﬁ ’
ward simplification yields
5 tanh™! (s/—K||2||) 95, VK tanh™! (\/—K||2||)
o(z,y) = T, y) = - (105)
V-K 121l 1+ B, 1]
Thus,
Log,(y) = o(z,y)z + 7(2,y) (z, 2) z. (106)
E.4.3 PV PARALLEL TRANSPORT
We recall from Tab. [I3] that the parallel transport on the Poincaré ball is
MK
PTL ,;(w) = i eulls —#)(w),  withw € ToPg. (107)
Y
We have
PT,y(v)
@ -
= dg(m 1) (PTI;_@ (d’/Tz(U))>
AR
— dy(n ) | £ yeuls —) (dmo (0)
Y
@Ay -
2 Sedy(n) (gvralg, ~7) (dma(v) )
v (108)
@ AE (148 o o
=K ( 3, * gyryly, 7] (dra(v)) — K <y,ger[y, ~7] (dm(v))> y
g
@ (14 8:)By (14 By I o
= gyrmly, —z] (dme(v)) — K<y7gyr y, —x| (dma (v >y
1+ B, I (1+ Bz)By o
= vy |y, —Z) (dme (v —K7<y, vy |y, —Z) (dmg (v >y
The above equalities use:
(1) the isometry property of 7;
(2) linearity of dg(7—1);
(3) Eq. (T0I).
(4) Using the relation between )\gf and f3, in the proof of Thm. |4.2]
1455 1+
K K y
M= = (109)
E.4.4 PV GEODESIC DISTANCE
We recall from Tab. [T3]that the geodesic distance on the Poincaré ball P is
2
— dP(y1, 42) = tanh~! (\/ )@ ) Yo € P 110
(Y1, y2) N K||(=y1) & v2| Y1, Y2 € P (110)

By isometry and isomorphism, the PV geodesic distance is

d(z,y) = d* (n(x), 7(y))

:\/%tanh (FH ) @m m( )||) (111)
= \/%tanhfl (\/jHﬂ'(—l‘ ®u y)H) ,
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E.4.5 SPECIAL CASES AT THE IDENTITY

Exponential map at the identity.

—~
N2

Expg(v) =

— |||~
L

q

The above comes from the following.

(1) 0is the gyro identity;
(2) Bo = 1 and dmo(v) = Lv.

2

sinh (\/ijH)

B

b (ﬁ(l + B.)

v

lv

B

||v> |

=

Logarithmic map at the identity. As z = —0 Gy y = y, we have
Logo(y) = 0(0,y)z + 7(0,y) (0,2) 0

Using 7(y) =

Lett = —K]|y|| and s = v/1 + 2, so that 3, =

B3,
5, Y

= U(Oa y)y

5 tanh”! (muw(y)\y)

V-K

we obtain From 7 (y) =

VRl=w)l = 35

-1
V1=-Klyl*

By

a =

tanh (2 tanh ™! (a))

T (sH1)2 42

= t = .
1+ 3, s+1

Using the hyperbolic double-angle identity, we have

lyl

t

2a

T 14a?

2t/(s+1)
14+t2/(s+1)2

2t(s + 1)

B 2t(s+1)
2425+ 1+¢2

2t(s+1)

Y.

B .
T4y and By = m, we obtain
V=K]|yl.

= 1. Define

T2+t +s)
t(s+1)
141245
t(s+1)
s2+s

Denoting u = sinh " (t), we have

Therefore,

tanh (sinh_1 (t)) = tanh(u)

30

sinh(u)

t

cosh(u)

V1412

(112)

(113)

(114)

(115)

(116)

(117)

(118)
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Since tanh is strictly increasing on R, this implies that

2 tanh ! <1+ﬁyﬂt> = sinhfl(t). (119)
Y

Substituting this identity back gives

1 sinh ™ (V=R )

0,y) = , 120
A RV S T (20
and therefore
1 - Y
Lo = sinh™! (V=K LA (121)

Parallel transport from the identity. The gyration satisfies gyry[0, 5] = gyry[7, 0] = I. Substi-
tuting this into Eq. (I08) gives

PToy(v) = L 50 o ) - gt be)fy

Bo (1+8y)Bo
1 28, 1
—25%1(1;’% 5 W)y (122)

vKlfyBy (y,v) y.

(y,dmo(v))y

Parallel transport to the identity. Taking y = 0 in Eq. (108)) and using gyry;[0, —Z] = I yields

PT, o) = 524 ()
148 83 B
= (K(1+ﬂz)2 (x,v)x + 1+ﬂzv> (123)
B
:v+K1—|—Bm (z,v) x.

