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ABSTRACT

Graph representation learning aims to represent graphs as vectors that can be uti-
lized in downstream tasks such as graph classification. In this work, we focus on
learning diverse representations that can capture the graph information as much as
possible. We propose to quantify graph information using graph entropy, where
we define a probability distribution of a graph based on its node and global rep-
resentations. However, computing graph entropy is NP-hard due to the complex
vertex packing polytope involved in its definition. We therefore provide an ap-
proximation of graph entropy based on the Shannon entropy and the chromatic
entropy. By maximizing the approximation of graph entropy through graph neu-
ral networks, we obtain informative node and graph representations. Experimental
results demonstrate the effectiveness of our method in comparison to baselines in
unsupervised learning and semi-supervised learning tasks.

1 INTRODUCTION

Graphs, such as chemical compounds (Debnath et al., 1991; Kriege & Mutzel, 2012), protein struc-
tures (Borgwardt et al., 2005), and social networks (Yanardag & Vishwanathan, 2015), represent re-
lationships between various entities. Graph representation learning aims to convert graph-structured
data into effective vector representations for various downstream tasks like graph classification. This
task is nontrivial because graph data are non-Euclidean data. There have been many works of graph
representation learning using the GNNs (Kipf & Welling, 2016a; Hamilton et al., 2017a; Xu et al.,
2018; Veličković et al., 2017; Kipf et al., 2018; Xie & Grossman, 2018; Gilmer et al., 2017). Unsu-
pervised graph-level representation learning is a fundamental and challenging task in this field. For
example, InfoGraph (Sun et al., 2019) achieves graph-level representations by maximizing mutual
information between graph-level representations and node-level representations. Graph contrastive
learning (GraphCL) (You et al., 2020) and adversarial graph contrastive learning (AD-GCL) (Suresh
et al., 2021) obtain graph-level representations by training GNNs to maximize the correspondence
between representations of the same graph in different augmented forms. JOint Augmentation Op-
timization (JOAO) (You et al., 2021) is a framework that automatically and adaptively selects data
augmentations for GraphCL on specific graph data using a unified bi-level min-max optimization
approach. Automated Graph Contrastive Learning (AutoGCL) (Yin et al., 2022) utilizes learnable
graph view generators and an auto-augmentation strategy to generate contrastive samples while
preserving the most representative structures of the original graph. Graph Adversarial Contrastive
Learning (GraphACL) Luo et al. (2023a) introduces a novel approach to self-supervised whole-
graph representation learning by learning negative samples. InfoGCL Xu et al. (2021) delves into
the transformation and transfer of graph information within the contrastive learning process, in-
troducing an information-aware framework for graph contrastive learning. Spectral Feature Aug-
mentation (SFA) Zhang et al. (2023) offers an efficient spectral feature augmentation method for
Graph Contrastive Learning (GCL). Graph Contrastive Saliency (GCS) Wei et al. (2023) focuses
on identifying semantically discriminative substructures within graphs through contrastive learning.
Neighbor Contrastive Learning Augmentation (NCLA) Shen et al. (2023) enhances graph augmen-
tation through neighbor contrastive learning. Simple Neural Networks with Structural and Seman-
tic Contrastive Learning (S3-CL) Ding et al. (2023) learns expressive node representations in a
self-supervised manner. Imbalanced Node Classification (ImGCL) Zeng et al. (2023) automatically
balances learned representations from GCL without labels.GRADATE Duan et al. (2023) presents a
comprehensive framework for Graph Anomaly Detection, incorporating subgraph-subgraph contrast
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and augmented views into multi-scale contrastive learning networks. These graph-level representa-
tion learning methods are all based on the InfoMax principle (Linsker, 1988). It is important to note
that there are several other graph representation learning methods, such as VGAE (Kipf & Welling,
2016b; Hamilton et al., 2017b; Cui et al., 2020), graph embedding methods (Wu et al., 2020; Yu
et al., 2021; Bai et al., 2019; Verma & Zhang, 2019), self-supervised learning (Sun et al., 2023; Liu
et al., 2022b; Hou et al., 2022; Lee et al., 2022; Xie et al., 2022; Wu et al., 2021; Rong et al., 2020;
Zhang et al., 2021b;a; Xiao et al., 2022), and contrastive learning (Le-Khac et al., 2020; Qiu et al.,
2020; Ding et al., 2022; Xia et al., 2022; Fang et al., 2022; Trivedi et al., 2022; Han et al., 2022; Mo
et al., 2022; Yin et al., 2022; Xu et al., 2021; Zhao et al., 2021; Zeng & Xie, 2021; Li et al., 2022a;b;
Wei et al., 2022). Due to the page length limitation, we will not detail these methods.

In the past decades, a variety of notions of entropy have been proposed for measuring the infor-
mation and complexity of graphs from different aspects (Dehmer & Mowshowitz, 2011; Dehmer,
2008). For example, the structural entropy (Mowshowitz & Dehmer, 2012) is defined on the Shan-
non entropy and the structural components of each node (e.g. the degree of a node). The structural
entropy is widely used in GNN-based graph learning methods for measuring the topological struc-
tural information of graphs (Luo et al., 2021; Yang et al., 2023; Wang et al., 2023; Wu et al., 2022;
Zou et al., 2023; Fang et al., 2021). The edge entropy is defined on the connected structure of edges
and is also used to evaluate the structural information of graphs (Jiang et al., 2020; Wang et al.,
2021; Grebenkina et al., 2018; Aziz et al., 2020; Luo et al., 2023b). The von Neumann entropy of
a graph is defined on the graph Laplacian and is used to measure the spectral complexity of graphs
(Liu et al., 2021; 2022a; Passerini & Severini, 2008; Minello et al., 2019; Ye et al., 2014; Dong
et al., 2019). The Rényi entropy is a generalized information measure including various notions of
entropy and is used for graph clustering tasks (Pál et al., 2010; Oggier & Datta, 2021). M-ILBO
Ma et al. (2023) involves the estimation of graph dataset entropy by maximizing the Information
Lower Bound (ILBO) using subsets of data samples. However, it’s important to clarify that while
these works use the term "graph entropy", they are not referring to the authentic Graph entropy as
defined by János Körner (Körner, 1973). Graph entropy is, in fact, a fundamental concept deeply
rooted in the disciplines of combinatorics and information theory, with a rich history. In 1948,
Claude E. Shannon laid the foundations of information theory and introduced the concept of chan-
nel capacity (Shannon, 1948). Subsequently, in 1973, János Körner introduced the concept of graph
entropy, which serves as a measure of the information that can be effectively communicated over a
noisy channel (Körner, 1973). While graph entropy finds its origins in information theory, it also
finds utility in quantifying the information within a set, especially when some pairs of elements
share common information (Bouchon et al., 1988). In 1979, László Lovász introduced orthonormal
representations with the aim of analyzing a graph’s Shannon capacity (Lovász, 1979). These repre-
sentations comprise sets of vertex representation vectors, allowing for the possibility that adjacent
vertices may share common information. This property aligns with the combinatorics definition of
graph entropy. Nevertheless, the computation of graph entropy becomes a computationally chal-
lenging task due to the complex vertex packing polytope involved in its definition.

While graph entropy has found success in the realms of combinatorics and information theory, it re-
mains relatively unexplored within the field of graph learning. In this study, we introduce a novel ap-
proach called Graph Entropy Maximization (GeMax) for graph representation learning, marking the
first instance of its application in this context. Our approach begins with two key insights: firstly, the
necessity of employing orthonormal representations for nodes, which enables direct measurement
of the information contained in graph representations using graph entropy. Secondly, we establish
a probability distribution for a graph by incorporating its nodes’ representations and a global graph
representation learned through two separate graph neural networks. Recognizing the computational
challenges associated with graph entropy, we propose an approximation method that leverages Shan-
non entropy and chromatic entropy. This approximation leads to a max-min optimization problem,
which we address through alternating minimization techniques. Through extensive experimentation,
we validate the competitiveness of our proposed methods against various baselines in both unsuper-
vised graph-level and node-level learning tasks. In summary, our contributions in this work can be
categorized into three main areas.

• We introduce a novel method, Graph Entropy Maximization (GeMax), for graph represen-
tation learning, marking the inaugural exploration of Körner’s graph entropy within the
graph learning community.
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• Our framework for employing Körner’s graph entropy consists of two key components:
firstly, the adoption of orthonormal representations for nodes, facilitating direct quantifi-
cation of information within graph representations through graph entropy. Secondly, the
establishment of a probability distribution for a given graph.

• Additionally, we present an approximation technique to compute graph entropy, leveraging
both Shannon entropy and chromatic entropy.

