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Abstract001

We present TravelReimGPT, a user-centric,002
conversational AI system for automating travel003
reimbursement tasks under strict policy con-004
straints. While recent LLM-based agents005
have shown promise in open-ended dialogues,006
they often struggle with numerically sensi-007
tive and rule-governed applications due to008
limitations in symbolic reasoning and consis-009
tency. To address these challenges, we propose010
a Programming-Object-Centric Architecture011
(POCA) that transforms user inputs and docu-012
ments into programming objects, which serve013
as the foundation for deterministic, logic-driven014
policy enforcement. A self-corrective object015
constructor, combining validation logic and016
iterative model-guided refinement, enhances017
the accuracy and completeness of extracted018
information. Through multi-turn interactions,019
TravelReimGPT gathers necessary inputs (e.g.,020
receipts) and generates reimbursement reports021
that comply with complex policy rules. Ex-022
periments on real-world reimbursement cases023
show that, powered by GPT-4.1, our system024
consistently produces accurate reimbursement025
outcomes across all tested cases, exhibits ro-026
bust conversational fluency, and achieves high027
user satisfaction. In contrast, prompting-based028
baselines occasionally yield inaccurate reim-029
bursements, highlighting reliability and control030
limits. This work demonstrates a practical and031
extensible framework for building reliable AI032
agents for rule-intensive domains, with poten-033
tial applicability to broader tasks such as audit-034
ing and budget compliance.035

1 Introduction036

Business-travel reimbursement is one of the most037

routine yet time-consuming back-office workflows038

in universities, governments, and industry (GBTA,039

2023). Every trip generates a small archive of arte-040

facts—receipts and per-diem tables—that must be041

parsed, checked against multiple policy handbooks,042

and distilled into reimbursable dollar amounts. The043

paperworks and policy-compliance check are te- 044

dious and burdensome. Software vendors have 045

rolled out “smart” reimbursement portals to facili- 046

tate the process. They employed optical charac- 047

ter recognition (OCR) for amount detection on 048

documents and have integrated simple math opera- 049

tions for simple reimbursement rules, e.g., standard 050

meals grid amount calculation (SDO CPA, 2025; 051

Boese, 2025). These tools speed up raw data entry 052

but stop far short of human-level assistance. The 053

system might be unable to recognize the truly in- 054

curred amounts for reimbursement. For example, it 055

might extract the total amount including tips when 056

the tips should be removed under some polices; and 057

it is hard to handle the complicated cases involving 058

capped reimbursable expenses (e.g., lodging). As 059

a result, staff must still review and check every ex- 060

tracted amount item, cross-check it against the raw 061

receipts, review the grant or institutional policies 062

manual, and compute the reimbursable amounts by 063

hand. The semi-automation saves a few keystrokes 064

but leaves the cognitive and numerical burden un- 065

touched (Shaked, 2025). 066

The recent breakthrough in large-scale gener- 067

ative models promises a leap forward on cogni- 068

tive AI(McKinsey & Co., 2023; Johnston, 2025). 069

Large Language Models (LLMs), represented by 070

GPT-4-series models, exhibit extraordinary profi- 071

ciency in natural language understanding and gen- 072

eration(Achiam et al., 2023; Touvron et al., 2023). 073

The emergence of such sophisticated generative 074

AI models has facilitated near-human-level com- 075

petencies and task automation in various domains, 076

including software development, text summariza- 077

tion, and various cognitive activities traditionally 078

requiring human expertise (Chang et al., 2024; 079

Thirunavukarasu et al., 2023; Wei et al., 2022a; 080

Gottweis et al., 2025). A current and rapidly grow- 081

ing trend involves developing human-level AI tools 082

and systems designed to alleviate humans from te- 083

dious and repetitive workloads (Wang et al., 2024a). 084
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Prominent applications include automated coding085

assistants, intelligent scheduling systems, and ad-086

vanced virtual personal assistants (GitHub, 2025;087

Microsoft, 2025; Stige et al., 2024). However, crit-088

ical limitations persist, such as the occurrence of089

hallucinations and constraints imposed by the au-090

toregressive nature of LLM architectures, which091

hinder their capability for reliable formal logical092

reasoning (Bommasani et al., 2021; Ji et al., 2023;093

Xu et al., 2024b). Notably, LLMs often struggle094

with arithmetic tasks, failing to consistently en-095

sure accuracy even in basic addition and simple096

character-counting exercises, such as counting the097

letter ‘r’ in the word “strawberries”. Consequently,098

employing LLMs in numerically-sensitive tasks099

including business-travel reimbursement, which re-100

quire precise and multiple logical operations and101

have extremely low tolerance for numerical inaccu-102

racies, remains a significant challenge.103

Driven by the consideration, in this work,104

we propose TravelReimGPT, a reliable, effective,105

and highly user-friendly generative model de-106

signed to streamline and automate travel reimburse-107

ment processes, including paperwork processing108

and ensuring compliance with relevant policies.109

TravelReimGPT serves as an end-to-end expert sys-110

tem, guiding users to provide mandatory documen-111

tation and information, subsequently generating112

accurate reimbursable outcomes.113

The primary contributions of this work are four-114

fold:115

• TravelReimGPT. the first end-to-end, con-116

versational system that directly turns raw117

receipts and free-text queries into reliable118

policy-compliant reimbursement reports, lift-119

ing the manual burden of document parsing,120

rule lookup, and calculation.121

• Programming-Object-Centric Architecture122

(POCA). an architecture designed for imple-123

menting deterministic rule compliance. It en-124

sures numerical precision, enhanced usability,125

and cognitive robustness by effectively trans-126

forming unstructured data (i.e., free texts and127

documentations) into programming objects128

that operate reliably within formal logical sys-129

tems. POCA facilitates seamless interaction130

between generative AI and deterministic for-131

mal logic networks for developing cognitive132

AI to specific rule-compliant tasks, such as133

travel reimbursement.134

• AI cognition analysis. Demonstrates that the 135

performance of the LLMs directly impacts 136

the overall system performance, necessitating 137

the use of advanced models. The study em- 138

phasized the necessity of utilizing advanced 139

generative models, such as GPT-4.1, for an 140

effective and smooth cognitive AI system. 141

• Blueprint of AI system for complicated 142

rule-compliant human tasks. Provides a 143

practical and systematic solution to develop 144

reliable, user-friendly, and effective AI sys- 145

tems for complex tasks requiring numerical 146

precision and adherence to high-reuse, well- 147

defined rules, such as rule-constraint budget- 148

ing, auditing, and other similar tasks. 149

To the best of our knowledge, TravelReimGPT 150

is the first end-to-end cognitive AI system for nu- 151

merically grounded, high-reuse-rule-bound tasks. 152

2 Related Works 153

LLM-based agents. LLM-based agents leverage 154

LLMs to enable intuitive natural language interac- 155

tions and facilitate various tasks (Plaat et al., 2025; 156

Xi et al., 2025). To enhance their performance, in- 157

novative prompting and agent design techniques 158

have been proposed(Schulhoff et al., 2024): Chain- 159

of-Thought (CoT) (Wei et al., 2022b) improves ac- 160

curacy and interpretability by externalizing reason- 161

ing steps; Function/tool-calling(Masterman et al., 162

2024) extends capabilities by integrating prede- 163

fined functions, tools, and external knowledge; And 164

ReAct(Yao et al., 2023) interleaves reasoning and 165

action for dynamic, context-aware behavior. Exist- 166

ing agents such as MetaGPT (Hong et al., 2023), 167

HuggingGPT(Shen et al., 2023), Chameleon(Lu 168

et al., 2023), and KnowAgent(Zhu et al., 2024) are 169

designed to integrate language understanding, rea- 170

soning, external knowledge, and tool use, aiming 171

for increasingly sophisticated capabilities. 172

Cognitive agents for logic-intensive tasks. 173

LLMs often hallucinate and underperform on tasks 174

demanding precise symbolic manipulation, such 175

as financial and audit domains, mathematics, and 176

rule-compliant tasks(Kang and Liu, 2023). Recent 177

research augments LLMs with symbolic and pro- 178

grammatic components to mitigate the hallucina- 179

tion and enhance formal logic(Cheng et al., 2025; 180

Xiong et al., 2024; Xu et al., 2024a; Fang et al., 181

2024). OpenAI’s Code Interpreter, CodeAct(Wang 182

et al., 2024b), AgentCoder(Huang et al., 2023), 183
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Mathcoder(Wang et al., 2023), and PAL(Gao et al.,184

