
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROPER VELOCITY NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperbolic neural networks (HNNs) have shown remarkable success in repre-
senting hierarchical and tree-like structures, yet most existing work relies on
the Poincaré ball and hyperboloid models. While these models admit closed-
form Riemannian operators, their constrained nature potentially leads to numeri-
cal instabilities, especially near model boundaries. In this work, we explore the
Proper Velocity (PV) manifold, an unconstrained representation of hyperbolic
space rooted in Einstein’s special relativity, as a stable alternative. We first es-
tablish the complete Riemannian toolkit of the PV space. Building on this foun-
dation, we introduce Proper Velocity Neural Networks (PVNNs) with core layers
including Multinomial Logistic Regression (MLR), Fully Connected (FC), convo-
lutional, activation, and batch normalization layers. Extensive experiments across
four domains, namely numerical stability, graph node classification, image classi-
fication, and genomic sequence learning, demonstrate the stability and effective-
ness of PVNNs.

1 INTRODUCTION

Hyperbolic geometry provides a natural representation for hierarchical data due to its exponential
representation capacity, and has proven successful across diverse applications, including computer
vision (Khrulkov et al., 2020; Bdeir et al., 2024; Sur et al., 2025), temporal knowledge graphs (Li
et al., 2024), natural language processing (Ganea et al., 2018), knowledge-graph reasoning (Nickel
& Kiela, 2017), astronomy (Chen et al., 2025a), graph learning (Chami et al., 2019; Li et al., 2024),
genomic sequence learning (Khan et al., 2025), and fine-tuning (Yang et al., 2024). Recently, the
focus has shifted from hyperbolic embeddings to building Hyperbolic Neural Networks (HNNs) that
operate entirely within hyperbolic space. As hyperbolic geometry admits multiple models (Cannon
et al., 1997), the choice of representation is central to the design of hyperbolic networks. Most recent
works rely on the Poincaré ball and hyperboloid models, which provide convenient Riemannian or
gyrovector structures (Ganea et al., 2018; Chen et al., 2025b; Ungar, 2022), thereby facilitating neu-
ral network construction. However, both models are constrained spaces, which can lead to numeri-
cal instabilities. In particular, as embeddings in the Poincaré ball approach the boundary, numerical
computations become unstable and might cause the gradient to vanishing (Guo et al., 2022).

On the other hand, the Proper Velocity (PV) model originates from Einstein’s special relativity,
where proper velocity provides a natural parameterization for relativistic velocity addition (Ungar,
2022, Ch. 10). Algebraically, PV admits a gyrovector space (Ungar, 2022, Ch. 6), analogous to
the Möbius gyrovector space of the Poincaré ball. Unlike the constrained Poincaré ball and hy-
perboloid models, PV offers an unconstrained representation that alleviates numerical instabilities.
These properties have made the PV model particularly successful in relativistic physics and motivate
its exploration as a stable alternative geometry for HNNs. However, its Riemannian operators, in-
cluding exponential and logarithmic maps and parallel transport, remain largely unexplored, despite
being fundamental for constructing neural networks.

Inspired by the above discussions, we propose Proper Velocity Neural Networks (PVNNs). To this
end, we first establish the complete Riemannian geometry of PV by deriving closed-form expres-
sions for the exponential map, logarithmic map, geodesic distance, and parallel transport. Building
on this foundation, we extend several fundamental neural layers into PV space, including Multi-
nomial Logistics Regression (MLR) classification, Fully Connected (FC), convolutional, activation,
and batch normalization layers. Based on these layers, one can construct different network archi-
tectures. We validate the framework through four sets of experiments, including numerical stability,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

graph learning, computer vision, and genomic sequence learning, demonstrating both the stability
of PV embeddings and effectiveness of PVNNs. To our knowledge, the PV model has remained
largely unexplored in machine learning, and our work provides the first systematic study of its use
for representation learning. In summary, our contributions are threefold:

1. We establish the complete Riemannian geometric toolkit of the PV manifold, deriving closed-
form operators that enable its use as a new alternative to classical hyperbolic models.

2. We develop fundamental building blocks in PV space, including MLR, FC, convolutional, activa-
tion, and batch normalization layers.

3. We validate the stability and effectiveness of PVNNs through experiments on four tasks: numeri-
cal stability, graph node classification, image classification, and genomic sequence learning.

2 RELATED WORK

Hyperbolic representation. Hyperbolic embeddings have been widely explored for hierarchical
and non-Euclidean structures in networks, trees, and text (Krioukov et al., 2010; Wilson et al., 2014;
Sonthalia & Gilbert, 2020; Nickel & Kiela, 2017; Chami et al., 2019). Hyperbolic neural networks
(HNNs) explores these embeddings within deep architectures (Ganea et al., 2018), and subsequent
works extend them to graphs, knowledge bases, and vision (Chami et al., 2019; Balazevic et al.,
2019; Khrulkov et al., 2020; Bachmann et al., 2020).

Hyperbolic models and networks. Among the multiple models of hyperbolic geometry (Can-
non et al., 1997), the Poincaré ball and the hyperboloid (Lorentz) models are most commonly
adopted. The Poincaré ball admits closed-form Möbius and Riemannian operators (Ganea et al.,
2018; Shimizu et al., 2021), whereas the hyperboloid model provides numerically stable geodesics
and natural formulations in Minkowski space (Nickel & Kiela, 2018; Chen et al., 2022; Mishne et al.,
2023). Building on these operators, researchers have adapted core Euclidean layers to hyperbolic
geometries. For instance, Ganea et al. (2018); Shimizu et al. (2021) introduced FC and MLR layers
on the Poincaré ball via point-to-hyperplane distances, while Chen et al. (2022); Bdeir et al. (2024)
designed FC and convolutional layers on the hyperboloid through ambient spacetime formulations.
These modules have been applied to vision (Khrulkov et al., 2020; Bachmann et al., 2020) and se-
quence modeling (Khan et al., 2025), with recent works further developing residual architectures
and graph-specific formulations (Van Spengler et al., 2023; He et al., 2024; Chami et al., 2019; Dai
et al., 2021).

Riemannian normalization. Normalization layers are essential for stabilizing and accelerating
training (Ioffe & Szegedy, 2015; Ba et al., 2016; Ulyanov et al., 2016; Wu & He, 2018), yet their
Euclidean formulations do not generalize directly to manifolds. Early extensions adapted Rieman-
nian operators such as the exponential map, logarithmic map, and parallel transport to define batch
normalization on different manifolds (Brooks et al., 2019; Lou et al., 2020; Chakraborty, 2020;
Bdeir et al., 2024). However, these approaches often lack theoretical guarantees to normalize sam-
ple statistics. More recently, algebraic structures have enabled principled and unified formulations.
Later, Chen et al. (2024a; 2025b; 2024c) explore algebraic structures, such as Lie groups and gy-
rogroups, to develop normalization layer which can normalize sample statistics.

3 PRELIMINARIES

Riemannian geometry. (Lee, 2018). Throughout, ⟨·, ·⟩ denotes the standard Euclidean inner prod-
uct, and∥·∥ the induced norm. A Riemannian manifold (M, g) is a smooth manifold equipped with
an inner product gx or ⟨, ⟩x on each tangent space TxM that depends smoothly on x ∈ M. We use
Expx, Logx, and PTx→y to denote the exponential map at x, logarithmic map at x, and parallel
transport along the geodesic connecting x and y, respectively. A smooth map f : (M, g)→ (M̃, g̃)
is a Riemannian isometry if it preserves the metric: gx(u, v) = g̃f(x)(dxf(u), dxf(v)) with dxf as
the differential map at x and u, v ∈ TxM.

PV space. (Ungar, 2022). Hyperbolic space is a space with constant negative curvature K < 0 and
admits several models one can work with (Cannon et al., 1997). The popular models include the
Poincaré ball and the hyperboloid (also known as the Lorentz model). The PV model PVn

K = Rn is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

an alternative representation of hyperbolic geometry, which was initially named the Ungar gyrovec-
tor space and is used to describe algebraic structures of relativistic proper velocities (Ungar, 2022).
Unlike the bounded Poincaré ball or the constrained hyperboloid, the PV model is an unconstrained
space, offering better numerical stability. Its Riemannian metric is given by App. E.1:

gx(u, v) = ⟨u, v⟩+Kβ2
x ⟨x, u⟩ ⟨x, v⟩ , ∀x ∈ PVn

K ,∀u, v ∈ TxPVn
K . (1)

Here, βx = 1√
1−K∥x∥2

is the relativistic beta factor. In Ungar’s notation, the curvature is

parametrized by a positive constant s with s2 = −1/K, where s plays the role of the vacuum
speed of light in special relativity (Ungar, 2022, Sec. 3.8).

PV gyrovector. From an algebraic point of view, the PV space forms a gyrovector space (Ungar,
2022, Def. 6.2), which extends the Euclidean vector space to manifolds. Given x, y, z ∈ PVn

K and
t ∈ R, PV gyroaddition ⊕U and scalar gyromultiplication ⊗U (Ungar, 2022, Ch. 3.11 and 6. 20)
are defined as1

x⊕U y = x+ y +

{
1− βy

βy
−K

βx

1 + βx
⟨x, y⟩

}
x, (2)

t⊗U y = sinh

(
t sinh−1

(√
−K∥y∥

)) y√
−K∥y∥

, (t⊗U 0 = 0) . (3)

In particular, the PV inverse is ⊖Ux = −x, and the PV identity is the zero vector: 0 ⊕U x =
x⊕U 0 = x.

For detailed reviews of Riemannian geometry, gyrovector spaces, PV gyrovector spaces, and the
hyperbolic Poincaré ball and hyperboloid models, we refer the reader to App. B.

4 PV GEOMETRY

4.1 FROM GYRO ISOMORPHISM TO RIEMANNIAN ISOMETRY

The Poincaré ball also admits a gyrovector space, named the Möbius gyrovector space, as reviewed
in (Ungar, 2022, Sec. 6.14). Algebraically, the PV and Möbius gyrovector spaces are isomorphic.
We further show that PV and the Poincaré ball are geometrically isometric.

Let Pn
K =

{
x ∈ Rn |∥x∥2 < −1/K

}
be the Poincaré ball. The following bijections define the

gyrovector space isomorphism (Ungar, 2022, Tab. 6.1):

πPVn
K→Pn

K
: PVn

K ∋ x 7→ βx

1 + βx
x ∈ Pn

K , πPn
K→PVn

K
: Pn

K ∋ y 7→ 2γ2
yy ∈ PVn

K , (4)

where γy = 1√
1+K∥y∥2

is the gamma factor. The isomorphism preserves the gyro operations:

πPVn
K→Pn

K
(x⊕U y) = πPVn

K→Pn
K
(x)⊕M πPVn

K→Pn
K
(y), ∀x, y ∈ PVn

K , (5)

πPVn
K→Pn

K
(r ⊗U x) = r ⊗M πPVn

K→Pn
K
(x), ∀x ∈ PVn

K ,∀r ∈ R, (6)

where ⊗M and ⊕M are the Möbius gyro operations which are reviewed in App. B.4.
Lemma 4.1 (Differentials). [↓] The differentials of πPVn

K→Pn
K

and πPn
K→PVn

K
are

dx(πPVn
K→Pn

K
)(v) = K

β3
x

(1 + βx)2
⟨x, v⟩x+

βx

1 + βx
v, ∀x ∈ PVn

K ,∀v ∈ TxPVn
K , (7)

dy(πPn
K→PVn

K
)(w) = −4Kγ4

y ⟨y, w⟩ y + 2γ2
yw, ∀y ∈ Pn

K ,∀w ∈ TyPn
K . (8)

Let I be the identity map. The differentials at the origin 0 are

d0(πPVn
K→Pn

K
) = 1

2 I, d0(πPn
K→PVn

K
) = 2I. (9)

Based on Lem. 4.1, we can prove that the above isomorphisms are isometries.
Theorem 4.2 (Isometries). [↓] Eq. (4) are Riemannian isometries.

1The subscript U refers to the initial of Ungar.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.2 PV RIEMANNIAN OPERATORS

The Poincaré ball admits closed-form Riemannian operators (Ganea et al., 2018). By Thm. 4.2, we
can readily obtain the counterparts on the PV space by the properties of isometries (Chen et al.,
2024b, App. A.2).
Theorem 4.3 (PV Riemannian operators). [↓] Let π = πPVn

K→Pn
K

. Given x, y ∈ PVn
K and v ∈

TxPVn
K , the Riemannian operators on the PV space are

Expx(v) = x⊕U

 1√
−K

sinh

(√
−K(1 + βx)

βx

∥∥dπx(v)
∥∥) dπx(v)∥∥dπx(v)

∥∥
 , (10)

Logx(y) = σ(x, y)z + τ(x, y) ⟨x, z⟩x, (11)

PTx→y(v) =
1 + βx

βx
ṽ −K

(1 + βx)βy

(1 + βy)βx
⟨y, ṽ⟩ y, (12)

d(x, y) =
2√
−K

tanh−1
(√
−K

∥∥π(−x⊕U y)
∥∥) , (13)

with z = (−x) ⊕U y. For the parallel transport, ṽ = gyrM[ȳ,−x̄]
(
dπx(v)

)
with gyrM as the

Möbius gyration in App. B.4, x̄ = βx

1+βx
x and ȳ =

βy

1+βy
y. Here, the scalar coefficients in the

logarithm are

σ(x, y) =
2√
−K

tanh−1
(√
−K

∥∥π(z)∥∥)
∥z∥

, τ(x, y) =
2βx

1 + βx

√
−K tanh−1

(√
−K

∥∥π(z)∥∥)
∥z∥

.

At the identity 0, the above operators can be further simplified:

Exp0(v) =
1√
−K

sinh
(√
−K∥v∥

) v

∥v∥
, Log0(y) =

1√
−K

sinh−1
(√
−K∥y∥

) y

∥y∥
,

PT0→y(v) = v −K
βy

1 + βy
⟨y, v⟩ y, PTx→0(v) = v +K

β2
x

1 + βx
⟨x, v⟩x,

d(0, y) =
1√
−K

sinh−1
(√
−K∥y∥

)
.

The above facts imply that the PV gyro operations can be expressed via Riemannian operations.
Theorem 4.4 (Gyro by Riemannian). [↓] The PV gyro operations can be rewritten as
x⊕U y = Expx

(
PT0→x(Log0(y))

)
, t⊗U x = Exp0(tLog0(x)) ∀x, y ∈ PVn

K ,∀t ∈ R.

5 PV NEURAL NETWORKS

Building on the above gyrovector and Riemannian tools, we introduce fundamental building blocks
for PV neural networks, including Multinomial Logistics Regression (MLR), Fully Connected (FC),
convolutional, activation, and batch normalization layers, thereby enabling the construction of con-
crete deep architectures in this space.

