Multimodal Schema-Agnostic Learning on Relational

Databases
Joeseph Meyer* Divyansha Lachi*
SAP University of Pennsylvania
Palo Alto, CA, USA Philadelphia, PA, USA
joseph.meyer@sap.com div1i1Qupenn.edu
Mohammadi Reza Roshan Reddy Upendra
SAP SAP
Seattle, WA, USA Palo Alto, CA, USA
reza.mohammadi@sap.com roshan.reddy.upendra@sap.com
Eva L. Dyer Mark Li Tom Palczewski
University of Pennsylvania SAP SAP
Philadelphia, PA, USA Seattle, WA, USA Palo Alto, CA, USA
eva.dyerQupenn.edu mark.1i01@sap.com tom.palczewski@sap.com
Abstract

Relational multi-table data is common in domains such as e-commerce, healthcare,
and scientific research, and can be naturally represented as heterogeneous temporal
graphs with multi-modal node attributes. Existing graph neural networks (GNNs)
rely on schema-specific feature encoders, requiring separate modules for each node
type and feature column, which hinders scalability and parameter sharing. We
introduce RELATE (Relational Encoder for Latent Aggregation of Typed Entities),
a schema-agnostic, plug-and-play feature encoder that can be used with any general
purpose GNN. RELATE employs shared modality-specific encoders for categorical,
numerical, textual, and temporal attributes, followed by a Perceiver-style cross-
attention module that aggregates features into a fixed-size, permutation-invariant
node representation. We evaluate RELATE on ReLGNN and HGT in the RelBench
benchmark, where it achieves performance within 3% of schema-specific encoders
while reducing parameter counts by up to 5x. This design supports varying schemas
and enables multi-dataset pretraining for general-purpose GNNSs, paving the way
toward foundation models for relational data.

1 Introduction

Learning from relational multi-table data is a core challenge in domains such as e-commerce, health-
care, finance, and scientific discovery [1]]. This data can be naturally represented as heterogeneous
temporal graphs, where nodes and edges have different types and attributes span multiple modali-
ties—including text, time-series, and numerical values. Effectively modeling such relational data
requires handling diverse schemas and capturing high-dimensional, multimodal inputs associated
with each node type.

Recent graph neural networks (GNNs) such as HGT [4] and RelGNN [10] have shown promising
results on individual relational datasets. However, these models require separate encoders for each
node type and feature column, leading to architectures that (i) scale poorly with the number of

Al for Tabular Data Workshop
39th Conference on Neural Information Processing Systems (EurIPS 2025).

columns, (ii) incur high memory and parameter costs, and (iii) inhibit generalization to new datasets
with unseen schemas. As a result, these models are not well-suited for foundation model training,
where a single model must handle diverse and non-aligned feature spaces across datasets. To address
these challenges, we introduce the RELATE (Relational Encoder for Latent Aggregation of Typed
Entities), a schema-agnostic feature encoder designed for relational data with multimodal node
features. RELATE uses modality-specific modules shared across all columns of the same type
(e.g., categorical, numerical, textual), followed by a Perceiver-style cross-attention layer [3]] that
compresses the set of column embeddings into a compact, fixed-size representation per node. This
design is permutation-invariant to column order, accommodates varying schemas across node types,
and scales to datasets with hundreds of features by attending from a small number of learnable latent
queries.

We evaluate RELATE on a wide range of classification and regression tasks from the RelBench
benchmark [[10], comparing against schema-specific encoders used in prior relational frameworks.
RELATE achieves performance on par (within 3%) with task-specific encoders on while reducing
parameter count in datasets with a large number of features. Its schema-agnostic integration into
existing architectures and paves the way toward general-purpose relational foundation models.

Our contributions are as follows: We propose RELATE, a schema-agnostic encoder for heteroge-
neous temporal graphs that replaces per-column and per-type encoders with shared modality-specific
modules, and uses a Perceiver-style cross-attention bottleneck to summarize variable-length column
embeddings into fixed-size node representations. RELATE generates fixed-size node embeddings that
integrate seamlessly with existing GNN architectures (e.g., HGT, RelGNN), enabling plug-and-play
use. We show that RELATE achieves strong performance across diverse tasks in the RelBench
benchmark—within 3% of task-specific encoders for classification—while reducing parameter count
by up to 5x.