2 PRELIMINARIES

In this section, we introduce the definitions of orthonormal representations, graph entropy and chro-
matic entropy. The main notations used in this paper are shown in Table 5 of Appendix A.1.

2.1 ORTHONORMAL REPRESENTATIONS

Given a graph G = (V,E), if two vertices share some information and may be confused in com-
munication, they are adjacent with an edge. In contrast, if there is no common information between
two vertices, they should be non-adjacent. Based on this intuition, László Lovász introduced the
orthonormal representations of a graph (Lovász, 1979). If two vertices are non-adjacent, Lovász
argued that their representation vectors should be orthogonal to each other, indicating that there is
no common information between them.
Definition 2.1 (Set of orthonormal representations (Lovász, 1979)). Given a graph G = (V,E), we
use a unit vector zi ∈ Rd to denote the d-dimensional representation of vertex i. Then the set of
orthonormal representations of G is defined as

T(G) := {Z ∈ Rd×n : ∥zi∥2 = 1, i = 1, 2, . . . , n; z⊤i zj = 0, ∀(i, j) /∈ E}. (1)

2.2 GRAPH ENTROPY

Graph entropy is a fundamental property of a probabilistic graph, first introduced by Körner (1973).
Though there exist several equivalent definitions of graph entropy, we focus on its combinatorial
definition which is based on the vertex packing polytope VP(G). In graph theory, the independent
set is a set of vertices of G where no two vertices are adjacent. LetB = [b1, ..., bNb

] ∈ {0, 1}|V |×Nb

be the indicator matrix of independent sets of G, where Nb is number of independent sets of G and
the i-th column bi is the indicator vector of the i-th independent set. For example, if G is a pentagon
in Figure 1, we have Nb = 10 and b6 = [1, 0, 1, 0, 0]⊤ indicates the vertex subset {v1, v3} is the
6-th independent set of G. The vertex packing polytope VP(G) is defined as follows.

Figure 1: The indicator matrixB of independent sets of a pentagon

Definition 2.2 (Vertex packing polytope). Given a graph G with vertex set V , the vertex packing
polytope VP(G) of G is the convex hull of the indicator vectors of its independent sets. More
precisely, let B ∈ {0, 1}|V |×Nb be the indicator matrix of independent sets of G and λ ∈ RNb

+ be a
vector, then VP(G) is defined as follows

VP(G) :=

{
a ∈ R|V | : a = Bλ, with λ ≥ 0,

Nb∑
i=1

λi = 1

}
. (2)

Let (G,P ) be a probabilistic graph with respect to probability distribution P on its vertex set V , i.e.,
P = {P1, P2, ..., Pn} and Pi is the probability density of the vertex i. The graph entropy is usually
denoted as Hk(G,P ), named after János Körner. Based on VP(G), we have
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Definition 2.3 (Graph entropy Körner (1973)). Given a probabilistic graph (G,P ) with |V | = n,
the entropy of G with respect to P is defined as

Hk(G,P ) := min
a∈VP(G)

n∑
i=1

−Pi log(ai), (3)

where a is a vector in the vertex packing polytope VP(G) and ai is the i-th element of vector a.

In information theory, the graph entropy is a measure of the maximal information rate of communi-
cating over a noisy channel. This notion has been extended to combinatorics as follows.
Corollary 2.4 ((Bouchon et al., 1988)). In combinatorics, graph entropy can be used to measure the
amount of information contained in a set where some pairs of elements contain common information.

It is known that a graph is a set and its vertices are the elements, where adjacent vertices contain
common information. Thus, according to Corollary 2.4, graph entropy can be used to measure
the amount of information contained in the orthonormal representations of a graph.

2.3 CHROMATIC ENTROPY

We introduce the definition of the chromatic entropy (Alon & Orlitsky, 1996). A coloring of graph
G is the process of assigning colors to vertices such that no adjacent vertices share the same color.
Let π = {C1, ...,CK} be a coloring with K colors on G, i.e., π is a partition of the vertex set V
and Ck is the set of all the vertices with the k-th color class. The entropy of a coloring π on a
probabilistic graph (G,P ) is denoted by Hc(G,P,π) and is defined as follows.
Definition 2.5 (Entropy of a coloring). Given a probabilistic graph (G,P ) with |V | = n and a
coloring π = {C1, ...,CK}, the probability distribution on the coloring π is defined by summing
up the probability density of the vertices with the same color, i.e,

P (Ck) :=
∑
v∈Ck

Pv, ∀k ∈ {1, ..,K}, (4)

where Pv is the probability density of vertex v. The entropy of a coloring π is defined as

Hc(G,P,π) :=

K∑
k=1

−P (Ck) logP (Ck). (5)

Let Π(G) be the set of all possible coloring π of graph G. Then the chromatic entropy is defined as
Definition 2.6 (Chromatic entropy Alon & Orlitsky (1996)). The chromatic entropy of a probabilis-
tic graph (G,P ) is the lowest entropy among all possible colorings of the graph, i.e.,

Hχ(G,P ) := min{Hc(G,P,π) : π ∈ Π(G)}. (6)

Let χH(G,P ) be the minimum number of colors for Hχ(G,P ) and ∆(G) be the maximum degree
of a vertex in G. It follows that
Corollary 2.7 ((Rezaei, 2013)). χH(G,P ) ≤ ∆(G) + 1.

2.4 LOWER AND UPPER BOUNDS OF GRAPH ENTROPY

Let α(G) be the independence number which is the size of the maximum independent set of graphG.
The lower bound and upper bound of graph entropy Hk(G,P ) are introduced as follows (Boreland,
2018; Alon & Orlitsky, 1996; Cardinal et al., 2004; 2005).
Theorem 2.8 (Lower and upper bounds of graph entropy). Given a probabilistic graph (G,P ), the
lower and upper bounds of the graph entropy Hk(G,P ) are as follows,

H(P )− logα(G) ≤ Hk(G,P ) ≤ Hχ(G,P ), (7)
where H(P ) is the Shannon entropy and Hχ(G,P ) is the chromatic entropy in Definition 2.6.
Corollary 2.9 ((Boreland, 2018)). The equality of the lower bound in Theorem 2.8 holds if and only
if there exists a vector h ∈ VP(G) satisfying hi = Piα(G) for i = 1, 2, ..., n.
Corollary 2.10 ((Rezaei, 2013)). The equality of the upper bound in Theorem 2.8 holds when G is
an empty graph or a complete graph.
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3 MOTIVATION AND PROBLEM SETUP

Our motivation revolves around the utilization of graph entropy as a means to quantify the infor-
mation contained within graph representations. Specifically, we aim to identify representations that
can capture the most significant information, essentially those with the maximum graph entropy. To
ensure that node representations accurately capture structural information, we recommend the adop-
tion of orthonormal representations as defined in Definition 2.1. This choice is rooted in the fact that
graph entropy can directly serve as a measure of information within orthonormal representations, as
indicated by Corollary 2.4. However, an issue arises with the involvement of the probability of each
node in Definition 2.3, as it lacks a clear definition. To address this, we introduce the concept of
a graph-level representation g and associate a Gaussian distribution P with the vertex set V , using
g as the mean. Let Z = [z1, z2, . . . , zn], where zi represents the node representation of node i in
graph G. We define P = P (g,Z) = P1(g,Z), ..., Pn(g,Z), and establish the following:

Pi(g,Z) :=
exp(−∥zi − g∥22)∑
j∈V exp(−∥zj − g∥22)

, ∀ i = 1, 2, ..., n. (8)

Then we formulate the learning of orthonormal representation with maximum graph entropy as

max
g,Z∈T(G)

min
a∈VP(G)

n∑
i=1

−Pi(g,Z) log(ai) (9)

Given a set of N graphs G = {G1, G2, . . . , GN} drawn from some unknown distribution D in G,
we want to learn a model F : G → Rd × Rd×n to represent each graph as a vector and represent
its vertices as vectors, i.e., (gj ,Zj) = F (Gj), where F should capture the important information
of the underlying distribution D and g1,g2, . . . ,gN should be useful in downstream tasks such as
graph classification. Based on (9), we propose to solve the following problem

max
F∈F

EG∼D

[
min

a∈VP(G)

n∑
i=1

−Pi(g,Z) log(ai)

]
s.t. (g,Z) = F (G), Z ∈ T(G).

(10)

The problem equation 10 is our Graph Entropy Maximization (GeMax) problem for graph represen-
tation learning.

