TravelReimGPT: A Conversational Agent for Policy-Compliant and
Reliable Travel Reimbursements

Anonymous ACL submission

Abstract

We present TravelReimGPT, a user-centric,
conversational Al system for automating travel
reimbursement tasks under strict policy con-
straints. While recent LLM-based agents
have shown promise in open-ended dialogues,
they often struggle with numerically sensi-
tive and rule-governed applications due to
limitations in symbolic reasoning and consis-
tency. To address these challenges, we propose
a Programming-Object-Centric Architecture
(POCA) that transforms user inputs and docu-
ments into programming objects, which serve
as the foundation for deterministic, logic-driven
policy enforcement. A self-corrective object
constructor, combining validation logic and
iterative model-guided refinement, enhances
the accuracy and completeness of extracted
information. Through multi-turn interactions,
TravelReimGPT gathers necessary inputs (e.g.,
receipts) and generates reimbursement reports
that comply with complex policy rules. Ex-
periments on real-world reimbursement cases
show that, powered by GPT-4.1, our system
consistently produces accurate reimbursement
outcomes across all tested cases, exhibits ro-
bust conversational fluency, and achieves high
user satisfaction. In contrast, prompting-based
baselines occasionally yield inaccurate reim-
bursements, highlighting reliability and control
limits. This work demonstrates a practical and
extensible framework for building reliable Al
agents for rule-intensive domains, with poten-
tial applicability to broader tasks such as audit-
ing and budget compliance.

1 Introduction

Business-travel reimbursement is one of the most
routine yet time-consuming back-office workflows
in universities, governments, and industry (GBTA,
2023). Every trip generates a small archive of arte-
facts—receipts and per-diem tables—that must be
parsed, checked against multiple policy handbooks,
and distilled into reimbursable dollar amounts. The

paperworks and policy-compliance check are te-
dious and burdensome. Software vendors have
rolled out “smart” reimbursement portals to facili-
tate the process. They employed optical charac-
ter recognition (OCR) for amount detection on
documents and have integrated simple math opera-
tions for simple reimbursement rules, e.g., standard
meals grid amount calculation (SDO CPA, 2025;
Boese, 2025). These tools speed up raw data entry
but stop far short of human-level assistance. The
system might be unable to recognize the truly in-
curred amounts for reimbursement. For example, it
might extract the total amount including tips when
the tips should be removed under some polices; and
it is hard to handle the complicated cases involving
capped reimbursable expenses (e.g., lodging). As
a result, staff must still review and check every ex-
tracted amount item, cross-check it against the raw
receipts, review the grant or institutional policies
manual, and compute the reimbursable amounts by
hand. The semi-automation saves a few keystrokes
but leaves the cognitive and numerical burden un-
touched (Shaked, 2025).

The recent breakthrough in large-scale gener-
ative models promises a leap forward on cogni-
tive AI(McKinsey & Co., 2023; Johnston, 2025).
Large Language Models (LLMs), represented by
GPT-4-series models, exhibit extraordinary profi-
ciency in natural language understanding and gen-
eration(Achiam et al., 2023; Touvron et al., 2023).
The emergence of such sophisticated generative
Al models has facilitated near-human-level com-
petencies and task automation in various domains,
including software development, text summariza-
tion, and various cognitive activities traditionally
requiring human expertise (Chang et al., 2024;
Thirunavukarasu et al., 2023; Wei et al., 2022a;
Gottweis et al., 2025). A current and rapidly grow-
ing trend involves developing human-level Al tools
and systems designed to alleviate humans from te-
dious and repetitive workloads (Wang et al., 2024a).

Prominent applications include automated coding
assistants, intelligent scheduling systems, and ad-
vanced virtual personal assistants (GitHub, 2025;
Microsoft, 2025; Stige et al., 2024). However, crit-
ical limitations persist, such as the occurrence of
hallucinations and constraints imposed by the au-
toregressive nature of LLM architectures, which
hinder their capability for reliable formal logical
reasoning (Bommasani et al., 2021; Ji et al., 2023;
Xu et al., 2024b). Notably, LLMs often struggle
with arithmetic tasks, failing to consistently en-
sure accuracy even in basic addition and simple
character-counting exercises, such as counting the
letter ‘r’ in the word “strawberries”. Consequently,
employing LLMs in numerically-sensitive tasks
including business-travel reimbursement, which re-
quire precise and multiple logical operations and
have extremely low tolerance for numerical inaccu-
racies, remains a significant challenge.

Driven by the consideration, in this work,
we propose TravelReimGPT, a reliable, effective,
and highly user-friendly generative model de-
signed to streamline and automate travel reimburse-
ment processes, including paperwork processing
and ensuring compliance with relevant policies.
TravelReimGPT serves as an end-to-end expert sys-
tem, guiding users to provide mandatory documen-
tation and information, subsequently generating
accurate reimbursable outcomes.

The primary contributions of this work are four-
fold:

* TravelReimGPT. the first end-to-end, con-
versational system that directly turns raw
receipts and free-text queries into reliable
policy-compliant reimbursement reports, lift-
ing the manual burden of document parsing,
rule lookup, and calculation.

* Programming-Object-Centric Architecture
(POCA). an architecture designed for imple-
menting deterministic rule compliance. It en-
sures numerical precision, enhanced usability,
and cognitive robustness by effectively trans-
forming unstructured data (i.e., free texts and
documentations) into programming objects
that operate reliably within formal logical sys-
tems. POCA facilitates seamless interaction
between generative Al and deterministic for-
mal logic networks for developing cognitive
Al to specific rule-compliant tasks, such as
travel reimbursement.

* Al cognition analysis. Demonstrates that the
performance of the LLMs directly impacts
the overall system performance, necessitating
the use of advanced models. The study em-
phasized the necessity of utilizing advanced
generative models, such as GPT-4.1, for an
effective and smooth cognitive Al system.

* Blueprint of AI system for complicated
rule-compliant human tasks. Provides a
practical and systematic solution to develop
reliable, user-friendly, and effective Al sys-
tems for complex tasks requiring numerical
precision and adherence to high-reuse, well-
defined rules, such as rule-constraint budget-
ing, auditing, and other similar tasks.

To the best of our knowledge, TravelReimGPT
is the first end-to-end cognitive Al system for nu-
merically grounded, high-reuse-rule-bound tasks.

2 Related Works

LLM-based agents. LLM-based agents leverage
LLMs to enable intuitive natural language interac-
tions and facilitate various tasks (Plaat et al., 2025;
Xi et al., 2025). To enhance their performance, in-
novative prompting and agent design techniques
have been proposed(Schulhoff et al., 2024): Chain-
of-Thought (CoT) (Wei et al., 2022b) improves ac-
curacy and interpretability by externalizing reason-
ing steps; Function/tool-calling(Masterman et al.,
2024) extends capabilities by integrating prede-
fined functions, tools, and external knowledge; And
ReAct(Yao et al., 2023) interleaves reasoning and
action for dynamic, context-aware behavior. Exist-
ing agents such as MetaGPT (Hong et al., 2023),
HuggingGPT(Shen et al., 2023), Chameleon(Lu
et al., 2023), and KnowAgent(Zhu et al., 2024) are
designed to integrate language understanding, rea-
soning, external knowledge, and tool use, aiming
for increasingly sophisticated capabilities.

Cognitive agents for logic-intensive tasks.
LLMs often hallucinate and underperform on tasks
demanding precise symbolic manipulation, such
as financial and audit domains, mathematics, and
rule-compliant tasks(Kang and Liu, 2023). Recent
research augments LLMs with symbolic and pro-
grammatic components to mitigate the hallucina-
tion and enhance formal logic(Cheng et al., 2025;
Xiong et al., 2024; Xu et al., 2024a; Fang et al.,
2024). OpenAI’s Code Interpreter, Code Act(Wang
et al., 2024b), AgentCoder(Huang et al., 2023),

Mathcoder(Wang et al., 2023), and PAL(Gao et al.,
2023) translate natural-language tasks into exe-
cutable code, yielding better accuracy on arithmetic
and structured-reasoning benchmarks. Others, such
as MCTSr (Zhang et al., 2024a) and Aflow (Zhang
et al., 2024b), employ Monte Carlo Tree Search
for more effective decision-making. These hybrid
neuro-symbolic approaches combine LLM flexibil-
ity with formal precision. However, most current
agents are optimized for general or junior-level
logic tasks and perform poorly on complex sym-
bolic challenges. Domains like rule-compliant re-
imbursement demand task-specific agents that are
robust, accurate, and user-centered (Miehling et al.,
2025). Yet, a unified framework for building such
reliable and domain-specialized agents remains ab-
sent.