2 Background

Relational databases are widely used in domains such as finance, healthcare, and human resources.
Traditional pipelines rely on costly joins to flatten relational data into a single feature matrix. Rela-
tional Deep Learning (RDL) instead exploits the relational schema directly, learning from intercon-
nected tables without materializing large joins [[10].

From relational data to graphs. Let a database be (7, R), where T = {T3,...,T,} is a set of
tables and R C T x T encodes foreign-key — primary-key relations. Each table contains entities
(rows) with identifiers, foreign keys, features, and timestamps. This structure is naturally modeled
as a heterogeneous temporal graph G = (V, £, ¢, 1, 7), where nodes V are entities, directed edges
€ CV x Vrepresent relations, ¢ : V— Ty and ¢ : £ — Tg assign node/edge types, and 7 attaches
timestamps to nodes or edges.

The standard encoder in RDL. The common practice is to give each feature column its own
encoder and then concatenate the resulting embeddings. For a node v, let C, be its set of feature
columns. Each column ¢ € C, is mapped to an embedding qSC(x(UC)), where x. is the raw value(s)
of column c and ¢, is a column-specific encoder selected by modality (e.g., MLP for numeric,
embedding lookup for categorical). A tabular backbone fi,;, (often a ResNet [3]]) is then applied
before passing the result to a downstream GNN. While expressive, this design tightly couples the
model to each schema: every new column introduces a new encoder (¢.), and every node type
typically requires its own backbone. This leads to parameter explosion in databases with hundreds of
columns and hinders schema-agnostic pretraining across datasets.

3 Method

We propose RELATE, a schema-agnostic encoder for relational databases with high-dimensional,
multimodal node features. RELATE is a plug-and-play feature encoder that enables multi-dataset
pretraining for any general-purpose GNN model. RELATE consists of two key components: (i) a
library of modality-specific encoders shared across all node types and columns, and (ii) a Perceiver-
style cross-attention module that aggregates a variable-length set of column embeddings into a
fixed-size embedding which serves as the initial node representation for the model.

3.1 Modality-Specific Encoders

We group all node features into four high-level modalities and apply a shared encoder for each: (i)
Numerical, representing continuous scalar values such as age or price; (ii) Timestamp, capturing
time-stamped information such as event times or birth dates; (iii) Categorical, covering discrete
non-text attributes such as product category or gender; and (iv) Textual, handled by a pretrained
text encoder for free-text fields or high-cardinality categorical attributes expressed in text. Features
from each modality are processed by a dedicated encoder shared across all columns of that type.
These encoders are conditioned on the column metadata through a shared text embedding model. The
details can be found in[A. 1.3

3.2 Permutation-Invariant Column Aggregation

To transform a variable-length set of column embeddings into a fixed-size node representation, we
adopt a cross-attention module inspired by PerceiverlO [5]]. A shared sequence of L learnable latent
tokens Z = [z1,...,21] € RE*4 gerves as queries, while the column embeddings for node v,
X, = [x1,...,X¢0,] € R >4 form the input sequence. Since L < C, this formulation reduces
computational cost by decoupling self-attention from the number of input columns.

QK,)
Z, = 7+ softmax(> |V, e
Vi

where Q = W,Z, K, = W;X,,, and V, = W,X,,. This operation is permutation-invariant to the
input column order and enables flexible adaptation to nodes with different schemas and numbers of
attributes. Following this compression, IV layers of self-attention are applied to the latent tokens to
produce the final node representation z,,. Permutation invariance is especially valuable when training
across datasets with overlapping but non-identical schemas.

4 Results

We evaluate RELATE on RelBench [10], a recently introduced benchmark for relational deep
learning that spans real-world datasets across domains such as e-commerce, healthcare, and finance.
These datasets are structured as heterogeneous temporal graphs with multiple node and edge types
and rich, multimodal attributes. Our experiments cover two tasks: node classification and node
regression. We report Area Under the ROC Curve (AUC) for classification and Mean Absolute Error
(MAE) for regression. To ensure a fair comparison, all models are trained using the same splits and
optimization protocols defined in the benchmark [10]. We integrate RELATE into two widely-used
architectures—Heterogeneous Graph Transformer (HGT) [4] and RelGNN [10]—demonstrating
compatibility with standard backbones. We compare against the default heteroencoder used in
RelBench [3]], which uses distinct encoders for each node type and column. RELATE instantiates
only a single backbone encoder across all node types and shares weights for each modality encoder
across node types.