4 METHODOLOGY FOR MAXIMIZING GRAPH ENTROPY.

4.1 APPROXIMATION OF GRAPH ENTROPY

Directly solving the GeMax problem equation 10 is NP-hard due to the complex vertex packing
polytope VP(G) in Definition 2.3. In information theory and combinatorics, graph entropy is typi-
cally applied for theoretical analysis rather than practical computation. In this study, we approximate
the value of graph entropy using its lower and upper bounds in Theorem 2.8. We can maximize the
lower bound of graph entropy Hk(G,P ) to estimate the solution of the problem in equation 9, i.e.,

max
g,Z

H(P (g,Z))− logα(G), s.t. Z ∈ T(G). (11)

Since the independence number α(G) is a constant of a given G, the optimization in equation 11 is
actually learning the orthonormal representations via maximizing the Shannon entropyH(P (g,Z)).
Suppose the representations (g∗,Z∗) yield the maximum of equation 11 where Z∗ ∈ T(G). Based
on Corollary 2.9, if there exists a vector h ∈ VP(G) satisfying hi = Piα(G) on the vertex set
V , the equality of the lower bound in equation 7 holds and we have H(P (g∗,Z∗)) − logα(G) =
Hk(G,P (g

∗,Z∗)). That is, the graph entropy maximization in equation 9 is equivalent to the Shan-
non entropy maximization equation 11 in this case. However, the equality of the lower bound in
equation 7 is not guaranteed to hold for an arbitrary probabilistic graph (G,P ). We need to approx-
imate the graph entropy Hk(G,P ) for more general cases. According to Theorem 2.8, Hk(G,P )
can be represented as a convex combination of the lower and upper bounds as follows.
Corollary 4.1. There exits 0 ≤ µ ≤ 1 such that

Hk(G,P ) = µ(H(P )− logα(G)) + (1− µ)Hχ(G,P ), (12)
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Given that α(G) is a constant, the orthonormal representations learning problem (9) can be rewritten
according to Corollary 4.1 as,

max
g,Z

µH(P (g,Z)) + (1− µ)Hχ(G,P (g,Z)), s.t. Z ∈ T(G), (13)

That is, maximizing the graph entropy Hk(G,P ) is equivalent to maximizing the Shannon entropy
H(P ) and chromatic entropy Hχ(G,P ) simultaneously. The motivation for maximizing Shannon
entropy H(P ) is to maximize the lower bound of graph entropy Hk(G,P ) in (11). Suppose the
coloring π∗ = {C∗

1, ...,C∗
K} is the coloring aligns with chromatic entropy Hχ(G,P ) where C∗

k is
the set of all nodes in vertex set V with the k-th color. The color set C∗

k is actually an independent set
where the orthonormal representations are orthogonal to each other. Maximizing chromatic entropy
Hχ(G,P ) is actually to maximize the information contained in independent sets with respect to
coloring π∗. Based on the chromatic entropy Definition 2.6, we reformulate problem (10) as the
following constrained max-min problem:

max
F∈F

EG∼D

[
min
π
µH(P (g,Z)) + (1− µ)Hc(G,P (g,Z),π)

]
s.t. (g,Z) = F (G), Z ∈ T(G), π ∈ Π(G).

(14)

4.2 REPRESENTATION LEARNING VIA GNNS

Parameterization Developing an optimization algorithm to solve the problem 14 is difficult. Thus
we learn a GNN model from a set of graphs G to solve the problem 14 and find the representations of
graphs in G. Denote A as the space of adjacent matrix A and X as the space of node feature matrix
X . Let Fg(·, ·;θ) : A×X → Rd be a GNN with parameter θ for graph-level representation learning
and FZ(·, ·;ϕ) : A × X → Rd be another GNN with parameters ϕ for node-level representation
learning. For G ∈ G with adjacency matrixA and feature matrixX , we obtain

gθ = Fg(A,X;θ) and Zϕ = FZ(A,X;ϕ). (15)

LetC = [c1, ..., cn]
⊤ ∈ Rn×K be a color probability matrix where ci = [ci(1), ..., ci(K)]

⊤ and ci(k)
is the probability of coloring node i with color k, i.e., i ∈ Ck. According to Corollary 2.7, we can
directly set K = ∆(G) + 1. Letting Fc(·, ·;ψ) : A× X → Rn×K be a GNN with parameter ψ for
learning coloring, we have

Cψ = Fc(A,X;ψ), (16)

where Fc should ensures that 0 ≤ cψi(k) ≤ 1 and
∑K
k=1 c

ψ
i(k) = 1. Thus the output activation function

of Fc should be a softmax function. The coloring π can be parameterized by ψ as follows

πψ = {Cψ1 , ...,C
ψ
K} where i ∈ Cψk if k = argmax

q=1,...,K
cψi(q) ∀i ∈ V. (17)

Regularizations and Losses Instead of solving constrained optimization, we propose to solve
unconstrained optimization with regularization, which is much easier. Based on Definition 2.1, we
propose the orthonormal loss ℓorth(G;ϕ) for regularization of Z ∈ T(G) as follows

ℓorth(G;ϕ) =
1

2

∥∥(Zϕ(Zϕ)⊤ − In
)
⊙M

∥∥2
F
, (18)

whereM = 1n×n −A is a binary mask matrix and ⊙ is the Hadamard product. We also introduce
the coloring loss ℓc(G;ψ) for regularization of π ∈ Π(G) as follows

ℓc(G;ψ) =
1

2

∥∥(Cψ(Cψ)⊤
)
⊙A

∥∥2
F
. (19)

Therefore, the overall objective function of the regularized rather than the constrained max-min
problem 14 on the dataset G is formulated as

J(G;θ,ϕ,ψ) :=
N∑
j=1

{
µH(P (gθj ,Z

ϕ
j )) + (1− µ)Hc(Gj , P (g

θ
j ,Z

ϕ
j ),π

ψ)

− γℓorth(Gj ;ϕ) + ηℓc(Gj ;ψ)
}
,

(20)

where γ and η are positive hyperparameters for regularization.
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Iterative Optimization Given a coloring π∗, the representations updating sub-problem is to opti-
mize θ and ϕ with a fixed ψ∗ as follows

θ∗, ϕ∗ = argmax
θ,ϕ

J(G;θ,ϕ,ψ∗), (21)

Given graph representations (g∗,Z∗), the coloring updating sub-problem is to optimize ψ with
fixed θ∗ and ϕ∗ as follows

ψ∗ = argmin
ψ

J(G;θ∗,ϕ∗,ψ), (22)

It is worth noting that we have relaxed the original constrained optimization to a regularized uncon-
strained optimization. The solution cannot satisfy the constraints exactly. To ensure the constraints,
one may consider using the exact penalty method to solve the problem, which is just increasing γ
and η gradually in the iterative optimization. But we have found that the representations given the
regularized optimization are as good as those given by the constrained optimization. The comparison
experiments between regularized and constrained optimization are in Appendix A.11.

Error Bound Let µ̂ be an estimator of µ and Ĥk(G,P ) be the approximation of Hk(G,P ) with
respect to µ̂. Let δ be the upper bound of error bound of our approximation. Let χ(G) be chromatic
number of graph G which is the smallest number of colors needed to color the vertices.

Corollary 4.2. Let ϵ = logχ(G)
1+δ + logα(G), if H(P ) ≥ ϵ, we have |Hk(G,P )−Ĥk(G,P )|

Hk(G,P ) ≤ δ.

This means that if the Shannon entropy is larger than ϵ, the error bound of approximation is less than
δ. The proof of Corollary 4.2 is in Appendix A.2. In the t iteration, the average Shannon entropy of
the dataset G is defined as

H̄(G; t) := 1

N

N∑
j=1

H(P (gj
θt ,Zj

ϕt

). (23)

Based on Corollary 4.2, if H̄(G; t) < ϵ and µt+0.01 ≤ 1, we use µt+1 = µt+0.01 to increase the
average Shannon entropy of G for a more exact approximation.

Algorithm 1 Iterative algorithm for solving the regularized max-min problem (14)

1: Initialization: θ0,ϕ0,ψ0, µ0 = 0.5, γ = 0.5, η = 0.5, ϵ (e.g., 0.3 log n), ε (e.g., 0.01).
2: repeat
3: θt+1, ϕt+1 = argmaxθ,ϕ J(G;θ,ϕ,ψt)
4: ψt+1 = argminψ J(G;θt+1,ϕt+1,ψ)

5: if H̄(G; t) < ϵ and µt + 0.01 ≤ 1 then µt+1 = µt + 0.01 else µt+1 = µt

6: until |J(G;θt+1,ϕt+1,ψt+1)− J(G;θt,ϕt,ψt)| ≤ ε

4.3 ARCHITECTURE AND GENERALIZATIONS

The architecture of our GeMax method is in Figure 2 of Appendix A.3. The graph representations
learning functions Fg(·, ·;θ) and FZ(·, ·;ϕ) are not confined to any specific GNN models or graph
data; rather, it offers a versatile approach across various contexts. For example, we can use one
of the InfoMax-based models (e.g. InfoGraph (Sun et al., 2019) or GraphCL (You et al., 2020))
to model graph representation learning Fg and FZ for our GeMax (see Figure 3 in Appendix A.3).
In conclusion, our graph entropy maximization principle is parallel to other unsupervised graph
learning principles such as InfoMax principle (Linsker, 1988).