3 TravelReimGPT System Design

We introduce TravelReimGPT, a user-friendly,
end-to-end system designed to automate travel
reimbursement processing and generate policy-
compliant reports, including automated document
processing and reimbursement rule enforcement,
while allowing users to interact freely through un-
structured inputs such as free-form text and support-
ing documents. The system integrates advanced
LLMs as its core Al engine for robust language
understanding and generation, and programming
engines for generating reliable and deterministic
rule-compliant reimbursement results.

Given the inherent complexity of travel reim-
bursement, which requires effective expense en-
tity processing and policy compliance involving
frequently multiple interacting constraints and cal-
culations (e.g., total allowable tips), we propose
the POCA. POCA enforces entities and rules to be
expressed as programming objects and logic net-
works so that all computations remain transparent,
testable, and reproducible. Object constructor (OC)
of POCA is designed to construct executable pro-
gramming objects that could be seamlessly inter-
acted within the programming logic network. OC
employs a definition-guided, programming-engine-
driven, and self-corrective loop to ensure the qual-
ity of constructed objects.

3.1 TravelReimGPT User Interface (UI)

TravelReimGPT exposes a Web Ul built with Open
WebUI!, an extensible, feature-rich, and user-

"https://github.com/open-webui/open-webui

friendly self-hosted AI platform. Figure 1 dis-
plays the web UI of TraverReimGPT. Users can at-
tach documents and images, type natural-language
queries, and engage in multi-turn conversations.
All conversations are stored in the sidebar so that
users can resume any thread on demand. Upon
completion, users can download policy-compliant
reimbursement reports with a one-click button.

New Chat = TravelReimGPT v +

L

4 Travel Reimbursement Help

ol TravelReimGPT

Hi

Start post-travel reimbursement procedure.

Figure 1: The Web UI of TravelReimGPT

3.2 Core Engines

There are two types of core engines in the devel-
opment of TravelReimGPT: the AI Engine and the
Programming Engine.

* Al Engine. Provides the cognitive foundation
of TravelReimGPT, enabling intelligent language
understanding and generation. Its core functional
requirements include natural language understand-
ing & generation, programming language compre-
hension, and visual understanding.

* Programming Engine. Serves as the determin-
istic and rule-execution layer of TravelReimGPT.
It ensures the generation of reproducible, numeri-
cally accurate, and policy-compliant outcomes. Its
key responsibilities include: 1) Construction of
domain-specific programming objects: Instantiates
programming objects representing critical reim-
bursement entities (e.g., expenses, travel overview).
2) Execution of rule-based logic networks: Opera-
tionalizes rule logic networks, encoding dependen-
cies, conditionals, and hierarchical relationships
among objects.

TravelReimGPT employs Python as the lan-
guage of its programming engine.

3.3 POCA

POCA ensures that policy enforcement relies exclu-
sively on deterministic programming logic rather
than fragile rule-in-context prompting approaches

https://github.com/open-webui/open-webui

(illustrated in Figure 2).

Programming-Object-Centric Architecture

User Input &
System Context

All programming objects (expense objects, travel overview objects, ...)
Fiights, lodging, ground transportation expenses, ..

Deterministic, Rule-C
t Generation

ing Logic Network

|

R Downloadable
UL ST Outout in the Ui for user's review

Figure 2: The Overview of POCA

3.3.1 Task-Specific Entity and Rule Modeling

The POCA underpins TravelReimGPT by oper-
ationalizing deterministic, policy-aware reason-
ing through programming representations of task-
specific entities and reimbursement rules. These
components collectively serve as the semantic and
computational foundation of the system.

Entities and Rules In TravelReimGPT, the prin-
cipal entity types include Preapproval Report,
Travel Overview, Flight, Lodging, Ground Trans-
portation, Meal, Mileage, Registration, Incidental,
and Ambiguous Expense. These entities act as the
foundational operands for evaluating policies and
performing rule-based computations.

Reimbursement rules are encoded as logical
formulas, specifying constraints and relationships
among entities. These rules are typically defined by
regulatory or funding bodies such as the National
Institutes of Health (NIH). For instance, under NIH
funding guidelines, lodging expenses must con-
form to daily rate limits set by the General Services
Administration (GSA).

Dual Representations of Entities: Programming
Objects and JSON-parsable Strings Unlike tra-
ditional entity extraction methods, TravelReimGPT
represents entities as programming objects aug-
mented with validated attributes and specific func-
tionalities. Each entity category, such as Lodging
and Flight, corresponds to a dedicated object class
specifying entity-pertinent attributes and functions.

Each entity is realized through two fully interop-
erable and mutually reversible representations:

® Programming object: an instantiated object
derived from a class definition. It serves as the exe-
cutable and operational form of the entity within a
deterministic computational workflow for generat-
ing rule-compliant outcomes.

® JSON-parsable string: a JSON-formatted
string parsable by the programming engines, and
well-suited for storage, transmission, and integra-
tion into the Al engines as part of augmented and
contextual prompts.

To enable seamless bidirectional transformation
between the two representations, all object class
definitions must follow a standardized code design
template that enforces mutual reversibility. This
template requires that each class: 1) Supports ini-
tialization from a JSON-parsable string, 2) Imple-
ments a serialization function, and 3) Accommo-
dates the structural and behavioral requirements
specific to each entity type. With the correspond-
ing class definition, a JSON-formatted string can
be instantiated into a programming object; con-
versely, a programming object can be serialized
into a JSON string. This dual representations of
entities enable seamless data flow between the pro-
gramming engine and the Al engine.

In sum, the dual representation strategy serves
as a bridge between formal rule-based processing
and natural language-based reasoning. It is cru-
cial to TravelReimGPT’s capability to manage the
complex, policy-governed task of automated travel
reimbursement.

Rule Set: Programming Logic Network Each
rule set is implemented as a programming logic
network, which is a structured collection of func-
tions and conditionals operating on programming
objects. In TravelReimGPT, each logic network
corresponds to a specific authority’s policy frame-
work, such as NIH or institutional policy. These
networks leverage object attributes and inter-object
relationships to apply conditions, perform numer-
ical computations, and enforce hierarchical rule
structures. The functions executed within the logic
networks produce rule-compliant outcomes in a
deterministic and interpretable manner. An illus-
trative example of a programming logic network is
provided in the Appendix A.3. This design enables
TravelReimGPT to perform policy-driven decision-
making in complex reimbursement scenarios with
transparency and precision.

3.3.2 Object Constructor (OC)

Reliable construction of entity objects is essential
for automated travel reimbursement, which is nu-
merically sensitive. POCA introduces the OC mod-
ule for generating internally verified and executable
programming objects. The OC leverages the Al

engine’s advanced code comprehension and gener-
ation capabilities and operates through a definition-
guided, self-corrective loop. This process ensures
that the resulting objects are well-structured, se-
mantically coherent, and suitable for execution
within formal logic networks. The overview of
the OC process is illustrated in Figure 3).

Object Constructor Class Definition Code Repository

(Lodging, Meals, ...)
User Input &
System Context

!

(IS

Corresponding
Class Definition
Code

/Self-corrective Loop

(Iterative validation and correction)
pdf, images, ...

OCR Processor | !