4.1 Experimental Setup

We implement RELATE within the RDL pipeline [10]] by replacing the original heteroencoder with
our architecture. We preserve the underlying task logic and training infrastructure. RELATE is trained
using the AdamW optimizer [8]] with a fixed learning rate of 5 x 10~3. All other settings, such as
batch size and dropout remain fixed across datasets. Similarly, we fix the embedding dimension to
128. Rather than perform exhaustive hyperparameter tuning, we examine the architecture’s ability to
learn in variable schemas. More information can be found in the appendix in[A.T]

4.2 Performance Comparison

On average, RELATE achieves accuracy within 3% of dataset-specific encoders for HGT and RelGNN
respectively on classification tasks, despite using a shared, schema-agnostic architecture. Table|T]
reports per-task metrics (AUROC or MAE).

Table 1: Results on RelBench for Standard Encoder v/s RELATE We evaluate HGT and RelGNN
with two feature encoders: Standard and RELATE. Classification uses AUC (higher is better);
regression uses MAE (lower is better). A is RELATE—Standard.

HGT RelGNN

Dataset Task

Standard RELATE A (RELATE—Standard) Standard RELATE A (RELATE-—Standard)

Classification — AUC

rel-f1 driver-dnf 0.7337 0.6653 -0.0684 0.7135 0.6892 -0.0243
rel-f1 driver-top3 0.8297 0.4779 -0.3518 0.7701 0.6901 -0.0800
rel-avito user-clicks 0.6490 0.6434 -0.0056 0.6590 0.6610 0.0020
rel-avito user-visits 0.6459 0.6262 -0.0197 0.6620 0.6625 0.0005
rel-event user-repeat 0.7351 0.7234 -0.0117 0.7551 0.6710 -0.0841
rel-event user-ignore 0.8130 0.8510 0.0380 0.8035 0.8114 0.0079
rel-trial study-outcome 0.6695 0.5979 -0.0716 0.6742 0.5838 -0.0904
rel-amazon user-churn 0.6384 0.6548 0.0164 0.7033 0.6886 -0.0147
rel-amazon item-churn 0.7529 0.7515 -0.0014 0.8283 0.8124 -0.0159
rel-stack user-engagement 0.8723 0.8805 0.0082 0.9059 0.9010 -0.0049
rel-stack user-badge 0.8227 0.8226 -0.0001 0.8890 0.8664 -0.0226
rel-hm user-churn 0.6561 0.6525 -0.0036 0.6955 0.6937 -0.0018
Average A (AUC) -0.0393 -0.0274

Regression — MAE

rel-f1 driver-position 4.6649 6.1843 1.5194 4.2056 4.2621 0.0565
rel-avito ad-ctr 0.0365 0.0382 0.0017 0.0424 0.0421 -0.0003
rel-trial site-success 0.4244 0.4353 0.0109 0.3457 0.4191 0.0734
rel-stack post-votes 0.0679 0.0679 0.0000 0.0652 0.0649 -0.0003
rel-hm item-sales 0.0677 0.0708 0.0031 0.0556 0.0589 0.0033
Average A (MAE) 0.3070 0.0265

RELATE matches or slightly underperforms the RelBench heteroencoder on most tasks, while
using a single backbone encoder across all node types and not being explicitly tied to any schema.
Additionally, the number of learnable parameters is significantly smaller on several tasks, especially
those with a large number of tables and features. For example, RELATE outperforms the comparison
method on rel-event user-ignore while using only around 29% of learnable parameters compared to
the heteroencoder. We find that RELATE performs generally on par with dataset-specific encoders on
regression, however in the rel-f1 task RELATE under performs by a larger margin. We expect this is
due to rel-f1 having a small number of train examples and a trade-off of single dataset performance
and universality.