2023) translate natural-language tasks into exe-185

cutable code, yielding better accuracy on arithmetic186

and structured-reasoning benchmarks. Others, such187

as MCTSr (Zhang et al., 2024a) and Aflow (Zhang188

et al., 2024b), employ Monte Carlo Tree Search189

for more effective decision-making. These hybrid190

neuro-symbolic approaches combine LLM flexibil-191

ity with formal precision. However, most current192

agents are optimized for general or junior-level193

logic tasks and perform poorly on complex sym-194

bolic challenges. Domains like rule-compliant re-195

imbursement demand task-specific agents that are196

robust, accurate, and user-centered (Miehling et al.,197

2025). Yet, a unified framework for building such198

reliable and domain-specialized agents remains ab-199

sent.200

3 TravelReimGPT System Design201

We introduce TravelReimGPT, a user-friendly,202

end-to-end system designed to automate travel203

reimbursement processing and generate policy-204

compliant reports, including automated document205

processing and reimbursement rule enforcement,206

while allowing users to interact freely through un-207

structured inputs such as free-form text and support-208

ing documents. The system integrates advanced209

LLMs as its core AI engine for robust language210

understanding and generation, and programming211

engines for generating reliable and deterministic212

rule-compliant reimbursement results.213

Given the inherent complexity of travel reim-214

bursement, which requires effective expense en-215

tity processing and policy compliance involving216

frequently multiple interacting constraints and cal-217

culations (e.g., total allowable tips), we propose218

the POCA. POCA enforces entities and rules to be219

expressed as programming objects and logic net-220

works so that all computations remain transparent,221

testable, and reproducible. Object constructor (OC)222

of POCA is designed to construct executable pro-223

gramming objects that could be seamlessly inter-224

acted within the programming logic network. OC225

employs a definition-guided, programming-engine-226

driven, and self-corrective loop to ensure the qual-227

ity of constructed objects.228

3.1 TravelReimGPT User Interface (UI)229

TravelReimGPT exposes a Web UI built with Open230

WebUI1, an extensible, feature-rich, and user-231

1https://github.com/open-webui/open-webui

friendly self-hosted AI platform. Figure 1 dis- 232

plays the web UI of TraverReimGPT. Users can at- 233

tach documents and images, type natural-language 234

queries, and engage in multi-turn conversations. 235

All conversations are stored in the sidebar so that 236

users can resume any thread on demand. Upon 237

completion, users can download policy-compliant 238

reimbursement reports with a one-click button.

TravelReimGPT
Guide users through the travel reimbursement process, including automated document

processing and policy compliance, and generate a policy-compliant reimbursement report.

Suggested

Hi
Prompt

Start post-travel reimbursement procedure.
Prompt

How can I help you today?

?

TravelReimGPT
Set as default

New Chat

Test User 1

January

All chats

 Travel Reimbursement Help

Search

Figure 1: The Web UI of TravelReimGPT

239

3.2 Core Engines 240

There are two types of core engines in the devel- 241

opment of TravelReimGPT: the AI Engine and the 242

Programming Engine. 243

• AI Engine. Provides the cognitive foundation 244

of TravelReimGPT, enabling intelligent language 245

understanding and generation. Its core functional 246

requirements include natural language understand- 247

ing & generation, programming language compre- 248

hension, and visual understanding. 249

• Programming Engine. Serves as the determin- 250

istic and rule-execution layer of TravelReimGPT. 251

It ensures the generation of reproducible, numeri- 252

cally accurate, and policy-compliant outcomes. Its 253

key responsibilities include: 1) Construction of 254

domain-specific programming objects: Instantiates 255

programming objects representing critical reim- 256

bursement entities (e.g., expenses, travel overview). 257

2) Execution of rule-based logic networks: Opera- 258

tionalizes rule logic networks, encoding dependen- 259

cies, conditionals, and hierarchical relationships 260

among objects. 261

TravelReimGPT employs Python as the lan- 262

guage of its programming engine. 263

3.3 POCA 264

POCA ensures that policy enforcement relies exclu- 265

sively on deterministic programming logic rather 266

than fragile rule-in-context prompting approaches 267

3

https://github.com/open-webui/open-webui


(illustrated in Figure 2).

• Documentation
• User queries
• Chat conversation

Object Constructor

JSON-parsable String

Programming object

mutually reversible

Save in memory

All programming objects (expense objects, travel overview objects, …)
Flights, lodging, ground transportation expenses, …

Programming Logic Network

Once the user confirms or requests to
generate the reimbursement result.