OCR result

Programming Engine

OCR-augmented !
| (e, Python)
1
]

prompting
(applied when failure happens
in processing documents)

Import [class]
[class]JSON-parsable string)

1
Class Instantiation |

JSON-parsable String
1

Instantiated
successfully?,

(]

JSON-parsable String

Figure 3: The Overview of OC

OC Process The OC extracts entity objects based
on user inputs (e.g., queries, uploaded documents)
and system context (e.g., previously processed ob-
jects and conversation history). The process con-
sists of the following stages:

1. Object Type Detection Based on the inputs,
the OC detects and identifies the types of involved
entities (i.e., class name). For example, when mul-
tiple receipts are uploaded, the system determines
the appropriate type of each expense receipt. The
identifier is performed using prompting techniques
with the Al engine, which analyzes both content
and context to output the appropriate class name.

2. Definition-Guided, Self-Corrective Loop
Once the target class is identified, the OC prompts
the Al engine to generate a JSON-formatted string
representing an instance of that class. This genera-
tion is guided by the corresponding class definition,
which specifies the expected structure, attributes,
and value constraints.

The generated JSON string is parsed and passed
to the class constructor for object instantiation,
where inner-verification modules are triggered to
validate attribute types, enforce value constraints,
and check for domain-specific logic. Notably,
TravelReimGPT performs reconciliation check to
ensure consistency in numerical fields (e.g., item-
ized and total amounts listed on receipts), thereby

enhancing the amount accuracy of extracted ex-
pense objects.

If instantiation fails due to structural, type-
related, or semantic inconsistencies, the system
captures the specified error and feeds it back into
the next prompt. This triggers a self-corrective
loop, allowing the Al engine to iteratively refine its
output until a valid, reliable, and executable object
is produced.

Algorithm 1 Definition-Guided, Self-Corrective
Loop

Require: Class initiator ¢ and its definition code
C, task prompt p, input ¢, maximum attempts
M, supplementary context s
I k<« 1
2: CS « system{C', p} + user{q}
first request with task instruction
3: while £ < M do
: response < AI_engine(CS) > Get Al
engine response

> Seed

5: J < extract_JSON(response) > Isolate
candidate JSON

6: try

7: c(J) > Object instantiation attempt

8 return J > Success — output JSON

9: except Error e

10: CS + assistant{response} + user{e,

p, S} > Add error feedback

11: k< k+1
12: end while

13: return None > Fail after M attempts

Enhancing Object Construction with Inner Ver-
ification Modules The precision of constructed
entities, particularly those involving numerics, is
vital for reliable reimbursement. Even minor nu-
merical errors can result in incorrect outcomes.

To improve the quality of extracted objects,
TravelReimGPT incorporates verification modules
that perform entity-specific quality checks during
object construction. For expense-related entities, a
key verification is the amount reconciliation check,
which ensures that the sum of itemized charges
matches the total amount. These values are ex-
tracted directly from receipts and cross-validated.
If the verification fails, a self-corrective iteration is
triggered to refine the extraction. Additional veri-
fication modules include attribute type and format
checks, presence of required fields, and domain-
specific logic enforcement, etc.

Each class definition implements dedicated
inner-verification functions and specifies descrip-
tive error messages for exceptions as instructions
for self-correction.

In summary, the class definition code serves a
dual purpose: 1) Guide the Al engine in gener-
ating structured, JSON-parsable strings; and 2)
Enable robust runtime validation and correction
of extracted results. The design template used in
TravelReimGPT is provided in Appendix A.1.

Enhancing Object Construction with Supple-
mentary Context In addition to leveraging error
feedback, the OC also supports supplementary con-
textual signals to improve extraction accuracy and
success rates. For document image inputs such
as receipts, the Al engine may produce inaccurate
outputs due to limitations in visual parsing. When
repeated instantiation fails, the system invokes an
OCR tool (PaddleOCR?) to extract contents of im-
ages. The OCR output is then injected into the Al
prompt as supplementary context, enabling more
accurate and consistent JSON generation.

3.3.3 Deterministic, Rule-Compliant
Reimbursement Generation

All programming objects are stored in the database
as JSON-parsable string representations. Once
the user confirms or requests to generate the re-
imbursement result, TravelReimGPT invokes the
corresponding programming logic networks and
processes all objects to generate a rule-compliant
reimbursement result. The result is presented in the
UI and made available for download and review.

3.4 Dialogue Flow

At each dialogue turn, the user may input a query
and optionally upload one or more documents. The
backend of TravelReimGPT executes:

1) Think: Analyze the user’s utterance to infer
intent and determine the current step in the reim-
bursement procedure based on all processed data.

2) Act (if applicable): Invoke the OC to create
or refine entity objects; trigger reimbursement gen-
eration if requested or all necessary documents are
present; prepare all processed task-related results
as augmented prompts.

3) Respond: Answer the user’s query, sum-
marise newly processed information and the current
reimbursement status, notify the users of the next

2https://github.com/PaddlePaddle/Padd1e0CR

required action, and present the reimbursement out-
put with a one-click download option in the UT if
results are ready.

4 Evaluations and Experimental Setup

To assess the effectiveness of TravelReimGPT,
we conducted a comparative evaluation against
a baseline system that uses a traditional prompt-
ing technique, denoted as BasePrt. Specifically,
the baseline employs task-instructive prompts with
the GPT-4.1 agent to perform the reimbursement
process, including document processing and user
query resolution. All reimbursement rules, task in-
structions, and document interpretation guidelines
serve as prompts and knowledge to the Al agent.

The Al engine serves as the intelligence core
of TravelReimGPT, its capability directly affects
overall system performance. To explore the im-
pact of model sophistication, we tested five vari-
ants using LLMs with varying levels of capac-
ity, provided by OpenAI’s API® with default set-
tings: ChatGPT-4o-latest, GPT-40, GPT-4.1,
GPT-4.1-mini, and GPT-40-mini, denoted as
TRG40lt, TRG40, TRG4.1, TRG4. Tmn, and TRG4omn,
respectively.

4.1 Evaluation Metrics

The evaluation employed a comprehensive set of
performance metrics.

1) Task success and accuracy. Indicate the
system’s ability to correctly and fully complete
the reimbursement task. Specifically, we verify
the reimbursable amount of each expense item in
the final reimbursement report and calculate the
accuracy (Reim. Acc.); 100% accuracy indicates a
fully successful reimbursement process.

2) Total cost. Total token usage and correspond-
ing API charges incurred from all system-triggered
calls (Total Cost, in USD).

3) Processing efficiency. Total system response
time (7otal Latency, in minutes) and the conversa-
tion rounds (Turn Count).

In addition, we report both system-level and user-
rated evaluation metrics to capture the processing
behavior of TravelReimGPT and reflect subjective
user experience using the system.

System Behavior Metrics. 1) OC Attempts
refers to the average number of iterations in OC
triggered to build a valid object. 2) Failed OC
counts the number of failed object constructions.

Shttps://platform.openai.com

https://github.com/PaddlePaddle/PaddleOCR
https://platform.openai.com

3) UI Response Length indicates the average num-
ber of tokens per response shown in the UL

User Satisfaction Metrics. User ratings were
collected on a 5-point Likert scale (1 = poor, 5 =
excellent). 1) System Fluency measures the smooth-
ness of processing across the pipeline. 2) Response
Quality captures the informativeness and clarity of
responses. 3) Intent Understanding assesses how
well the system interprets user intent and reimburse-
ment status. 4) Overall Satisfaction reflects the
user’s overall impression of system performance.

4.2 Test Cases

We evaluated the systems using four representative
real-world reimbursement cases collected from an
institution, all of which are reimbursed through
federal funding and must comply with both institu-
tional policies and corresponding funding regula-
tions. Each case was processed independently by
all model variants as well as the baseline system.

Each case includes a mandatory preapproval doc-
ument required for the reimbursement. The cases
represent a range of realistic reimbursement scenar-
ios with increasing complexity:

- Case SA (3 docs): A simple trip to San Antonio
with parking and bus receipts.

- Case LV (8 docs): A trip to Las Vegas with
flight, lodging, and multiple taxi/Uber receipts.