4.3 Parameter Efficiency

Figure 2JA compares the number of trainable parameters between schema-specific encoders and
RELATE across RelBench datasets (see Table[3]in Section[A.3]for exact parameter counts) . RELATE
maintains a nearly constant parameter footprint across datasets. In contrast, the parameter count
of schema-specific encoders grows rapidly with the number of tables and features. As a result,
RELATE achieves up to a 5x reduction in parameters on feature-rich datasets such as rel-trial and
rel-event, while remaining competitive in cases with fewer features. This stability makes RELATE
particularly advantageous for real-world schemas involving hundreds or thousands of attributes,
where schema-specific encoders become prohibitively large.

5 Conclusion

We introduced RELATE, a schema-agnostic encoder for heterogeneous temporal graphs that replaces
per-column and per-type feature stacks with shared modality-specific modules and a Perceiver-style
cross-attention bottleneck. By attending from a fixed set of latent tokens to variable-length column
embeddings, RELATE achieves permutation invariance to column order and decouples the complexity
of self-attention from the raw feature dimensionality of a node. We demonstrate its effectiveness as
an encoder that achieves competitive accuracy while reducing parameter count. RELATE provides a
foundation for learning across datasets and may serve as a building block for future multi-dataset
pretraining for relational foundation models.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]

[12]

(13]

(14]

[15]

[16]

E. F. Codd. A relational model of data for large shared data banks. Communications of the ACM,
13(6):377-387, 1970.

Z.Hou, H. Li, Y. Cen, J. Tang, and Y. Dong. Graphalign: Pretraining one graph neural network on multiple
graphs via feature alignment, 2024. arXiv preprint.

W. Hu, Y. Yuan, Z. Zhang, A. Nitta, K. Cao, V. Kocijan, J. Sunil, J. Leskovec, and M. Fey. Pytorch frame:
A modular framework for multi-modal tabular learning. arXiv preprint arXiv:2404.00776, 2024.

Z. Hu, Y. Dong, K. Wang, and Y. Sun. Heterogeneous graph transformer. In Proceedings of the Web
Conference, pages 2704-2710, 2020.

A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran, A. Brock,
E. Shelhamer, et al. Perceiver io: A general architecture for structured inputs and outputs. arXiv preprint
arXiv:2107.14795, 2021.

D. Lachi, M. Azabou, V. Arora, and E. Dyer. Graphfm: A scalable framework for multi-graph pretraining.
arXiv preprint arXiv:2407.11907, 2024. Preprint, under review.

H. Liu, J. Feng, L. Kong, N. Liang, D. Tao, Y. Chen, and M. Zhang. One for all: Towards training one
graph model for all classification tasks, 2023. Published as a conference paper at ICLR 2024.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

H. Mao, Z. Chen, W. Tang, J. Zhao, Y. Ma, T. Zhao, N. Shah, M. Galkin, and J. Tang. Position: Graph
foundation models are already here, 2024. Position paper, ICML 2024 (spotlight).

J. Robinson, R. Ranjan, W. Hu, K. Huang, J. Han, A. Dobles, M. Fey, J. E. Lenssen, Y. Yuan, Z. Zhang,
et al. Relbench: A benchmark for deep learning on relational databases. Advances in Neural Information
Processing Systems, 37:21330-21341, 2024.

M. Spinaci, M. Polewczyk, J. Hoffart, M. C. Kohler, S. Thelin, and T. Klein. Portal: Scalable tabular
foundation models via content-specific tokenization, 2024. arXiv preprint.

M. Spinaci, M. Polewczyk, M. Schambach, and S. Thelin. Contexttab: A semantics-aware tabular
in-context learner, 2025. arXiv preprint.

S. Tulkens and T. van Dongen. Model2vec: Fast state-of-the-art static embeddings. https://github)
com/MinishLab/model2vec| 2024.

Y. Wang, X. Wang, Q. Gan, M. Wang, Q. Yang, D. Wipf, and M. Zhang. Griffin: Towards a graph-centric
relational database foundation model, 2025. arXiv preprint.

T. Zhou, D. Fu, M. Soltanolkotabi, R. Jia, and V. Sharan. Fone: Precise single-token number embeddings
via fourier features. arXiv preprint arXiv:2502.09741, 2025.