Distance from the identity. This can be directly obtained by gyro identity.

2 —1
A(0,) = — = tanh (\/—KHW(y)H) . (124)
Using the same identity as above with ¢ = /— K ||y|| yields
1
d(0,y) = Ny sinh (\/ —K||y||) . (125)

E.5 PROOF OF THM. [4.4]
Proof. As shown by (Chen et al.| [2025b| Prop. 21), the M&bius gyroaddition and gyromultiplication

can be written by the Riemannian operators. Besides, the isometry Tpyy. Py, Preserves the identity:

mpyr pr (0) = 0. By Nguyen & Yang (2023, Lems 2.1-2.2), one can directly obtain the results.
O

E.6 PROOF OF THM.[3.1]

We first establish the PV hyperplane equivalence and then derive the distance formula.
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E.6.1 EQUIVALENT CHARACTERIZATION OF THE PV HYPERPLANE

We first review a useful lemma from |Chen et al.| (2025¢, Lem. J.1).

Lemma E.1. We assume that the manifold M admits a gyrogroup defined by
z @y = Exp, (PTch (Log, (y))) Y,y € M. (126)
where e € M is the origin of the manifold. Then, we have the following

<Logp(x), a> (Log,(op @ ), PTIHe(a)>e , VYx,pe MandVa € T, M. (127)

=
Now, we are ready to prove Thm. [5.1]

Proof of PV hyperplane. Thm.[4.4]indicates that the assumption of Lem. [E.T|holds with M = PV,
@ = @y and e = 0. Then, the PV hyperplane

Hg,p= {x € PV | <L0gp(m),a> = O} (128)
p
can be rewritten as

Hop= {:c € PV} | (Loge(—p ®u 2), PTy0(a)), = 0} . (129)

Using the explicit PV operators in Thm.[4.3]and the PV metric in Eq. (I)), we have

Logo(—p®u z) = a(—p @y x), for some scalar v > 0,
PT,_o(a) = Bdm,(a), for some scalar 8 > 0, (130)
go(u,v) = (u,v).

As o = ( is trivial, we only consider the case o > 0:

<Log0(fp Gy x),PTp_,g(a)>0 =0 <= <fp Py x, dpw(a)> =0. (131)

E.6.2 PV POINT-TO-HYPERPLANE DISTANCE

We first prove a lemma on the isometry and point-to-hyperplane distance, which will be used to
derive the PV point-to-hyperplane distance.

Lemma E.2 (Isometry and point-to-hyperplane distance). Let (M, g) and (M, g) be Riemannian
manifolds and let ¢ : M — M be a Riemannian isometry. For p € M and a € T, M, define the
hyperplane

Ha,p= {x e Mg, (Logp(x),a) - 0} . (132)

Let p = ¢(p) and a = d,¢(a) € Ty M, and define the corresponding hyperplane on M by
7= {1—; e M|, (LBgﬁ(i),&) = 0} . (133)
Then ¢ maps H, , onto H}l’ﬁ, that is,
¢ (Ha,p) = Ha,p. (134)
Moreover, for every x € M we have
dm (#, Hap) = dyq (6(2), Hap) , (135)

when the point-to-hyperplane distance exists. Here, dpq and d y denote the Riemannian distances
on M and M, respectively.
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Proof. Since ¢ is a Riemannian isometry, we have

9p (Logp(ac),a> =0 (dqu (Logp(m)) 7d,,(;ﬁ(a)) =0; (Lz)gz7 (qb(x)) ,d) . (136)
Therefore,
9p (Logp(x), a) =0 <= Gz (Lz)gl7 (¢(x)) ,d) =0, (137)
which shows that z € H,, , if and only if ¢(z) € H; 5, and hence ¢ (Ha,p) = Ha ;.
For the point-to-hyperplane distance, recall that for a subset S C M the distance from z to S'is
dm(z, S) = inng(x,z). (138)
ze
For the point-to-hyperplane distance, we have
dm (33‘, Ha,p) = zeilr}ﬁ,p dm(z, 2)

= zGlII}f d 4 (¢(33)a ¢(Z))
- (139)
= inf dyy (¢(3;),Z)

zels; 5
=dxy (¢($)7 Ha,ﬁ) .
O

Next, we review the Poincaré hyperplane and point-to-hyperplane distance (Ganea et al., 2018, Sec.
3.1).