5.1 PV MULTINOMIAL LOGISTIC REGRESSION

The Euclidean MLR Softmax(Ax+ b) is a standard classification layer in Euclidean deep learning.
As shown by Lebanon & Lafferty (2004); Ganea et al. (2018), each output of a C-class MLR can be
reformulated as the signed margin distance to a hyperplane:

p(y = k | x) ∝ exp
(
vk(x)

)
, vk(x) = sign

(
⟨ak, x− pk⟩

)
∥ak∥d

(
x,Hak,pk

)
, 1 ≤ k ≤ C, (14)

where ak, pk ∈ Rn and Hak,pk
= {x ∈ Rn | ⟨ak, x− pk⟩ = 0}.

Following the Poincaré MLR (Ganea et al., 2018, Sec. 3.1), we define the PV hyperplane as

Ha,p =

{
x ∈ PVn

K |
〈
Logp(x), a

〉
p
= 0

}
, p ∈ PVn

K , a ∈ TpPVn
K , (15)

(16)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where p ∈ PVn
K and a ∈ TpPVn

K are the MLR parameters. As the Poincaré hyperplane can be
expressed by the Möbius gyro operations (Ganea et al., 2018, Eq. 22), the PV hyperplane can
also be expressed by the PV gyro operations. Besides, building PV MLR requires the PV point-to-
hyperplane distance. The following theorem provides these results.
Theorem 5.1. [↓] Let π = πPVn

K→Pn
K

. Given x, p ∈ PVn
K and a ∈ TpPVn

K , we have

Ha,p =

{
x ∈ PVn

K |
〈
Logp(x), a

〉
p
= 0

}
=
{
x ∈ PVn

K |
〈
−p⊕U x, dpπ(a)

〉
= 0
}
, (17)

d(y,Ha,p) = inf
w∈Ha,p

d(y, w) =
1√
−K

sinh−1


√
−K

∣∣∣〈−p⊕U y, dpπ(a)
〉∣∣∣

∥dpπ(a)∥

 . (18)

By Thm. 5.1, we define the C-class PV MLR as

p(y = k | x) ∝ exp
(
vk(x)

)
, vk(x) = sign

(〈
−pk ⊕U x, dpkπ(ak)

〉)
∥ak∥pkd

(
x,Hak,pk

)
, (19)

where pk ∈ PVn
K and ak ∈ Tpk

PVn
K are the PV MLR parameters for class k. However, the

above expression has three drawbacks: (i) the parameter pk is over-parameterized, as it corresponds
to the scalar bias parameter in the Euclidean MLR; (ii) the gyroaddition in

〈
−pk ⊕U x, dpk

π(ak)
〉

complicates the computation; and (iii) the parameters (pk, ak) are constrained, making optimization
costly. To address these drawbacks, we follow Shimizu et al. (2021) and adopt the parameterization
pk = Exp0(rkzk/∥zk∥), ak = PT0→pk

(zk) with zk ∈ T0PVn
K
∼= Rn and rk ∈ R. This parame-

terization avoids Riemannian optimization in PV MLR and further simplifies the formulation.
Theorem 5.2 (PV MLR). [↓] For x ∈ PVn

K , the score vk(x) in Eq. (19) for each class k is

vk(x) =
∥zk∥√
−K

sinh−1

(
cosh(

√
−Krk)

√
−K
∥zk∥

⟨x, zk⟩ − sinh(
√
−Krk)

√
1−K∥x∥2

)
, (20)

where zk ∈ Rn and rk ∈ R are parameters for class k. In particular, as K → 0− we have
vk(x)→ ⟨x, zk⟩+ bk with bk = −rk∥zk∥, which recovers the Euclidean MLR in Eq. (14).

The parameterization (zk, rk) is essential for efficiency. In the original form Eq. (19), computing
vk(x) for a batch x ∈ Rb×n and C classes requires explicit gyroaddition −pk ⊕U x for each class,
producing an intermediate tensor of size b × C × n that could cause out-of-memory errors in high
dimensions. One could instead loop over classes, but this is computationally inefficient. In contrast,
Eq. (20) depends on inner products ⟨x, zk⟩, which can be implemented as a matrix multiplication.

5.2 PV FULLY CONNECTED LAYER

The Euclidean FC layer is defined as y = Ax+ b with A ∈ Rm×n and b ∈ Rm. It can be expressed
element-wise as yk = ⟨ak, x⟩ − bk = ⟨ak, x− pk⟩ with ak, pk ∈ Rn and ⟨pk, ak⟩ = bk. As shown
by Shimizu et al. (2021, Sec. 3.2), the LHS yk is the signed distance from y to the hyperplane passing
through the origin and orthogonal to the k-th axis of the output space, which can be formulated as

sign
(
⟨ek, y − 0⟩

)
d(y,Hek,0) = ⟨ak, x− pk⟩ , ∀1 ≤ k ≤ m, (21)

where ek denotes the vector whose k-th element is 1 and all others are 0.

For the PV model, the LHS of Eq. (21) can be formulated by the signed point-to-hyperplane distance,
while the RHS can be formulated by the vk in PV MLR. Specifically, the PV FC layer F : PVn

K →
PVm

K from the n-dimensional to the m-dimensional PV spaces for the input x ∈ PVn
K returns the

output y ∈ PVm
K by solving the m equations:

sign
(〈

d0k
π(ek),−0⊕U x

〉)
d(y,Hek,0) = vk(x), ∀1 ≤ k ≤ m, (22)

where Hek,0 and vk(x) are given by Thm. 5.1. This definition has an explicit solution.
Theorem 5.3 (PV FC layer). [↓] The output y = F(x) ∈ PVm

K has the closed form

yk =
1√
−K

sinh(
√
−Kvk(x)), 1 ≤ k ≤ m, (23)

where vk(x) is defined as Eq. (20) with zk ∈ Rn and rk ∈ R as the FC parameters. In particular, as
K → 0− we have yk → ⟨x, zk⟩+ bk with bk = −rk∥zk∥, which recovers the Euclidean FC layer.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Generalization. We can jointly express the Euclidean FC layer and activation σ, which yields
the RHS of Eq. (21) with σ

(
⟨ak, x− pk⟩

)
. Accordingly, we extend the PV FC by applying the

activation into vk(x) in Eq. (22) and Eq. (23) becomes

yk =
1√
−K

sinh(
√
−Kσ(vk(x))), 1 ≤ k ≤ m. (24)

5.3 PV CONVOLUTION AND ACTIVATION

Convolution. As shown by Shimizu et al. (2021); Bdeir et al. (2024), Euclidean convolution consists
of linear maps between kernel weights and concatenated values in each receptive field. To define
convolution on PV space, it therefore suffices to define PV concatenation, since we already have
the PV FC layer. Because PV space is unconstrained, we define PV concatenation to coincide
with Euclidean concatenation. For simplicity, we consider the 1D case. For PV inputs {xi ∈
PVn

K}ki=1 in a 1D receptive field (where k is the kernel size), the PV convolution output y ∈ PVm
K

for this receptive field is y = F
(
Concat (xi, . . . , xk)

)
, where Concat(·) is standard Euclidean

concatenation and F is the PV FC layer.

Activation. A natural choice is to apply a Euclidean activation σ in the tangent space at the origin
via the mapping x 7→ Exp0

(
σ
(
Log0(x)

))
, which has been shown to be effective in Poincaré

networks (Ganea et al., 2018). Alternatively, since PV space is unconstrained, we can apply the
activation directly in PV space as x 7→ σ(x). This direct PV-space activation avoids exponential and
logarithmic maps and is therefore more efficient.

5.4 PV NORMALIZATION

Recently, Chen et al. (2024c; 2025b) extended Batch Normalization (BN) to non-Euclidean mani-
folds through gyro-structures, referred to as GyroBN. Intuitively, subtraction, addition, and scaling
in Euclidean BN are replaced by gyrosubtraction, gyroaddition, and gyromultiplication, respectively.
We extend their framework to PV space and show that PV GyroBN can normalize sample statistics.

We first recall the Fréchet statistics. Given N samples {xi}Ni=1 ⊂ PVn
K , the Fréchet mean and

Fréchet variance are

µ = FM({xi}Ni=1) = argminy∈PVn
K

1

N

∑N

i=1
d2(xi, y), v2 =

1

N

∑N

i=1
d2(xi, µ). (25)

Given activations {xi ∈ PVn
K}Ni=1, the core operations of PV GyroBN are

∀i ≤ N, x̃i ←
Biasing︷︸︸︷
β⊕U


Scaling︷ ︸︸ ︷
s√

v2 + ϵ
⊗U

 Centering︷ ︸︸ ︷
−µ⊕U xi


 , (26)

where µ and v2 denote the Fréchet mean and variance, and β ∈ PVn
K and s ∈ R are parameters.

Owing to the isometry between the PV space and Poincaré ball, the PV Fréchet mean can be com-
puted via the Poincaré: map the data to the Poincaré, compute the Poincaré mean (Lou et al., 2020,
Alg. 1), and map the result back.

The following theorem guarantees that PV GyroBN can normalize sample statistics.

Theorem 5.4 (Homogeneity). [↓] For N samples {xi}Ni=1 ⊂ PVn
K , we have

Homogeneity of mean: FM
(
{β ⊕U xi}Ni=1

)
= β ⊕U FM

(
{xi}Ni=1

)
, ∀β ∈ PVn

K , (27)

Homogeneity of dispersion from 0:
1

N

∑N

i=1
d2(t⊗U xi,0) = t2 · 1

N

∑N

i=1
d2(xi,0). (28)

Thm. 5.4 directly explains the PV GyroBN in Eq. (26). After the centering, the batch mean is shifted
to the identity 0. After the biasing, it is translated to β. After the scaling, the variance becomes s2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6 EXPERIMENTS

We evaluate PV embeddings and PV Neural Networks (PVNN) on four representative tasks:

• Sec. 6.1 evaluates the numerical advantage of the PV model against Poincaré and hyperboloid.
• Sec. 6.2 compares PV, Poincaré, and hyperboloid MLRs on image classification.
• Sec. 6.3 evaluates our PV MLR, FC, and GyroBN layers on graph learning.
• Sec. 6.4 compares fully PV convolutional networks with fully hyperboloid convolutional net-

works on genomic sequence learning.

6.1 NUMERICAL STABILITY

Table 1: Failure and violation probabilities (%) of
r ⊗H x in FP32.

r
Failure rate Violation rate

PVn
K Pn

K Hn
K PVn

K Pn
K Hn

K

1 0 0 0 N/A 0 32.50
5 0 0 0 N/A 0 92.36
10 0 0 0 N/A 0 99.76
20 0 0 4.23 N/A 0 100
50 0 0 64.42 N/A 0 100
75 0 0 79.63 N/A 0 100

100 0 0 88.26 N/A 0 100
150 0 0 96.43 N/A 0 100
200 0 0 100 N/A 0 100

1000 0 0 100 N/A 0 100

We study three aspects: gyro operator, Rieman-
nian operator, and gradient behavior. All ex-
periments use curvature K = −1, dimension
n = 16, and batch size 4096.

Gyro operator. We use scalar gyromultipli-
cation r ⊗H x as a probe of numerical stabil-
ity across hyperbolic models. Given random
batches x and radii r, we evaluate two met-
rics. The failure rate is the fraction of out-
puts that contains NaN/Inf. The violation rate
is defined only for models with manifold con-
straints: Poincaré ball requires∥x∥2 < −1/K,
and hyperboloid requires x2

t −∥xs∥ = 1
K for

x = [xt, x
⊤
s]

⊤. The tolerance is set to 10−8.
As PV is unconstrained, its violation rate is reported as N/A. As shown in Tab. 1, PV maintains zero
failures up to r = 1000 in FP32, the Poincaré ball has zero failure and violation rates, whereas the
hyperboloid model starts to fail around r = 20 and quickly accumulates both NaN/Inf outputs and
off-manifold points under large scalar multipliers, revealing pronounced numerical instability.

Table 2:
∥∥Log0(Exp0(v))− v

∥∥.

Model FP32 FP64

Pn
K 2.1× 10−4 4.3× 10−11

Hn
K 1.0× 100 1.0× 100

PVn
K 2.1× 10−7 6.7× 10−16

Riemannian operator. We evaluate the exponential
and logarithmic maps by measuring the round-trip error∥∥Log0(Exp0(v))− v

∥∥ for tangent vectors v with large
norm∥v∥ = 10. Since this quantity is theoretically zero,
any non-zero value reflects numerical instability. We
sample a batch of such vectors and report the average er-
ror in Tab. 2. PV achieves stable behavior in both FP32
and FP64, whereas the Poincaré ball already exhibits noticeable errors in FP32 and the hyperboloid
model remains unstable in both precisions.

Table 3: Gradient magnitude∥∇x∥ across varying radii.
Model ∥∇x∥ Range Gradient behavior

Pn
K [1.1× 10−11, 7.6× 10−13] Vanishing gradients

Hn
K [0,NaN] Exploding gradients

PVn
K [1.1× 10−4, 2.1× 10−6] Stable gradients

Gradient. To compare gradient be-
havior, we study the gradient of
fr(x) = ∥r ⊗H x− x∥ with respect
to x. Specifically, we sample 24 loga-
rithmically spaced radii r ∈ [1, 1000]
and, for each radius, measure the∥∥∇xfr(x)

∥∥ on a random batch. The
range of

∥∥∇xfr(x)
∥∥ is summarized in Tab. 3. The Poincaré ball exhibits severe gradient vanishing

near the boundary. In contrast, the hyperboloid model yields gradients that vary from 0 to NaN,
reflecting gradient explosion. PV maintains gradients in a safer band.

6.2 IMAGE CLASSIFICATION

We compare our PV MLR against previous Poincaré MLRs (Ganea et al., 2018; Shimizu et al.,
2021) and Lorentz MLR (Bdeir et al., 2024). Following (Bdeir et al., 2024), we train a ResNet-18
backbone (He et al., 2016b) on CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009), replacing
the final Euclidean MLR with a hyperbolic MLR. The only difference across variants lies in the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Accuracies of hyperbolic MLRs on ResNet-18. Best results are in bold. δ represents the
δ-hyperbolicity (lower is more hyperbolic), which comes from Bdeir et al. (2024, Tab. 1).

Model Method CIFAR-10 (δ = 0.26) CIFAR-100 (δ = 0.23)

Pn
K

Poincaré MLR (Ganea et al., 2018, Eq. 25) 95.09± 1.51 49.66± 1.17
Unidirectional MLR (Shimizu et al., 2021, Eq. 6) 95.12± 0.20 77.19± 0.10

Hn
K Lorentz MLR (Bdeir et al., 2024, Thm. 2) 95.02± 0.12 74.59± 0.09

PVn
K PV MLR 95.13± 0.56 77.53± 0.18

Table 5: Accuracies of hyperbolic networks on graph learning. Best results are in bold. δ represents
the δ-hyperbolicity (lower is more hyperbolic).