B. Zhu, X. Shi, N. Erickson, M. Li, G. Karypis, and M. Shoaran. Xtab: Cross-table pretraining for tabular
transformers, 2023. arXiv preprint.

https://github.com/MinishLab/model2vec
https://github.com/MinishLab/model2vec

A Appendix

A.1 Model Details

A.1.1 Model Overview

)
Numeric
Encoder
—
Node: products) EEEE—
product_id Cat Temporal
e T Encocer Cross Self Attention
—
d t Text — s O
es;ﬁzemn Neuxm — Attention Transformer
grade Cat Text Product
! time Temp Encoder Embedding
{ —
¥
'R
Categorical
Text Encoder
Encoder N ——

Figure 1: Overview of the RELATE architecture. Columns are encoded by shared modality-specific
encoders, aggregated with column metadata, and summarized by a cross-attention transformer into fixed-size
node embeddings for GNNs.

A.1.2 Hyperparameters

For both the full self-attention and cross-attention encoder variants, we fix the number of attention
heads and layers to 4, apply a dropout rate of 0.2, and set the hidden dimension to 128. In the
Perceiver encoder, the number of latent tokens is set to 8. All models are trained for up to 10 epochs.
For the GNN backbone, we use 128 channels, a 2-hop neighborhood, and uniformly sample 128
neighbors per node.

A.1.3 Multimodal Featurization

For the numeric encoder, we use the Fourier Number Embedding (FONE) encoder [15] to map
continuous scalar values into dense embeddings. An optional shared linear projection maps the
resulting embedding into the target space. By design, FONE is schema-independent and can be applied
to any numeric feature. For time, each timestamp is decomposed into interpretable components (year,
month, day, etc.), then encoded using a combination of positional encodings (for absolute time) and
cyclic encodings (for periodicity). A shared linear projection maps the encoded time features to the
target embedding space. Categorical inputs are hashed into a shared vocabulary space, with the hash
function conditioned on the column embedding. This allows identical values from different columns
(e.g., “1”’) to map to distinct embeddings, ensuring both efficient use of the embedding space and
semantic separation across columns. The categorical encoder is suited for anonymized fields such as
hashed IDs common in real-world databases, while features with semantically meaningful values
are instead processed by a pretrained text encoder. Textual columns are encoded with a pretrained
sentence encoder [13]], and a shared linear projection maps the resulting embeddings into the target
dimension.

A.14 Column-Level Metadata Conditioning

To improve generalization across columns and datasets, we incorporate column-level metadata into
each modality encoder. Column names, table names (node types), and optional descriptions are
encoded with a pretrained text embedding model and injected into the feature encoding process,
enabling the encoder to distinguish between semantically different columns that share the same
modality and value space and to generalize to unseen schemas. We adopt different strategies for
aggregating column metadata with cell embeddings depending on the modality; details are provided

in Appendix

A.1.5 RELATE Column Meta Aggregation

We opt to aggregate column information for numeric and text columns by adding the multi-modal
cell embedding to the projection of the column metadata (e.g., column name). Then, we input this
into a two layer MLP with RELU activation. Specifically:

X = CellEmbeddings Wipared
H = ColProj(ColumnEmbeddings)
Z=X+H @

Z =7 +MLP(Z), MLP(Z)=ReLU(ZW, + by)Ws + by
For hashed features we do not incorporate column metadata. Finally, for time columns we find gating

to be effective. We apply the sigmoid function to the projection of the column embeddings. We
multiply the result with the projection of the time embeddings.

Z = (CellEmbeddings(Wsnarea)) @ o(ColProj(ColumnEmbeddings)) 3)

A.1.6 RELATE Cross-Attention

Here we describe the cross-attention performed by RELATE. X is the result of the multi-modal
encoders described in[3.1] X contains an embedding for each cell according to its modality. Q, K ,and
V are all projected using shared weights and L is initialized as a learnable parameter which represents
the latent tokens. After cross-attention is performed, self-attention is executed on the latents. This
process is performed for N layers.