5 EXPERIMENT

In this section, we will evaluate the effectiveness of our Graph entropy Maximization (GeMax)
method on graph-level and node-level tasks. The statistics of graph datasets used in experiments
are in Table 6 and Table 7 of Appendix A.4. In Appendix A.5, we introduce our main baseline
InfoMax (Linsker, 1988). We provide the experimental settings of node-level learning in Appendix
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A.7. In Appendix A.8, we conduct sensitivity analysis on all the hyperparameters and provide some
recommendations for parameter settings. In Appendix A.9, we conduct an ablation study to analyze
the importance of each part in our graph entropy maximization methods. In Appendix A.10, we
analyze the convergence of our iterative algorithm 1. In Appendix A.11, we compare the regularized
and constrained optimization of problem equation 14. In Appendix A.12, we report the time cost of
our methods on different tasks and datasets.

5.1 GRAPH-LEVEL REPRESENTATIONS LEARNING

For unsupervised graph-level learning, those InfoMax based methods are the most current and in-
fluential methods spanning from 2019 to 2022, each boasting high citations on Google Scholar
(see Table 8). Besides InfoMax, there are few works on other graph-level representation learning
principles such as graph information bottleneck (GIB) Wu et al. (2020) and the subgraph informa-
tion bottleneck (SIB) Yu et al. (2021). But they are not suitable for unsupervised graph learning
(see Appendix A.5). To ensure fair comparisons, we follow the neural network architectures of
InfoMax methods and replace the InfoMax objective with our GeMax objective in equation 20.
Our baselines include three kernel methods (e.g. graphlet kernel (GL) (Shervashidze et al., 2009),
Weisfeiler-Lehman sub-tree kernel (WL) (Shervashidze et al., 2011), deep graph kernel (DGK) (Ya-
nardag & Vishwanathan, 2015)), two traditional graph embedding methods (e.g. node2vec (Grover
& Leskovec, 2016), and graph2vec (Narayanan et al., 2017)), and five InfoMax based methods (e.g
InfoGraph (Sun et al., 2019), GraphCL (You et al., 2020), AD-GCL (Suresh et al., 2021), JOAO
(You et al., 2021), AutoGCL (Yin et al., 2022)).

Unsupervised learning Following (Sun et al., 2019; You et al., 2021; Yin et al., 2022), we train
a graph representation model on unlabeled data to obtain graph representations and use these rep-
resentations and graph labels to train a SVM classifier. Our experimental setup follows AutoGCL
(Yin et al., 2022). Specifically, they use a 5-layer GIN Xu et al. (2018) with hidden size 128 as the
representation model, shown in Figure 4. The model is trained with a batch size of 128 and a learn-
ing rate of 0.001. For those contrastive learning methods (e.g., JOJOv2 and AutoGCL), they use 30
epochs of contrastive pre-training under the naive strategy. We repeat the experiments for 10 times
with different random seeds. In each time, we perform 10-fold cross-validation on each dataset.
The hyperparameters of Algorithm 1 are µ0 = 0.5, γ = 0.5, η = 0.5, ϵ = 0.3 log n, τ = 0.01. We
also conduct sensitivity analysis in Appendix A.8 to study how different hyperparameters affect the
results. The results are reported in Table 14.

Semi-supervised Learning Following (Hu et al., 2019; You et al., 2021; Yin et al., 2022), we
compare our GeMax methods with InfoMax-based methods in semi-supervised learning tasks. The
semi-supervised learning objective of InfoMax method is shown in equation 29 of Appendix A.5. To
ensure fair comparisons, we replace the InfoMax objective with our GeMax objective in equation 20
while keeping other settings unchanged. Following the settings of AutoGCL (Yin et al., 2022), we
employ a 10-fold cross-validation on each dataset. For each fold, we use 80% of the total data as
the unlabeled data, 10% as labeled training data, and 10% as labeled testing data. The classifier
for labeled data is a ResGCN (Chen et al., 2019) with 5 layers and a hidden size of 128. The
hyperparameters of Algorithm 1 are µ0 = 0.5, γ = 0.5, η = 0.5, ϵ = 0.3 log n, τ = 0.01. We repeat
each experiment 10 times and report the average accuracy in Table 2.

Significance analysis Our GeMax method achieves the best performance on all datasets. By re-
placing the InfoMax objective with GeMax objective, the performance of the five graph representa-
tion learning methods can be improved, which demonstrates the effectiveness of our GeMax method.
we apply the paired t-test on the mean scores over the datasets to show the significance of our im-
provement over baselines. A p-value less than 0.05 indicates a significant difference. The results in
Table 3 demonstrates the significance of gains given by our methods.

5.2 UNSUPREVISED NODE-LEVEL LEARNING

As mentioned above, the orthonormal representations can be used for graph reconstruction. We
compare GeMax methods with VGAE Kipf & Welling (2016b), ARGA Pan et al. (2018), GIC
Mavromatis & Karypis (2020) and LGAE Salha et al. (2021) in edge prediction tasks. Following
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Table 1: Performance (ACC) of unsupervised learning. The baseline results are from AutoGCL (Yin
et al., 2022) and JOAO (You et al., 2021). The bold, blue and green numbers denote the best, second
best and third best performances respectively, which also applies to Table 2 and Table 4

methods and principles MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

kernels
GL 81.66±2.11 - - - - 65.87±0.98 77.34±0.18 41.01± 0.17
WL 80.72±3.00 72.92±0.56 - 80.01±0.50 - 72.30±3.44 68.82±0.41 46.06± 0.21

DGK 87.44±2.72 73.30±0.82 - 80.31±0.46 - 66.96±0.56 78.04±0.39 41.27±0.18
vector

embedding
node2vec 72.63±10.20 57.49±3.57 - 54.89±1.61 - - - -
graph2vec 83.15±9.25 73.30±2.05 - 73.22±1.81 - 71.10±0.54 75.78±1.03 47.86±0.26

InfoGraph InfoMax 89.01±1.13 74.44±0.31 72.85±1.78 76.20±1.06 70.65±1.13 73.03±0.87 82.50±1.42 53.46±1.03
GeMax 91.13±1.70 75.77±1.26 74.16±1.65 79.24±1.43 72.57±1.74 74.59±1.53 85.53±1.92 55.21±1.69

GraphCL InfoMax 86.80±1.34 74.39±0.45 78.62±0.40 77.87±0.41 71.36±1.15 71.14±0.44 89.53±0.84 55.99±0.28
GeMax 90.36±1.69 76.86±1.62 79.25±1.53 78.72±1.79 73.43±1.62 73.12±1.25 91.47±1.74 56.25±1.53

AD-GCL InfoMax 87.13±1.56 73.59±0.65 74.49±0.52 69.67±0.51 73.32±0.61 71.57±1.01 85.52±0.79 53.00±0.82
GeMax 89.68±1.47 74.52±1.71 77.58±1.41 76.35±1.62 74.83±1.79 73.52±1.45 88.03±1.62 55.03±1.54

JOAOv2 InfoMax 86.91±1.01 71.25±0.85 66.91±1.75 72.99±0.75 70.40±2.21 71.60±0.86 78.35±1.38 55.57±2.86
GeMax 88.33±1.58 74.63±1.87 72.60±1.35 75.36±1.42 71.68±1.67 72.21±1.72 81.68±1.40 57.17±1.67

AutoGCL InfoMax 88.64±1.08 75.80±0.36 77.57±0.60 82.00±0.29 70.12±0.68 73.30±0.40 88.58±1.49 56.75±0.18
GeMax 90.85±1.28 76.23±1.29 78.36±1.51 83.21±1.34 72.39±1.57 74.05±1.79 90.42±1.31 56.81±1.85

Table 2: Performance (ACC) of semi-supervised learning.

methods NCI1 PROTEINS DD COLLAB REDDIT-B REDDIT-M5K GITHUB
GraphCL InfoMax 74.63±0.25 74.17±0.34 76.17±1.37 74.23±0.21 89.11±0.19 52.55±0.45 65.81±0.79

GeMax 75.49±1.76 75.39±1.58 77.61±1.29 76.57±1.72 91.45±1.57 54.61±1.70 66.78±1.53
AD-GCL InfoMax 75.18±0.31 73.96±0.47 77.91±0.73 75.82±0.26 90.10±0.15 53.49±0.28 64.17±1.38