- Case SD (7 docs): A trip to San Diego with
flight, multi-night lodging with cumbersome item-
ized charges, and multiple Uber receipts.

- Case IN (14 docs): A multi-leg trip to Dallas
and Indianapolis with registration, multiple flights,
lodging, Uber, and incidentals receipts.

5 Results

5.1 Overall Performance

The deployed version of TravelReimGPT employs
GPT-4.1 as its core Al engine. As shown in Fig-
ure 4, TRG4.1 achieve 100% reimbursement ac-
curacy, i.e., successfully generates rule-compliant
reimbursement results of all test cases, while at a
low cost (approximately $0.50 for a case with 14
documents) and a system processing time of only
several minutes per case. Following the guide of
the system, users upload required documents and
provide key information over only several dialogue
turns to obtain reliable rule-compliant reimburse-
ment results. Furthermore, users could query to
retrieve specific items if needed, e.g., “show the
details of the uber expense on 5/12.”. The con-

versation of a usage example is illustrated in the
Appendix A.4.

5.2 Comparison with the Baseline

The baseline only successfully handled the simplest
case and consistently made errors on relatively-
complex cases, even when the relevant rules were
explicitly injected into the system. Most of these
errors stemmed from incorrect calculations per-
formed by the LLLM, despite the fact that the origi-
nal amounts were correctly extracted.

BasePrt TRG4.1 TRG4olt TRG4o TRG4.1mn

TRG4omn

SA Lv SD IN

Case

Figure 4: Performance comparison of all model variants
and the baseline on the test cases.

5.3 Performance of Variants

As shown in Figure 4 and Table 1, TRG40lt and
TRG4.1 achieve 100% reimbursement accuracy
across all test cases. They also exhibit high system
fluency, accurately infer user intent without explicit
prompts, and generate detailed, user-friendly out-
puts—indicating strong robustness and reasoning
capabilities. Due to its higher API cost, TRG40lt
is more expensive.

System User Ratings
OC-Att Fail Len ‘Flu Qual Int Sat

TRG4.1 1.09 0 44325 5 5 5
TRG40lt 1.13 0 39595 5 5 5
TRG4o0 1.69 0 292113 3 3 3
TRG4.1mn 1.33 1 27593 3 2 2
TRG4omn 2.10 5 266.1| 1 1 1 1

Table 1: System-level and user-rated evaluation metrics
for TravelReimGPT variants. OC-Att: OC Attempts;
Fail: Failed OC; Len: UI Response Length; Flu: Sys-
tem Fluency; Qual: Response Quality; Int: Intent Un-
derstanding; Sat: Overall Satisfaction.

TRG40 misclassified a mandatory resort fee in a
lodging receipt as non-reimbursable unnecessary
fee in Case SD. While it demonstrates high accu-
racy in object extraction, it often requires multi-
ple attempts to construct objects successfully and
shows limitations in intent understanding. Its over-
all performance is comparable to TRG4. 1mn, but
with significantly higher cost.

All variants successfully handle the simplest
case. However, in more complex scenarios, mini-
level variants fail to complete the reimbursement
process. They struggle with language understand-
ing, including intent inference, contextual reason-
ing, and producing coherent responses. As a result,
users must provide explicit instructions and exhibit
considerable patience, even when the necessary
information is already implied in the uploaded doc-
uments. Their outputs are often brief and uninfor-
mative, and less user-friendly. TRG4omn performs
the worst: it always fails to process documents,
struggles with object construction, and is unable to
proceed with the reimbursement workflow.

Overall, TravelReimGPT proves to be an ef-
fective and deployable system for accurate, user-
friendly, and rule-compliant travel reimbursement
automation. Powered by GPT-4. 1, the TRG4. 1 vari-
ant offers the best balance between cost and perfor-
mance while ensuring reimbursement reliability.

6 Discussions

TravelReimGPT is a task-specific, user-friendly,
and end-to-end system for automating travel re-
imbursements. It generates rule-compliant re-
sults from free-form user inputs and documents
via multi-turn dialogue, with a focus on usabil-
ity, accuracy, and policy adherence. At the core
lies the POCA, which enables object-level sym-
bolic reasoning and deterministic rule enforce-
ment—offering a more scalable and robust alterna-
tive to traditional parameter-level prompting. The
system is modular and flexible. The OC module
effectively builds executable entity objects from
user inputs and contextual information, including
conversation history and prior system state. These
objects are validated, self-corrective, and enriched
with attributes and functions to reflect structural
dependencies, improving robustness and precision
in data extraction and rule application.

Rather than solving general reasoning problems,
TravelReimGPT is a task-specific framework, and
optimized for effective and efficient task automa-

tion. Essential to this framework are clearly de-
fined object classes and structured programmatic
logical networks, which collectively underpin the
system’s ability to enforce complex rule compli-
ance effectively. We provide detailed design tem-
plates outlining the critical components required
for establishing well-structured object classes and
logical networks. Leveraging OpenAl’s advanced
reasoning LLMs (specifically, o1 and 03), we sys-
tematically generated preliminary code structures
for object class definitions and policy networks,
subsequently refining and optimizing these through
manual reviews and improvements.

Performance evaluations demonstrate
TravelReimGPT’s strong capability in han-
dling representative reimbursement scenarios.
Exceptional expense cases occasionally occur. In
accordance with reimbursement policy, exceptions
require manual communication and approval. Such
exceptions fall outside the scope of the automated
system and are therefore managed separately.

Furthermore, travel reimbursement represents a
broader category of rule-compliant tasks, wherein
explicit, predefined rules are systematically applied
to documents and related data to yield compliant
outcomes, similar to tasks in tax reporting and au-
diting. Consequently, our proposed framework not
only provides a practical, user-friendly, and effi-
cient solution specifically tailored to travel reim-
bursements but also offers a generalizable model
for automating a wide range of similarly structured,
rule-based compliance tasks.

7 Conclusions

This work introduces TravelReimGPT, a user-
centric end-to-end Al system designed to effi-
ciently automate business-travel reimbursement
processes with free-form and document inputs.
Leveraging advanced LLMs and the novel POCA,
TravelReimGPT accurately parses documentation
and inputs and generate rule-compliant reimburse-
ment results. Our approach notably reduces cogni-
tive and numerical burdens in administrative work-
flows. POCA serves as a versatile architecture,
extendable to various high-reuse-rule-intensive
task automation such as budgeting and auditing.
TravelReimGPT significantly enhances workflow
efficiency and reliability, highlighting the transfor-
mative impact of cognitive Al.

Limitations

The proposed TravelReimGPT framework, being
task-specific, inherently limits its generalizability
for broad, general-purpose use. Although travel
reimbursement cases are similar, the evaluation
in this study is limited due to the small size of
evaluated test cases.

Our study does not involve of automatic pars-
ing and programming of complex rules. While
our symbolic representation of entities and rules is
meticulously designed and optimized for efficiency,
the class definitions and logic networks remain pre-
defined and static and necessitates manual interven-
tion in the design. Future developments will target
automating this aspect to reduce manual efforts and
further enhance the scalability and broader applica-
bility of our framework, lower the technical barrier
to making it accessible and designable by common
users.

Due to inherent latency issues and the sub-
stantial computational resources required to lo-
calize open-source LLMs, we did not conduct re-
lated experiments. As a result, performance data
for TravelReimGPT using localized open-source
LLMs, such as LLaMA, remains unexplored and
constitutes a valuable direction for future research.

Moreover, the framework depends on proprietary
LLMs which introduces concerns regarding repro-
ducibility, high usage costs, and unequal access
for different user groups. Finally, while automa-
tion improves efficiency, over-reliance may reduce
human oversight in edge cases requiring nuanced
judgment.