Poincaré point-to-hyperplane distance. For a point p € P and a normal vector a € T,P}, the
Poincaré point-to-hyperplane distance is given by |Ganea et al. (2018, Thm. 5):

HE = {x e P | <Log§(z),a>p - o} ={zePy | (—pBuz,a) =0}, (140)

1 2v—K |{(-p®m vy, a
d*(y, HE ) = sinh ™! [=p ®u : ) (141)
VoK (1+ Kll-p@n oIl ) lal
Proof of the PV point-to-hyperplane distance. Let
p=n(p) €Pk, a=dym(a) € TPk, y=n(y) cPk. (142)
By Lem. the point-to-hyperplane distances satisfy
d* (y, Ha,p) = 4" (9, Hap) - (143)
Applying the Poincaré distance formula (T41) with p = p, a = @, and y = 7 gives
- 1 | 2V=K|(-pemy,a)|
& (7, Hap) = = sinh ; (144)
- (1+ KlI-pen gl lal
The gyrovector isomorphism 7 implies
—p @MY =7(—pBuy). (145)
Denote z = —p @y y. From Sec. f] we have the explicit expression
B
m(z) = z 146
()= 145 (146)

33



Under review as a conference paper at ICLR 2026

with 8, > 0. Since 3, = m, we obtain

2 B 2
1+ K| (2)|| :1+K<1+ZB) Bk

GH
(1+8.)?
B2(1 - B
él2+€2)2 (147)
(EwAE
5z -1
1+ 5.
28,
1+ 8,

The above yields

2ﬁ‘<ﬂ(z)7@>‘ _ \/j|<z,d>|. (148)
(1 +KH7r(z)||2>||C_LH I

Therefore,
1 VK ‘(—p ®u y7dp7f(a)>‘
sinh™

d (vaaaP) = \/j ||dp7r(a)||

(149)

E.7 PROOF oF THM.[3.2]

Proof of PV MLR. For clarity, we fix a class index k and omit & in the notation whenever possible.
We denote 7 = mpyn pn as in Thm.

Step 1: From hyperplane distance to a signed score. The PV MLR in Eq. (I9) associated with
parameters (p, a) for z € PV is

vk ()

= Sign <<_pk bu x, dpkﬂ-(ak)>) Hak”pkd ($, Halmpk)

\/j‘<—pk Pu z, dpk-ﬂ'(ak»‘

(150)
[ py, 7 (a) |

sign (<_pk by T, dpkﬁ(ak)>> sinh™*

@ Ha‘k”Pk sinhfl \ _K<_pk Du x7dpk77(ak)>
[dp, 7 (ax)]|

The above comes from the following.

3

(1) Thm.[5.1}

(2) sinh™! is odd and strictly increasing.

Step 2: Trivialization and reduction to a single direction. We adopt the unidirectional parame-
terization in Sec. 5.1t

pr = Expq (relz]) ap = PTop, (21), (2] = Tl (151)

with 2z, € ToPVy =2 R™ and 1y, € R.
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As parallel transport is an isometry, we have

lakllp. = llzkllo = [lzll- (152)
Moreover, py and z; are collinear, because Exp, in Thm. preserves directions at the origin.
Using the explicit expression of PTg_,, at the origin in Thm. we see that PTg_,,, maps 2 to

a linear combination of zj and pg. Therefore, ay is also collinear with zj.
The differential d,, 7 in Lem. [4.T has the form
dp, (V) = arv + Br Pk, V) P, x>0, B €R, (153)

s0 dp,, ™ maps any vector in span{zy } into the same one-dimensional subspace. Consequently, there
exists a scalar A\ > 0 such that
dpkﬂ(ak) = A\p2k- (154)

The sign of A\; can be absorbed into zj, by redefining z;, <— —z; if necessary. Without loss of
generality we may assume )\, > 0. Putting Eq. (151)), Eq. (152), Eq. (154) and ||d,, 7(ak)|| =
Ak||zx || into Eq. (150) yields

1 <\/j

_ . 155
||Zk|| < Pk @U xazk>> ( )

Step 3: Eliminating the gyroaddition. The remaining task is to expand the gyro-additive term in
Eq. (I55). From Sec.[3] PV gyroaddition is given by

1_51/ Bu ) 1
udyv=u-+v+ - K u,v) | u, By = —m——. (156)
v < By T+ g, V1= KJo]?
Setting ©w = —pj, and v = z yields
]-_ﬁz B
_ = _ — K Pk — —Dk)- 157
Pk Gu pk+$+< 3 1+5pk< pk,fﬂ>>( Pk) (157)

Taking the inner product with z; gives

(—pr QU T, 2) = (—Pr; 28) + (T, 21) + (1 ;;606 — K7 fpg <pk,l">> (—Pk, 2k)
xT Pk
(158)
= (r,20) + <1+ R <—pk,x>> (i)
xT Pk