GeMax 76.27±1.44 75.21±1.78 78.52±1.53 76.92±1.81 91.32±1.67 54.88±1.21 65.52±1.45
JOAOv2 InfoMax 74.86±0.39 73.31±0.48 75.81±0.72 75.53±0.18 88.79±0.65 52.71±0.28 66.66±0.60

GeMax 76.05±1.23 74.52±1.61 76.30±1.54 76.25±1.24 90.05±1.76 54.07±1.52 66.47±1.93
AutoGCL InfoMax 73.75±2.25 75.65±2.40 77.50±4.41 77.16±1.48 79.80±3.47 49.91±2.70 62.46±1.51

GeMax 75.12±1.19 76.75±1.83 78.36±1.37 78.93±1.80 87.26±1.68 52.76±1.74 67.31±1.64

Table 3: Significance analysis of improvement. We report the p-values of paired t-test.

task (principles) InfoGraph GraphCL AD-GCL JOAOv2 AutoGCL
unsupervised (InfoMax vs GeMax) 0.0005 0.0029 0.0036 0.0037 0.0047

semi-supervised (InfoMax vs GeMax) - 0.0005 0.0000 0.0067 0.0200

VGAE Kipf & Welling (2016b), all the models are trained on an incomplete version of these datasets
where parts of the edges have been removed, while all node features are kept. We split the nodes
of each dataset into three parts: 80% as training set, 10% as validation set and 10% as test set. We
set γ larger to emphasize the orthonormal representations regularization. The hyperparameters of
Algorithm 1 are µ0 = 0.5, γ = 5, η = 0.5, ϵ = 0.3 log n, τ = 0.01. The results in Table 4 show that
GeMax methods outperform baselines.

Table 4: Performance of edge prediction. AUC is the area under ROC curve. AP is average precision.

methods Cora Citeseer Pubmed
AUC AP AUC AP AUC AP

VGAE 91.4±0.16 92.6±0.10 90.8±0.07 92.3±0.11 94.5±0.13 94.8±0.09
ARGA 92.3±0.21 92.5±0.13 93.1±0.16 93.5±0.25 96.3±0.26 96.8±0.15
LGAE 93.0±0.19 93.2±0.08 94.5±0.19 94.7±0.12 96.7±0.15 97.0±0.18
GIC 92.6±0.09 92.7±0.17 94.3±0.23 94.4±0.14 96.5±0.17 96.7±0.21

InfoGraph-GeMax 92.8±0.13 93.0±0.25 93.7±0.12 94.2±0.17 95.2±0.24 95.4±0.12
GraphCL-GeMax 93.2±0.24 93.4±0.19 94.6±0.20 94.9±0.23 96.6±0.13 96.7±0.10
AutoGCL-GeMax 93.1±0.15 93.2±0.21 94.9±0.14 95.1±0.13 96.9±0.19 97.2±0.15

5.3 MORE NUMERICAL RESULTS

The results of parameter sensitivity analysis, ablation study, convergence analysis and time cost
are in the supplementary material.

6 CONCLUSIONS

In this work, we propose a novel Graph entropy Maximization (GeMax) method to learn the or-
thonormal representations, which can capture the most information of a graph. We also approximate
the graph entropy via Shannon entropy and chromatic entropy. The experiment on unsupervised
graph-level and node-level demenstrate the effectiveness of our GeMax method.
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A APPENDIX

A.1 NOTATIONS

The main notations used in this paper are shown in Table 5.

Table 5: Notations

Symbol Description Symbol Description
G a graph V vertex set of graph G
g graph-level representation of G n the number of vertices of G
Z node representations matrix of G zi representation of node i
(G,P ) a probabilistic graph P (g,Z) probability distribution on V
VP(G) vertex packing polytope of G Pi(g,Z) probability density of vertex i
Hk(G,P ) graph entropy H(P ) Shannon entropy
Hc(G,P,π) the entropy of a coloring π Hχ(G,P ) chromatic entropy
π a coloring on vertex set V Π(G) set of all coloring π of G
Ck the set of vertices with color k α(G) the independence number of G
χ(G) the chromatic number of G D(G,P ) gap between bounds of Hk(G,P )
θ the parameters for learning g ϕ the parameters for learning Z
ψ the parameters for learning π δ error bound of the approximation

A.2 ERROR BOUND ANALYSIS OF THE APPROXIMATION

Corollary A.1. Let ϵ = logχ(G)
1+δ + logα(G), if H(P ) ≥ ϵ, we have |Hk(G,P )−Ĥk(G,P )|

Hk(G,P ) ≤ δ.

Proof. Let D(G,P ) be the gap between lower and upper bounds in Theorem 2.8, we have

D(G,P ) := Hχ(G,P )−H(P ) + logα(G). (24)

Let χ(G) be chromatic number of graph G which is the smallest number of colors needed to color
the vertices. The gap D(G,P ) is bounded by χ(G), α(G) and Shannon entropy H(P ) as follows.

Corollary A.2 (Cardinal et al. (2004; 2005)).

0 ≤ D(G,P ) ≤ logχ(G) + logα(G)−H(P ).

Let µ̂ be an estimator of µ and Ĥk(G,P ) be an approximation of Hk(G,P ) with respect to µ̂.
Suppose H(P )− logα(G) > 0, the error bound of the approximation is as follows

|Hk(G,P )− Ĥk(G,P )|
Hk(G,P )

≤ D(G,P )

H(P )− logα(G)
≤ logχ(G)

H(P )− logα(G)
− 1. (25)

Since α(G) and χ(G) are constants of a given G, maximizing the Shannon entropy H(P ) is to
minimize the upper bound of the error bound in equation 25 such that it yields a more exact approx-
imation. Let δ be the upper bound of the error bound of our approximation, we have

logχ(G)

H(P )− logα(G)
− 1 ≤ δ ⇒ H(P ) ≥ logχ(G)

1 + δ
+ logα(G) (26)

Thus, let ϵ = logχ(G)
1+δ + logα(G), if H(P ) ≥ ϵ, we have |Hk(G,P )−Ĥk(G,P )|

Hk(G,P ) ≤ δ.

A.3 ARCHITECTURE AND GENERALIZATION

In this section, we introduce the architecture of our GeMax method is in Figure 2. In Figure 3,
we apply GeMax on the architecture of InfoGraph by replacing the InfoMax loss with our GeMax
objective J(G;θ,ϕ,ψ). In Figure 4, we show the architecture of Infograph Sun et al. (2019).
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Figure 2: Architecture of GeMax
The graph representations learning part (FZ(A,X;θ) and Fg(A,X;ϕ)) in the blue dash box are not
confined to any specific GNN models. Thus, GeMax can be applied on various GNN based models like
InfoGraph Sun et al. (2019) or GraphCL You et al. (2020).

Figure 3: Applying GeMax to InfoGraph network by replacing the InfoMax loss
Given an unsupervised graph representation learning models, GeMax method is to replace the original loss
with our GeMax objective J(G;θ,ϕ,ψ) equation 20 and introduce a coloring function Fc(A,X;ψ). The
J(G;θ,ϕ,ψ) can be optimized by our iterative algorithm.

A.4 EXPERIMENT: STATISTICS OF DATASET

In this section, we provide the statistics of the dataset we used in experiments. For graph-level
representation learning tasks, we use the TUdataset Morris et al. (2020) in Table 6. For node-level
representation learning tasks, we use the network dataset Sen et al. (2008) in Table 7 for edge
prediction. The TUdataset used in graph-level

Table 6: Statistics of TUdataset Morris et al. (2020)

Name Num. of graphs Num. of classes Num. of nodes node labels node attributes
MUTAG 188 2 17.9 yes no

PROTEINS 1113 2 39.1 yes yes
DD 1178 2 284.32 yes no

NCI1 4110 2 29.9 yes no
COLLAB 5000 3 74.49 no no
IMDB-B 1000 2 19.8 no no

REDDIT-B 2000 2 429.63 no no
REDDIT-M5K 4999 5 508.52 no no

GITHUB 12725 2 113.79 no no
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Figure 4: Architecture of InfoGraph with m layers

Table 7: Statistics of Network dataset Sen et al. (2008) for edge prediction

Name Num. of nodes Num. of node class Num. of edges described by a 0/1-valued
Cora 2708 7 5429 yes

Citeseer 3312 6 4732 yes
Pubmed 19717 3 44338 yes

A.5 EXPERIMENT BASELINE: INFORMAX METHODS

For unsupervised and semi-supervised graph-level learning, those InfoMax based methods are the
most current and influential methods spanning from 2019 to 2022, each boasting high citations
on Google Scholar (see Table 8). Besides the InfoMax principle, there are few works on graph
information bottleneck (GIB) Wu et al. (2020) and the subgraph information bottleneck (SIB) Yu
et al. (2021). GIB and SIB aim to learn the minimal sufficient representation for downstream tasks.
But GIB Wu et al. (2020) and SIB Yu et al. (2021) may fail if the downstream tasks are not available
in the representation learning stage. Thus they are not suitable for unsupervised and semi-supervised
graph learning such that they are not included in our baselines. To the best of our knowledge, we
don’t find other principles for unsupervised graph-level representation learning except InfoMax, GIB
and SIB. Since the InfoMax methods are the most influential methods, we compare with them by
replacing the InfoMax objective with our GeMax objective in equation 20 (see Figure 2 and Figure
3). In this work, we compare with five InfoMax based methods, that is, InfoGraph (Sun et al., 2019),
GraphCL (You et al., 2020), AD-GCL (Suresh et al., 2021), JOAO (You et al., 2021) , AutoGCL
(Yin et al., 2022). All these five methods share the same graph representation learning architecture
with InfoGraph Sun et al. (2019), as shown in Figure 4.