Ethics Statement

The use of OpenAl’s LLMs was conducted via API
access under a contractual agreement that explicitly
prohibits data collection or retention. As a result,
no personally identifying information was collected
by the language model provider. This study com-
plies with all relevant data privacy regulations and
ethical research guidelines. We used real-world
cases for evaluation. While these may contain in-
formation originating from actual individuals, no
manual anonymization or offensive content filter-
ing was applied. All data was handled securely
within a local research environment and was not ex-
posed to any third-party services beyond the LLM
API, under strict data handling protocols. All case
data was obtained with explicit consent from the
individuals involved. No personal data was used

without permission.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

M. Boese. 2025. The real revolution in expense tech-
nology makes your daily work easier. Accessed:
2025-05-14.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, and 1 others. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, and 1 others. 2024.
A survey on evaluation of large language models.
ACM transactions on intelligent systems and technol-

0gy, 15(3):1-45.

Fengxiang Cheng, Haoxuan Li, Fenrong Liu, Robert van
Rooij, Kun Zhang, and Zhouchen Lin. 2025. Empow-
ering llms with logical reasoning: A comprehensive
survey. arXiv preprint arXiv:2502.15652.

Meng Fang, Shilong Deng, Yudi Zhang, Zijing Shi, Ling
Chen, Mykola Pechenizkiy, and Jun Wang. 2024.
Large language models are neurosymbolic reasoners.
In Proceedings of the AAAI conference on artificial
intelligence, volume 38, pages 17985-17993.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764-10799. PMLR.

GBTA. 2023. Gbta 2024 business travel index outlook.
Accessed: 2024-05-14.

GitHub. 2025. GitHub Copilot. https://github.
com/features/copilot. Version 1.192, accessed
2025-05-14.

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin,
Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
Myaskovsky, Felix Weissenberger, Keran Rong, Ryu-
taro Tanno, and 1 others. 2025. Towards an ai co-
scientist. arXiv preprint arXiv:2502.18864.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, and 1
others. 2023. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint
arXiv:2308.00352, 3(4):6.

https://www.forbes.com/councils/forbestechcouncil/2025/02/28/the-real-revolution-in-expense-technology-makes-your-daily-work-easier/
https://www.forbes.com/councils/forbestechcouncil/2025/02/28/the-real-revolution-in-expense-technology-makes-your-daily-work-easier/
https://www.forbes.com/councils/forbestechcouncil/2025/02/28/the-real-revolution-in-expense-technology-makes-your-daily-work-easier/
https://www.gbta.org/research/2024-business-travel-index-outlook-bti/
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot

Dong Huang, Jie M Zhang, Michael Luck, Qingwen
Bu, Yuhao Qing, and Heming Cui. 2023. Agent-
coder: Multi-agent-based code generation with it-
erative testing and optimisation. arXiv preprint
arXiv:2312.13010.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of hal-
lucination in natural language generation. ACM com-
puting surveys, 55(12):1-38.

M. Johnston. 2025. The agentic workforce: How ai is
redefining back-office efficiency and strategy. Ac-
cessed: 2025-05-14.

Haoqgiang Kang and Xiao-Yang Liu. 2023. Deficiency
of large language models in finance: An empiri-
cal examination of hallucination. arXiv preprint
arXiv:2311.15548.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-
positional reasoning with large language models. Ad-
vances in Neural Information Processing Systems,
36:43447-43478.

Tula Masterman, Sandi Besen, Mason Sawtell, and Alex
Chao. 2024. The landscape of emerging ai agent
architectures for reasoning, planning, and tool calling:
A survey. arXiv preprint arXiv:2404.11584.

McKinsey & Co. 2023. The state of ai in 2023: Genera-
tive ai’s breakout year. Accessed: 2025-05-14.

Microsoft. 2025. Microsoft Copilot. https://
copilot.microsoft.com. Build 25.9.123, accessed
2025-05-14.

Erik Miehling, Karthikeyan Natesan Ramamurthy,
Kush R Varshney, Matthew Riemer, Djallel Boun-
effouf, John T Richards, Amit Dhurandhar, Eliza-
beth M Daly, Michael Hind, Prasanna Sattigeri, and
1 others. 2025. Agentic ai needs a systems theory.
arXiv preprint arXiv:2503.00237.

Aske Plaat, Max van Duijn, Niki van Stein, Mike Preuss,
Peter van der Putten, and Kees Joost Batenburg. 2025.
Agentic large language models, a survey. arXiv
preprint arXiv:2503.23037.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Kon-
stantine Kahadze, Amanda Liu, Chenglei Si, Yin-
heng Li, Aayush Gupta, H Han, Sevien Schulhoff,
and 1 others. 2024. The prompt report: A system-
atic survey of prompting techniques. arXiv preprint
arXiv:2406.06608, 5.

SDO CPA. 2025. Best expense management software.
Accessed: 2025-05-14.

Y. Shaked. 2025. The power of automation: How busi-
nesses can work smarter, not harder. Accessed: 2025-
05-14.

10

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends
in hugging face. Advances in Neural Information
Processing Systems, 36:38154-38180.

Asne Stige, Efpraxia D Zamani, Patrick Mikalef, and
Yuzhen Zhu. 2024. Artificial intelligence (ai) for user
experience (ux) design: a systematic literature review
and future research agenda. Information Technology
& People, 37(6):2324-2352.

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. 2023. Large language
models in medicine. Nature medicine, 29(8):1930—
1940.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Lingi Song,
Mingjie Zhan, and Hongsheng Li. 2023. Math-
coder: Seamless code integration in llms for en-
hanced mathematical reasoning. arXiv preprint
arXiv:2310.03731.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, and 1 others. 2024a. A survey
on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024b. Exe-
cutable code actions elicit better Ilm agents. In Forty-
first International Conference on Machine Learning.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, and 1
others. 2022a. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022b. Chain-of-thought prompting
elicits reasoning in large language models. Advances

in neural information processing systems, 35:24824—
24837.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yi-
wen Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, and 1 others. 2025. The
rise and potential of large language model based

agents: A survey. Science China Information Sci-
ences, 68(2):121101.

Haoyi Xiong, Zhiyuan Wang, Xuhong Li, Jiang Bian,
Zeke Xie, Shahid Mumtaz, Anwer Al-Dulaimi, and
Laura E Barnes. 2024. Converging paradigms: The

https://www.forbes.com/councils/forbesbusinesscouncil/2025/03/28/the-agentic-workforce-how-ai-is-redefining-back-office-efficiency-and-strategy/
https://www.forbes.com/councils/forbesbusinesscouncil/2025/03/28/the-agentic-workforce-how-ai-is-redefining-back-office-efficiency-and-strategy/
https://www.forbes.com/councils/forbesbusinesscouncil/2025/03/28/the-agentic-workforce-how-ai-is-redefining-back-office-efficiency-and-strategy/
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
https://copilot.microsoft.com
https://copilot.microsoft.com
https://copilot.microsoft.com
https://www.sdocpa.com/best-expense-management-software/?cid=119e07d8-b7b8-486a-9385-2db34182c8aa
https://www.forbes.com/councils/forbesbusinesscouncil/2025/03/17/the-power-of-automation-how-businesses-can-work-smarter-not-harder/
https://www.forbes.com/councils/forbesbusinesscouncil/2025/03/17/the-power-of-automation-how-businesses-can-work-smarter-not-harder/
https://www.forbes.com/councils/forbesbusinesscouncil/2025/03/17/the-power-of-automation-how-businesses-can-work-smarter-not-harder/

synergy of symbolic and connectionist ai in llm-
empowered autonomous agents. arXiv preprint
arXiv:2407.08516.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-
Li Lee, and Wynne Hsu. 2024a. Faithful logical rea-
soning via symbolic chain-of-thought. arXiv preprint
arXiv:2405.18357.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli.
2024b. Hallucination is inevitable: An innate lim-
itation of large language models. arXiv preprint
arXiv:2401.11817.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yugiang
Li, and Wanli Ouyang. 2024a. Accessing gpt-4
level mathematical olympiad solutions via monte
carlo tree self-refine with llama-3 8b. arXiv preprint
arXiv:2406.07394.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng,
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, and 1 others. 2024b.
Aflow: Automating agentic workflow generation.
arXiv preprint arXiv:2410.10762.