Deterministic, Rule-Compliant 
Reimbursement Generation

Reimbursement Result Downloadable
Output in the UI for user's review

Programming-Object-Centric Architecture

User Input & 
System Context

Figure 2: The Overview of POCA
268

3.3.1 Task-Specific Entity and Rule Modeling269

The POCA underpins TravelReimGPT by oper-270

ationalizing deterministic, policy-aware reason-271

ing through programming representations of task-272

specific entities and reimbursement rules. These273

components collectively serve as the semantic and274

computational foundation of the system.275

Entities and Rules In TravelReimGPT, the prin-276

cipal entity types include Preapproval Report,277

Travel Overview, Flight, Lodging, Ground Trans-278

portation, Meal, Mileage, Registration, Incidental,279

and Ambiguous Expense. These entities act as the280

foundational operands for evaluating policies and281

performing rule-based computations.282

Reimbursement rules are encoded as logical283

formulas, specifying constraints and relationships284

among entities. These rules are typically defined by285

regulatory or funding bodies such as the National286

Institutes of Health (NIH). For instance, under NIH287

funding guidelines, lodging expenses must con-288

form to daily rate limits set by the General Services289

Administration (GSA).290

Dual Representations of Entities: Programming291

Objects and JSON-parsable Strings Unlike tra-292

ditional entity extraction methods, TravelReimGPT293

represents entities as programming objects aug-294

mented with validated attributes and specific func-295

tionalities. Each entity category, such as Lodging296

and Flight, corresponds to a dedicated object class297

specifying entity-pertinent attributes and functions.298

Each entity is realized through two fully interop-299

erable and mutually reversible representations:300

• Programming object: an instantiated object301

derived from a class definition. It serves as the exe-302

cutable and operational form of the entity within a303

deterministic computational workflow for generat-304

ing rule-compliant outcomes.305

• JSON-parsable string: a JSON-formatted 306

string parsable by the programming engines, and 307

well-suited for storage, transmission, and integra- 308

tion into the AI engines as part of augmented and 309

contextual prompts. 310

To enable seamless bidirectional transformation 311

between the two representations, all object class 312

definitions must follow a standardized code design 313

template that enforces mutual reversibility. This 314

template requires that each class: 1) Supports ini- 315

tialization from a JSON-parsable string, 2) Imple- 316

ments a serialization function, and 3) Accommo- 317

dates the structural and behavioral requirements 318

specific to each entity type. With the correspond- 319

ing class definition, a JSON-formatted string can 320

be instantiated into a programming object; con- 321

versely, a programming object can be serialized 322

into a JSON string. This dual representations of 323

entities enable seamless data flow between the pro- 324

gramming engine and the AI engine. 325

In sum, the dual representation strategy serves 326

as a bridge between formal rule-based processing 327

and natural language-based reasoning. It is cru- 328

cial to TravelReimGPT’s capability to manage the 329

complex, policy-governed task of automated travel 330

reimbursement. 331

Rule Set: Programming Logic Network Each 332

rule set is implemented as a programming logic 333

network, which is a structured collection of func- 334

tions and conditionals operating on programming 335

objects. In TravelReimGPT, each logic network 336

corresponds to a specific authority’s policy frame- 337

work, such as NIH or institutional policy. These 338

networks leverage object attributes and inter-object 339

relationships to apply conditions, perform numer- 340

ical computations, and enforce hierarchical rule 341

structures. The functions executed within the logic 342

networks produce rule-compliant outcomes in a 343

deterministic and interpretable manner. An illus- 344

trative example of a programming logic network is 345

provided in the Appendix A.3. This design enables 346

TravelReimGPT to perform policy-driven decision- 347

making in complex reimbursement scenarios with 348

transparency and precision. 349

3.3.2 Object Constructor (OC) 350

Reliable construction of entity objects is essential 351

for automated travel reimbursement, which is nu- 352

merically sensitive. POCA introduces the OC mod- 353

ule for generating internally verified and executable 354

programming objects. The OC leverages the AI 355
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engine’s advanced code comprehension and gener-356

ation capabilities and operates through a definition-357

guided, self-corrective loop. This process ensures358

that the resulting objects are well-structured, se-359

mantically coherent, and suitable for execution360

within formal logic networks. The overview of361

the OC process is illustrated in Figure 3).

Object Constructor

Class Identifier

Identified Class Name

Corresponding 
Class Definition 

Code

AI Engine

Instantiation Error 
Feedback

Class Definition Code Repository
(Lodging, Meals, …)

User Input & 
System Context

Prompt 
Builder

JSON-parsable String

Programming Engine
(e.g. , Python)

Class Instantiation
Import [class]

[class](JSON-parsable string)

Instantiated 
successfully?

JSON-parsable String

Self-corrective Loop
(Iterative validation and correction)

OCR Processor

OCR result

OCR-augmented 
prompting
(applied when failure happens 
in processing documents)

pdf, images, …

Figure 3: The Overview of OC

362

OC Process The OC extracts entity objects based363

on user inputs (e.g., queries, uploaded documents)364

and system context (e.g., previously processed ob-365

jects and conversation history). The process con-366

sists of the following stages:367

1. Object Type Detection Based on the inputs,368

the OC detects and identifies the types of involved369

entities (i.e., class name). For example, when mul-370

tiple receipts are uploaded, the system determines371

the appropriate type of each expense receipt. The372

identifier is performed using prompting techniques373

with the AI engine, which analyzes both content374

and context to output the appropriate class name.375

2. Definition-Guided, Self-Corrective Loop376

Once the target class is identified, the OC prompts377

the AI engine to generate a JSON-formatted string378

representing an instance of that class. This genera-379

tion is guided by the corresponding class definition,380

which specifies the expected structure, attributes,381

and value constraints.382

The generated JSON string is parsed and passed383

to the class constructor for object instantiation,384

where inner-verification modules are triggered to385

validate attribute types, enforce value constraints,386

and check for domain-specific logic. Notably,387

TravelReimGPT performs reconciliation check to388

ensure consistency in numerical fields (e.g., item-389

ized and total amounts listed on receipts), thereby390

enhancing the amount accuracy of extracted ex- 391

pense objects. 392

If instantiation fails due to structural, type- 393

related, or semantic inconsistencies, the system 394

captures the specified error and feeds it back into 395

the next prompt. This triggers a self-corrective 396

loop, allowing the AI engine to iteratively refine its 397

output until a valid, reliable, and executable object 398

is produced. 399

Algorithm 1 Definition-Guided, Self-Corrective
Loop

Require: Class initiator c and its definition code
C, task prompt p, input q, maximum attempts
M , supplementary context s

1: k ← 1
2: CS ← system{C, p} + user{q} ▷ Seed

first request with task instruction
3: while k ≤M do
4: response← AI_engine(CS) ▷ Get AI

engine response
5: J ← extract_JSON(response) ▷ Isolate

candidate JSON
6: try
7: c(J) ▷ Object instantiation attempt
8: return J ▷ Success→ output JSON
9: except Error e

10: CS ← assistant{response}+ user{e,
p, s} ▷ Add error feedback

11: k ← k + 1
12: end while
13: return None ▷ Fail after M attempts

Enhancing Object Construction with Inner Ver- 400

ification Modules The precision of constructed 401

entities, particularly those involving numerics, is 402

vital for reliable reimbursement. Even minor nu- 403

merical errors can result in incorrect outcomes. 404

To improve the quality of extracted objects, 405

TravelReimGPT incorporates verification modules 406

that perform entity-specific quality checks during 407

object construction. For expense-related entities, a 408

key verification is the amount reconciliation check, 409

which ensures that the sum of itemized charges 410

matches the total amount. These values are ex- 411

tracted directly from receipts and cross-validated. 412

If the verification fails, a self-corrective iteration is 413

triggered to refine the extraction. Additional veri- 414

fication modules include attribute type and format 415

checks, presence of required fields, and domain- 416

specific logic enforcement, etc. 417
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Each class definition implements dedicated418