Table 8: Google scholar citations comparison

principle InfoMax GIB SIB
methods InfoGraph GraphCL AD-GCL JOAO AutoGCL
citations 665 1101 176 249 42 129 26

Following (Nowozin et al., 2016; Sun et al., 2019; Belghazi et al., 2018), suppose the node-level
representation zp(x) and the graph-level representation g(x) are depending on the input x, Tφ is
a discriminator parameterized by a neural network with parameters φ, the Jensen-Shannon mutual
information (MI) estimator (Fuglede & Topsoe, 2004; Nowozin et al., 2016; Hjelm et al., 2019; Sun
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et al., 2019) Iφ between zv and g is defined as

Iφ(zp, g) = EP[−sp(−Tφ(zp(x), g(x)))]− EP×P̃[sp(Tφ(zp(x′), g(x)))], (27)

where x is the input sample from distribution P, x′ is the negative sample from distribution P̃, and
sp(a) = log(1 + ea) denotes the softplus function. P is the empirical probability distribution of the
input space and P̃ is the empirical probability distribution of the negative input space. Many recent
graph-level representation learning methods (Sun et al., 2019; You et al., 2020; Yin et al., 2022)
are based on the InfoMax principle, i.e., maximizing equation 27. For example, InfoGraphSun
et al. (2019) obtains graph-level representations by maximizing the mutual information between the
graph-level representation and the node-level representations as follows

ϕ∗, θ∗, φ∗ = argmax
ϕ,θ,φ

|G|∑
i=1

1

|Vi|
∑
p∈Vi

Iφ(z
θ
p, g

ϕ
i ), (28)

where Iφ is the Jensen-Shannon MI estimator defined by equation 27. For semi-supervised learn-
ing, the dataset G is split into labeled dataset GL and unlabeled dataset GU . They deploy another
supervised encoder with parameter ψ and then generate the supervised node-level representations
Zψi , graph-level representations gψi and prediction ŷψi . The loss function of InfoGraph for semi-
supervised learning is defined as follows:

Linfo-semi =

|GL|∑
l=1

Lsupervised(ŷ
ψ
l ,yl) +

|G|∑
i=1

Lunsupervised(Z
θ
i , g

ϕ
i )− λ

|G|∑
i=1

1

|Vi|
Iφ(g

ϕ
i , g

ψ
i ) (29)

where Lunsupervised is derived from equation 28. The last term encourages the representations learned
by the two encoders to have high mutual information.

A.6 EXPERIMENT: GRAPH-LEVEL TASKS

Unsupervised learning Following (Sun et al., 2019; You et al., 2021; Yin et al., 2022), we train
a graph representation model on unlabeled data to obtain graph representations and use these rep-
resentations and graph labels to train a SVM classifier. Our experimental setup follows AutoGCL
(Yin et al., 2022). Actually, all the four InfoMax methods (GraphCL, AD-GCL, JOJOv2 and Au-
toGCL) are based on the architecture of InfoGraph. Specifically, they use a 5-layer GIN Xu et al.
(2018) with hidden size 128 as the representation model, shown in Figure 4. The model is trained
with a batch size of 128 and a learning rate of 0.001. For those contrastive learning methods (e.g.,
JOJOv2 and AutoGCL), they use 30 epochs of contrastive pre-training under the naive strategy. We
repeat the experiments for 10 times with different random seeds. In each time, we perform 10-fold
cross-validation on each dataset. Specifically, in each fold, we use 90% of the total data as unlabeled
data for contrastive pre-training and 10% as labeled testing data. The hyperparameters of Algorithm
1 are µ0 = 0.5, γ = 0.5, η = 0.5, ϵ = 0.3 log n, τ = 0.01. We also conduct sensitivity analysis
in Appendix A.8 to study how different hyperparameters affect the results. The average accuracy
(ACC) and standard deviation are reported in Table 14.

Semi-supervised Learning Following (Hu et al., 2019; You et al., 2021; Yin et al., 2022), we
compare our GeMax methods with InfoMax-based methods in semi-supervised learning tasks. The
semi-supervised losses of InfoMax based methods were shown in equation 29 of Appendix A.5. To
ensure fair comparisons, we follow the semi-supervised learning of InfoMax methods in equation 29
and replace the InfoMax objective with our GeMax objective in equation 20. Following the settings
of AutoGCL (Yin et al., 2022), we employ a 10-fold cross-validation on each dataset. For each fold,
we use 80% of the total data as the unlabeled data, 10% as labeled training data, and 10% as labeled
testing data. The classifier for labeled data is a ResGCN (Chen et al., 2019) with 5 layers and a
hidden size of 128. We repeat each experiment 10 times and report the average accuracy in Table 2.

A.7 EXPERIMENT: NODE-LEVEL TASKS

Though original motivation of orthonormal representations in equation 1 is from information the-
ory, it can be used to reconstruct the adjacency matrix A using the information of non-adjacency.
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Denoting Â as the reconstructed adjacency matrix, we have

Â = σ(abs(Zϕ(Zϕ)⊤ − In)), (30)

where the abs(·) is the element-wise absolute value function and the σ(·) is a element-wise sigmoid
function. Thus, we can compare our GeMax methods with other graph reconstruction methods such
as VGAE Kipf & Welling (2016b), ARGA Pan et al. (2018), GIC Mavromatis & Karypis (2020)
and LGAE Salha et al. (2021). We use the network architecture of InfoMax methods (InfoGraph,
GraphCL and AutoGCL) by replacing the InfoMax objective with our GeMax objective. Since
the orthonormal representations mainly contributes to graph reconstruction and edge prediction, we
should set the parameter of orthonormal representations regularization (i.e., η) larger. The hyperpa-
rameters of Algorithm 1 are µ0 = 0.5, γ = 0.5, η = 5, ϵ = 0.3 log n, τ = 0.01.

Following VGAE Kipf & Welling (2016b), all the models are trained on an incomplete version of
these datasets where parts of the edges have been removed, while all node features are kept. We split
the nodes of each dataset into three parts: 80% as training set, 10% as validation set and 10% as test
set. We report area under the ROC curve (AUC) and average precision (AP) scores for each model
on the test set in Table 4.

A.8 EXPERIMENT: SENSITIVITY ANALYSIS OF HYPERPARAMETERS

In the alternative algorithm 1, there are four hyperparameters need to be tuned: the initial approxi-
mation weight µ0, the orthonormal representation regularization parameter γ, the coloring regular-
ization parameter η, the lower threshold of average Shannon entropy ϵ. In this section we analyse the
parameter sensitivity on the InfoGraph Sun et al. (2019) with different hyperparameters. We repeat
each experiments for ten times and plot the average accuracy with variance on different datasets.

A.8.1 THE INITIAL APPROXIMATION WEIGHT

(a) MUTAG (b) PROTEIN (c) DD (d) NCI1

(e) COLLAB (f) IMDB-B (g) REDDIT-B (h) REDDIT-M5

Figure 5: The average ACC of different µ on different data

The approximation weight µ is initialized as µ = µ0 in the beginning of algorithm 1. In Figure
5, we fix ϵ = 0.3 log n and other hyperparameters. We tune µ0 from {0.1, 0.2, ..., 0.9, 1}. The
results show that algorithm 1 achieves the top performance when 0.5 ≤ µ0 ≤ 0.7. If µ0 = 0, the
approximation to the graph entropy starts with Ĥk(G,P ) = Hc(Gj , P (g

θ0

j ,Z
ϕ0

j ),πψ
0

). However,
a very small µ0 adversely affect the performance because the coloring πψ

0

is randomly initialized in
the beginning. If µ0 = 1, the algorithm 1 degenerates to equation 11, that is, maximizing the lower
bound of graph entropy. If the equality in Corollary 2.9 holds, µ0 = 1 can result in learning the
representations for exact graph entropy Hk(G,P ). However, if the equality in Corollary 2.9 doesn’t
hold, the approximation will be inexact and thus the performance decreases.