Q=LWg, LeRPNuxd
K:XWK, V:XW‘/’ XGRBXNcel]st

KT
CrossAttn(L, X') = softmax (Q) 14
Vd

L' = L + CrossAttn(L, X)

“

L" = L' + SelfAttn(L")

A.2 Ablation Study

We evaluate the role of cross-attention by replacing it with a full self-attention (SA) mechanism
applied over the input tokens. As shown in Figure 2B, we report the relative performance of self-
attention for RelGNN, averaged over all classification tasks. This substitution yields marginal gains
on a few datasets but does not consistently improve performance, with self-attention achieving only
90-101% of cross-attention on average. In contrast, the cross-attention bottleneck in RELATE
provides a more efficient and scalable alternative, preserving accuracy while enabling training on
large and feature-rich graphs. Comprehensive AUC and MAE results for both RelGNN and HGT are
reported in Appendix [A.2]

Table [] reports the complete results of our attention ablation study, comparing the Perceiver-style
cross-attention encoder with a full self-attention (SA) variant for both HGT and RelGNN across all
RelBench datasets.

For classification tasks, we evaluate performance using AUC (higher is better). On average, cross-
attention outperforms self-attention by +0.0068 AUC in HGT and +0.0039 AUC in RelGNN. While
self-attention achieves marginal improvements on a few tasks, these gains are inconsistent and come
with a substantial increase in computational cost.

For regression tasks, we report MAE (lower is better). Here, cross-attention again performs slightly
better, reducing MAE by 0.0670 in HGT and 0.0160 in RelGNN on average.

Overall, the results confirm that the latent cross-attention bottleneck provides accuracy on par with or
better than full self-attention while offering substantially higher efficiency, making it the preferable
choice for training on large and feature-rich graphs.

Table 2: Attention Ablation. We compare full self-attention and cross-attention (Perceiver). Classifi-
cation uses AUC (higher is better); regression uses MAE (lower is better). A is Perceiver—Full.

Dataset Task HGT ReIGNN

Full Perceiver A (Perceiver—Full) Full Perceiver A (Perceiver—Full)
Classification — AUC
rel-f1 driver-dnf 0.6359 0.6653 0.0294 0.6661 0.6892 0.0231
rel-f1 driver-top3 0.5609 0.4779 -0.0830 0.7227 0.6901 -0.0326
rel-avito user-clicks 0.6316 0.6434 0.0118 0.6618 0.6610 -0.0008
rel-avito user-visits 0.6272 0.6262 -0.0010 0.6627 0.6625 -0.0002
rel-event user-repeat 0.6036 0.7234 0.1198 0.6554 0.6710 0.0156
rel-event user-ignore 0.8412 0.8510 0.0098 0.8242 0.8114 -0.0128
rel-trial study-outcome 0.5275 0.5979 0.0704 0.5311 0.5838 0.0527
rel-amazon user-churn 0.6727 0.6548 -0.0179 0.6894 0.6886 -0.0008
rel-amazon item-churn 0.7878 0.7515 -0.0363 0.8110 0.8124 0.0014
rel-stack user-engagement 0.8780 0.8805 0.0025 0.9016 0.9010 -0.0006
rel-stack user-badge 0.8236 0.8226 -0.0010 0.8668 0.8664 -0.0004
rel-hm user-churn 0.6760 0.6525 -0.0235 0.6909 0.6937 0.0028
Average A (AUC) 0.0068 0.0039
Regression — MAE
rel-f1 driver-position 6.5346 6.1843 -0.3503 4.3267 42621 -0.0645
rel-avito ad-ctr 0.0387 0.0382 -0.0005 0.0415 0.0421 0.0006
rel-trial site-success 0.4241 0.4353 0.0112 0.4339 0.4191 -0.0148
rel-stack post-votes 0.0679 0.0679 0.0000 0.0651 0.0649 -0.0002
rel-hm item-sales 0.0664 0.0708 0.0044 0.0600 0.0589 -0.0011
Average A (MAE) -0.0670 -0.0160

A.3 Parameter Comparison

Table [3| reports the exact parameter counts corresponding to Figure 2] As shown, the parameter
footprint of schema-specific encoders increases substantially with the number of tables and features
in each dataset, ranging from 1.1M on rel-amazon to over 7.3M on rel-trial. In contrast, RELATE
remains nearly constant at ~1.4M parameters across all datasets, since it reuses a fixed set of modality-
specific encoders. This property results in significant parameter savings—up to a 5x reduction on
feature-rich datasets such as rel-trial and rel-event—while still maintaining competitive performance.