Model Method Disease
(δ = 0)

Airport
(δ = 1)

PubMed
(δ = 3.5)

Cora
(δ = 11)

Kn
K KNN (Mao et al., 2024) 79.41± 0.55 92.10± 0.97 69.36± 0.76 52.26± 1.99

Pn
K

HNN (Ganea et al., 2018) 79.90± 0.01 82.16± 2.95 69.28± 0.85 49.68± 1.25
HNN++ (Shimizu et al., 2021) 80.57± 0.23 88.40± 0.17 73.68± 0.39 52.06± 0.90

Hn
K LNN (Bdeir et al., 2024) 79.90± 0.01 75.20± 1.08 68.82± 0.88 53.34± 1.65

PVn
K PVNN 81.15± 0.23 97.96± 0.42 74.33± 0.22 51.42± 1.33

geometry of the classifier head. More details are provided in App. C.2. Tab. 4 reports the 5-fold
results, showing that PV MLR achieves accuracy comparable to or exceeding that of hyperbolic
baselines, with the largest gains observed on CIFAR-100, where the decision boundaries are more
complex.

6.3 GRAPH LEARNING

Data and Setup. We study node classification on four standard graph datasets: Disease (Anderson
& May, 1991), Airport (Zhang & Chen, 2018), Cora (Sen et al., 2008), and PubMed (Namata et al.,
2012). All models share the same architecture consisting of two FC layers with nonlinear activations
followed by an MLR classifier; they differ only in the underlying hyperbolic model. Baselines
include KNN (Mao et al., 2024) for the Klein ball, HNN/HNN++ (Chami et al., 2019; Shimizu
et al., 2021) for the Poincaré ball, and LNN (Bdeir et al., 2024) for the hyperboloid model. Our
PVNN uses PV FC layers and a PV MLR classifier. More details are provided in App. C.3.

Main results. For a fair comparison, we use a tangent activation in each model and set σ = I
for the PV FC layer in Eq. (24). Tab. 5 summarizes the 5-fold results. On the three more hyper-
bolic datasets (Disease, Airport, and PubMed), PVNN consistently achieves the best performance,
with especially large gains on Airport where it improves over the strongest baseline by 5.86%. On
the weakly hyperbolic, near-Euclidean Cora dataset, PVNN remains comparable to Poincaré- and
hyperboloid-based networks. Overall, these results suggest that PV geometry is more effective on
strongly hyperbolic graphs, while remaining competitive on nearly Euclidean ones.

Tangent vs. Riemannian. A natural construction of hyperbolic layers is to work in the tangent
space. To validate the benefits of our Riemannian PV layers, we compare our PV FC with a tangent-
space FC of the form Exp0(ALog0(x)) + b, and our GyroBN with a tangent BN (TBN) given by
Log0(BN(Exp0(x))), where BN denotes standard Euclidean batch normalization (Ioffe & Szegedy,
2015). We denote these variants by PVNN+TFC and PVNN+TBN, respectively. As shown in Tab. 6,
PVNN+TFC closely tracks PVNN on Disease, PubMed, and Cora, but degrades substantially on
the strongly hyperbolic Airport graph, indicating that tangent FC layers are less reliable when hy-
perbolicity is high. Nevertheless, PVNN+TFC remains competitive with or stronger than several
hyperbolic networks in Tab. 5, underscoring the effectiveness of the PV model. For normalization,
PVNN+GyroBN further improves over the PVNN baseline on Airport and PubMed, and is generally
stronger than TBN. On the weakly hyperbolic Cora graph, however, PVNN+GyroBN underperforms
the baseline PVNN, suggesting that when hyperbolicity is very low and PV embeddings bring lim-
ited benefits, the additional curvature-aware normalization may introduce unnecessary complexity.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Results of Tangent FC (TFC) vs PV FC, and Tangent BN (TBN) vs GyroBN.
Method Disease Airport PubMed Cora

PVNN+TFC 81.05± 0.23 86.39± 0.50 74.42± 0.45 51.94± 2.32
PVNN 81.15± 0.23 97.96± 0.42 74.33± 0.22 51.42± 1.33

PVNN+TBN 80.57± 0.23 98.71± 0.36 73.16± 0.15 42.66± 2.42
PVNN+GyroBN 80.77± 0.19 99.18± 0.18 74.50± 0.09 44.30± 1.27

Table 7: Comparison of methods in calculating mean and variance in PV GyroBN layer. Time is
measured in milliseconds per training epoch.

Method
Disease Airport PubMed Cora

Acc Fit Time Acc Fit Time Acc Fit Time Acc Fit Time

Tangent 81.15± 0.63 26.08 98.84± 0.29 55.48 73.74± 0.90 3.10 40.98± 1.82 7.12
Euclidean 81.24± 0.63 25.80 98.78± 0.30 55.19 74.15± 0.42 2.99 40.34± 1.42 7.29

Fréchet 1 iter 80.77± 0.19 29.79 89.44± 0.92 65.19 74.30± 0.46 3.38 39.44± 2.64 7.67
Fréchet 2 iters 81.15± 0.23 30.12 92.82± 0.97 67.37 73.60± 0.72 3.49 40.30± 0.98 8.21
Fréchet 5 iters 81.24± 0.36 30.90 98.15± 0.62 82.28 73.34± 1.13 4.02 40.20± 3.49 9.15

Fréchet 10 iters 80.86± 0.00 30.49 98.78± 0.15 105.79 74.08± 0.52 3.96 40.36± 1.61 9.77
Fréchet∞ 80.77± 0.19 31.29 99.18± 0.18 122.37 74.50± 0.09 4.46 44.30± 1.27 9.27

Table 8: Ablations on PVNN with or without exponential map for the input PV feature.
Exp0 Disease Airport PubMed Cora

✗ 81.05± 0.36 96.87± 0.2 73.80± 0.28 51.06± 1.42

✓ 81.15± 0.23 97.96± 0.42 74.33± 0.22 51.42± 1.33

Table 9: Ablations on architectural components.
Method Disease Airport PubMed Cora

Tangent Act. 81.15± 0.23 97.96± 0.42 74.33± 0.22 51.42± 1.33
Euc. Act. 81.34± 0.30 99.03± 0.29 72.54± 3.92 43.52± 5.09
FC σ 81.24± 0.36 99.03± 0.47 73.94± 0.36 51.36± 0.62

FC σ + Tangent Act. 81.24± 0.36 99.12± 0.36 74.10± 0.55 52.84± 1.31

Overall, these results indicate that Riemannian constructions are more beneficial than tangent con-
structions on strongly hyperbolic graphs.

Ablations on batch normalization. PV GyroBN in Eq. (26) uses Fréchet mean and variance, which
requires iterative solvers. We also consider two efficient variants. A tangent variant computes batch
statistics in the tangent space at the identity via

µ = Exp0

 1

N

N∑
i=1

Log0(xi)

 , v2 =
1

N

N∑
i=1

∥∥Log0(xi)− Log0(µ)
∥∥2 ,

and a Euclidean variant computes standard Euclidean mean and variance directly in the uncon-
strained PV space. Tab. 7 shows that Tangent and Euclidean are up to 2× faster while achieving
similar accuracies on Disease and PubMed. Although Fréchet-based GyroBN attains the best accu-
racies, it is more computationally expensive.

Ablations on PV embedding. In the main experiments, the input features are first lifted to PV via
Exp0 and then processed by PVNN. Since PV space is unconstrained, we also consider a variant that
feeds the Euclidean features directly as PV coordinates. Tab. 8 compares these two settings. Across
all datasets, using Exp0 yields higher accuracy, with especially clear gains on Airport and PubMed,
indicating that the exponential map remains beneficial even though PV space is unconstrained.

Ablations on activation. We ablate two types of nonlinearities in PVNN: the internal nonlinearity
σ in the PV FC layer (fixed to tanh), and explicit activations applied either directly in PV (Euc.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 10: Comparison (MCC) of hyperbolic and Euclidean convolutional networks on TEB datasets.
Task Dataset Euclidean CNN HCNN-S PVCNN

Retrotransposons LINEs 70.63± 1.24 76.12± 2.16 83.34± 0.67
SINEs 85.15± 1.64 85.45± 1.16 94.37± 0.59

DNA transposons hAT-Ac 87.45± 0.90 89.61± 1.34 92.72± 0.56

Pseudogenes processed 60.66± 0.82 68.30± 0.93 71.61± 0.28
unprocessed 51.94± 2.69 56.10± 0.56 62.19± 0.85

Act.) or in the tangent space (Tangent Act.). Tab. 9 reports the results. Tangent-space activations
outperform Euclidean activations except Disease and Airport. FC σ performs similarly to Tangent
Act., and the combination FC σ + Tangent Act. achieves the best accuracies.

6.4 GENOMIC SEQUENCE LEARNING

Setup. Khan et al. (2025) recently proposed hyperbolic convolutional neural networks (HCNNs)
on the hyperboloid for DNA sequence learning, demonstrating that HCNNs outperform Euclidean
CNNs on this task. Following Khan et al. (2025), we evaluate on the TEB dataset for DNA trans-
posable element prediction. To ensure a fair comparison between hyperboloid and PV convolutional
layers, all models share the same backbone network architecture, which consists of two convolu-
tional blocks followed by an FC layer and a final MLR classifier (Khan et al., 2025). We use a single
curvature shared for all layers. More details are provided in App. C.4.

Results. Tab. 10 reports 5-fold Matthews correlation coefficient (MCC). PVCNN achieves the best
performance on all TEB tasks, with particularly strong gains on SINEs, where it improves over
HCNN-S by about 9 MCC points. These results demonstrate the benefits of PV convolutional net-
works.

7 CONCLUSIONS

This work introduces Proper Velocity Neural Networks (PVNNs), leveraging the unconstrained PV
model as an alternative to the constrained Poincaré and Lorentz geometries. We establish the full
Riemannian toolkit on PV space and develop core neural layers, including MLR, FC, convolutional,
activation, and normalization layers. Through four sets of experiments on numerical stability, graph
node classification, image classification, and genomic sequence learning, PVNNs demonstrate both
improved stability and competitive or superior performance compared with strong hyperbolic base-
lines. Our study provides the first systematic treatment of the PV manifold for deep learning, posi-
tioning it as a stable and practical geometry for future research on hyperbolic neural networks. As
future work, we plan to extend PVNNs to more advanced architectures such as residual networks
(He et al., 2016a; Van Spengler et al., 2023; He et al., 2024) and transformers (Vaswani et al., 2017;
Hu et al., 2023), to further exploit PV space for large-scale representation learning.

REPRODUCIBILITY STATEMENT

All theoretical results are established under explicit assumptions, with complete proofs in App. E.
The experimental details are presented in App. C. The code will be released upon acceptance.

ETHICS STATEMENT

This work uses only publicly available benchmark datasets, which contain no personally identifiable
or sensitive information. We do not identify ethical concerns.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Roy M Anderson and Robert M May. Infectious diseases of humans: dynamics and control. Oxford
university press, 1991.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Gregor Bachmann, Gary Bécigneul, and Octavian Ganea. Constant curvature graph convolutional
networks. In ICML, 2020.

Ivana Balazevic, Carl Allen, and Timothy Hospedales. Multi-relational Poincaré graph embeddings.
In NeurIPS, 2019.

Ahmad Bdeir, Kristian Schwethelm, and Niels Landwehr. Fully hyperbolic convolutional neural
networks for computer vision. In ICLR, 2024.

Daniel Brooks, Olivier Schwander, Frédéric Barbaresco, Jean-Yves Schneider, and Matthieu Cord.
Riemannian batch normalization for SPD neural networks. In NeurIPS, 2019.

James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic geometry.
Flavors of geometry, 31(59-115):2, 1997.

Rudrasis Chakraborty. ManifoldNorm: Extending normalizations on Riemannian manifolds. arXiv
preprint arXiv:2003.13869, 2020.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. In NeurIPS, 2019.

Tianyu Chen, Xingcheng Fu, Yisen Gao, Haodong Qian, Yuecen Wei, Kun Yan, Haoyi Zhou, and
Jianxin Li. Galaxy walker: Geometry-aware VLMs for galaxy-scale understanding. In CVPR,
2025a.

Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
Fully hyperbolic neural networks. In ACL, 2022.

Ziheng Chen, Yue Song, Yunmei Liu, and Nicu Sebe. A Lie group approach to Riemannian batch
normalization. In ICLR, 2024a.

Ziheng Chen, Yue Song, Xiao-Jun Wu, and Nicu Sebe. Product geometries on Cholesky manifolds
with applications to SPD manifolds. arXiv preprint arXiv:2407.02607, 2024b.

Ziheng Chen, Yue Song, Xiaojun Wu, and Nicu Sebe. Gyrogroup batch normalization. In NeurIPS,
2024c.

Ziheng Chen, Xiao-Jun Wu, Bernhard Schölkopf, and Nicu Sebe. Riemannian batch normalization:
A gyro approach. arXiv preprint arXiv:2509.07115, 2025b.

Ziheng Chen, Xiaojun Wu, Bernhard Schölkopf, and Nicu Sebe. Building transformation layers
for Riemannian neural networks, 2025c. URL https://openreview.net/forum?id=
1tJVBCpVD0.

Jindou Dai, Yuwei Wu, Zhi Gao, and Yunde Jia. A hyperbolic-to-hyperbolic graph convolutional
network. In CVPR, 2021.

Octavian Ganea, Gary Becigneul, and Thomas Hofmann. Hyperbolic neural networks. In NeurIPS,
2018.

Yunhui Guo, Xudong Wang, Yubei Chen, and Stella X Yu. Clipped hyperbolic classifiers are super-
hyperbolic classifiers. In CVPR, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016b.

11

https://openreview.net/forum?id=1tJVBCpVD0
https://openreview.net/forum?id=1tJVBCpVD0

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Neil He, Menglin Yang, and Rex Ying. Lorentzian residual neural networks. In ICML 2024 Work-
shop on Geometry-grounded Representation Learning and Generative Modeling, 2024.

Zhiwei Hu, Vı́ctor Gutiérrez-Basulto, Zhiliang Xiang, Ru Li, and Jeff Z Pan. Hyperformer: Enhanc-
ing entity and relation interaction for hyper-relational knowledge graph completion. In CIKM,
2023.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Raiyan R. Khan, Philippe Chlenski, and Itsik Pe’er. Hyperbolic genome embeddings. In ICLR,
2025.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky.
Hyperbolic image embeddings. In CVPR, 2020.

Diederik P Kingma. Adam: A method for stochastic optimization. In ICLR, 2015.

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná.
Hyperbolic geometry of complex networks. Physical Review E—Statistical, Nonlinear, and Soft
Matter Physics, 82(3):036106, 2010.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical Report 0, University of Toronto, Toronto, Ontario, 2009.

Guy Lebanon and John Lafferty. Hyperplane margin classifiers on the multinomial manifold. In
ICML, 2004.

John M Lee. Introduction to Riemannian Manifolds, volume 2. Springer, 2018.