inner-verification functions and specifies descrip-419

tive error messages for exceptions as instructions420

for self-correction.421

In summary, the class definition code serves a422

dual purpose: 1) Guide the AI engine in gener-423

ating structured, JSON-parsable strings; and 2)424

Enable robust runtime validation and correction425

of extracted results. The design template used in426

TravelReimGPT is provided in Appendix A.1.427

Enhancing Object Construction with Supple-428

mentary Context In addition to leveraging error429

feedback, the OC also supports supplementary con-430

textual signals to improve extraction accuracy and431

success rates. For document image inputs such432

as receipts, the AI engine may produce inaccurate433

outputs due to limitations in visual parsing. When434

repeated instantiation fails, the system invokes an435

OCR tool (PaddleOCR2) to extract contents of im-436

ages. The OCR output is then injected into the AI437

prompt as supplementary context, enabling more438

accurate and consistent JSON generation.439

3.3.3 Deterministic, Rule-Compliant440

Reimbursement Generation441

All programming objects are stored in the database442

as JSON-parsable string representations. Once443

the user confirms or requests to generate the re-444

imbursement result, TravelReimGPT invokes the445

corresponding programming logic networks and446

processes all objects to generate a rule-compliant447

reimbursement result. The result is presented in the448

UI and made available for download and review.449

3.4 Dialogue Flow450

At each dialogue turn, the user may input a query451

and optionally upload one or more documents. The452

backend of TravelReimGPT executes:453

1) Think: Analyze the user’s utterance to infer454

intent and determine the current step in the reim-455

bursement procedure based on all processed data.456

2) Act (if applicable): Invoke the OC to create457

or refine entity objects; trigger reimbursement gen-458

eration if requested or all necessary documents are459

present; prepare all processed task-related results460

as augmented prompts.461

3) Respond: Answer the user’s query, sum-462

marise newly processed information and the current463

reimbursement status, notify the users of the next464

2https://github.com/PaddlePaddle/PaddleOCR

required action, and present the reimbursement out- 465

put with a one-click download option in the UI if 466

results are ready. 467

4 Evaluations and Experimental Setup 468

To assess the effectiveness of TravelReimGPT, 469

we conducted a comparative evaluation against 470

a baseline system that uses a traditional prompt- 471

ing technique, denoted as BasePrt. Specifically, 472

the baseline employs task-instructive prompts with 473

the GPT-4.1 agent to perform the reimbursement 474

process, including document processing and user 475

query resolution. All reimbursement rules, task in- 476

structions, and document interpretation guidelines 477

serve as prompts and knowledge to the AI agent. 478

The AI engine serves as the intelligence core 479

of TravelReimGPT, its capability directly affects 480

overall system performance. To explore the im- 481

pact of model sophistication, we tested five vari- 482

ants using LLMs with varying levels of capac- 483

ity, provided by OpenAI’s API3 with default set- 484

tings: ChatGPT-4o-latest, GPT-4o, GPT-4.1, 485

GPT-4.1-mini, and GPT-4o-mini, denoted as 486

TRG4olt, TRG4o, TRG4.1, TRG4.1mn, and TRG4omn, 487

respectively. 488

4.1 Evaluation Metrics 489

The evaluation employed a comprehensive set of 490

performance metrics. 491

1) Task success and accuracy. Indicate the 492

system’s ability to correctly and fully complete 493

the reimbursement task. Specifically, we verify 494

the reimbursable amount of each expense item in 495

the final reimbursement report and calculate the 496

accuracy (Reim. Acc.); 100% accuracy indicates a 497

fully successful reimbursement process. 498

2) Total cost. Total token usage and correspond- 499

ing API charges incurred from all system-triggered 500

calls (Total Cost, in USD). 501

3) Processing efficiency. Total system response 502

time (Total Latency, in minutes) and the conversa- 503

tion rounds (Turn Count). 504

In addition, we report both system-level and user- 505

rated evaluation metrics to capture the processing 506

behavior of TravelReimGPT and reflect subjective 507

user experience using the system. 508

System Behavior Metrics. 1) OC Attempts 509

refers to the average number of iterations in OC 510

triggered to build a valid object. 2) Failed OC 511

counts the number of failed object constructions. 512

3https://platform.openai.com
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3) UI Response Length indicates the average num-513

ber of tokens per response shown in the UI.514

User Satisfaction Metrics. User ratings were515

collected on a 5-point Likert scale (1 = poor, 5 =516

excellent). 1) System Fluency measures the smooth-517

ness of processing across the pipeline. 2) Response518

Quality captures the informativeness and clarity of519

responses. 3) Intent Understanding assesses how520

well the system interprets user intent and reimburse-521

ment status. 4) Overall Satisfaction reflects the522

user’s overall impression of system performance.523

4.2 Test Cases524

We evaluated the systems using four representative525

real-world reimbursement cases collected from an526

institution, all of which are reimbursed through527

federal funding and must comply with both institu-528

tional policies and corresponding funding regula-529

tions. Each case was processed independently by530

all model variants as well as the baseline system.531

Each case includes a mandatory preapproval doc-532

ument required for the reimbursement. The cases533

represent a range of realistic reimbursement scenar-534

ios with increasing complexity:535

- Case SA (3 docs): A simple trip to San Antonio536

with parking and bus receipts.537

- Case LV (8 docs): A trip to Las Vegas with538

flight, lodging, and multiple taxi/Uber receipts.539

- Case SD (7 docs): A trip to San Diego with540

flight, multi-night lodging with cumbersome item-541

ized charges, and multiple Uber receipts.542

- Case IN (14 docs): A multi-leg trip to Dallas543

and Indianapolis with registration, multiple flights,544

lodging, Uber, and incidentals receipts.545

5 Results546

5.1 Overall Performance547

The deployed version of TravelReimGPT employs548

GPT-4.1 as its core AI engine. As shown in Fig-549

ure 4, TRG4.1 achieve 100% reimbursement ac-550

curacy, i.e., successfully generates rule-compliant551

reimbursement results of all test cases, while at a552

low cost (approximately $0.50 for a case with 14553

documents) and a system processing time of only554

several minutes per case. Following the guide of555

the system, users upload required documents and556

provide key information over only several dialogue557

turns to obtain reliable rule-compliant reimburse-558

ment results. Furthermore, users could query to559

retrieve specific items if needed, e.g., “show the560

details of the uber expense on 5/12.”. The con-561

versation of a usage example is illustrated in the 562

Appendix A.4. 563

5.2 Comparison with the Baseline 564

The baseline only successfully handled the simplest 565

case and consistently made errors on relatively- 566

complex cases, even when the relevant rules were 567

explicitly injected into the system. Most of these 568

errors stemmed from incorrect calculations per- 569

formed by the LLM, despite the fact that the origi- 570

nal amounts were correctly extracted. 571
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Figure 4: Performance comparison of all model variants
and the baseline on the test cases.

5.3 Performance of Variants 572

As shown in Figure 4 and Table 1, TRG4olt and 573

TRG4.1 achieve 100% reimbursement accuracy 574

across all test cases. They also exhibit high system 575

fluency, accurately infer user intent without explicit 576

prompts, and generate detailed, user-friendly out- 577

puts—indicating strong robustness and reasoning 578

capabilities. Due to its higher API cost, TRG4olt 579

is more expensive. 580

System User Ratings
OC-Att Fail Len Flu Qual Int Sat

TRG4.1 1.09 0 443.2 5 5 5 5
TRG4olt 1.13 0 395.9 5 5 5 5
TRG4o 1.69 0 292.1 3 3 3 3
TRG4.1mn 1.33 1 275.9 3 3 2 2
TRG4omn 2.10 5 266.1 1 1 1 1

Table 1: System-level and user-rated evaluation metrics
for TravelReimGPT variants. OC-Att: OC Attempts;
Fail: Failed OC; Len: UI Response Length; Flu: Sys-
tem Fluency; Qual: Response Quality; Int: Intent Un-
derstanding; Sat: Overall Satisfaction.
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TRG4o misclassified a mandatory resort fee in a581