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng,
Shiwei Lyu, Yue Shen, Lei Liang, Jinjie Gu, Hua-
jun Chen, and Ningyu Zhang. 2024. Knowa-
gent: Knowledge-augmented planning for llm-based
agents. arXiv preprint arXiv:2403.03101.

A Appendix

A.1 Class definition code design template used
in TravelReimGPT

Here is the class definition code design template
used in POCA for TravelReimGPT with Python as
the core of the programming engine.

class ClassName:

class_name = "ClassName"”

Comments specifying the formats
and requirements of
json_parsable_string, which is
to guide AI engine

def __init__(self,
json_parsable_string: str):
self.json_data = json.loads(

json_parsable_string)

Attribute extraction (example)
self.attributel = self.json_data
.get("attributel”, None)

Add more attributes as needed

self.__verification__()
Could add any functions here

def __verification__(self):

nonon

11

Verification module to ensure

the content of the extracted
object is well-structured,
accurate, and consistent.
Must raises specific errors
to guide AI engine debugging
and correction.

Example 1: Type and format
checks of attributes and
properties

try:

self.date = datetime.
strptime (self.date, "%Y
=%m=-%d")

except Exception:
raise ValueError("Date

format must be YYYY-MM-
DD. Please correct the
result.”)

Example 2: Amount
reconciliation check,
ensuring the accuracy of
extracted amounts

if hasattr(self, "
itemized_amounts”) and
hasattr (self, "total_amount”
E

computed_total = sum(self.
itemized_amounts)

if computed_total != self.
total_amount:
raise ValueError ("

Something wrong in
Amount extraction:
please check whether
the itemized
amounts are correct
and complete! And
check whether the
total amount is
correct!")

Add other custom verification
modules as needed...

e.g., required fields,
allowable value ranges,
enumeration checks, etc.

def to_json(self):

serialization function here

A.2 An example of object class: Ground
Transportation

class GroundTransportation:

Represents a ground transportation
expense, including details such
as the mode of transport,

start and end locations, itemized
charges, trip distance, and
optional departure and arrival
dates and times.

This class is suitable for expenses
like Uber, Lyft, taxi, bus, and
train rides.

If reimbursed for mileage,

you
should use the Mileage class
instead.

Attributes:
expense_type (str): The type of
the expense, fixed as "

Ground Transportation”.
description (str): A description
of the expense.
itemized_charges (List[Dict[str,
AnyJl]l): List of itemized
charges, each containing an
item and its charge. [{"item
": "Base Fare”, "charge":
10.00}, ...]1 If no tip is
found in the Uber/Lyft/Taxi

receipt, it should be {"item
": "Tip", "charge”": 0.0}.
expense_date (str): The date

when the expense was made,
in YYYY-MM-DD format.
amount (float): The total amount
of the expense.
tip (float): The tip expense.
merchant (str): The
transportation provider, e.g
., Uber, Lyft.
mode (str): Mode of transport, e
.g., "bus", "train", "
rideshare”, "taxi".
start_location (str): The
starting location.
end_location (str): The ending
location.
distance (float): Distance in
miles, if available.
departure_date_time (str):
Departure date in YYYY-MM-DD
HH:MM AM/PM format, if
available.
arrival_date_time (str): Arrival
date in YYYY-MM-DD HH:MM AM
/PM format, if available.
in_foreign (bool): Indicates
whether the ground
transportation expenses were
incurred outside the USA.
Default: False.
currency (str): the Standard

Currency Code: "EUR", "JPY",
"CHF", "CAD", Default:
"". Empty means USD.
expense_type = "Ground
Transportation”
def __init__(self, input_json: str):

nonn

Initializes a
GroundTransportation object
from a JSON string.

try:
data =

)

except json.JSONDecodeError as e

json.loads(input_json

12

def

raise ValueError(f"Invalid
JSON input: {el}")

self.description: str = data.get

("description”, "")
self.itemized_charges: List[Dict
[str, Any]l] = data.get("

itemized_charges”, [1)
self.expense_date: str = data.
get("expense_date”, "")
self.amount: float = data.get(”
amount”, @.0)
self.tip: float = data.get("tip”
, 0.0)
self.merchant: str = data.get("
merchant”, "") #

Transportation provider

self.mode: str = data.get("mode”
, ") # Mode of
transport
self.start_location: str = data.
get("start_location”, "") #
Starting location
self.end_location: str = data.

get("end_location”, "")
Ending location
self.distance: float = data.get(
"distance"”, ©.0) # Distance
in miles
self.non_tip_charge = round(self
.amount - self.tip, 2)

Departure and arrival dates
and times

self.departure_date_time: str =
data.get ("
departure_date_time", "")

self.arrival_date_time: str =

data.get("arrival_date_time"”

nn
’

self.in_foreign: bool = data.get
("in_foreign", False)
self.currency: str = data.get("
currency”, "")
self.__verification__()
self.expense_items = self.

get_expense_items ()

__verification__(self):
try:
datetime.strptime(self.
expense_date, "%Y-%m-%d"
)
except:
raise ValueError(f"Invalid
date format in
expense_date:
expense_date}.
YYYY-MM-DD.")

{self.
Expected

Check if each itemized charge
has "item” and "charge”
for entry in self.
itemized_charges:
if "item” not in entry or
charge” not in entry:
raise ValueError (f"
Missing required

n

def

def

keys ’item’ or ’
charge’ in entry: ’{
entry}’")

Validate that the total
matches the amount
total_itemized = sum(charge.get(
"charge"”, 0.0) for charge in
self.itemized_charges)
if not abs(total_itemized - self
.amount) < le-6: # Allowing
for floating-point
precision issues
raise ValueError(
f"The total of itemized
charges ({
total_itemized})
does not match the
amount ({self.amount
}). Might miss some
items. Please check
the completeness of
all items.”

)

get_expense_items(self):

expense_items = [{"
non_tip_charge”: self.
non_tip_charge, "tip": self.
tip, "expense_date”:self.
expense_date, "item": self.
expense_type}]

return(expense_items)

to_json(self) -> str:

Serializes the
GroundTransportation object
to a JSON string, excluding
attributes with None or
empty values.

Returns:
str: JSON string
representation of the
object.
data = {
"expense_type": self.
expense_type,
"description”: self.
description,
"itemized_charges”: self.
itemized_charges if self
.itemized_charges else
None ,
"expense_date”: self.
expense_date,
"amount”: self.amount,
"tip": self.tip,
"non_tip_charge": self.
non_tip_charge,
"merchant”: self.merchant,
"mode"”: self.mode,
"start_location”: self.
start_location,
"end_location”: self.
end_location,
"distance”: self.distance if
self.distance else None

"departure_date_time": self.
departure_date_time,

"arrival_date_time": self.
arrival_date_time,

"in_foreign": self.
in_foreign,

3

Exclude keys with None or
empty string values

filtered_data = {k: v for k, v
in data.items() if v not in

(None, "", [}

return json.dumps(filtered_data,
indent=4)
def __repr__(self):
return f"{self.__class__.
__name__3}({self.to_json()})"
def get_date(self):
return(self.expense_date)

A.3 An example of programming logic
network

An example of a programming logic network im-
plementing hybrid rule compliance is presented.
Soft rules refer to descriptive or context-dependent
rules that are challenging to formalize symbolically.
These rules typically govern the allowability of ex-
pense items and require the application of an Al
engine to assess compliance. In contrast, all deter-
ministic rules—which can be clearly defined and
codified—are implemented using symbolic logic.

13

class PolicyNetwork:
"""Grant policy engine adhering to
the requested template.