20



Under review as a conference paper at ICLR 2024

(a) MUTAG (b) PROTEIN (c) DD (d) NCI1

(e) COLLAB (f) IMDB-B (g) REDDIT-B (h) REDDIT-M5

Figure 6: The average ACC of different γ on different data

A.8.2 THE ORTHONORMAL REPRESENTATION REGULARIZATION PARAMETER

γ is the hyperparameter for orthonormal representation regularization. In Figure 6, we fix other hy-
perparameters and tune γ from {10−3, 10−2, ..., 105, 106}. The results show that γ is not sensitive
when 1 ≤ γ ≤ 10. If γ is too small, the performance decreases because the node-level representa-
tions Z may not be orthonormal representations. A very large γ adversely affect the performance
because the orthonormal representation regularization dominates the representation learning.

A.8.3 THE COLORING REGULARIZATION PARAMETER

(a) MUTAG (b) PROTEIN (c) DD (d) NCI1

(e) COLLAB (f) IMDB-B (g) REDDIT-B (h) REDDIT-M5

Figure 7: The average ACC of different η on different data

η is the hyperparameter for coloring regularization. In Figure 7, we fix other hyperparameters and
tune η from {10−3, 10−2, ..., 105, 106}. The results show that algorithm 1 achieve top comference
when 1 ≤ η ≤ 10. If η is too small, the performance decreases because the the coloring function Fc
are unable to search for a coloring for G. A very large η adversely affect the performance because
the coloring searched by Fc is not related to the chromatic entropy.

A.8.4 THE LOWER THRESHOLD OF AVERAGE SHANNON ENTROPY

In algorithm 1, we use ϵ to control the updating of µ. In Figure 8, we fix other hyperparameters and
tune ϵ ranging from 0.1 log n to log n. The results show that ϵ is not sensitive when 0.3 ≤ ϵ ≤ 0.4.
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(a) MUTAG (b) PROTEIN (c) DD (d) NCI1

(e) COLLAB (f) IMDB-B (g) REDDIT-B (h) REDDIT-M5

Figure 8: The average ACC of different ϵ on different data

If ϵ is too small, the algorithm 1 degenerates to equation 11, that is, maximizing the lower bound of
graph entropy. If the equality in Corollary 2.9 holds, µ0 = 1 can result in learning the representations
for exact graph entropy Hk(G,P ). However, if the equality in Corollary 2.9 doesn’t hold, the
approximation will be inexact and thus the performance decreases. If ϵ is large, the µ will not be
updated such that the error bound are not guaranteed to be smaller than δ. Thus the performance
decreases.

A.9 EXPERIMENT: ABLATION STUDY

In the ablation study, we analyse the importance of each part of GeMax objective J(G;θ,ϕ,ψ).

A.9.1 REMOVE THE ORTHONORMAL REPRESENTATION REGULARIZATION

We remove the orthonormal representation regularization of GeMax objective J(G;θ,ϕ,ψ) in equa-
tion 20 by setting γ = 0. The results in Table 9 show that the orthonormal representation regular-
ization can improve the performance of graph representation learning.

Table 9: Performance (ACC) of unsupervised learning for Ablation study. The ablation indicates
γ = 0 in equation 20. The bold numbers denote the better performances of the same method.

methods ablation MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
InfoGraph ✓ 87.48±1.56 73.29±1.13 72.54±1.27 76.89±1.28 70.22±1.97 71.53±1.31 84.07±1.16 54.32±1.53

× 91.13±1.70 75.77±1.26 74.16±1.65 79.24±1.43 72.57±1.74 74.59±1.53 85.53±1.92 55.21±1.69
GraphCL ✓ 88.39±1.12 74.43±1.28 76.77±1.22 76.09±1.26 70.32±1.85 71.07±1.36 88.73±1.52 54.69±1.49

× 90.36±1.69 76.86±1.62 79.25±1.53 78.72±1.79 73.43±1.62 73.12±1.25 91.47±1.74 56.25±1.53
AD-GCL ✓ 87.45±1.31 73.01±1.55 76.23±1.86 74.73±1.19 72.85±1.37 71.64±1.13 86.65±1.28 54.91±1.59

× 89.68±1.47 74.52±1.71 77.58±1.41 76.35±1.62 74.83±1.79 73.52±1.45 88.03±1.62 55.03±1.54
JOAOv2 ✓ 87.69±1.81 73.05±1.16 70.03±1.83 72.67±1.98 70.11±1.50 71.37±1.56 80.24±1.35 55.42±1.33

× 88.33±1.58 74.63±1.87 72.60±1.35 75.36±1.42 71.68±1.67 72.21±1.72 81.68±1.40 57.17±1.67
AutoGCL ✓ 87.23±1.48 74.36±1.65 76.79±1.60 81.76±1.55 70.48±1.08 72.63±1.54 87.03±1.95 54.27±1.61

× 90.85±1.28 76.23±1.29 78.36±1.51 83.21±1.34 72.39±1.57 74.05±1.79 90.42±1.31 56.81±1.85

A.9.2 REMOVE THE GRAPH ENTROPY

We remove the graph entropy of GeMax objective J(G;θ,ϕ,ψ) in equation 20 by setting γ = 105

such that the orthonormal representation will dominate the optimization. The results in Table 10
show that the graph entropy can improve the performance of graph representation learning.

A.9.3 REMOVE THE CHROMATIC ENTROPY

We remove the chromatic entropy of GeMax objective J(G;θ,ϕ,ψ) in equation 20 by setting µ =
1. The results in Table 11 show that the chromatic entropy can improve the performance of graph
representation learning.
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Table 10: Performance (ACC) of unsupervised learning for Ablation study. The ablation indicates
γ = 105 in equation 20. The bold numbers denote the better performances of the same method.

methods ablation MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
InfoGraph ✓ 82.53±1.24 70.57±1.42 71.18±1.34 73.26±1.45 68.73±1.43 70.11±1.09 82.43±1.24 51.53±1.42

× 91.13±1.70 75.77±1.26 74.16±1.65 79.24±1.43 72.57±1.74 74.59±1.53 85.53±1.92 55.21±1.69
GraphCL ✓ 83.54±1.47 71.39±1.65 73.26±1.03 75.86±1.31 69.07±1.37 70.22±1.87 85.98±1.47 52.37±1.50

× 90.36±1.69 76.86±1.62 79.25±1.53 78.72±1.79 73.43±1.62 73.12±1.25 91.47±1.74 56.25±1.53
AD-GCL ✓ 85.49±1.84 70.16±1.36 74.49±1.78 71.05±1.32 70.58±1.73 70.90±1.65 83.47±1.67 52.64±1.83

× 89.68±1.47 74.52±1.71 77.58±1.41 76.35±1.62 74.83±1.79 73.52±1.45 88.03±1.62 55.03±1.54
JOAOv2 ✓ 82.73±1.69 70.48±1.43 68.24±1.69 70.04±1.25 69.27±1.47 70.63±1.04 78.15±1.57 52.79±1.27

× 88.33±1.58 74.63±1.87 72.60±1.35 75.36±1.42 71.68±1.67 72.21±1.72 81.68±1.40 57.17±1.67
AutoGCL ✓ 83.14±1.58 71.93±1.82 74.35±1.51 79.11±1.57 68.26±1.83 71.48±1.57 82.83±1.72 53.07±1.63

× 90.85±1.28 76.23±1.29 78.36±1.51 83.21±1.34 72.39±1.57 74.05±1.79 90.42±1.31 56.81±1.85

Table 11: Performance (ACC) of unsupervised learning for Ablation study. The ablation indicates
µ = 1 in equation 20. The bold numbers denote the better performances of the same method.

methods ablation MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
InfoGraph ✓ 88.52±1.49 74.16±1.37 72.98±1.52 78.30±1.67 71.95±1.43 72.46±1.08 84.91±1.34 54.96±1.53

× 91.13±1.70 75.77±1.26 74.16±1.65 79.24±1.43 72.57±1.74 74.59±1.53 85.53±1.92 55.21±1.69
GraphCL ✓ 89.27±1.54 75.16±1.43 77.73±1.28 77.19±1.69 72.21±1.54 72.21±1.21 90.34±1.86 55.10±1.88

× 90.36±1.69 76.86±1.62 79.25±1.53 78.72±1.79 73.43±1.62 73.12±1.25 91.47±1.74 56.25±1.53
AD-GCL ✓ 88.98±1.06 73.89±1.38 76.95±1.53 75.27±1.93 73.04±1.53 72.45±1.22 87.11±1.90 54.71±1.34

× 89.68±1.47 74.52±1.71 77.58±1.41 76.35±1.62 74.83±1.79 73.52±1.45 88.03±1.62 55.03±1.54
JOAOv2 ✓ 87.52±1.69 73.79±1.93 71.52±1.58 74.70±1.31 71.19±1.74 72.08±1.38 80.49±1.05 56.23±1.78

× 88.33±1.58 74.63±1.87 72.60±1.35 75.36±1.42 71.68±1.67 72.21±1.72 81.68±1.40 57.17±1.67
AutoGCL ✓ 88.43±1.62 75.03±1.71 76.72±1.89 82.89±1.47 71.97±1.72 73.21±1.43 89.14±1.76 54.86±1.49

× 90.85±1.28 76.23±1.29 78.36±1.51 83.21±1.34 72.39±1.57 74.05±1.79 90.42±1.31 56.81±1.85

A.9.4 REMOVE THE SHANNON ENTROPY

We remove the Shannon entropy of GeMax objective J(G;θ,ϕ,ψ) in equation 20 by setting µ =
0. The results in Table 12 show that the Shannon entropy can improve the performance of graph
representation learning.