Next, we rewrite the above expression using the unidirectional parameterization of p;. From
Eq. (I51)) and the explicit PV exponential at the origin in Thm.[4.3] we have

1 . 2k
pr = Expg (1x[2k]) = sinh < fKrk> — (159)
o (rulanl) = =g stnh (V=) o
Thus, )
—Dk, Zk :—78111}1( —K%) 2| 160
(—pr» 2k) e Vv k) 2kl (160)
Moreover, since pg and z; share the same direction, any « admits the decomposition
T,z
T=x+2L, x| = <||zk|k2> 2k, (1, 2) =0, (161)

which implies

(—pr, ) = <—Pk»$\|> = <|xz’:”k2> (—pk, 2k) = —

sinh (\/—Krk> (2) 62

[zl

1
v—K
The beta factor at py, is

1
= ———— =sech -K 1
o = = — b (V7R). (163)
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where we used ||py||? = — & sinh? (\/fKrk) and the identity 1 4 sinh?(¢) = cosh?(t).

USing <_p1€7 Zk>7 <_pk7 :E>? and ﬂp;w we have

(—pr ©U , 2k)
= <$,Zk> + <1 + 1 ;LBI _ Kl fplgpk <—pk7x>> <—pk,zk>
= (,zx) + (ﬁlz T f_pgpk <Pk,$>) (—pr» 2x)

1 sinh (x/—Krk)
= (z,21) + B, *ﬁ”zkn

(164)
3 sinh ( (z, 2k) sinh ( K?"k)
- K| - 2l
1+ By, V-K H%H V-K

sinh (\/*K ) ||Zk|| Bpy sinh? ( KT’k>

= (z,2) — (x, z1)
vV—-K Bz 1+ By,

B Bpr sinh? (\/ —Krk) sinh ( Krk) ||Zk||
=11+ 155, (z, z) — Ny

Since 3,, = sech (\/—Krk) and 1 + sinh? (/=K ( —

- Bp sinh? (\/jrk)

) = cosh? (\/jrk) = 1/612%, we have

B 1+ By, + Bpe sinh? (\/jro

L+ By,

L+ By

1+ By, cosh?” (V=Kry) (165)

1+ By

C141/8,, 1
fﬁfﬁ—pkfcosh (\/—Krk>,

which implies

sinh (” ’KT’“) [ (166)
vV—-K Bz

(=pr ®u z, 2,) = cosh (V _Krk) (, 21) —
Recalling that 3, = 1/4/1 — K||z||?, we obtain

sinh (\/jrk)

{(—pr @y x, 2;) = cosh (\/jrk) (x, 21) —

Substituting Eq. into Eq. (I55), we arrive at

on(z) = \';_’;'I'(smh-l (cosh (ﬁ ) ‘F (x,21,) — sinh (\/jrk) 1- K|z|?

(168)
O
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Proof of PV MLR limits. By Taylor expansions, we have

cosh (\/jrk> =1- KZTk + O(K?),
sinh (\/jrk) —V_EKry+0 ((4{)3/2) (169)
K|z|*

1 - Klfz|? =1 +O(K?).

The argument of sinh ' () in Eq. (168) can be simplified as

sinh™* {cosh (\/jrk) ﬁ (x, zx) — sinh (\/jm) \/W}

Kr? V—K
= sinh™! (1— 2T’“+O(K2)> B (, zx)
k

- (\/jrk: +0 ((—K)3/2)> (1 = %“T”Q + O(K2)> 70)

ﬂm4{¢:K(ﬁ;w—m>+0«—KWﬂ}

FR(EE ) o).

— Tk
[zl

Substituting this into Eq. (I68) gives
(@) = |2l (\/j<(x,zk> —Tk> Lo ((—K)3/2)>

V= (EA
—Wﬂ(x“—wQ+OGK) (171)

s 2k) — xllzel| + O(=K),
K—0" <

— (T, Zk> _Tk”ZkH-
E.8 PROOF OF THM.[3.3|

Proof of PV FC layer. Specializing Thm.[5.1to p = 0 and @ = e;, and using that -0 Gy y = y
gives the LHS

1
sign (<d0kﬂ-(ek})7 —0®y 33>> d (yv Hek,O) = \/j sinh ™! (V _Kyk) ) (172)

with y,. = (y, ex). Then, we obtain
1

=R

sinh (\/—Kvk(a:)) C k=1,....m. (173)