Parameters
policy_detail dict
Attributes defining the fund /
grant policy.

gsa_rate module-1like
Must expose ‘lookup_lodge_rate’
and ‘lookup_meal_ie_rate’
helpers.

get_allowable_function coroutine
‘await get_allowable_function(
expense_json, rule_str,
1lm_helper)’ to
evaluate soft rules via LLM.

nonon

#

Construction helpers

#

def __init__¢(
self,
policy_detail: Dict[str, Any],
gsa_rate: Any,
get_allowable_function: Callable

[[Dict[str,
Callable |
) -> None:
Core policy attributes
self.policy_id = policy_detail.
get("Fund_ID")
self.fund_source = policy_detail
.get("Fund Source")
self.allowance_foreign_travel =
policy_detail.get(
"foreign_travel_allowance”,
False

Any],
Nonel],

str,
Any],

)
self.allowance_domestic_travel =
policy_detail.get(
"domestic_travel_allowance”,
False

self.allowance_tip =
policy_detail.get ("
Allowance_Tip", True)

self.interpretative_rules =
policy_detail.get ("
InterpretativeRulesDict"”,

18]

External dependencies

self._gsa_rate = gsa_rate

self._get_allowable_function =
get_allowable_function

#

Public helpers

#

def get_allowance_travel (self,
all_objects: Dict[str, Anyl]l) ->
bool:

Return *Truex if the whole
trip is reimbursable under
this policy.

travel_overview = all_objects.
get("travel_overview")

if not travel_overview:
return False

if travel_overview.travel_type
== "international”:
return self.

allowance_foreign_travel
return self.
allowance_domestic_travel

Reimbursement engine (template
compliant)

async def
generate_reimbursement_details(
self,
all_objects: Dict[str, Anyl],
call_ai_engine: Callable | None
= None,
) -> Dict[str, Any]:
Entry point builds and returns
the nested reimbursement
details.
if not self.get_allowance_travel
(all_objects):
return {3}

Work on a copy because we
mutate ‘all_objects’ later

14

on

objects: Dict[str,
all_objects)

objects.pop(”"travel_overview",
None)

Any] = dict(

reimbursement_details:

Anyl = {}

Dict[str,

for obj_type, typed_objs in
objects.items():
reimbursement_details[
obj_typel = {3
for obj_id, obj in
typed_objs.items():
evaluated_items: List[
Dictl[str, Anyl] = []
for expense_item in obj.
expense_items:
is_allowable,
abs_limit,
remark,
need_manual =
await self.
_eval_expense_item
(
expense_item,
obj,
call_ai_engine

)
reim_result = {"
incurred_expense
": expense_item,
"is_allowable”:
is_allowable

abs_policy_1i

": abs_limit

’

need_manual_f]

n,

need_manual ,

"remark”: remark
}

evaluated_items.
append/(

reim_result

)

reimbursement_details[
obj_typellobj_id] =
evaluated_items

return reimbursement_details
#
Internal evaluators and dispatch

#

async def _eval_expense_item(

self,

expense_item: Any,

obj: Any,

call_ai_engine: Callable | None,
) -> Tuple[bool, float | None, str,

bool]:

it

ag

"""Route expense-item to the
appropriate evaluator and
normalize output.”""

dispatch_map = {
"Ambiguous Expense”:

_eval_ambiguous,
"Lodging": self.
_eval_lodging,
"Meals"”: self._eval_meals,
"Ground Transportation”:
self.
_eval_groundtransport,

self.

}
handler = dispatch_map.get(
expense_item.expense_type,
self.
_eval_generic_soft_rule
)

return await handler(
expense_item, obj,
call_ai_engine)
Expense-type handlers

async def _eval_ambiguous(

self, expense_item: Any, obj:
Any, *_: Any
) -> Tuple[bool, None, str, booll]:
amount = round(getattr(

expense_item, "amount”, 0.0)
’ 2)
remark = f"Amount: {amount}.
Need manual process for
ambiguous expense!”
return False, None, remark, True
async def _eval_lodging(
self, expense_item:
Any, *_: Any
) -> Tuple[bool, float |
bool]:
Example use of obj - group
booking could lower cap, etc

Any, obj:

None, str,

state = obj.location_city,
obj.location_state
date_str = expense_item.date
try:
d:

city,

datetime.strptime(
date_str, "%Y-%m-%d")
rate, msg = self._gsa_rate.
lookup_lodge_rate(city,
state, d.year, d.month)
if msg:
remark_parts.append (f"{
date_str}: {msg}")
return True, rate, remark,
False
except Exception as exc:

return True, None, f"GSA
lookup failed: {exc}"”,
True
async def _eval_meals(
self, expense_item: Any, obj:
Any, *_: Any
) -> Tuple[bool, float | None, str,
bool]:
city, state = expense_item.

location_city, expense_item.

location_state

datetime.strptime(

expense_item.expense_date,

%Y =%m=%d")

meal_type = obj.meal_type.
capitalize ()

try:

d =

"

rates, msg = self._gsa_rate.
lookup_meal_ie_rate(city
, state, d.year, d.month
)

abs_limit = rates.get(
meal_type)

remark = msg or "”

return True, abs_limit,
remark, False

except Exception as exc:
return True, None, f"Meal

rate lookup failed:
}", True

{exc

async def _eval_groundtransport(

)

self, expense_item: Any, obj:
Any, *_: Any
-> Tuple[bool, float | None, str,
bool]:
if obj.in_foreign:
return True, None, f"No

limit for foreign ground
transportation”, False
return True, 65, f"Cap 65",
False

async def _eval_generic_soft_rule(

)

self,

expense_item: Any,

obj: Any,

call_ai_engine: Callable | None,
-> Tuple[bool, None, str, booll]:

etype = expense_item.
expense_type

rule = self.interpretative_rules
.get(etype)

if not rule:

return True, None, "No soft
rule defined; default
allowable”, False

try:
ai_resp = await self.
_get_allowable_function(
expense_item.to_json(),
rule, call_ai_engine)
if ai_resp.get("return_flag"”
parsed = json.loads(
ai_resp[”
final_result"])
return parsed.get(”

is_allowable”, True)
, None, parsed.get(”
explanation”, ""),
False
return False, None, "Soft
rule evaluation returned
no flag”, True
except Exception as exc:
return False, None, f"Soft
rule exception: {exc}",

True

15

A.4 A usage case example on TravelReimGPT

Here presents a real-world user-TravelReimGPT
dialogue for processing a reimbursement case. The
conversation demonstrates the complete workflow,
including document uploads, information extrac-
tion, eligibility confirmation, and expense cal-
culation. Note: City airport names have been
anonymized in accordance with the review policy.

User: Hi

TravelReimGPT: Welcome! I’'m TravelReimGPT,
here to guide you through the travel reimbursement
process and generate accurate reimbursement re-
sults.

To get started, please remember the major upload-
ing procedure: upload RTA -> upload transporta-
tion/flights which start and end the travel -> upload
all related receipts.

There is no COUPA RTA - Pre-Approval report.
Please upload the pre-approval report to proceed.
Summary of Actions Required:

1. Please upload your COUPA RTA Pre-Approval
report.

2. Once the pre-approval report is uploaded, I will
guide you to the next steps regarding transportation
and other required documents.

User: RTA [Uploads RTA. pdf]

TravelReimGPT: [File RTA. pdf processed success-
fully!] Thank you for uploading your COUPA RTA
- Pre-Approval report. We have successfully re-
ceived and processed your RTA.pdf.

Major reimbursement uploading procedure:

* Upload RTA (Completed)

» Upload transportation/flights which start and
end the travel

* Upload all related receipts

Next Required Step: To proceed, please specify
how you started and ended your actual travel for
your Las Vegas trip and upload related documenta-
tion as evidence (such as airline tickets, boarding
passes, flight receipts, train or bus tickets, or, if you
drove, mileage documentation).

For your trip, the pre-approval includes a round-trip
flight to Las Vegas. Please provide the following:
Your flight ticket, boarding pass, or airline receipt
that covers both your departure and return legs,
showing dates and times.

Summary of Immediate Actions Required:

16

e D

» Upload flight documentation/receipts (e.g.,
tickets, boarding passes, or receipts that con-
firm the travel dates/times).

* If you used other transportation for any part of
your trip (e.g., mileage, train, shuttle), please
specify and upload the corresponding docu-
mentation.

Once transportation documents verifying your ac-
tual travel dates/times are uploaded, we’ll move
forward to the next required step.