lodging receipt as non-reimbursable unnecessary582

fee in Case SD. While it demonstrates high accu-583

racy in object extraction, it often requires multi-584

ple attempts to construct objects successfully and585

shows limitations in intent understanding. Its over-586

all performance is comparable to TRG4.1mn, but587

with significantly higher cost.588

All variants successfully handle the simplest589

case. However, in more complex scenarios, mini-590

level variants fail to complete the reimbursement591

process. They struggle with language understand-592

ing, including intent inference, contextual reason-593

ing, and producing coherent responses. As a result,594

users must provide explicit instructions and exhibit595

considerable patience, even when the necessary596

information is already implied in the uploaded doc-597

uments. Their outputs are often brief and uninfor-598

mative, and less user-friendly. TRG4omn performs599

the worst: it always fails to process documents,600

struggles with object construction, and is unable to601

proceed with the reimbursement workflow.602

Overall, TravelReimGPT proves to be an ef-603

fective and deployable system for accurate, user-604

friendly, and rule-compliant travel reimbursement605

automation. Powered by GPT-4.1, the TRG4.1 vari-606

ant offers the best balance between cost and perfor-607

mance while ensuring reimbursement reliability.608

6 Discussions609

TravelReimGPT is a task-specific, user-friendly,610

and end-to-end system for automating travel re-611

imbursements. It generates rule-compliant re-612

sults from free-form user inputs and documents613

via multi-turn dialogue, with a focus on usabil-614

ity, accuracy, and policy adherence. At the core615

lies the POCA, which enables object-level sym-616

bolic reasoning and deterministic rule enforce-617

ment—offering a more scalable and robust alterna-618

tive to traditional parameter-level prompting. The619

system is modular and flexible. The OC module620

effectively builds executable entity objects from621

user inputs and contextual information, including622

conversation history and prior system state. These623

objects are validated, self-corrective, and enriched624

with attributes and functions to reflect structural625

dependencies, improving robustness and precision626

in data extraction and rule application.627

Rather than solving general reasoning problems,628

TravelReimGPT is a task-specific framework, and629

optimized for effective and efficient task automa-630

tion. Essential to this framework are clearly de- 631

fined object classes and structured programmatic 632

logical networks, which collectively underpin the 633

system’s ability to enforce complex rule compli- 634

ance effectively. We provide detailed design tem- 635

plates outlining the critical components required 636

for establishing well-structured object classes and 637

logical networks. Leveraging OpenAI’s advanced 638

reasoning LLMs (specifically, o1 and o3), we sys- 639

tematically generated preliminary code structures 640

for object class definitions and policy networks, 641

subsequently refining and optimizing these through 642

manual reviews and improvements. 643

Performance evaluations demonstrate 644

TravelReimGPT’s strong capability in han- 645

dling representative reimbursement scenarios. 646

Exceptional expense cases occasionally occur. In 647

accordance with reimbursement policy, exceptions 648

require manual communication and approval. Such 649

exceptions fall outside the scope of the automated 650

system and are therefore managed separately. 651

Furthermore, travel reimbursement represents a 652

broader category of rule-compliant tasks, wherein 653

explicit, predefined rules are systematically applied 654

to documents and related data to yield compliant 655

outcomes, similar to tasks in tax reporting and au- 656

diting. Consequently, our proposed framework not 657

only provides a practical, user-friendly, and effi- 658

cient solution specifically tailored to travel reim- 659

bursements but also offers a generalizable model 660

for automating a wide range of similarly structured, 661

rule-based compliance tasks. 662

7 Conclusions 663

This work introduces TravelReimGPT, a user- 664

centric end-to-end AI system designed to effi- 665

ciently automate business-travel reimbursement 666

processes with free-form and document inputs. 667

Leveraging advanced LLMs and the novel POCA, 668

TravelReimGPT accurately parses documentation 669

and inputs and generate rule-compliant reimburse- 670

ment results. Our approach notably reduces cogni- 671

tive and numerical burdens in administrative work- 672

flows. POCA serves as a versatile architecture, 673

extendable to various high-reuse-rule-intensive 674

task automation such as budgeting and auditing. 675

TravelReimGPT significantly enhances workflow 676

efficiency and reliability, highlighting the transfor- 677

mative impact of cognitive AI. 678
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Limitations679

The proposed TravelReimGPT framework, being680

task-specific, inherently limits its generalizability681

for broad, general-purpose use. Although travel682

reimbursement cases are similar, the evaluation683

in this study is limited due to the small size of684

evaluated test cases.685

Our study does not involve of automatic pars-686

ing and programming of complex rules. While687

our symbolic representation of entities and rules is688

meticulously designed and optimized for efficiency,689

the class definitions and logic networks remain pre-690

defined and static and necessitates manual interven-691

tion in the design. Future developments will target692

automating this aspect to reduce manual efforts and693

further enhance the scalability and broader applica-694

bility of our framework, lower the technical barrier695

to making it accessible and designable by common696

users.697

Due to inherent latency issues and the sub-698

stantial computational resources required to lo-699

calize open-source LLMs, we did not conduct re-700

lated experiments. As a result, performance data701

for TravelReimGPT using localized open-source702

LLMs, such as LLaMA, remains unexplored and703

constitutes a valuable direction for future research.704

Moreover, the framework depends on proprietary705

LLMs which introduces concerns regarding repro-706

ducibility, high usage costs, and unequal access707

for different user groups. Finally, while automa-708

tion improves efficiency, over-reliance may reduce709

human oversight in edge cases requiring nuanced710

judgment.711

Ethics Statement712

The use of OpenAI’s LLMs was conducted via API713

access under a contractual agreement that explicitly714

prohibits data collection or retention. As a result,715

no personally identifying information was collected716

by the language model provider. This study com-717

plies with all relevant data privacy regulations and718

ethical research guidelines. We used real-world719

cases for evaluation. While these may contain in-720

formation originating from actual individuals, no721

manual anonymization or offensive content filter-722

ing was applied. All data was handled securely723

within a local research environment and was not ex-724

posed to any third-party services beyond the LLM725

API, under strict data handling protocols. All case726

data was obtained with explicit consent from the727

individuals involved. No personal data was used728

without permission. 729
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A Appendix921

A.1 Class definition code design template used922

in TravelReimGPT923

Here is the class definition code design template924

used in POCA for TravelReimGPT with Python as925

the core of the programming engine.926
927

class ClassName:928
class_name = "ClassName"929
# Comments specifying the formats930

and requirements of931
json_parsable_string , which is932
to guide AI engine933

def __init__(self ,934
json_parsable_string: str):935
self.json_data = json.loads(936

json_parsable_string)937
# Attribute extraction (example)938
self.attribute1 = self.json_data939

.get("attribute1", None)940
# Add more attributes as needed941

...942
self.__verification__ ()943
# Could add any functions here944

945
def __verification__(self):946

"""947

Verification module to ensure 948
the content of the extracted 949
object is well -structured , 950

accurate , and consistent. 951
Must raises specific errors 952
to guide AI engine debugging 953
and correction. 954

""" 955
# Example 1: Type and format 956

checks of attributes and 957
properties 958

try: 959
self.date = datetime. 960

strptime(self.date , "%Y 961
-%m-%d") 962

except Exception: 963
raise ValueError("Date 964

format must be YYYY -MM- 965
DD. Please correct the 966
result.") 967

968
# Example 2: Amount 969

reconciliation check , 970
ensuring the accuracy of 971
extracted amounts 972

if hasattr(self , " 973
itemized_amounts") and 974
hasattr(self , "total_amount" 975
): 976
computed_total = sum(self. 977

itemized_amounts) 978
if computed_total != self. 979

total_amount: 980
raise ValueError(" 981

Something wrong in 982
Amount extraction: 983
please check whether 984
the itemized 985

amounts are correct 986
and complete! And 987
check whether the 988
total amount is 989
correct!") 990

991
# Add other custom verification 992

modules as needed ... 993
# e.g., required fields , 994

allowable value ranges , 995
enumeration checks , etc. 996

def to_json(self): 997
# serialization function here 998999

A.2 An example of object class: Ground 1000

Transportation 1001

1002
class GroundTransportation: 1003

""" 1004
Represents a ground transportation 1005

expense , including details such 1006
as the mode of transport , 1007

start and end locations , itemized 1008
charges , trip distance , and 1009
optional departure and arrival 1010
dates and times. 1011

1012
This class is suitable for expenses 1013

like Uber , Lyft , taxi , bus , and 1014
train rides. 1015

11



If reimbursed for mileage , you1016
should use the Mileage class1017
instead.1018

1019
Attributes:1020

expense_type (str): The type of1021
the expense , fixed as "1022
Ground Transportation ".1023

description (str): A description1024
of the expense.1025

itemized_charges (List[Dict[str ,1026
Any]]): List of itemized1027

charges , each containing an1028
item and its charge. [{" item1029
": "Base Fare", "charge ":1030
10.00} , ...] If no tip is1031
found in the Uber/Lyft/Taxi1032
receipt , it should be {"item1033
": "Tip", "charge ": 0.0}.1034

expense_date (str): The date1035
when the expense was made ,1036
in YYYY -MM-DD format.1037

amount (float): The total amount1038
of the expense.1039

tip (float): The tip expense.1040
merchant (str): The1041

transportation provider , e.g1042
., Uber , Lyft.1043

mode (str): Mode of transport , e1044
.g., "bus", "train", "1045
rideshare", "taxi".1046

start_location (str): The1047
starting location.1048

end_location (str): The ending1049
location.1050

distance (float): Distance in1051
miles , if available.1052

departure_date_time (str):1053
Departure date in YYYY -MM-DD1054
HH:MM AM/PM format , if1055

available.1056
arrival_date_time (str): Arrival1057

date in YYYY -MM-DD HH:MM AM1058
/PM format , if available.1059

in_foreign (bool): Indicates1060
whether the ground1061
transportation expenses were1062
incurred outside the USA.1063