Table 3: Parameter comparison: We compare the number of trainable parameters between the
heteroencoder and RELATE Standard across datasets.

Dataset # of Tables # of Features Std. Encoder (#params) Universal (#params) Universal / Std (%)
rel-amazon 3 15 1.08122 x 10° 1.4713 x 10° 136.078
rel-avito 8 43 2.04058 x 10° 1.38483 x 10° 67.8648
rel-event 5 128 4.96602 x 108 1.45178 x 10° 29.2342
rel-f1 9 77 3.25939 x 10° 1.45626 x 10° 44,6788
rel-hm 3 37 1.968 x 10° 1.4313 x 10° 72.7285
rel-trial 15 140 7.29984 x 10° 1.44026 x 108 19.73
rel-stack 7 51 2.62387¢+06 1.457672 x 10° 55.50

68%
29%
45%
73%
20%

56%

92
Self-Attention 90.97%
Cross-Attention

Number of Parameter across Datasets 102 Self-Attention vs Cross-Attention
o Std Encoder . 100.69% y
‘® 6x10° RELATE (Universal) S 100 2226% 10098% o019 s0.600, 100-06%
o - RELATE avg = 1.44M 8
g g
= 4x10° c 98
g
g’ 3x10° S 96
s &
T s 2 >
& 2x10 g ¢ o
2 K
2 &
g
=

rel-amazon rel-avito rel-event rel-fl rel-hm rel-trial rel-stack rel-amazon rel-avito rel-event rel-fl rel-hm rel-stack rel-trial

Figure 2: (A) Parameter comparison across RelBench datasets. We compare the number of trainable
parameters between schema-specific encoders (Std) and RELATE. Schema-specific encoders grow
with the number of tables and features, whereas RELATE maintains a nearly constant footprint.
Percentages above the RELATE bars indicate the parameter ratio relative to schema-specific encoders.
(B) Attention ablation for RelGNN, reporting average AUC performance relative to cross-attention.
Bars show the performance of self-attention compared to cross-attention within each dataset.

A.3.1 Related Work

Recent models such as ConTextTab [[12] and PORTAL [11]] leverage table semantics, e.g., column
headers, as context for cell values. Ablations showed that removing headers causes significant drops
in performance, highlighting the importance of semantic metadata. These models typically use
shared, modality-specific encoders for multi-modal values (numerical, categorical, text, temporal).
ConTextTab, for example, scales numeric values, applies a learnable vector, encodes text with a
pretrained language model, and sums embeddings for temporal components. Other approaches
such as XTAB [16] pretrain only the transformer backbone while relying on dataset-specific feature
preprocessing, which limits transfer across schemas. One of the key challenges of GFMs are to design
architectures that can transfer across varying input spaces [9]]. Recent homogeneous GFM models [6]]
demonstrate rapid transfer to downstream tasks after pretraining, but still rely on dataset-specific
featurization that limits generalization and prevents true zero-shot transfer. RELATE addresses
these limitations by introducing task-agnostic encoders that integrate directly with standard GNN
backbones. The concurrent work Griffin [14] uses pretrained encoders for text and numeric features
and applies cross-attention over cells, column metadata, and task information. Its feature encoders
are task-conditioned and limited to text and numeric modalities, potentially conflating categorical IDs
with text. Other GFMs, such as OFA [7]], only operate on text-attributed graphs (TAGs). GraphAlign
[2]] aims to align feature distributions across across diverse graphs by leveraging mixture of experts
(MOE), however the model is similarly limited to TAGs.

	Introduction
	Background
	Method
	Modality-Specific Encoders
	Permutation-Invariant Column Aggregation

	Results
	Experimental Setup
	Performance Comparison
	Parameter Efficiency

	Conclusion
	Appendix
	Model Details
	Model Overview
	Hyperparameters
	Multimodal Featurization
	Column-Level Metadata Conditioning
	RELATE Column Meta Aggregation
	RELATE Cross-Attention

	Ablation Study
	Parameter Comparison
	Related Work