Proof of PV FC limits. By Thm.|5.2] as K — 0~ we have
vp(®) = (@, 2) + b, b = —7illzl, (174)

For K < 0 and vg(z) # 0, we can rewrite yy, as
sinh (\/ —Kuy, (x))
= vg(x
Yr = vi(x) o)

(175)
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and we define the fraction to be 1 when vy (x) = 0. Since vV—K — 0 and vi(x) converges to a
finite limit, we have v/— K vy (x) — 0. Using the standard limit lim,_,o sinh(u)/u = 1, it follows

that
sinh (\/ — Ky, (a:))
—1 as K —0". (176)
V—Kuvg(z)
Combining the above limits yields
lim yr = lm wvg(x) = (z,2;) + bg. (177)
K—0~— K—0~—

O

E.9 PROOF OF THM.

Proof. The result is first established in the Poincaré ball model (Chen et al., |2025b, Thms. 14 and
16). Since 7 : PVtoP is a Riemannian isometry, it intertwines the key geometric operators used in
the proof:

dmy o ExpiV = Expﬁ(z) odmg, drmg o LogiW = Logﬁ(m) odmy, (178)
m(zof’y) = n(x) &f 7(y). (179)

Hence the homogeneity identities, written purely in terms of Exp, Log and the gyroaddition &y,
are preserved under 7. Therefore the same theorem holds for the PV model (Chen et al.| [2025b}
Lem. 11). O

E.10 PROOF OF Pror.[D 1]

Proof. We first recall the isometries between the Poincaré ball and the hyperboloid (Skopek et al.,
2020} Sec. 2.1):

T
T —po (X)) = —— (180)
ko) = T
2
1 1-Klyl
2
meg g (y) = | VIETE R (181)
1+ K|ly||”
Hence, the following are Riemannian isometries:
THR SPVY = P2 SPVy. O THR SPT. TPYR. HR. = PR HY © TPYR P, - (182)
It remains to derive the explicit formulas.
For x = [z;,z]]" € H', we first map to the Poincaré ball:
Ts
= mn pr () = ————. (183)
Y HK—>1P>K( ) 1+ /Kot
Applying py _pyy, from Eq. () yields
1
Tn Spvn () = Ten Spvn (y) = 275y, Ty = (184)
V1+ Kyl
Using y = x5/(1 + /| K|z¢), we compute
2 2
) 2.2 (14 VIKTz) + Kl
I+ Kyl =1+ K s = > . (185)
(1 + \Km) (1 + |K\:z:t)
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Since x € HY, satisfies (x,x), = 1/K, we have

1
_ .2 2 _
(2,2 = —oF +z|* =

Substituting this into the numerator gives

2 2 1
@+|Km)+mmwz@+ Wm>+KCﬁ+)

=

1
laoll® = 22 + .

K

2
(1—1— |K\xt> + Ka? + 1

=1+2V/|K|z; + |K|2} + Ko} + 1

:2(1+ |K@Q.
Therefore,
1+ Kyl = ==
(14 VIKRe,) L VIEm
and hence
"y2 _ 1 _ 1 + |K|$t
1+ K|yl 2
Finally,
1 =+ ‘K|£L’t Ts
Ty PV (T) = 2%31/ =2 5 T T = .

For mpyn _my. , take x € PV’; and map to the Poincaré ball by Eq. :

Ba

Y= WPV;—»IP;;(@ T 118 €T,
T

Applying mpr g7, We obtain

1
B = ———
V1= Kzl
L 1Kyl

/ 2
TPV —HY (z) = TP —Hp (y) = K] 122 Kyl

1+ K|yl

We now simplify the spatial and temporal components separately. We write

_Ba: 2
y=—Lo o |y||—(

2
By ) el

L+ 5, " 1+ 5,
Using 82 = 1/(1 — K ||z||*), we obtain
2 2
2 2 51} ﬁm -1 593 -1
Klyl” = K|l 5= 5=
(1+8:)>  (1+6)> (1+45)
2ﬂx 2 2
=1+ K|y|* = . 1-K|y|? = .
Iol* = 155 s
The spatial component of TPV7, S HP. (x) is
/HT/
2y 2ngT
2~ 7 2B, J
L+ Klyl®
and the temporal component is
2 2
LKl 1 1

VIEIL+Klyl? VK] 2 VKB

39

VI- Ko —
= Izl - 4.
VIE] ¥

(186)

(187)

(188)

(189)

(190)

(191)

(192)

(193)

(194)

(195)

(196)
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2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
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2142
2143
2144
2145
2146
2147
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2149
2150
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Thus,

Ty my, (T) =

40

(197)
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