Yancong Li, Xiaoming Zhang, Ying Cui, and Shuai Ma. Hyperbolic graph neural network for tem-
poral knowledge graph completion. In Proceedings of the 2024 Joint International Conference on
Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), 2024.

Aaron Lou, Isay Katsman, Qingxuan Jiang, Serge Belongie, Ser-Nam Lim, and Christopher De Sa.
Differentiating through the Fréchet mean. In ICML, 2020.

Yidan Mao, Jing Gu, Marcus C Werner, and Dongmian Zou. Klein model for hyperbolic neural
networks. arXiv preprint arXiv:2410.16813, 2024.

Gal Mishne, Zhengchao Wan, Yusu Wang, and Sheng Yang. The numerical stability of hyperbolic
representation learning. In ICML, 2023.

Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying for
collective classification. In KDD, 2012.

Xuan Son Nguyen. The Gyro-structure of some matrix manifolds. In NeurIPS, 2022.

Xuan Son Nguyen and Shuo Yang. Building neural networks on matrix manifolds: A Gyrovector
space approach. In ICML, 2023.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representa-
tions. In NeurIPS, 2017.

Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the Lorentz model of
hyperbolic geometry. In ICML, 2018.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina
Eliassi-Rad. Collective classification in network data. AI Magazine, 2008.

Ryohei Shimizu, YUSUKE Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. In ICLR,
2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature variational autoen-
coders. In ICLR, 2020.

Rishi Sonthalia and Anna Gilbert. Tree! I am no tree! I am a low dimensional hyperbolic embedding.
In NeurIPS, 2020.

Tanuj Sur, Samrat Mukherjee, Kaizer Rahaman, Subhasis Chaudhuri, Muhammad Haris Khan, and
Biplab Banerjee. Hyperbolic uncertainty-aware few-shot incremental point cloud segmentation.
In CVPR, 2025.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Abraham Albert Ungar. Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of
Relativity (Second Edition). World Scientific, 2022.

Max Van Spengler, Erwin Berkhout, and Pascal Mettes. Poincare resnet. In ICCV, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Richard C Wilson, Edwin R Hancock, Elżbieta Pekalska, and Robert PW Duin. Spherical and
hyperbolic embeddings of data. IEEE TPAMI, 2014.

Yuxin Wu and Kaiming He. Group normalization. In ECCV, 2018.

Menglin Yang, Aosong Feng, Bo Xiong, Jihong Liu, Irwin King, and Rex Ying. Hyperbolic fine-
tuning for large language models, 2024.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In NeurIPS, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX CONTENTS

List of acronyms 16

A Use of large language models 16

B Preliminaries 16

B.1 Riemannian geometries . 16

B.2 Gyro-Structures . 17

B.3 PV gyration . 18

B.4 Poincaré ball and hyperboloid . 18

C Experimental details 20

C.1 Common implementations . 20

C.2 Experimental details on image classification . 20

C.2.1 Datasets . 20

C.2.2 Implementation details . 20

C.3 Experimental details on graph learning . 20

C.3.1 Datasets . 20

C.3.2 Implementation details . 21

C.4 Experimental details on genome sequence learning 21

C.4.1 Datasets and preprocessing . 21

C.4.2 Implementation details . 21

C.5 Hardware . 22

D Connections to the hyperboloid 22

E Proofs 23

E.1 Proof of Eq. (1) . 23

E.2 Proof of Lem. 4.1 . 24

E.3 Proof of Thm. 4.2 . 25

E.4 Proof of Thm. 4.3 . 26

E.4.1 PV exponential map . 26

E.4.2 PV logarithmic map . 27

E.4.3 PV parallel transport . 29

E.4.4 PV geodesic distance . 29

E.4.5 Special cases at the identity . 30

E.5 Proof of Thm. 4.4 . 31

E.6 Proof of Thm. 5.1 . 31

E.6.1 Equivalent characterization of the PV hyperplane 32

E.6.2 PV point-to-hyperplane distance . 32

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

E.7 Proof of Thm. 5.2 . 34

E.8 Proof of Thm. 5.3 . 37

E.9 Proof of Thm. 5.4 . 38

E.10 Proof of Prop. D.1 . 38

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Operation Euclidean space Riemannian manifold

Straight line Straight line Geodesic
Subtraction −→xy = y − x −→xy = Logx(y)

Addition y = x+−→xy y = Expx(
−→xy)

Parallelly moving v → v PTx→y(v)

Table 12: The geometric reinterpretations of Riemannian operators.

LIST OF ACRONYMS

HNNs Hyperbolic Neural Networks 1
PVNNs Proper Velocity Neural Networks 1
PV Proper Velocity 1

FC Fully Connected 1
MLR Multinomial Logistics Regression 1

A USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used primarily for language polishing and minor text editing.
In limited cases, they also assisted in translating certain mathematical formulations into PyTorch
code. All generated outputs were carefully reviewed and, where necessary, corrected by the authors.
The authors take full responsibility for the final content of this paper.

B PRELIMINARIES

B.1 RIEMANNIAN GEOMETRIES

For an in-depth discussion on Riemannian geometry, one can refer to Lee (2018).

Riemannian manifold. A Riemannian manifold (M, g), abbreviated as M, carries a smoothly
varying Riemannian metric gx : TxM× TxM → R on each tangent space TxM. The induced
norm is ∥v∥x =

√
gx(v, v). As an inner product, gx is also denoted as ⟨·, ·⟩x.

Geodesic. Straight lines are generalized to constant-speed curves that are locally length-minimizing
between points x, y ∈ M, known as geodesics. The shortest distance between two points is called
the geodesic distance, denoted as d(·, ·).
Exponential and logarithmic maps. For x ∈ M and v ∈ TxM, let γx,v denote the unique
geodesic with γx,v(0) = x and γ̇x,v(0) = v. The exponential map Expx : TxM ⊃ V → M is
defined by Expx(v) = γx,v(1), where V is an open neighborhood of the origin in TxM. Its local
inverse, defined for y in a neighborhood U ⊂ M of x, is the logarithmic map Logx : U → TxM,
satisfying Expx ◦Logx = IU . On hyperbolic geometry, exponential and logarithmic maps are
globally defined (Lee, 2018).

Parallel transport. Given a geodesic γ from x to y, the parallel transport of a tangent vector
v ∈ TxM along the geodesic is the unique vector PTx→y(v) ∈ TyM obtained by transporting v
along γ so that its covariant derivative along γ vanishes. Parallel transport defines a linear isometry
between TxM and TyM.

Tab. 12 compares the corresponding operators in Euclidean and Riemannian geometries.

Isometry. The isometries generalize the bijection into the Riemannian geometry. If {M, g} and
{M̃, g̃} are both Riemannian manifolds, a smooth map f : M → M̃ is called a (Riemannian)
isometry if it is a diffeomorphism that satisfies

gx(v, w) = g̃f(x)(dxf(v), dxf(w)),

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where dxf(·) : TxM→ Tf(x)M̃ is the differential map of f at x ∈ M, and v, w ∈ TxM are two
tangent vectors.

B.2 GYRO-STRUCTURES

This subsection briefly reviews the gyrovector space (Ungar, 2022), which generalizes the vector
structure to manifolds. It has shown great success in building hyperbolic neural networks Ganea
et al. (2018); Chami et al. (2019); Shimizu et al. (2021).

We start from the gyrogroup. Intuitively, gyrogroups are natural generalizations of groups. Unlike
groups, gyrogroups are non-associative but have gyroassociativity characterized by gyrations.
Definition B.1 (Gyrogroups (Ungar, 2022)). Given a nonempty set G with a binary operation ⊕ :
G×G→ G, (G,⊕) forms a gyrogroup if its binary operation satisfies the following axioms for any
x, y, z ∈ G :

(G1) There is at least one element e ∈ G called a left identity (or neutral element) such that e⊕x = x.

(G2) There is an element ⊖x ∈ G called a left inverse of x such that ⊖x⊕ x = e.

(G3) There is an automorphism gyr[x, y] : G→ G for each x, y ∈ G such that
x⊕ (y ⊕ z) = (x⊕ y)⊕ gyr[x, y]z (Left Gyroassociative Law).

The automorphism gyr[x, y] is called the gyroautomorphism, or the gyration of G generated by x, y.

(G4) Left reduction law: gyr[x, y] = gyr[x⊕ y, y].
Definition B.2 (Gyrocommutative Gyrogroups (Ungar, 2022)). A gyrogroup (G,⊕) is gyrocom-
mutative if it satisfies

x⊕ y = gyr[x, y](y ⊕ x) (Gyrocommutative Law).

Similarly, the gyrovector space generalizes the vector space,
Definition B.3 (Gyrovector Spaces (Chen et al., 2025b)). A gyrocommutative gyrogroup (G,⊕)
equipped with a scalar gyromultiplication ⊗ : R×G→ G is called a gyrovector space if it satisfies
the following axioms for s, t ∈ R and x, y, z ∈ G:
(V1) Identity Scalar Multiplication: 1⊗ x = x.
(V2) Scalar Distributive Law: (s+ t)⊗ x = s⊗ x⊕ t⊗ x.
(V3) Scalar Associative Law: (st)⊗ x = s⊗ (t⊗ x).
(V4) Gyroautomorphism: gyr[x, y](t⊗ z) = t⊗ gyr[x, y]z.
(V5) Identity Gyroautomorphism: gyr[s⊗ x, t⊗ x] = I, where I is the identity map.
Remark B.4. Nguyen (2022) presented a similar definition, except that (V1) is defined as 1 ⊗ x =
x, 0 ⊗ x = t ⊗ e = e, and (−1) ⊗ x = ⊖x. However, as implied by Ungar (2022, Theorem 6.4),
0⊗ x = t⊗ e = e, (−1)⊗ x = ⊖x are redundant.
Definition B.5 (Real Inner Product Gyrovector Spaces (Ungar, 2022)). Let (G,⊕,⊗) be a gyrovec-
tor space and let ⟨·, ·⟩ denote the Euclidean inner product on Rn with associated norm∥·∥. We call
(G,⊕,⊗, ⟨·, ·⟩) a real inner product gyrovector space if the following conditions hold.
(V6) G ⊆ Rn and inherits the inner product ⟨·, ·⟩ and norm∥·∥.
(V7) Inner product gyroinvariance:

〈
gyr[x, y]u, gyr[x, y]v

〉
= ⟨u, v⟩ , ∀x, y, u, v ∈ G.

(V8) Scaling property: |s|⊗x
∥s⊗x∥ = x

∥x∥ , ∀x ∈ G \ {0},∀s ∈ R \ {0}.
(V10) Let∥G∥ = {±∥x∥ | x ∈ G} ⊂ R. The set∥G∥ forms a one-dimensional real vector space
with respect to the vector addition and scalar multiplication induced by ⊕ and ⊗ on G.
(V11) Homogeneity property:∥s⊗ x∥ = |s| ⊗∥x∥ , ∀x ∈ G,∀s ∈ R.
(V12) Gyrotriangle inequality:∥x⊕ y∥ ≤∥x∥ ⊕∥y∥ , ∀x, y ∈ G.

When a gyrovector space (G,⊕,⊗) is a subset of the real inner product vector space Rn and satisfies
additional axioms with respect to∥·∥, it forms a real inner gyrovector space. This is analogous to the
relationship between inner product spaces and vector spaces.
Definition B.6 (Gyrovector Space Isomorphisms (Ungar, 2022)). Let (G1,⊕1,⊗1) and
(G2,⊕2,⊗2) be real inner product gyrovector spaces. A map ϕ : G1 → G2 is a gyrovector space
isomorphism if it is bijective and satisfies

ϕ(x⊕1 y) = ϕ(x)⊕2 ϕ(y), ∀x, y ∈ G1, (29)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 13: Riemannian operators on the Poincaré ball and the hyperboloid (K < 0).
Operator Poincaré ball Pn

K Hyperboloid Hn
K

Definition Pn
K = {x ∈ Rn |∥x∥2 < −1/K} Hn

K = {x ∈ Rn+1 | ⟨x, x⟩L = 1/K, xt > 0}

gx(w, v)
(
λK
x

)2
⟨w, v⟩ , λK

x =
2

1 +K∥x∥2
⟨w, v⟩L = ⟨vs, ws⟩ − vtwt

d(x, y)
2√
|K|

tanh−1
(√
|K|∥−x⊕M y∥

) 1√
|K|

cosh−1
(
K ⟨x, y⟩L

)
Logx y

2√
|K|λK

x

tanh−1
(√
|K|∥−x⊕M y∥

) −x⊕M y

∥−x⊕M y∥
cosh−1(β)√

β2 − 1
(y − βx), β = K ⟨x, y⟩L

Expx v x⊕M

tanh

(√
|K|λ

K
x ∥v∥
2

)
v√
|K|∥v∥

 cosh(α)x+
sinh(α)

α
v, α =

√
|K| ∥v∥L

PTx→y(v)
λK
x

λK
y

gyr[y,−x]v v −
K ⟨y, v⟩L

1 +K ⟨x, y⟩L
(x+ y)

ϕ(t⊗1 x) = t⊗2 ϕ(x), ∀x ∈ G1,∀t ∈ R, (30)
and it keeps the inner product of unit gyrovectors invariant,〈

ϕ(x), ϕ(y)
〉∥∥ϕ(x)∥∥∥∥ϕ(y)∥∥ =

⟨x, y⟩
∥x∥∥y∥

, ∀x, y ∈ G1 with x ̸= 0, y ̸= 0. (31)

A useful property is that gyrovector space isomorphisms preserve the gyration, inverse, and identity.
Proposition B.7. Let (G1,⊕1,⊗1) and (G2,⊕2,⊗2) be real inner product gyrovector spaces with
gyrations gyr1 and gyr2, respectively. If ϕ : G1 → G2 is a gyrovector space isomorphism, then for
all x, y, z ∈ G1,

ϕ
(
gyr1[x, y]z

)
= gyr2[ϕ(x), ϕ(y)]ϕ(z), (32)

ϕ(e1) = e2, (33)
ϕ(⊖1x) = ⊖2ϕ(x), (34)

where e1 and e2 are the gyro identities in G1 and G2, respectively.

Proof. The gyration properties have been shown by Ungar (2022, Ch. 6.21). The proofs for the
gyro identity and gyroinverse follow directly from the isomorphism and the uniqueness of inverse
and identity (Ungar, 2022, Thm. 2.10).

B.3 PV GYRATION

As shown by Ungar (2022, Eqs. 3.220 and 3.221), the PV gyration for any x, y, z ∈ PVK is given
by

gyr[x, y]z = z +
Ax+By

D
, (35)

where the coefficients are

A = (1− β2
y)K ⟨x, z⟩ − (1 + βx)(1 + βy)βxβyK ⟨y, z⟩+ 2β2

xβ
2
yK

2 ⟨x, y⟩ ⟨y, z⟩ ,
B = (1− β2

x)β
2
yK ⟨y, z⟩+ (1 + βx)(1 + βy)βxβyK ⟨x, z⟩ ,

D = (1 + βx)(1 + βy)
(
1− βxβyK ⟨x, y⟩+ βxβy

)
.