Default: False.1064
currency (str): the Standard1065

Currency Code: "EUR", "JPY",1066
"CHF", "CAD", .... Default:1067
"". Empty means USD.1068

"""1069
1070

expense_type = "Ground1071
Transportation"1072

1073
def __init__(self , input_json: str):1074

"""1075
Initializes a1076

GroundTransportation object1077
from a JSON string.1078

"""1079
try:1080

data = json.loads(input_json1081
)1082

except json.JSONDecodeError as e1083
:1084

raise ValueError(f"Invalid 1085
JSON input: {e}") 1086

1087
self.description: str = data.get 1088

("description", "") 1089
self.itemized_charges: List[Dict 1090

[str , Any]] = data.get(" 1091
itemized_charges", []) 1092

self.expense_date: str = data. 1093
get("expense_date", "") 1094

self.amount: float = data.get(" 1095
amount", 0.0) 1096

self.tip: float = data.get("tip" 1097
, 0.0) 1098

self.merchant: str = data.get(" 1099
merchant", "") # 1100
Transportation provider 1101

self.mode: str = data.get("mode" 1102
, "") # Mode of 1103
transport 1104

self.start_location: str = data. 1105
get("start_location", "") # 1106
Starting location 1107

self.end_location: str = data. 1108
get("end_location", "") 1109

# Ending location 1110
self.distance: float = data.get( 1111

"distance", 0.0) # Distance 1112
in miles 1113

self.non_tip_charge = round(self 1114
.amount - self.tip , 2) 1115

1116
# Departure and arrival dates 1117

and times 1118
self.departure_date_time: str = 1119

data.get(" 1120
departure_date_time", "") 1121

self.arrival_date_time: str = 1122
data.get("arrival_date_time" 1123
, "") 1124

self.in_foreign: bool = data.get 1125
("in_foreign", False) 1126

self.currency: str = data.get(" 1127
currency", "") 1128

1129
self.__verification__ () 1130

1131
self.expense_items = self. 1132

get_expense_items () 1133
1134

def __verification__(self): 1135
try: 1136

datetime.strptime(self. 1137
expense_date , "%Y-%m-%d" 1138
) 1139

except: 1140
raise ValueError(f"Invalid 1141

date format in 1142
expense_date: {self. 1143
expense_date }. Expected 1144
YYYY -MM-DD.") 1145

1146
# Check if each itemized charge 1147

has "item" and "charge" 1148
for entry in self. 1149

itemized_charges: 1150
if "item" not in entry or " 1151

charge" not in entry: 1152
raise ValueError(f" 1153

Missing required 1154
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keys ’item’ or ’1155
charge ’ in entry: ’{1156
entry}’")1157

1158
# Validate that the total1159

matches the amount1160
total_itemized = sum(charge.get(1161

"charge", 0.0) for charge in1162
self.itemized_charges)1163

if not abs(total_itemized - self1164
.amount) < 1e-6: # Allowing1165
for floating -point1166

precision issues1167
raise ValueError(1168

f"The total of itemized1169
charges ({1170
total_itemized })1171
does not match the1172
amount ({self.amount1173
}). Might miss some1174
items. Please check1175
the completeness of1176
all items."1177

)1178
1179

def get_expense_items(self):1180
expense_items = [{"1181

non_tip_charge": self.1182
non_tip_charge , "tip": self.1183
tip , "expense_date":self.1184
expense_date , "item": self.1185
expense_type }]1186

return(expense_items)1187
1188

def to_json(self) -> str:1189
"""1190
Serializes the1191

GroundTransportation object1192
to a JSON string , excluding1193
attributes with None or1194
empty values.1195

1196
Returns:1197

str: JSON string1198
representation of the1199
object.1200

"""1201
data = {1202

"expense_type": self.1203
expense_type ,1204

"description": self.1205
description ,1206

"itemized_charges": self.1207
itemized_charges if self1208
.itemized_charges else1209
None ,1210

"expense_date": self.1211
expense_date ,1212

"amount": self.amount ,1213
"tip": self.tip ,1214
"non_tip_charge": self.1215

non_tip_charge ,1216
"merchant": self.merchant ,1217
"mode": self.mode ,1218
"start_location": self.1219

start_location ,1220
"end_location": self.1221

end_location ,1222
"distance": self.distance if1223

self.distance else None1224

, 1225
"departure_date_time": self. 1226

departure_date_time , 1227
"arrival_date_time": self. 1228

arrival_date_time , 1229
"in_foreign": self. 1230

in_foreign , 1231
} 1232

1233
# Exclude keys with None or 1234

empty string values 1235
filtered_data = {k: v for k, v 1236

in data.items() if v not in 1237
(None , "", [])} 1238

1239
return json.dumps(filtered_data , 1240

indent =4) 1241
1242

def __repr__(self): 1243
return f"{self.__class__. 1244

__name__ }({ self.to_json ()})" 1245
1246

def get_date(self): 1247
return(self.expense_date) 12481249

A.3 An example of programming logic 1250

network 1251

An example of a programming logic network im- 1252

plementing hybrid rule compliance is presented. 1253

Soft rules refer to descriptive or context-dependent 1254

rules that are challenging to formalize symbolically. 1255

These rules typically govern the allowability of ex- 1256

pense items and require the application of an AI 1257

engine to assess compliance. In contrast, all deter- 1258

ministic rules—which can be clearly defined and 1259

codified—are implemented using symbolic logic. 1260
1261

class PolicyNetwork: 1262
""" Grant policy engine adhering to 1263

the requested template. 1264
1265

Parameters 1266
---------- 1267
policy_detail : dict 1268

Attributes defining the fund / 1269
grant policy. 1270

gsa_rate : module -like 1271
Must expose ‘lookup_lodge_rate ’ 1272

and ‘lookup_meal_ie_rate ’ 1273
helpers. 1274

get_allowable_function : coroutine 1275
‘await get_allowable_function( 1276

expense_json , rule_str , 1277
llm_helper)’ to 1278

evaluate soft rules via LLM. 1279
""" 1280
# 1281
# Construction helpers 1282
# 1283

1284
def __init__( 1285

self , 1286
policy_detail: Dict[str , Any], 1287
gsa_rate: Any , 1288
get_allowable_function: Callable 1289
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[[Dict[str , Any], str ,1290
Callable | None], Any],1291

) -> None:1292
# Core policy attributes1293
self.policy_id = policy_detail.1294

get("Fund_ID")1295
self.fund_source = policy_detail1296

.get("Fund Source")1297
self.allowance_foreign_travel =1298

policy_detail.get(1299
"foreign_travel_allowance",1300

False1301
)1302
self.allowance_domestic_travel =1303

policy_detail.get(1304
"domestic_travel_allowance",1305

False1306
)1307
self.allowance_tip =1308

policy_detail.get("1309
Allowance_Tip", True)1310

self.interpretative_rules =1311
policy_detail.get("1312
InterpretativeRulesDict",1313
{})1314

1315
# External dependencies1316
self._gsa_rate = gsa_rate1317
self._get_allowable_function =1318

get_allowable_function1319
1320

#1321
# Public helpers1322
#1323
def get_allowance_travel(self ,1324

all_objects: Dict[str , Any]) ->1325
bool:1326
# Return *True* if the whole1327

trip is reimbursable under1328
this policy.1329

travel_overview = all_objects.1330
get("travel_overview")1331

if not travel_overview:1332
return False1333

if travel_overview.travel_type1334
== "international":1335
return self.1336

allowance_foreign_travel1337
return self.1338

allowance_domestic_travel1339
1340

# Reimbursement engine (template1341
compliant)1342

1343
async def1344

generate_reimbursement_details(1345
self ,1346
all_objects: Dict[str , Any],1347
call_ai_engine: Callable | None1348