Table 12: Performance (ACC) of unsupervised learning for Ablation study. The ablation indicates
µ = 0 in equation 20. The bold numbers denote the better performances of the same method.

methods ablation MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
InfoGraph ✓ 87.26±1.79 74.64±1.71 71.18±1.43 75.96±1.57 71.45±1.53 72.01±1.86 84.25±1.87 54.68±1.93

× 91.13±1.70 75.77±1.26 74.16±1.65 79.24±1.43 72.57±1.74 74.59±1.53 85.53±1.92 55.21±1.69
GraphCL ✓ 88.90±1.30 73.93±1.75 77.65±1.34 76.28±1.49 71.82±1.44 71.69±1.20 87.16±1.35 53.78±1.51

× 90.36±1.69 76.86±1.62 79.25±1.53 78.72±1.79 73.43±1.62 73.12±1.25 91.47±1.74 56.25±1.53
AD-GCL ✓ 87.08±1.12 72.95±1.32 75.26±1.43 74.59±1.47 71.61±1.42 70.45±1.48 85.62±1.76 54.87±1.35

× 89.68±1.47 74.52±1.71 77.58±1.41 76.35±1.62 74.83±1.79 73.52±1.45 88.03±1.62 55.03±1.54
JOAOv2 ✓ 86.47±1.57 72.74±1.32 71.38±1.19 73.53±1.47 68.21±1.83 70.21±1.84 78.35±1.47 53.08±1.43

× 88.33±1.58 74.63±1.87 72.60±1.35 75.36±1.42 71.68±1.67 72.21±1.72 81.68±1.40 57.17±1.67
AutoGCL ✓ 87.57±1.76 73.26±1.48 74.49±1.81 80.22±1.59 70.46±1.93 72.35±1.17 86.49±1.67 53.57±1.90

× 90.85±1.28 76.23±1.29 78.36±1.51 83.21±1.34 72.39±1.57 74.05±1.79 90.42±1.31 56.81±1.85

A.10 EXPERIMENT: CONVERGENCE ANALYSIS

In Figure 9, we can see that the orthonormal representation loss ℓorth and the coloring loss ℓc decrease
into a small value. The Shannon entropy H(P ) and the chromatic entropy Hχ(G,P ) converge into
a stable value. Thus, the overall objective J(G;θ,ϕ,ψ) converges.

A.11 EXPERIMENT: EXACT PENALTY METHOD

We propose a exact penalty algorithm 2 to solve the problem 14 as follows. As γ and η increasing
into a large value, the constraints will be satisfied. We repeat the unsupervised experiments using
algorithm 2 and report the results in Table 13. we have found that the representations given the
regularized optimization are as good as those given by the constrained optimization.

A.12 EXPERIMENT: TIME COST

We run the programming on a machine with Intel 7 CPU and RTX 3090 GPU. We repeat the exper-
iment for five times and report the results in Table ??.
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Figure 9: Convergence analysis of each part of the GeMax objective

Algorithm 2 exact penalty method

1: Initialization: θ0,ϕ0,ψ0, µ0 = 0.5, γ = 0.5, η = 0.5, ϵ (e.g., 0.3 log n), ε (e.g., 0.01).
2: repeat
3: θt+1, ϕt+1 = argmaxθ,ϕ J(G;θ,ϕ,ψt)
4: ψt+1 = argminψ J(G;θt+1,ϕt+1,ψ)

5: γt+1 = γt + 0.005, ηt+1 = ηt + 0.005
6: if H̄(G; t) < ϵ and µt + 0.01 ≤ 1 then µt+1 = µt + 0.01 else µt+1 = µt

7: until |J(G;θt+1,ϕt+1,ψt+1)− J(G;θt,ϕt,ψt)| ≤ ε

Table 13: Performance (ACC) of unsupervised learning. regularized opt. denotes the regularized
algorithm 1 and constrained opt. denotes the exact algorithm 2.The bold numbers denote the better
performances of the same method.

methods algorithm MUTAG PROTEINS DD NCI1
InfoGraph regularized opt. 91.13±1.70 75.77±1.26 74.16±1.65 79.24±1.43

constrained opt. 91.67±1.52 75.39±1.75 75.21±1.70 79.16±1.23
GraphCL regularized opt. 90.36±1.69 76.86±1.62 79.25±1.53 78.72±1.79

constrained opt. 90.05±1.87 76.04±1.91 79.63±1.67 78.95±1.83
AD-GCL regularized opt. 89.68±1.47 74.52±1.71 77.58±1.41 76.35±1.62

constrained opt. 89.25±1.52 74.71±1.53 77.87±1.22 75.73±1.29

Table 14: Time cost. The h is for hour and the m is for minute.

tasks methods and principles MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

unsupervised
learning

InfoGraph InfoMax 2.2 m 11.3 m 1 h 32 m 38.1 m 1 h 36 m 4.7 m 3 h 16 m 7 h 25 m
GeMax 2.4 m 12.7 m 1 h 26 m 37.2 m 1 h 48 m 5.2 m 3 h 27 m 7 h 47 m

GraphCL InfoMax 3.2 m 17.2 m 1 h 54 m 51.8 m 2 h 23 m 6.1 m 4 h 49 m 10 h 25 m
GeMax 3.5 m 16.8 m 2 h 03 m 58.3 m 2 h 32 m 7.5 m 4 h 31 m 10 h 46 m

AD-GCL InfoMax 4.7 m 26.4 m 2 h 35 m 1h 7 m 2 h 48 m 15.5 m 5 h 37 m 14 h 16 m
GeMax 4.5 m 25.1 m 2 h 42 m 1h 16 m 2 h 57 m 13.2 m 5 h 26 m 13 h 52 m

JOAOv2 InfoMax 5.7 m 33.8 m 3 h 2 m 1h 29 m 3 h 10 m 23.6 m 6 h 7 m 15 h 35 m
GeMax 6.4 m 35.2 m 3 h 18 m 1h 15 m 3 h 23 m 24.1 m 6 h 15 m 15 h 26 m

AutoGCL InfoMax 6.8 m 42.7 m 3 h 27 m 1h 56 m 3 h 47 m 32.4 m 6 h 35 m 16 h 43 m
GeMax 6.3 m 41.2 m 3 h 34 m 2h 7 m 3 h 52 m 34.1 m 6 h 46 m 16 h 56 m

semi-
supervised

learning

InfoGraph InfoMax - 12.7 m 2 h 8 m 55.3 m 2 h 38 m - 4 h 2 m 9 h 17 m
GeMax - 13.9 m 2 h 12 m 57.2 m 2 h 49 m - 4 h 13 m 9 h 26 m

GraphCL InfoMax - 23.4 m 2 h 45 m 1 h 7 m 2 h 42 m - 5 h 36 m 12 h 7 m
GeMax - 25.3 m 2 h 57 m 1 h 13 m 2 h 56 m - 5 h 43 m 12 h 23 m

AD-GCL InfoMax - 35.1 m 3 h 24 m 1 h 39 m 3 h 15 m - 6 h 26 m 14 h 33 m
GeMax - 38.6 m 3 h 17 m 1 h 49 m 3 h 21 m - 6 h 43 m 14 h 47 m

JOAOv2 InfoMax - 43.8 m 3 h 31 m 2 h 1 m 4 h 23 m - 7 h 12 m 17 h 26 m
GeMax - 46.2 m 3 h 49 m 2 h 17 m 4 h 18 m - 7 h 29 m 17 h 49 m

AutoGCL InfoMax - 49.3 m 3 h 40 m 2 h 13 m 4 h 28 m - 7 h 36 m 18 h 56 m
GeMax - 53.4 m 3 h 54 m 2 h 27 m 4 h 39 m - 7 h 41 m 18 h 15 m
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