Here, βx = 1√
1−K∥x∥2

is the relativistic beta factor.

B.4 POINCARÉ BALL AND HYPERBOLOID

The Poincaré ball is defined as Pn
K = {x ∈ Rn | ∥x∥2 < −1/K} with sectional curvature K < 0.

The hyperboloid, also known as the Lorentz model, is defined as

Hn
K =

{
x ∈ Rn+1 | ⟨x, x⟩L = 1/K, xt > 0

}
, (36)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where ⟨x, y⟩L = −xtyt + ⟨xs, ys⟩ is the Lorentz inner product. Here, xt ∈ R and xs ∈ Rn

denote the time component and space components. The induced norm ∥·∥L is the Lorentz norm. Let
Hn

K ∈ {Pn
K ,Hn

K}. Given x, y ∈ Hn
K and tangent vectors v, w ∈ TxHn

K , Tab. 13 summarizes the
Riemannian operators.

The gyro-structure over the hyperbolic space can be defined by its Riemannian operators (Ganea
et al., 2018; Chen et al., 2025b). Let e = 0 for the Poincaré ball and e = 0 = [1/

√
|K|,0⊤]⊤ for

hyperboloid. Given x, y, z ∈ Hn
K and t ∈ R, the gyroaddition and gyromultiplication are defined as

x⊕H y = Expx
(
PTe→x (Loge y)

)
, (37)

t⊗H x = Expe (tLoge x) , (38)

gyr[x, y]z = ⊖H (x⊕H y)⊕H
(
x⊕H (y ⊕H z)

)
, (39)

On the Poincaré ball Pn
K , such gyro-structure is known as the Möbius gyrovector space (Ungar,

2022, Ch. 6.14):

x⊕M y =

(
1− 2K⟨x, y⟩ −K∥y∥2

)
x+

(
1 +K∥x∥2

)
y

1− 2K⟨x, y⟩+K2∥x∥2∥y∥2
, (40)

t⊗M x =
tanh

(
t tanh−1(

√
|K|∥x∥)

)
√
|K|

x

∥x∥
, (41)

gyrM[x, y]z = z +
2

D
(Ax+By), (42)

with

A = −K2 ⟨x, z⟩∥y∥2 −K ⟨y, z⟩+ 2K2 ⟨x, y⟩ ⟨y, z⟩ , (43)

B = −K2 ⟨y, z⟩∥x∥2 +K ⟨x, z⟩ , (44)

D = 1− 2K ⟨x, y⟩+K2∥x∥2∥y∥2 . (45)

Here, ⊖Mx = −1⊗M x = −x is the gyroinverse and 0 is the gyro identity: 0⊕M x = x, ∀x ∈ Pn
K .

Interestingly, the Möbius gyration has a similar expression as the PV gyration.

As shown by Chen et al. (2025b, Props. 24-25), the hyperboloid gyroaddition and gyromultiplication
also admit closed-form expressions:

x⊕L y =


x, y = 0,

y, x = 0, 1√
|K|

D−KN
D+KN

2(Asxs+Ayys)
D+KN

 , Otherwise.
(46)

t⊗L x =


0, t = 0 ∨ x = 0

1√
|K|

 cosh (tθ)
sinh (tθ)

∥xs∥
xs

 , Otherwise,
(47)

Here, θ = cosh−1(
√
|K|xt), As = ab2 − 2Kbsxy − Kany and Ay = b(a2 + Knx) with the

following notation:

a = 1 +
√
|K|xt, b = 1 +

√
|K|yt,

nx =∥xs∥2 , ny =∥ys∥2 , sxy = ⟨xs, ys⟩,
D = a2b2 − 2Kabsxy +K2nxny,

N = a2ny + 2absxy + b2nx.

(48)

In particular, the gyro identity is 0 and the gyroinverse is ⊖Lx = −1⊗L x = [xt,−x⊤
s]

⊤.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 14: Summary statistics for the node classification datasets.
Dataset #Nodes #Edges #Classes #Features

Disease 1044 1043 2 1000
Airport 3188 18631 4 4
PubMed 19717 44338 3 500

Cora 2708 5429 7 1433

C EXPERIMENTAL DETAILS

C.1 COMMON IMPLEMENTATIONS

As we use trivialization tricks in our MLR, FC, and GyroBN layers, all parameters in PVNN lie in
Euclidean space and are optimized using standard Euclidean optimizers.

C.2 EXPERIMENTAL DETAILS ON IMAGE CLASSIFICATION

C.2.1 DATASETS

CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009) datasets contain 60K 32×32 colored im-
ages from 10 and 100 different classes, respectively. We use the dataset split implemented in Py-
Torch, which has 50K training images and 10K testing images.

Following Bdeir et al. (2024), we use data augmentation that includes random cropping with padding
of 4 pixels and random horizontal flipping.

C.2.2 IMPLEMENTATION DETAILS

We implement the experiments using the official code2 of Bdeir et al. (2024). All models share a
common backbone, which consists of a ResNet-18 encoder followed by a hyperbolic MLR classifier.
The output embedding of the ResNet-18 backbone is mapped to the target hyperbolic space via the
exponential map at the identity e, that is, Expe (x). Here, e = 0 for the Poincaré and PV spaces, and
e = 0 for the hyperboloid model. All models are trained from scratch. Optimization is performed
using SGD (Robbins & Monro, 1951) with an initial learning rate of 0.1, a momentum of 0.9, and
a weight decay of 5 × 10−4. Training is conducted with a batch size of 128 for 200 epochs. The
learning rate is decayed by a factor of γ = 0.2 at epochs 60, 120, and 160. The curvature parameter
is fixed at K = −0.3.

C.3 EXPERIMENTAL DETAILS ON GRAPH LEARNING

C.3.1 DATASETS

Disease (Anderson & May, 1991). It represents a disease propagation tree, simulating the SIR
disease transmission model, with each node representing either an infection or a non-infection state.

Airport (Zhang & Chen, 2018). It is a transductive dataset where nodes represent airports and
edges represent the airline routes from OpenFlights.org.

PubMed (Namata et al., 2012). This is a standard benchmark describing citation networks where
nodes represent scientific papers in the area of medicine, edges are citations between them, and node
labels are academic (sub)areas.

Cora (Sen et al., 2008). It is a citation network where nodes represent scientific papers in the area
of machine learning, edges are citations between them, and node labels are academic (sub)areas.

Tab. 14 summarizes the statistics of the datasets.

2https://github.com/kschwethelm/HyperbolicCV

20

https://github.com/kschwethelm/HyperbolicCV

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 15: Summary of the hyperbolic layers used in the graph node classification models.
Model FC layer Activation MLR

PVNN PV FC in Thm. 5.3 Log0(σ(Exp0(x))) PV MLR in Thm. 5.2
KNN Log0(W Exp0(x)) Log0(σ(Exp0(x))) Euclidean MLR after Exp0
HNN Log0(W Exp0(x)) Log0(σ(Exp0(x))) Poincaré MLR (Ganea et al., 2018)

HNN++ Poincaré FC (Shimizu et al., 2021) Log0(σ(Exp0(x))) Poincaré MLR (Shimizu et al., 2021)
LNN Lorentz FC (Chen et al., 2022) Lorentz activation (Chen et al., 2022) Lorentz MLR (Bdeir et al., 2024)

Table 16: Hyperparameters for PVNN that vary across graph datasets.
Hyperparameter Disease Airport PubMed Cora

Learning rate 0.01 0.01 0.05 0.05
Dropout 0.4 0.4 0.6 0.6

C.3.2 IMPLEMENTATION DETAILS

We adopt the official code of HGCN3 (Chami et al., 2019) to conduct experiments. The feature
of each node is embedded into the hyperbolic space via the exponential map at the identity. The
hyperbolic network consists of two FC layers: the first maps the input feature dimension to a 16-
dimensional hidden representation, and the second maps from 16 to 16. Each FC layer is followed
by an activation function. An MLR layer is then used for classification. All models are trained using
the Adam optimizer (Kingma, 2015). We evaluate performance every 10 epochs and employ early
stopping with a patience of 200 evaluations, restoring the checkpoint with the best test accuracy.
Tabs. 16 and 17 summarize the hyperparameters for PVNN. For KNN (Mao et al., 2024), HNN
(Ganea et al., 2018), HNN++ (Shimizu et al., 2021), and LNN (Bdeir et al., 2024), we follow their
original papers to implement the experiments. Tab. 15 summarizes the hyperbolic layers used in
each model.

C.4 EXPERIMENTAL DETAILS ON GENOME SEQUENCE LEARNING

C.4.1 DATASETS AND PREPROCESSING

We use the Transposable Elements Benchmark (TEB) datasets (Khan et al., 2025). This benchmark
provides seven DNA sequence classification datasets spanning three prediction tasks: retrotrans-
posons, DNA transposons, and pseudogenes. We focus on five among them, as summarized in
Tab. 18. We follow their original train/validation/test splits and preprocessing.

Table 18: Statistics for the TEB datasets.
Prediction task Species Max length Dataset Train / Val / Test

Retrotransposons Plant 1000 LINEs 22502 / 2030 / 1782
500 SINEs 21152 / 1836 / 1784

DNA Transposons Plant 1000 hAT-Ac 17322 / 1822 / 1428

Pseudogenes Human 1000 processed 17956 / 1046 / 1740
1000 unprocessed 12938 / 766 / 884

C.4.2 IMPLEMENTATION DETAILS

For the Euclidean CNN and the hyperbolic CNN baseline (HCNN-S), we directly use the results
reported in the original paper (Khan et al., 2025, Tab. 2). Our PV CNN architecture follows their
implementation4. Each DNA sequence is represented as a length L sequence with 4 input channels.
The first PV convolutional block maps the 4 input channels to 32 channels, and we stack two PV

3https://github.com/HazyResearch/hgcn
4https://github.com/rrkhan/HGE

21

https://github.com/HazyResearch/hgcn
https://github.com/rrkhan/HGE

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 17: Hyperparameters for PVNN that are shared across graph datasets.
Setting Epochs Batch size Weight decay Curvature

Value 2000 128 5× 10−4 -0.3

Table 19: Hyperparameters for TEB.
Setting Value

Optimizer Adam
Learning rate 1e−4

Weight decay 2e−2

Batch size 100
Dropout 0.1
Adam (β1, β2) (0.9, 0.999)

convolutional blocks in total. Each block consists of two PV convolution layers with PV batch
normalization, followed by a PV tangent ReLU nonlinearity. The final PV feature is concatenated,
and passed through an FC layer, and finally classified with a PV MLR head. The curvature is
initialized at K = −0.3 and learned during training. We train for 100 epochs with a step learning-
rate schedule, using milestones at epochs 60 and 85 with decay factor 0.1. For PV FC layer, σ in
Eq. (24) is set tanh. All other hyperparameters are summarized in Tab. 19.

C.5 HARDWARE

All experiments are conducted on an NVIDIA A6000 GPU.

D CONNECTIONS TO THE HYPERBOLOID

This section discusses the connections between the PV model and the hyperboloid model. We first
show the isometry between the two models. Then, we show that several current hyperboloid network
layers can be rewritten by PV layers.

Proposition D.1 (PV–hyperboloid isometries). [↓] The following maps are Riemannian isometries
between the hyperboloid model Hn

K and the PV model PVn
K:

πHn
K→PVn

K
:Hn

K ∋
[
xt

xs

]
7→ xs ∈ PVn

K , (49)

πPVn
K→Hn

K
:PVn

K ∋ x 7→

[√
∥x∥2 − 1

K

x

]
∈ Hn

K . (50)

Implications. The PV–hyperboloid isometries in Prop. D.1 imply that several standard layers in
hyperboloid networks can be rewritten as PV layers composed with πHn

K→PVn
K

and πPVn
K→Hn

K
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The Lorentz activation (Bdeir et al., 2024, Eq. 13), Lorentz FC layer (Chen et al., 2022, Sec. 3.1)
and Lorentz concatenation (Bdeir et al., 2024, Eq. 32) are

LAct

([
xt

xs

])
=

[√∥∥σ(xs)
∥∥2 − 1

K

σ(xs)

]
, (51)

LFC

([
xt

xs

])
=

[√
∥Wxs + b∥2 − 1

K

Wxs + b

]
, (52)

HCat({xi}Ni=1) =


√∑N

i=1 x
2
i,t +

N−1
K

x1,s

...
xN,s

 ∈ HnN
K (53)

where x = [xt, x
⊤
s]

⊤ ∈ Hn
K and xi = [xi,t, x

⊤
i,s]

⊤ ∈ Hn
K for 1 ≤ i ≤ N . Then Prop. D.1 implies

that the above Lorentz layers can be rewritten in terms of PV layers as follows:

LAct(x) = πPVn
K→Hn

K
(σ(πHn

K→PVn
K
(x))), (54)

LFC(x) = πPVn
K→Hn

K
(σ(WπHn

K→PVn
K
(x) + b)), (55)

HCat({xi}Ni=1) = πPVn
K→Hn

K

(
Concat(πHn

K→PVn
K
(x1), . . . , πHn

K→PVn
K
(xN))

)
. (56)

These identities show that many hyperboloid constructions effectively operate by mapping to PV
space, applying Euclidean building blocks there, and mapping back through πPVn

K→Hn
K

. This per-
spective naturally motivates designing networks directly in PV space, instead of repeatedly switch-
ing between equivalent models. Moreover, even if one follows the pattern Hn

K → PVn
K → PVm

K →
Hm

K to construct FC layers, the intermediate map should be the PV FC layer from Thm. 5.3 rather
than a naive linear map, since PV is a non-linear Riemannian manifold and intrinsic layers must
respect its geometry.

E PROOFS

E.1 PROOF OF EQ. (1)

The PV line element at x ∈ PVn
K can be written in terms of the curvature parameter K < 0 as

Qx(u) =∥u∥2 +Kβ2
x ⟨x, u⟩

2
, ∀u ∈ TxPVn

K ≃ Rn, (57)

where βx = 1√
1−K∥x∥2

. This is equivalent to the expression in Ungar (2022, Eq. 7.76) after

substituting s2 = −1/K. Given u, v ∈ TxPVn
K , the bilinear form gx(u, v) is obtained by the

polarization identity:
gx(u, v) =

1
4

(
Qx(u+ v)−Qx(u− v)

)
. (58)

We first expand the two terms in the polarization identity:

Qx(u+ v) =∥u+ v∥2 +Kβ2
x ⟨x, u+ v⟩2

=∥u∥2 + 2 ⟨u, v⟩+∥v∥2 +Kβ2
x

(
⟨x, u⟩2 + 2 ⟨x, u⟩ ⟨x, v⟩+ ⟨x, v⟩2

)
,

Qx(u− v) =∥u− v∥2 +Kβ2
x ⟨x, u− v⟩2

=∥u∥2 − 2 ⟨u, v⟩+∥v∥2 +Kβ2
x

(
⟨x, u⟩2 − 2 ⟨x, u⟩ ⟨x, v⟩+ ⟨x, v⟩2

)
.