User: Flights start and end the travel. [Uploads
flight_receipt.pdf]

TravelReimGPT: [File flight_receipt.pdf pro-
cessed successfully!]

Thank you for providing your flight ticket docu-
mentation. Your itinerary successfully confirms
both the start and end of your travel:

Departure: [AIRPORT] — Las Vegas (LAS), 2025-
03-02, 7:15 PM — [H:M] PM

Return: Las Vegas (LAS) — [AIRPORT], 2025-
03-04, [H:M] PM — 10:55 PM

We have retrieved your actual travel dates and times.
Here is the extracted actual travel overview:

{
"travel_start_date_and_time": "2025-03-02

07:15 PM",

"travel_end_date_and_time": "2025-03-04 10:55
PM",

"transportation_to_destination”: "Flight from
[AIRPORT] to Las Vegas (LAS), Southwest
Airlines Flight”,

"transportation_return_origin”: "Flight from
Las Vegas (LAS) to [AIRPORT], Southwest
Airlines Flight”,

"travel_destination_city_states”: [{"city": "
Las Vegas”, "state": "NV"}]

}

Please confirm whether the above information accu-
rately reflects your travel, or let us know if anything
needs to be corrected.

Based on your travel dates, the reimbursable meals
are: 2025-03-02: dinner; 2025-03-03: breakfast,
lunch, dinner; 2025-03-04: breakfast, lunch, din-
ner.

Please confirm if this matches your meal eligibility
for the trip.

Next Steps: Please confirm: Is the actual travel
overview and these meal eligibility details correct?
Lodging/Hotel: Since your pre-approval includes
lodging, please upload your hotel/lodging receipt
for the Las Vegas stay.

Incidentals/Ground Transportation: If you incurred
any ground transportation or incidental expenses
(e.g., airport shuttles, taxis, etc.), please upload the
relevant receipts.

User: Confirmed. Lodging uploaded. [Uploads
hotel (15).pdf]

TravelReimGPT: [File hotel(15).pdf processed
successfully!]

Thank you for confirming your travel details and
for uploading your lodging receipt.

Here’s what has been verified so far:

* Pre-Approval (RTA): Provided and matches
your travel overview

* Transportation (Flight): Documentation pro-
vided and verified—matches actual travel
dates/times

* Lodging: Receipt uploaded and pro-
cessed—matches travel dates (check-in:
2025-03-02, check-out: 2025-03-04)

* Travel Destination Logs: Confirmed as accu-
rate by you

Next Steps:

1. Meals Reimbursement: Your pre-approval
covered meal expenses. You are eligible for:

e 2025-03-02: Dinner
e 2025-03-03: Breakfast, Lunch, Dinner
e 2025-03-04: Breakfast, Lunch, Dinner

You are eligible for: Breakfast: 2, Lunch: 2,
Dinner: 3

Standard per diem meal rate: Breakfast: $12,
Lunch: $17, Dinner: $30

Total reimbursement amount for meals: $148

No meal receipts required under the standard
per diem rate.

Please confirm: Do you agree to use the stan-
dard per diem meal rate for meal reimburse-
ment? If you want to use the GSA meal rate
(which requires receipts), or you have any spe-
cial cases, let us know.

2. Incidentals / Ground Transportation: Your pre-
approval listed $150 for incidentals/ground
transportation. Please specify: Did you incur
expenses such as taxis, shuttles, rideshares

17

(Uber/Lyft), airport parking, or other ground
transportation? If yes, please upload the re-
ceipts for those expenses. If not, please con-
firm so we can mark this as not claimed.

Summary of Priority Next Steps:

* Confirm use of the standard per diem meal
rate or inform us if you wish to use another
method.

* Specify and upload documentation for any
incidentals/ground transportation, or confirm
if there are none to claim.

Once these are addressed, we will review for any
additional missing items and then proceed to the
final documentation summary and fund code check.

User: Confirm. Uber receipts. [Uploads
Uber.pdf, Uber2.pdf, taxi_to_hotel.pdf,
taxi_to_meeting.pdf, taxi_to_meeting2.pdf
|

TravelReimGPT: Thank you for providing and con-
firming your ground transportation receipts. Here’s
a summary of what has been processed and veri-
fied:
Processed Reimbursement Documentation

1. Pre-Approval Report (RTA)

Provided and matched for the Las Vegas trip.

2. Transportation (Start & End Travel)
Flight: Confirmed with itinerary—both de-

parture and return flight documentation are
present and valid.
3. Lodging
Hotel Receipt: Uploaded and confirmed for
the entirety of the trip (Check-in: 2025-03-02,
Check-out: 2025-03-04).
4. Meals
Standard per diem rate confirmed and applied.
Eligible meals:
* 2025-03-02: Dinner
* 2025-03-03: Breakfast, Lunch, Dinner
e 2025-03-04: Breakfast, Lunch, Dinner
Total per diem meal reimbursement: $148

No meal receipts required.

5. Incidentals / Ground Transportation

Receipts for rideshare and taxi services: All
ground transportation receipts received and
processed:

 Uber to [AIRPORT] (03/02)
» Taxi from Las Vegas airport to hotel
(03/02)

» Taxi in Las Vegas to meetings (03/03,
03/04)

* Taxi/Uber to Las Vegas airport (03/04)

These match expected incidentals from your
pre-approval.

What’s Next:

1. Did you incur any other reimbursable ex-
penses?

Based on your RTA and actual expenses,
the main categories (airfare, lodging, meals,
ground transportation) are addressed. If you
have any of these additional base expenses
to include (such as parking, baggage fees, or
hotel-city shuttle not yet submitted), please
specify and upload the relevant receipts now.

2. Do you have all required documentation up-
loaded?

Please confirm that all documents necessary
for your reimbursement claim are now up-
loaded. If there is anything else (hotel invoice
addenda, conference registration, or other re-
ceipts), please provide them now.

3. Fund Code Confirmation: The fund code in
your pre-approval is: 36680. Would you like
to use this code for the entire reimbursement,
or provide a different/additional fund code(s)?

Summary of Immediate Actions Required:

* Confirm if all required documents are now
uploaded, or upload any additional receipts
for other incurred expenses.

* Confirm the fund code(s) you want to use for
your reimbursement.

Once confirmed, I will prepare your reimbursement
report for review.

User: All documents uploaded. I would like to use
fund code 50032

18

.

TravelReimGPT: Thank you for uploading all re-
quired documentation and confirming that you
would like to apply fund code 50032 for your
travel reimbursement. Below is a clear summary
of your actual reimbursed expenses and amounts,
processed strictly by institutional and grant policy
for fund code 50032.

Las Vegas Travel Reimbursement Summary (Fund
Code 50032)

Category Amount (USD)
Flights (Round Trip) $793.53
Lodging/Hotel (Room Rate) $318.00
Lodging/Hotel (Tax) $42.54
Meals (Per Diem Rate) $148.00
Ground Transportation $112.15
Tips $9.62
Total $1,423.84
What Happens Next:

* Once you confirm, your submission will be
finalized for review and further processing by
the travel reimbursement team.

* If any detail needs correction, please specify
what should be changed.

Summary of Immediate Actions for You:

* Review the reimbursement summary and
amounts above.

* Confirm accuracy and intent to submit using
fund code 50032 (or request changes).
Supplementary: You asked for downloading

reimbursement files.

[A button for downloading the result is located
below the output box.]

	Introduction
	Related Works
	TravelReimGPT System Design
	TravelReimGPT User Interface (UI)
	Core Engines
	POCA
	Task-Specific Entity and Rule Modeling
	Object Constructor (OC)
	Deterministic, Rule-Compliant Reimbursement Generation

	Dialogue Flow

	Evaluations and Experimental Setup
	Evaluation Metrics
	Test Cases

	Results
	Overall Performance
	Comparison with the Baseline
	Performance of Variants

	Discussions
	Conclusions
	Appendix
	Class definition code design template used in TravelReimGPT
	An example of object class: Ground Transportation
	An example of programming logic network
	A usage case example on TravelReimGPT