= None ,1349
) -> Dict[str , Any]:1350

# Entry point builds and returns1351
the nested reimbursement1352

details.1353
if not self.get_allowance_travel1354

(all_objects):1355
return {}1356

1357
# Work on a copy because we1358

mutate ‘all_objects ’ later1359

on 1360
objects: Dict[str , Any] = dict( 1361

all_objects) 1362
objects.pop("travel_overview", 1363

None) 1364
1365

reimbursement_details: Dict[str , 1366
Any] = {} 1367

1368
for obj_type , typed_objs in 1369

objects.items(): 1370
reimbursement_details[ 1371

obj_type] = {} 1372
for obj_id , obj in 1373

typed_objs.items(): 1374
evaluated_items: List[ 1375

Dict[str , Any]] = [] 1376
1377

for expense_item in obj. 1378
expense_items: 1379
is_allowable , 1380

abs_limit , 1381
remark , 1382
need_manual = 1383
await self. 1384
_eval_expense_item 1385
( 1386
expense_item , 1387

obj , 1388
call_ai_engine 1389

1390
) 1391
reim_result = {" 1392

incurred_expense 1393
": expense_item , 1394
"is_allowable": 1395

is_allowable 1396
, 1397

" 1398
abs_policy_limit 1399
": abs_limit 1400
, 1401

" 1402
need_manual_flag 1403
": 1404
need_manual , 1405

"remark": remark 1406
, 1407

} 1408
evaluated_items. 1409

append( 1410
reim_result 1411

) 1412
reimbursement_details[ 1413

obj_type ][ obj_id] = 1414
evaluated_items 1415

1416
return reimbursement_details 1417

1418
# 1419
# Internal evaluators and dispatch 1420
# 1421

1422
async def _eval_expense_item( 1423

self , 1424
expense_item: Any , 1425
obj: Any , 1426
call_ai_engine: Callable | None , 1427

) -> Tuple[bool , float | None , str , 1428
bool]: 1429

14



""" Route expense -item to the1430
appropriate evaluator and1431
normalize output."""1432

dispatch_map = {1433
"Ambiguous Expense": self.1434

_eval_ambiguous ,1435
"Lodging": self.1436

_eval_lodging ,1437
"Meals": self._eval_meals ,1438
"Ground Transportation":1439

self.1440
_eval_groundtransport ,1441

}1442
handler = dispatch_map.get(1443

expense_item.expense_type ,1444
self.1445
_eval_generic_soft_rule1446

)1447
return await handler(1448

expense_item , obj ,1449
call_ai_engine)1450

1451
# Expense -type handlers1452

1453
async def _eval_ambiguous(1454

self , expense_item: Any , obj:1455
Any , *_: Any1456

) -> Tuple[bool , None , str , bool]:1457
amount = round(getattr(1458

expense_item , "amount", 0.0)1459
, 2)1460

remark = f"Amount: {amount }.1461
Need manual process for1462
ambiguous expense!"1463

return False , None , remark , True1464
1465

async def _eval_lodging(1466
self , expense_item: Any , obj:1467

Any , *_: Any1468
) -> Tuple[bool , float | None , str ,1469

bool]:1470
# Example use of obj - group1471

booking could lower cap , etc1472
.1473

1474
city , state = obj.location_city ,1475

obj.location_state1476
date_str = expense_item.date1477
try:1478

d = datetime.strptime(1479
date_str , "%Y-%m-%d")1480

rate , msg = self._gsa_rate.1481
lookup_lodge_rate(city ,1482
state , d.year , d.month)1483

if msg:1484
remark_parts.append(f"{1485

date_str }: {msg}")1486
return True , rate , remark ,1487

False1488
except Exception as exc:1489

return True , None , f"GSA1490
lookup failed: {exc}",1491
True1492

1493
async def _eval_meals(1494

self , expense_item: Any , obj:1495
Any , *_: Any1496

) -> Tuple[bool , float | None , str ,1497
bool]:1498
city , state = expense_item.1499

location_city , expense_item. 1500
location_state 1501

d = datetime.strptime( 1502
expense_item.expense_date , " 1503
%Y-%m-%d") 1504

meal_type = obj.meal_type. 1505
capitalize () 1506

try: 1507
rates , msg = self._gsa_rate. 1508

lookup_meal_ie_rate(city 1509
, state , d.year , d.month 1510
) 1511

abs_limit = rates.get( 1512
meal_type) 1513

remark = msg or "" 1514
return True , abs_limit , 1515

remark , False 1516
except Exception as exc: 1517

return True , None , f"Meal 1518
rate lookup failed: {exc 1519
}", True 1520

1521
async def _eval_groundtransport( 1522

self , expense_item: Any , obj: 1523
Any , *_: Any 1524

) -> Tuple[bool , float | None , str , 1525
bool]: 1526
if obj.in_foreign: 1527

return True , None , f"No 1528
limit for foreign ground 1529
transportation", False 1530

return True , 65, f"Cap 65", 1531
False 1532

1533
async def _eval_generic_soft_rule( 1534

self , 1535
expense_item: Any , 1536
obj: Any , 1537
call_ai_engine: Callable | None , 1538

) -> Tuple[bool , None , str , bool]: 1539
etype = expense_item. 1540

expense_type 1541
rule = self.interpretative_rules 1542

.get(etype) 1543
if not rule: 1544

return True , None , "No soft 1545
rule defined; default 1546
allowable", False 1547

try: 1548
ai_resp = await self. 1549

_get_allowable_function( 1550
expense_item.to_json (), 1551
rule , call_ai_engine) 1552

if ai_resp.get("return_flag" 1553
): 1554
parsed = json.loads( 1555

ai_resp[" 1556
final_result"]) 1557

return parsed.get(" 1558
is_allowable", True) 1559
, None , parsed.get(" 1560
explanation", ""), 1561
False 1562

return False , None , "Soft 1563
rule evaluation returned 1564
no flag", True 1565

except Exception as exc: 1566
return False , None , f"Soft 1567

rule exception: {exc}", 1568
True 15691570
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A.4 A usage case example on TravelReimGPT1571

Here presents a real-world user-TravelReimGPT1572

dialogue for processing a reimbursement case. The1573

conversation demonstrates the complete workflow,1574

including document uploads, information extrac-1575

tion, eligibility confirmation, and expense cal-1576

culation. Note: City airport names have been1577

anonymized in accordance with the review policy.1578

User: Hi
TravelReimGPT: Welcome! I’m TravelReimGPT,
here to guide you through the travel reimbursement
process and generate accurate reimbursement re-
sults.
To get started, please remember the major upload-
ing procedure: upload RTA -> upload transporta-
tion/flights which start and end the travel -> upload
all related receipts.
There is no COUPA RTA - Pre-Approval report.
Please upload the pre-approval report to proceed.
Summary of Actions Required:
1. Please upload your COUPA RTA Pre-Approval
report.
2. Once the pre-approval report is uploaded, I will
guide you to the next steps regarding transportation
and other required documents.

User: RTA [Uploads RTA.pdf]
TravelReimGPT: [File RTA.pdf processed success-
fully!] Thank you for uploading your COUPA RTA
- Pre-Approval report. We have successfully re-
ceived and processed your RTA.pdf.
Major reimbursement uploading procedure:

• Upload RTA (Completed)

• Upload transportation/flights which start and
end the travel

• Upload all related receipts

Next Required Step: To proceed, please specify
how you started and ended your actual travel for
your Las Vegas trip and upload related documenta-
tion as evidence (such as airline tickets, boarding
passes, flight receipts, train or bus tickets, or, if you
drove, mileage documentation).
For your trip, the pre-approval includes a round-trip
flight to Las Vegas. Please provide the following:
Your flight ticket, boarding pass, or airline receipt
that covers both your departure and return legs,
showing dates and times.
Summary of Immediate Actions Required:
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• Upload flight documentation/receipts (e.g.,
tickets, boarding passes, or receipts that con-
firm the travel dates/times).