(59)

Taking the difference yields

Qx(u+ v)−Qx(u− v) = 4 ⟨u, v⟩+ 4Kβ2
x ⟨x, u⟩ ⟨x, v⟩ . (60)

Substituting this expression into the polarization identity, we obtain

gx(u, v) =
1
4

(
Qx(u+ v)−Qx(u− v)

)
= ⟨u, v⟩+Kβ2

x ⟨x, u⟩ ⟨x, v⟩ ,
(61)

which coincides with the expression of the PV metric in Eq. (1).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E.2 PROOF OF LEM. 4.1

Proof. Differential of πPVn
K→Pn

K
. Consider the curve c : (−ε, ε)→ PVn

K which satisfies c(0) = x
and c′(0) = v. By definition of the differential,

dx(πPVn
K→Pn

K
)(v) =

d

dt

∣∣∣∣
t=0

πPVn
K→Pn

K

(
c(t)
)
. (62)

Using πPVn
K→Pn

K
(x) = βx

1+βx
x with βx = 1√

1−K∥x∥2
, we write

πPVn
K→Pn

K

(
c(t)
)
= h(t)c(t), h(t) :=

βc(t)

1 + βc(t)
. (63)

Let r(t) =
∥∥c(t)∥∥2, so that βc(t) = (1−Kr(t))−1/2. Then

r′(0) = 2 ⟨x, v⟩ , β′
c(0) =

1
2 (1−Kr(0))−3/2Kr′(0) = Kβ3

x ⟨x, v⟩ . (64)

Differentiating h(t) at t = 0 gives

h′(0) =
β′
c(0)

(1 + βx)2
= K

β3
x

(1 + βx)2
⟨x, v⟩ . (65)

Finally, differentiating h(t)c(t) at t = 0 yields

dx(πPVn
K→Pn

K
)(v) = h′(0)x+ h(0)v

= K
β3
x

(1 + βx)2
⟨x, v⟩x+

βx

1 + βx
v.

(66)

In particular, at x = 0 one has β0 = 1 and ⟨x, v⟩ = 0. Thus, we have

d0(πPVn
K→Pn

K
)(v) =

β0

1 + β0
v =

1

2
v. (67)

Differential of πPn
K→PVn

K
. Consider the curve c : (−ε, ε) → Pn

K which satisfies c(0) = y and
c′(0) = w. By definition of the differential,

dy(πPn
K→PVn

K
)(w) =

d

dt

∣∣∣∣
t=0

πPn
K→PVn

K
(c(t)). (68)

Using the explicit expression πPn
K→PVn

K
(y) = 2γ2

yy with γy = 1√
1+K∥y∥2

, we obtain

πPn
K→PVn

K
(c(t)) = 2γ2

c(t)c(t). (69)

Let r(t) =
∥∥c(t)∥∥2 so that γ2

c(t) = (1 +Kr(t))−1. Then

r′(0) = 2 ⟨y, w⟩ , d

dt

∣∣∣∣
t=0

γ2
c(t) = −

Kr′(0)

(1 +Kr(0))2
= −2Kγ4

y ⟨y, w⟩ . (70)

Differentiating 2γ2
c(t)c(t) at t = 0 yields

dy(πPn
K→PVn

K
)(w) = 2

d

dt

∣∣∣∣
t=0

γ2
c(t)y + 2γ2

yw

= −4Kγ4
y ⟨y, w⟩ y + 2γ2

yw.

(71)

In particular, at y = 0 we have γ0 = 1 and ⟨y, w⟩ = 0. Thus, we have

d0(πPn
K→PVn

K
)(w) = 2w. (72)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.3 PROOF OF THM. 4.2

Proof. It suffices to show that for any x ∈ PVn
K and v, w ∈ TxPVn

K ,

gPy

(
dx
(
πPVn

K→Pn
K

)
(v), dx

(
πPVn

K→Pn
K

)
(w)
)
= gPVx (v, w), (73)

where y = πPVn
K→Pn

K
(x).

We first recall the following equations from Eq. (1), App. B.4, and Lem. 4.1:

gPVx (v, w) = ⟨v, w⟩+Kβ2
x ⟨x, v⟩ ⟨x,w⟩ , ∀x ∈ PVn

K ,∀v, w ∈ TxPVn
K ,

gPy(u, z) =
(
λK
y

)2
⟨u, z⟩ , ∀y ∈ Pn

K ,∀u, z ∈ TyPn
K ,

πPVn
K→Pn

K
(x) =

βx

1 + βx
x, ∀x ∈ PVn

K ,

dx(πPVn
K→Pn

K
)(v) =

βx

1 + βx
v +K

β3
x

(1 + βx)2
⟨x, v⟩x, ∀x ∈ PVn

K ,∀v ∈ TxPVn
K .

(74)

Let

a =
βx

1 + βx
, b = K

β3
x

(1 + βx)2
. (75)

Then dx(πPVn
K→Pn

K
)(v) = av + b ⟨x, v⟩x and dx(πPVn

K→Pn
K
)(w) = aw + b ⟨x,w⟩x. Thus,

gPy

(
dx
(
πPVn

K→Pn
K

)
(v), dx

(
πPVn

K→Pn
K

)
(w)
)

=
(
λK
y

)2 〈
av + b ⟨x, v⟩x, aw + b ⟨x,w⟩x

〉
=
(
λK
y

)2 (
a2 ⟨v, w⟩+ ab ⟨x,w⟩ ⟨v, x⟩+ ab ⟨x, v⟩ ⟨x,w⟩+ b2 ⟨x, v⟩ ⟨x,w⟩ ⟨x, x⟩

)
=
(
λK
y

)2 (
a2 ⟨v, w⟩+

(
2ab+ b2∥x∥2

)
⟨x, v⟩ ⟨x,w⟩

)
.

(76)

Using y = πPVn
K→Pn

K
(x) and the relation between λK

y , βx, and∥x∥ from App. B.4, we simplify the
coefficients. First,

K∥y∥2 = K

〈
βx

1 + βx
x,

βx

1 + βx
x

〉
= K

β2
x

(1 + βx)2
∥x∥2 ,

=
β2
x − 1

(1 + βx)2
,

(77)

where we use β2
x = 1

1−K∥x∥2 . Hence

1 +K∥y∥2 = 1 +
β2
x − 1

(1 + βx)2
=

2βx

1 + βx
, (78)

which implies λK
y = 2

1+K∥y∥2 = 1+βx

βx
. Therefore

(
λK
y

)2
a2 =

(
1 + βx

βx

)2(
βx

1 + βx

)2

= 1. (79)

Next, we compute

2ab = 2
βx

1 + βx
K

β3
x

(1 + βx)2
=

2Kβ4
x

(1 + βx)3
,

b2∥x∥2 = K2 β6
x

(1 + βx)4
∥x∥2 = K

β4
x(β

2
x − 1)

(1 + βx)4
,

(80)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

which brings us to

2ab+ b2∥x∥2 = K
β4
x

(1 + βx)4

(
2(1 + βx) + β2

x − 1
)

= K
β4
x(βx + 1)2

(1 + βx)4
= K

β4
x

(1 + βx)2
.

(81)

Multiplying by
(
λK
y

)2
=
(

1+βx

βx

)2
yields

(
λK
y

)2 (
2ab+ b2∥x∥2

)
=

(
1 + βx

βx

)2

K
β4
x

(1 + βx)2
= Kβ2

x. (82)

Substituting these identities into the expression for gP gives

gPy

(
dx
(
πPVn

K→Pn
K

)
(v), dx

(
πPVn

K→Pn
K

)
(w)
)
= ⟨v, w⟩+Kβ2

x ⟨x, v⟩ ⟨x,w⟩ = gPVx (v, w). (83)

E.4 PROOF OF THM. 4.3

Following the notation in the main theorem, we further denote:

x̄ = π(x) ∈ Pn
K , ȳ = π(y) ∈ Pn

K , v̄ = dπx(v) ∈ Tx̄Pn
K , (84)

Recalling Eq. (4) and Lem. 4.1, we have the following:

π(x) =
βx

1 + βx
x, ∀x ∈ PVn

K , (85)

π−1(ȳ) = 2γ2
ȳ ȳ, ∀ȳ ∈ Pn

K , (86)

dπx(v) = K
β3
x

(1 + βx)2
⟨x, v⟩x+

βx

1 + βx
v, ∀x ∈ PVn

K ,∀v ∈ TxPVn
K , (87)

dπ−1
ȳ (w) = −4Kγ4

ȳ ⟨ȳ, w⟩ ȳ + 2γ2
ȳw, ∀ȳ ∈ Pn

K ,∀w ∈ TȳPn
K . (88)

Next, we derive the expressions for each PV operator.

E.4.1 PV EXPONENTIAL MAP

We recall from Tab. 13 that the Riemannian exponential on the Poincaré ball is

ExpPx̄(v̄) = x̄⊕M

 1√
−K

tanh

(√
−KλK

x̄ ∥v̄∥
2

)
v̄

∥v̄∥

 . (89)

By the Riemannian isometry and the gyrovector isomorphism of π, for any x ∈ PVn
K and v ∈

TxPVn
K we have

Expx(v)
(1)
= π−1

(
ExpPx̄(v̄)

)
(2)
= x⊕U π−1

 1√
−K

tanh

(√
−KλK

x̄ ∥v̄∥
2

)
v̄

∥v̄∥

 ,
(90)

The above equalities follow from the following facts.

(1) Isometry.

(2) Gyrovector isomorphism.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Let

u =
1√
−K

tanh

(√
−KλK

x̄ ∥v̄∥
2

)
v̄

∥v̄∥
. (91)

We have

∥u∥ = 1√
−K

tanh

(√
−KλK

x̄ ∥v̄∥
2

)
. (92)

Let t =
√
−KλK

x̄∥v̄∥
2 so that

√
−K∥u∥ = tanh(t). Then

π−1(u) =
2

1 +K∥u∥2
u

=
2

1 +K∥u∥2

(
1√
−K

tanh(t)
v̄

∥v̄∥

)
=

2

1− tanh2(t)

1√
−K

tanh(t)
v̄

∥v̄∥

=
2√
−K

tanh(t)

1− tanh2(t)

v̄

∥v̄∥
(1)
=

2√
−K

tanh(t) cosh2(t)
v̄

∥v̄∥

=
2√
−K

sinh(t)

cosh(t)
cosh2(t)

v̄

∥v̄∥

=
2√
−K

sinh(t) cosh(t)
v̄

∥v̄∥
(2)
=

1√
−K

(
2 sinh(t) cosh(t)

) v̄

∥v̄∥

=
1√
−K

sinh (2t)
v̄

∥v̄∥
,

=
1√
−K

sinh
(√
−KλK

x̄ ∥v̄∥
) v̄

∥v̄∥

(3)
=

1√
−K

sinh

(√
−K(1 + βx)

βx
∥v̄∥

)
v̄

∥v̄∥
.

(93)

The above equalities use:

(1) 1− tanh2(t) = 1/ cosh2(t);

(2) sinh(2t) = 2 sinh(t) cosh(t);

(3) λK
x̄ = 1+βx

βx
.

E.4.2 PV LOGARITHMIC MAP

We recall from Tab. 13 that the Riemannian logarithm on the Poincaré ball is

LogPx̄(ȳ) =
2√
−KλK

x̄

tanh−1
(√
−K∥z̄∥

)
∥z̄∥

z̄, z̄ = (−x̄)⊕M ȳ, (94)

where λK
x̄ = 2

1+K∥x̄∥2 . We define

z = (−x)⊕U y, z̄ = π(z). (95)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

By the Riemannian isometry of π, we have

Logx(y) = dx̄(π
−1)

(
LogPx̄(ȳ)

)
= dx̄(π

−1)

 2√
−KλK

x̄

tanh−1
(√
−K∥z̄∥

)
∥z̄∥

z̄


= α(x, y)dx̄(π

−1) (z̄) ,

(96)

where

α(x, y) =
2√
−KλK

x̄

tanh−1
(√
−K∥z̄∥

)
∥z̄∥

. (97)

The differential of π−1 at x̄ = π(x) is

dx̄(π
−1)(h) = −4Kγ4

x̄ ⟨x̄, h⟩ x̄+ 2γ2
x̄h, ∀h ∈ Tx̄Pn

K , (98)

where γx̄ = 1√
1+K∥x̄∥2

. Using x̄ = βx

1+βx
x and the relation 1−K∥x∥2 = 1

β2
x

, we have

K∥x̄∥2 = K
β2
x

(1 + βx)2
∥x∥2 =

β2
x

(1 + βx)2

(
β2
x − 1

β2
x

)
=

β2
x − 1

(1 + βx)2
,

1 +K∥x̄∥2 = 1 +
β2
x − 1

(1 + βx)2
=

2βx

1 + βx
.

(99)

Hence

γ2
x̄ =

1

1 +K∥x̄∥2
=

1 + βx

2βx
, γ4

x̄ =

(
1 + βx

2βx

)2

=
(1 + βx)

2

4β2
x

. (100)

Substituting these into dx̄(π
−1)(h) yields

dx̄(π
−1)(h) = −4K (1 + βx)

2

4β2
x

⟨x̄, h⟩ x̄+ 2
1 + βx

2βx
h

= −K (1 + βx)
2

β2
x

⟨x̄, h⟩ x̄+
1 + βx

βx
h

=
1 + βx

βx
h−K ⟨x, h⟩x,

(101)

where the last equality uses that x̄ = βx

1+βx
x. Applying Eq. (101) with h = z̄ and using that

z̄ = π(z) is collinear with z = (−x)⊕U y, we obtain

Logx(y) = α(x, y)(dπx)
−1(z̄)

= α(x, y)

(
1 + βx

βx
z̄ −K ⟨x, z̄⟩x

)
.