• If you used other transportation for any part of
your trip (e.g., mileage, train, shuttle), please
specify and upload the corresponding docu-
mentation.

Once transportation documents verifying your ac-
tual travel dates/times are uploaded, we’ll move
forward to the next required step.

User: Flights start and end the travel. [Uploads
flight_receipt.pdf]
TravelReimGPT: [File flight_receipt.pdf pro-
cessed successfully!]
Thank you for providing your flight ticket docu-
mentation. Your itinerary successfully confirms
both the start and end of your travel:
Departure: [AIRPORT]→ Las Vegas (LAS), 2025-
03-02, 7:15 PM→ [H:M] PM
Return: Las Vegas (LAS) → [AIRPORT], 2025-
03-04, [H:M] PM→ 10:55 PM
We have retrieved your actual travel dates and times.
Here is the extracted actual travel overview:

{
"travel_start_date_and_time": "2025-03-02

07:15 PM",
"travel_end_date_and_time": "2025-03-04 10:55

PM",
"transportation_to_destination": "Flight from

[AIRPORT] to Las Vegas (LAS), Southwest
Airlines Flight",

"transportation_return_origin": "Flight from
Las Vegas (LAS) to [AIRPORT], Southwest
Airlines Flight",

"travel_destination_city_states": [{"city": "
Las Vegas", "state": "NV"}]

}

Please confirm whether the above information accu-
rately reflects your travel, or let us know if anything
needs to be corrected.
Based on your travel dates, the reimbursable meals
are: 2025-03-02: dinner; 2025-03-03: breakfast,
lunch, dinner; 2025-03-04: breakfast, lunch, din-
ner.
Please confirm if this matches your meal eligibility
for the trip.
Next Steps: Please confirm: Is the actual travel
overview and these meal eligibility details correct?
Lodging/Hotel: Since your pre-approval includes
lodging, please upload your hotel/lodging receipt
for the Las Vegas stay.

1580
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Incidentals/Ground Transportation: If you incurred
any ground transportation or incidental expenses
(e.g., airport shuttles, taxis, etc.), please upload the
relevant receipts.

User: Confirmed. Lodging uploaded. [Uploads
hotel(15).pdf]
TravelReimGPT: [File hotel(15).pdf processed
successfully!]
Thank you for confirming your travel details and
for uploading your lodging receipt.
Here’s what has been verified so far:

• Pre-Approval (RTA): Provided and matches
your travel overview

• Transportation (Flight): Documentation pro-
vided and verified—matches actual travel
dates/times

• Lodging: Receipt uploaded and pro-
cessed—matches travel dates (check-in:
2025-03-02, check-out: 2025-03-04)

• Travel Destination Logs: Confirmed as accu-
rate by you

Next Steps:

1. Meals Reimbursement: Your pre-approval
covered meal expenses. You are eligible for:

• 2025-03-02: Dinner
• 2025-03-03: Breakfast, Lunch, Dinner
• 2025-03-04: Breakfast, Lunch, Dinner

You are eligible for: Breakfast: 2, Lunch: 2,
Dinner: 3

Standard per diem meal rate: Breakfast: $12,
Lunch: $17, Dinner: $30

Total reimbursement amount for meals: $148

No meal receipts required under the standard
per diem rate.

Please confirm: Do you agree to use the stan-
dard per diem meal rate for meal reimburse-
ment? If you want to use the GSA meal rate
(which requires receipts), or you have any spe-
cial cases, let us know.

2. Incidentals / Ground Transportation: Your pre-
approval listed $150 for incidentals/ground
transportation. Please specify: Did you incur
expenses such as taxis, shuttles, rideshares

1581

(Uber/Lyft), airport parking, or other ground
transportation? If yes, please upload the re-
ceipts for those expenses. If not, please con-
firm so we can mark this as not claimed.

Summary of Priority Next Steps:

• Confirm use of the standard per diem meal
rate or inform us if you wish to use another
method.

• Specify and upload documentation for any
incidentals/ground transportation, or confirm
if there are none to claim.

Once these are addressed, we will review for any
additional missing items and then proceed to the
final documentation summary and fund code check.

User: Confirm. Uber receipts. [Uploads
Uber.pdf, Uber2.pdf, taxi_to_hotel.pdf,
taxi_to_meeting.pdf, taxi_to_meeting2.pdf
]
TravelReimGPT: Thank you for providing and con-
firming your ground transportation receipts. Here’s
a summary of what has been processed and veri-
fied:
Processed Reimbursement Documentation

1. Pre-Approval Report (RTA)

Provided and matched for the Las Vegas trip.

2. Transportation (Start & End Travel)

Flight: Confirmed with itinerary—both de-
parture and return flight documentation are
present and valid.

3. Lodging

Hotel Receipt: Uploaded and confirmed for
the entirety of the trip (Check-in: 2025-03-02,
Check-out: 2025-03-04).

4. Meals

Standard per diem rate confirmed and applied.

Eligible meals:

• 2025-03-02: Dinner
• 2025-03-03: Breakfast, Lunch, Dinner
• 2025-03-04: Breakfast, Lunch, Dinner

Total per diem meal reimbursement: $148

No meal receipts required.
1582
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5. Incidentals / Ground Transportation

Receipts for rideshare and taxi services: All
ground transportation receipts received and
processed:

• Uber to [AIRPORT] (03/02)
• Taxi from Las Vegas airport to hotel

(03/02)
• Taxi in Las Vegas to meetings (03/03,

03/04)
• Taxi/Uber to Las Vegas airport (03/04)

These match expected incidentals from your
pre-approval.

What’s Next:

1. Did you incur any other reimbursable ex-
penses?

Based on your RTA and actual expenses,
the main categories (airfare, lodging, meals,
ground transportation) are addressed. If you
have any of these additional base expenses
to include (such as parking, baggage fees, or
hotel-city shuttle not yet submitted), please
specify and upload the relevant receipts now.

2. Do you have all required documentation up-
loaded?

Please confirm that all documents necessary
for your reimbursement claim are now up-
loaded. If there is anything else (hotel invoice
addenda, conference registration, or other re-
ceipts), please provide them now.

3. Fund Code Confirmation: The fund code in
your pre-approval is: 36680. Would you like
to use this code for the entire reimbursement,
or provide a different/additional fund code(s)?

Summary of Immediate Actions Required:

• Confirm if all required documents are now
uploaded, or upload any additional receipts
for other incurred expenses.

• Confirm the fund code(s) you want to use for
your reimbursement.

Once confirmed, I will prepare your reimbursement
report for review.

User: All documents uploaded. I would like to use
fund code 50032

1583

TravelReimGPT: Thank you for uploading all re-
quired documentation and confirming that you
would like to apply fund code 50032 for your
travel reimbursement. Below is a clear summary
of your actual reimbursed expenses and amounts,
processed strictly by institutional and grant policy
for fund code 50032.
Las Vegas Travel Reimbursement Summary (Fund
Code 50032)

Category Amount (USD)

Flights (Round Trip) $793.53
Lodging/Hotel (Room Rate) $318.00
Lodging/Hotel (Tax) $42.54
Meals (Per Diem Rate) $148.00
Ground Transportation $112.15
Tips $9.62

Total $1,423.84

What Happens Next:

• Once you confirm, your submission will be
finalized for review and further processing by
the travel reimbursement team.

• If any detail needs correction, please specify
what should be changed.

Summary of Immediate Actions for You:

• Review the reimbursement summary and
amounts above.

• Confirm accuracy and intent to submit using
fund code 50032 (or request changes).

Supplementary: You asked for downloading
reimbursement files.

[A button for downloading the result is located
below the output box.]
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