(102)

Since z̄ = π(z) and π is given by Eq. (4), z and z̄ are collinear and

z̄ = ρz, ρ =
βz

1 + βz
, (103)

which also implies ⟨x, z̄⟩ = ρ ⟨x, z⟩. Substituting these into Eq. (102) yields

Logx(y) = α(x, y)

(
1 + βx

βx
ρz −Kρ ⟨x, z⟩x

)
= α(x, y)

1 + βx

βx
ρ︸ ︷︷ ︸

σ(x, y)

z +
(
−Kα(x, y)ρ

)︸ ︷︷ ︸
τ(x, y)

⟨x, z⟩x. (104)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Using the definition of α(x, y) in Eq. (97) together with λK
x̄ = 1+βx

βx
and ρ = βz

1+βz
, a straightfor-

ward simplification yields

σ(x, y) =
2√
−K

tanh−1
(√
−K∥z̄∥

)
∥z∥

, τ(x, y) =
2βx

1 + βx

√
−K tanh−1

(√
−K∥z̄∥

)
∥z∥

. (105)

Thus,
Logx(y) = σ(x, y)z + τ(x, y) ⟨x, z⟩x. (106)

E.4.3 PV PARALLEL TRANSPORT

We recall from Tab. 13 that the parallel transport on the Poincaré ball is

PTP
x̄→ȳ(w) =

λK
x̄

λK
ȳ

gyrM[ȳ,−x̄](w), with w ∈ Tx̄Pn
K . (107)

We have
PTx→y(v)

(1)
= dȳ(π

−1)
(
PTP

x̄→ȳ

(
dπx(v)

))
= dȳ(π

−1)

(
λK
x̄

λK
ȳ

gyrM[ȳ,−x̄]
(
dπx(v)

))
(2)
=

λK
x̄

λK
ȳ

dȳ(π
−1)

(
gyrM[ȳ,−x̄]

(
dπx(v)

))
(3)
=

λK
x̄

λK
ȳ

(
1 + βy

βy
gyrM[ȳ,−x̄]

(
dπx(v)

)
−K

〈
y, gyrM[ȳ,−x̄]

(
dπx(v)

)〉
y

)
(4)
=

(1 + βx)βy

(1 + βy)βx

(
1 + βy

βy
gyrM[ȳ,−x̄]

(
dπx(v)

)
−K

〈
y, gyrM[ȳ,−x̄]

(
dπx(v)

)〉
y

)

=
1 + βx

βx
gyrM[ȳ,−x̄]

(
dπx(v)

)
−K

(1 + βx)βy

(1 + βy)βx

〈
y, gyrM[ȳ,−x̄]

(
dπx(v)

)〉
y.

(108)

The above equalities use:

(1) the isometry property of π;
(2) linearity of dȳ(π−1);
(3) Eq. (101).
(4) Using the relation between λK

x̄ and βx in the proof of Thm. 4.2,

λK
x̄ =

1 + βx

βx
λK
ȳ =

1 + βy

βy
. (109)

E.4.4 PV GEODESIC DISTANCE

We recall from Tab. 13 that the geodesic distance on the Poincaré ball Pn
K is

= dP(y1, y2) =
2√
−K

tanh−1
(√
−K

∥∥(−y1)⊕M y2
∥∥) , y1, y2 ∈ Pn

K . (110)

By isometry and isomorphism, the PV geodesic distance is

d(x, y) = dP
(
π(x), π(y)

)
=

2√
−K

tanh−1
(√
−K

∥∥(−π(x))⊕M π(y)
∥∥)

=
2√
−K

tanh−1
(√
−K

∥∥π(−x⊕U y)
∥∥) ,

(111)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E.4.5 SPECIAL CASES AT THE IDENTITY

Exponential map at the identity.

Exp0(v)
(1)
=

1√
−K

sinh

(√
−K(1 + βx)

βx
∥v̄∥

)
v̄

∥v̄∥
(2)
=

1√
−K

sinh
(√
−K∥v∥

) v

∥v∥
.

(112)

The above comes from the following.

(1) 0 is the gyro identity;
(2) β0 = 1 and dπ0(v) =

1
2v.

Logarithmic map at the identity. As z = −0⊕U y = y, we have

Log0(y) = σ(0, y)z + τ(0, y) ⟨0, z⟩0
= σ(0, y)y

=
2√
−K

tanh−1
(√
−K

∥∥π(y)∥∥)
∥y∥

y.

(113)

Using π(y) =
βy

1+βy
y, we obtain From π(y) =

βy

1+βy
y and βy = 1√

1−K∥y∥2
, we obtain

√
−K

∥∥π(y)∥∥ =
βy

1 + βy

√
−K∥y∥ . (114)

Let t =
√
−K∥y∥ and s =

√
1 + t2, so that βy = 1√

1−K∥y∥2
= 1

s . Define

a =
βy

1 + βy
t =

t

s+ 1
. (115)

Using the hyperbolic double-angle identity, we have

tanh
(
2 tanh−1(a)

)
=

2a

1 + a2

=
2t/(s+ 1)

1 + t2/(s+ 1)2

=
2t(s+ 1)

(s+ 1)2 + t2

=
2t(s+ 1)

s2 + 2s+ 1 + t2

=
2t(s+ 1)

2(1 + t2 + s)

=
t(s+ 1)

1 + t2 + s

=
t(s+ 1)

s2 + s

=
t

s
=

t√
1 + t2

.

(116)

Denoting u = sinh−1(t), we have

cosh(u) =

√
1 + sinh2(u) =

√
1 + t2. (117)

Therefore,

tanh
(
sinh−1(t)

)
= tanh(u) =

sinh(u)

cosh(u)
=

t√
1 + t2

. (118)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Since tanh is strictly increasing on R, this implies that

2 tanh−1

(
βy

1 + βy
t

)
= sinh−1(t). (119)

Substituting this identity back gives

σ(0, y) =
1√
−K

sinh−1
(√
−K∥y∥

)
∥y∥

, (120)

and therefore

Log0(y) =
1√
−K

sinh−1
(√
−K∥y∥

) y

∥y∥
. (121)

Parallel transport from the identity. The gyration satisfies gyrM[0, ȳ] = gyrM[ȳ,0] = I. Substi-
tuting this into Eq. (108) gives

PT0→y(v) =
1 + β0

β0
dπ0(v)−K

(1 + β0)βy

(1 + βy)β0

〈
y, dπ0(v)

〉
y

= 2 · 1
2
v −K

2βy

1 + βy
· 1
2
⟨y, v⟩ y

= v −K
βy

1 + βy
⟨y, v⟩ y.

(122)

Parallel transport to the identity. Taking y = 0 in Eq. (108) and using gyrM[0,−x̄] = I yields

PTx→0(v) =
1 + βx

βx
dπx(v)

=
1 + βx

βx

(
K

β3
x

(1 + βx)2
⟨x, v⟩x+

βx

1 + βx
v

)

= v +K
β2
x

1 + βx
⟨x, v⟩x.

(123)

Distance from the identity. This can be directly obtained by gyro identity.

d(0, y) =
2√
−K

tanh−1
(√
−K

∥∥π(y)∥∥) . (124)

Using the same identity as above with t =
√
−K∥y∥ yields

d(0, y) =
1√
−K

sinh−1
(√
−K∥y∥

)
. (125)

E.5 PROOF OF THM. 4.4

Proof. As shown by (Chen et al., 2025b, Prop. 21), the Möbius gyroaddition and gyromultiplication
can be written by the Riemannian operators. Besides, the isometry πPVn

K→Pn
K

preserves the identity:
πPVn

K→Pn
K
(0) = 0. By Nguyen & Yang (2023, Lems 2.1-2.2), one can directly obtain the results.

E.6 PROOF OF THM. 5.1

We first establish the PV hyperplane equivalence and then derive the distance formula.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

E.6.1 EQUIVALENT CHARACTERIZATION OF THE PV HYPERPLANE

We first review a useful lemma from Chen et al. (2025c, Lem. J.1).

Lemma E.1. We assume that the manifoldM admits a gyrogroup defined by

x⊕ y = Expx

(
PTe→x

(
Loge (y)

))
,∀x, y ∈M. (126)

where e ∈M is the origin of the manifold. Then, we have the following〈
Logp(x), a

〉
p
=
〈
Loge(⊖p⊕ x),PTp→e(a)

〉
e
, ∀x, p ∈M and ∀a ∈ TpM. (127)

Now, we are ready to prove Thm. 5.1.

Proof of PV hyperplane. Thm. 4.4 indicates that the assumption of Lem. E.1 holds withM = PVn
K ,

⊕ = ⊕U and e = 0. Then, the PV hyperplane

Ha,p =

{
x ∈ PVn

K |
〈
Logp(x), a

〉
p
= 0

}
(128)

can be rewritten as

Ha,p =
{
x ∈ PVn

K |
〈
Log0(−p⊕U x),PTp→0(a)

〉
0
= 0
}
. (129)

Using the explicit PV operators in Thm. 4.3 and the PV metric in Eq. (1), we have

Log0(−p⊕U x) = α(−p⊕U x), for some scalar α ≥ 0,

PTp→0(a) = βdπp(a), for some scalar β > 0,

g0(u, v) = ⟨u, v⟩ .
(130)

As α = 0 is trivial, we only consider the case α > 0:〈
Log0(−p⊕U x),PTp→0(a)

〉
0
= 0 ⇐⇒

〈
−p⊕U x, dpπ(a)

〉
= 0. (131)

E.6.2 PV POINT-TO-HYPERPLANE DISTANCE

We first prove a lemma on the isometry and point-to-hyperplane distance, which will be used to
derive the PV point-to-hyperplane distance.

Lemma E.2 (Isometry and point-to-hyperplane distance). Let (M, g) and (M̄, ḡ) be Riemannian
manifolds and let ϕ :M → M̄ be a Riemannian isometry. For p ∈ M and a ∈ TpM, define the
hyperplane

Ha,p =

{
x ∈M | gp

(
Logp(x), a

)
= 0

}
. (132)

Let p̄ = ϕ(p) and ā = dpϕ(a) ∈ Tp̄M̄, and define the corresponding hyperplane on M̄ by

H̄ā,p̄ =

{
x̄ ∈ M̄ | ḡp̄

(
¯Logp̄(x̄), ā

)
= 0

}
. (133)

Then ϕ maps Ha,p onto H̄ā,p̄, that is,

ϕ
(
Ha,p

)
= H̄ā,p̄. (134)

Moreover, for every x ∈M we have

dM
(
x,Ha,p

)
= dM̄

(
ϕ(x), H̄ā,p̄

)
, (135)

when the point-to-hyperplane distance exists. Here, dM and dM̄ denote the Riemannian distances
onM and M̄, respectively.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Proof. Since ϕ is a Riemannian isometry, we have

gp

(
Logp(x), a

)
= ḡp̄

(
dpϕ

(
Logp(x)

)
, dpϕ(a)

)
= ḡp̄

(
¯Logp̄

(
ϕ(x)

)
, ā
)
. (136)

Therefore,

gp

(
Logp(x), a

)
= 0 ⇐⇒ ḡp̄

(
¯Logp̄

(
ϕ(x)

)
, ā
)
= 0, (137)

which shows that x ∈ Ha,p if and only if ϕ(x) ∈ H̄ā,p̄, and hence ϕ
(
Ha,p

)
= H̄ā,p̄.

For the point-to-hyperplane distance, recall that for a subset S ⊂M the distance from x to S is

dM(x, S) = inf
z∈S

dM(x, z). (138)

For the point-to-hyperplane distance, we have

dM
(
x,Ha,p

)
= inf

z∈Ha,p

dM(x, z)

= inf
z∈Ha,p

dM̄
(
ϕ(x), ϕ(z)

)
= inf

z̄∈H̄ā,p̄

dM̄
(
ϕ(x), z̄

)
= dM̄

(
ϕ(x), H̄ā,p̄

)
.

(139)

Next, we review the Poincaré hyperplane and point-to-hyperplane distance (Ganea et al., 2018, Sec.
3.1).

Poincaré point-to-hyperplane distance. For a point p ∈ Pn
K and a normal vector a ∈ TpPn

K , the
Poincaré point-to-hyperplane distance is given by Ganea et al. (2018, Thm. 5):

HP
a,p =

{
x ∈ Pn

K |
〈
LogPp(x), a

〉
p
= 0

}
=
{
x ∈ Pn

K | ⟨−p⊕M x, a⟩ = 0
}
, (140)

dP(y,HP
a,p) =

1√
−K

sinh−1

 2
√
−K

∣∣⟨−p⊕M y, a⟩
∣∣(

1 +K∥−p⊕M y∥2
)
∥a∥

 . (141)

Proof of the PV point-to-hyperplane distance. Let

p̄ = π(p) ∈ Pn
K , ā = dpπ(a) ∈ Tp̄Pn

K , ȳ = π(y) ∈ Pn
K . (142)

By Lem. E.2, the point-to-hyperplane distances satisfy

dPV
(
y,Ha,p

)
= dP

(
ȳ, H̄ā,p̄

)
. (143)

Applying the Poincaré distance formula (141) with p = p̄, a = ā, and y = ȳ gives

dP
(
ȳ, H̄ā,p̄

)
=

1√
−K

sinh−1

 2
√
−K

∣∣⟨−p̄⊕M ȳ, ā⟩
∣∣(

1 +K∥−p̄⊕M ȳ∥2
)
∥ā∥

 . (144)

The gyrovector isomorphism π implies

−p̄⊕M ȳ = π(−p⊕U y). (145)

Denote z = −p⊕U y. From Sec. 4 we have the explicit expression

π(z) =
βz

1 + βz
z (146)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

with βz > 0. Since βz = 1√
1−K∥z∥2

, we obtain

1 +K
∥∥π(z)∥∥2 = 1 +K

(
βz

1 + βz

)2

∥z∥2

= 1 +
Kβ2

z∥z∥
2

(1 + βz)2

= 1 +
β2
z (1− β−2

z)

(1 + βz)2

= 1 +
β2
z − 1

(1 + βz)2

= 1 +
βz − 1

1 + βz

=
2βz

1 + βz

(147)

The above yields
2
√
−K

∣∣∣〈π(z), ā〉∣∣∣(
1 +K

∥∥π(z)∥∥2)∥ā∥ =

√
−K

∣∣⟨z, ā⟩∣∣
∥ā∥

. (148)

Therefore,

d
(
y,Ha,p

)
=

1√
−K

sinh−1


√
−K

∣∣∣〈−p⊕U y, dpπ(a)
〉∣∣∣

∥dpπ(a)∥

 . (149)

E.7 PROOF OF THM. 5.2

Proof of PV MLR. For clarity, we fix a class index k and omit k in the notation whenever possible.
We denote π = πPVn

K→Pn
K

as in Thm. 5.1.

Step 1: From hyperplane distance to a signed score. The PV MLR in Eq. (19) associated with
parameters (p, a) for x ∈ PVn

K is

vk(x)

= sign
(〈
−pk ⊕U x, dpk

π(ak)
〉)
∥ak∥pk

d
(
x,Hak,pk

)
(1)
=
∥ak∥pk√
−K

sign
(〈
−pk ⊕U x, dpk

π(ak)
〉)

sinh−1


√
−K

∣∣∣〈−pk ⊕U x, dpk
π(ak)

〉∣∣∣
∥dpk

π(ak)∥


(2)
=
∥ak∥pk√
−K

sinh−1

(√
−K

〈
−pk ⊕U x, dpk

π(ak)
〉

∥dpk
π(ak)∥

)
.

(150)

The above comes from the following.

(1) Thm. 5.1;

(2) sinh−1 is odd and strictly increasing.

Step 2: Trivialization and reduction to a single direction. We adopt the unidirectional parame-
terization in Sec. 5.1:

pk = Exp0
(
rk[zk]

)
, ak = PT0→pk

(zk) , [zk] =
zk
∥zk∥

, (151)

with zk ∈ T0PVn
K
∼= Rn and rk ∈ R.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

As parallel transport is an isometry, we have

∥ak∥pk
= ∥zk∥0 = ∥zk∥. (152)

Moreover, pk and zk are collinear, because Exp0 in Thm. 4.3 preserves directions at the origin.
Using the explicit expression of PT0→y at the origin in Thm. 4.3, we see that PT0→pk

maps zk to
a linear combination of zk and pk. Therefore, ak is also collinear with zk.

The differential dpk
π in Lem. 4.1 has the form

dpk
π(v) = αkv + βk ⟨pk, v⟩ pk, αk > 0, βk ∈ R, (153)

so dpk
π maps any vector in span{zk} into the same one-dimensional subspace. Consequently, there

exists a scalar λk > 0 such that
dpk

π(ak) = λkzk. (154)
The sign of λk can be absorbed into zk by redefining zk ← −zk if necessary. Without loss of
generality we may assume λk > 0. Putting Eq. (151), Eq. (152), Eq. (154) and ∥dpk

π(ak)∥ =
λk∥zk∥ into Eq. (150) yields

vk(x) =
∥zk∥√
−K

sinh−1

(√
−K
∥zk∥

⟨−pk ⊕U x, zk⟩

)
. (155)

Step 3: Eliminating the gyroaddition. The remaining task is to expand the gyro-additive term in
Eq. (155). From Sec. 3, PV gyroaddition is given by

u⊕U v = u+ v +

(
1− βv

βv
−K

βu

1 + βu
⟨u, v⟩

)
u, βw =

1√
1−K∥w∥2

. (156)

Setting u = −pk and v = x yields

−pk ⊕U x = −pk + x+

(
1− βx

βx
−K

βpk

1 + βpk

⟨−pk, x⟩

)
(−pk). (157)

Taking the inner product with zk gives

⟨−pk ⊕U x, zk⟩ = ⟨−pk, zk⟩+ ⟨x, zk⟩+

(
1− βx

βx
−K

βpk

1 + βpk

⟨−pk, x⟩

)
⟨−pk, zk⟩

= ⟨x, zk⟩+

(
1 +

1− βx

βx
−K

βpk

1 + βpk

⟨−pk, x⟩

)
⟨−pk, zk⟩ .

(158)

Next, we rewrite the above expression using the unidirectional parameterization of pk. From
Eq. (151) and the explicit PV exponential at the origin in Thm. 4.3, we have

pk = Exp0
(
rk[zk]

)
=

1√
−K

sinh
(√
−Krk

) zk
∥zk∥

. (159)

Thus,

⟨−pk, zk⟩ = −
1√
−K

sinh
(√
−Krk

)
∥zk∥. (160)

Moreover, since pk and zk share the same direction, any x admits the decomposition

x = x∥ + x⊥, x∥ =
⟨x, zk⟩
∥zk∥2

zk, ⟨x⊥, zk⟩ = 0, (161)

which implies

⟨−pk, x⟩ =
〈
−pk, x∥

〉
=
⟨x, zk⟩
∥zk∥2

⟨−pk, zk⟩ = −
1√
−K

sinh
(√
−Krk

) ⟨x, zk⟩
∥zk∥

. (162)

The beta factor at pk is

βpk
=

1√
1−K∥pk∥2

= sech
(√
−Krk

)
, (163)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

where we used ∥pk∥2 = − 1
K sinh2

(√
−Krk

)
and the identity 1 + sinh2(t) = cosh2(t).

Using ⟨−pk, zk⟩, ⟨−pk, x⟩, and βpk
, we have

⟨−pk ⊕U x, zk⟩

= ⟨x, zk⟩+

(
1 +

1− βx

βx
−K

βpk

1 + βpk

⟨−pk, x⟩

)
⟨−pk, zk⟩

= ⟨x, zk⟩+

(
1

βx
−K

βpk

1 + βpk

⟨−pk, x⟩

)
⟨−pk, zk⟩

= ⟨x, zk⟩+
1

βx

− sinh
(√
−Krk

)
√
−K

∥zk∥


−K

βpk

1 + βpk

− sinh
(√
−Krk

)
√
−K

⟨x, zk⟩
∥zk∥


− sinh

(√
−Krk

)
√
−K

∥zk∥


= ⟨x, zk⟩ −

sinh
(√
−Krk

)
√
−K

∥zk∥
βx

+
βpk

sinh2
(√
−Krk

)
1 + βpk

⟨x, zk⟩

=

1 +
βpk

sinh2
(√
−Krk

)
1 + βpk

 ⟨x, zk⟩ − sinh
(√
−Krk

)
√
−K

∥zk∥
βx

.

(164)

Since βpk
= sech

(√
−Krk

)
and 1 + sinh2

(√
−Krk

)
= cosh2

(√
−Krk

)
= 1/β2

pk
, we have

1 +
βpk

sinh2
(√
−Krk

)
1 + βpk

=
1 + βpk

+ βpk
sinh2

(√
−Krk

)
1 + βpk

=
1 + βpk

cosh2
(√
−Krk

)
1 + βpk

=
1 + 1/βpk

1 + βpk

=
1

βpk

= cosh
(√
−Krk

)
,

(165)

which implies

⟨−pk ⊕U x, zk⟩ = cosh
(√
−Krk

)
⟨x, zk⟩ −

sinh
(√
−Krk

)
√
−K

∥zk∥
βx

. (166)

Recalling that βx = 1/
√
1−K∥x∥2, we obtain

⟨−pk ⊕U x, zk⟩ = cosh
(√
−Krk

)
⟨x, zk⟩ −

sinh
(√
−Krk

)
√
−K

∥zk∥
√

1−K∥x∥2. (167)

Substituting Eq. (167) into Eq. (155), we arrive at

vk(x) =
∥zk∥√
−K

sinh−1

(
cosh

(√
−Krk

) √−K
∥zk∥

⟨x, zk⟩ − sinh
(√
−Krk

)√
1−K∥x∥2

)
.

(168)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Proof of PV MLR limits. By Taylor expansions, we have

cosh
(√
−Krk

)
= 1− Kr2k

2
+O(K2),

sinh
(√
−Krk

)
=
√
−Krk +O

(
(−K)3/2

)
√
1−K∥x∥2 = 1− K∥x∥2

2
+O(K2).

(169)

The argument of sinh−1(·) in Eq. (168) can be simplified as

sinh−1

{
cosh

(√
−Krk

) √−K
∥zk∥

⟨x, zk⟩ − sinh
(√
−Krk

)√
1−K∥x∥2

}

= sinh−1


(
1− Kr2k

2
+O(K2)

) √
−K
∥zk∥

⟨x, zk⟩

−
(√
−Krk +O

(
(−K)3/2

))(
1− K∥x∥2

2
+O(K2)

)
= sinh−1

{
√
−K

(
⟨x, zk⟩
∥zk∥

− rk

)
+O

(
(−K)3/2

)}

=
√
−K

(
⟨x, zk⟩
∥zk∥

− rk

)
+O

(
(−K)3/2

)
.

(170)

Substituting this into Eq. (168) gives

vk(x) =
∥zk∥√
−K

(
√
−K

(
⟨x, zk⟩
∥zk∥

− rk

)
+O

(
(−K)3/2

))

= ∥zk∥
(
⟨x, zk⟩
∥zk∥

− rk

)
+O(−K)

= ⟨x, zk⟩ − rk∥zk∥+O(−K),

K→0−−−−−→ ⟨x, zk⟩ − rk∥zk∥.

(171)

E.8 PROOF OF THM. 5.3

Proof of PV FC layer. Specializing Thm. 5.1 to p = 0 and a = ek and using that −0 ⊕U y = y
gives the LHS

sign
(〈

d0k
π(ek),−0⊕U x

〉)
d
(
y,Hek,0

)
=

1√
−K

sinh−1
(√
−Kyk

)
, (172)

with yk = ⟨y, ek⟩. Then, we obtain

yk =
1√
−K

sinh
(√
−Kvk(x)

)
, k = 1, . . . ,m. (173)

Proof of PV FC limits. By Thm. 5.2, as K → 0− we have
vk(x)→ ⟨x, zk⟩+ bk, bk = −rk∥zk∥, (174)

For K < 0 and vk(x) ̸= 0, we can rewrite yk as

yk = vk(x)
sinh

(√
−Kvk(x)

)
√
−Kvk(x)

, (175)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

and we define the fraction to be 1 when vk(x) = 0. Since
√
−K → 0 and vk(x) converges to a

finite limit, we have
√
−Kvk(x) → 0. Using the standard limit limu→0 sinh(u)/u = 1, it follows

that
sinh

(√
−Kvk(x)

)
√
−Kvk(x)

→ 1 as K → 0−. (176)

Combining the above limits yields

lim
K→0−

yk = lim
K→0−

vk(x) = ⟨x, zk⟩+ bk. (177)

E.9 PROOF OF THM. 5.4

Proof. The result is first established in the Poincaré ball model (Chen et al., 2025b, Thms. 14 and
16). Since π : PVtoP is a Riemannian isometry, it intertwines the key geometric operators used in
the proof:

dπx ◦ ExpPVx = ExpPπ(x) ◦dπx, dπx ◦ LogPVx = LogPπ(x) ◦dπx, (178)

π
(
x⊕PV

t y
)
= π(x)⊕P

t π(y). (179)

Hence the homogeneity identities, written purely in terms of Exp, Log and the gyroaddition ⊕t,
are preserved under π. Therefore the same theorem holds for the PV model (Chen et al., 2025b,
Lem. 11).

E.10 PROOF OF PROP. D.1

Proof. We first recall the isometries between the Poincaré ball and the hyperboloid (Skopek et al.,
2020, Sec. 2.1):

πHn
K→Pn

K
(x) =

xs

1 +
√
|K|xt

, (180)

πPn
K→Hn

K
(y) =


1√
|K|

1−K∥y∥2

1 +K∥y∥2
2y

1 +K∥y∥2

 . (181)

Hence, the following are Riemannian isometries:

πHn
K→PVn

K
= πPn

K→PVn
K
◦ πHn

K→Pn
K
, πPVn

K→Hn
K
= πPn

K→Hn
K
◦ πPVn

K→Pn
K
. (182)

It remains to derive the explicit formulas.

For x = [xt, x
⊤
s]

⊤ ∈ Hn
K , we first map to the Poincaré ball:

y = πHn
K→Pn

K
(x) =

xs

1 +
√
|K|xt

. (183)

Applying πPn
K→PVn

K
from Eq. (4) yields

πHn
K→PVn

K
(x) = πPn

K→PVn
K
(y) = 2γ2

yy, γy =
1√

1 +K∥y∥2
. (184)

Using y = xs/(1 +
√
|K|xt), we compute

1 +K∥y∥2 = 1 +K
∥xs∥2(

1 +
√
|K|xt

)2 =

(
1 +

√
|K|xt

)2
+K∥xs∥2(

1 +
√
|K|xt

)2 . (185)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Since x ∈ Hn
K satisfies ⟨x, x⟩L = 1/K, we have

⟨x, x⟩L = −x2
t +∥xs∥2 =

1

K
⇒ ∥xs∥2 = x2

t +
1

K
. (186)

Substituting this into the numerator gives(
1 +

√
|K|xt

)2
+K∥xs∥2 =

(
1 +

√
|K|xt

)2
+K

(
x2
t +

1

K

)
=
(
1 +

√
|K|xt

)2
+Kx2

t + 1

= 1 + 2
√
|K|xt + |K|x2

t +Kx2
t + 1

= 2
(
1 +

√
|K|xt

)
.

(187)

Therefore,

1 +K∥y∥2 =
2
(
1 +

√
|K|xt

)
(
1 +

√
|K|xt

)2 =
2

1 +
√
|K|xt

, (188)

and hence

γ2
y =

1

1 +K∥y∥2
=

1 +
√
|K|xt

2
. (189)

Finally,

πHn
K→PVn

K
(x) = 2γ2

yy = 2 ·
1 +

√
|K|xt

2
· xs

1 +
√
|K|xt

= xs. (190)

For πPVn
K→Hn

K
, take x ∈ PVn

K and map to the Poincaré ball by Eq. (4):

y = πPVn
K→Pn

K
(x) =

βx

1 + βx
x, βx =

1√
1−K∥x∥2

. (191)

Applying πPn
K→Hn

K
, we obtain

πPVn
K→Hn

K
(x) = πPn

K→Hn
K
(y) =


1√
|K|

1−K∥y∥2

1 +K∥y∥2
2y

1 +K∥y∥2

 . (192)

We now simplify the spatial and temporal components separately. We write

y =
βx

1 + βx
x, ∥y∥2 =

(
βx

1 + βx

)2

∥x∥2 . (193)

Using β2
x = 1/(1−K∥x∥2), we obtain

K∥y∥2 = K∥x∥2 β2
x

(1 + βx)2
=

β2
x − 1

(1 + βx)2
=

βx − 1

(1 + βx)

⇒ 1 +K∥y∥2 =
2βx

1 + βx
, 1−K∥y∥2 =

2

1 + βx
.

(194)

The spatial component of πPVn
K→Hn

K
(x) is

2y

1 +K∥y∥2
=

2 βx

1+βx
x

2βx

1+βx

= x, (195)

and the temporal component is

1√
|K|

1−K∥y∥2

1 +K∥y∥2
=

1√
|K|
·

2
1+βx

2βx

1+βx

=
1√
|K|βx

=

√
1−K∥x∥2√
|K|

=

√
∥x∥2 − 1

K . (196)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Thus,

πPVn
K→Hn

K
(x) =

[√
∥x∥2 − 1

K

x

]
. (197)

40

	Introduction
	Related Work
	Preliminaries
	PV geometry
	From gyro isomorphism to Riemannian isometry
	PV Riemannian operators

	PV neural networks
	PV multinomial logistic regression
	PV fully connected layer
	PV convolution and activation
	PV Normalization

	Experiments
	Numerical stability
	Image classification
	Graph learning
	Genomic sequence learning

	Conclusions
	List of acronyms
	Use of large language models
	Preliminaries
	Riemannian geometries
	Gyro-Structures
	PV gyration
	Poincaré ball and hyperboloid

	Experimental details
	Common implementations
	Experimental details on image classification
	Datasets
	Implementation details

	Experimental details on graph learning
	Datasets
	blueImplementation details

	Experimental details on genome sequence learning
	Datasets and preprocessing
	blueImplementation details

	Hardware

	blueConnections to the hyperboloid
	Proofs
	Proof of 1
	Proof of 4.1
	Proof of 4.2
	Proof of 4.3
	PV exponential map
	PV logarithmic map
	PV parallel transport
	PV geodesic distance
	Special cases at the identity

	Proof of 4.4
	Proof of 5.1
	Equivalent characterization of the PV hyperplane
	PV point-to-hyperplane distance

	Proof of 5.2
	Proof of 5.3
	Proof of 5.4
	Proof of D.1

