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ABSTRACT

Transferability estimation aims to provide heuristics for quantifying how suitable
a pre-trained model is for a specific downstream task, without fine-tuning them
all. Prior studies have revealed that well-trained models exhibit the phenomenon
of Neural Collapse. Based on a widely used neural collapse metric in existing lit-
erature, we observe a strong correlation between the neural collapse of pre-trained
models and their corresponding fine-tuned models. Inspired by this observation,
we propose a novel method termed Fair Collapse (FaCe) for transferability esti-
mation by comprehensively measuring the degree of neural collapse in the pre-
trained model. Typically, FaCe comprises two different terms: the variance col-
lapse term, which assesses the class separation and within-class compactness, and
the class fairness term, which quantifies the fairness of the pre-trained model to-
wards each class. We investigate FaCe on a variety of pre-trained classification
models across different network architectures, source datasets, and training loss
functions. Results show that FaCe yields state-of-the-art performance on different
tasks including image classification, semantic segmentation, and text classifica-
tion, which demonstrate the effectiveness and generalization of our method.

1 INTRODUCTION

Transfer learning has evolved into a mature field in recent years. The “pre-training
then fine-tuning” has become a standard training paradigm (Ding et al., 2023) for nu-
merous tasks in the realm of deep learning and diverse repositories of pre-trained mod-
els, known as model zoos, are established1. These models are constructed through combi-
nations of diverse network architectures, source datasets, and loss functions. Transferabil-
ity estimation (Bao et al., 2019; Tran et al., 2019) aims to find a metric to indicate how
well the pre-trained models perform on a given target dataset without fine-tuning them all.
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Figure 1: Observation of Neural Collapse during
model fine-tuning on (a) STL-10 and (b) CIFAR-10.

This purpose is non-trivial and task-adaptive,
and an effective transferability metric should
exhibit a high correlation between the score
calculated for each pre-trained model and its
performance after fine-tuning.

Classical literature (Papyan et al., 2020) in-
dicates that for a well-trained model, the phe-
nomenon known as Neural Collapse (NC) be-
ing more pronounced corresponds to better
model performance. Specifically, with high
NC levels, features should exhibit the fol-
lowing characteristics: 1) separation between
classes; 2) compactness within each class; 3)
equiangularity between each pair of class dis-
tributions (i.e., distribute at the vertices of a
simplex Equiangular Tight Frame). The convergence of models towards NC usually results in the
improvement of out-of-sample model performance and robustness to adversarial examples (Papyan
et al., 2020). However, this commendable property generally occurs in the well-trained models, i.e.,

1pytorch.org/hub; docs.openvino.ai/; tfhub.dev/
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fine-tuned models, rather than the pre-trained models. We further explore the relationship of NC
between the pre-trained models and their corresponding fine-tuned models. To be specific, based on
a rough metric of NC (Zhu et al., 2021; Li et al., 2022), we fine-tune several heterogeneous models
pre-trained on ImageNet on two different target datasets, and track the changes in their NC scores.
As shown in Fig. 1, we find that the NC score ranking in these pre-trained models remains mostly
consistent during fine-tuning. This observation inspires us to measure the neural collapse of the
pre-trained models for addressing the task of transferability estimation.

Previous works (Papyan et al., 2020; Zhu et al., 2021; Li et al., 2022; Tirer & Bruna, 2022) that study
the Neural Collapse phenomenon usually rely on the first two of three characteristics as a measure
of NC. This is because the three characteristics of NC typically occur simultaneously in well-trained
models. Many existing works in transferability estimation also take into account the first two points
(Bao et al., 2019; Pándy et al., 2022; Thakur et al., 2022), and some endeavors also incorporate
additional factors such as feature informativeness (Bao et al., 2019). However, the neglect of the
last characteristic may be deemed acceptable for well-trained models, but it is not applicable to pre-
trained models that have not been fine-tuned on target data. It could potentially result in the selection
of models that exhibit biases towards specific classes.

In this paper, we propose a novel transferability estimation metric termed Fair Collapse (FaCe).
FaCe consists of two key components: variance collapse term and class fairness term. The variance
collapse term is calculated based on the magnitude of between-class covariance compared to within-
class covariance. For the class fairness term, we first calculate the overlap between all pairs of class
distribution to construct an overlap matrix. Afterward, we apply temperature scaling and a softmax
function to this matrix and compute its entropy as our class fairness term. A higher entropy signifies
the class distributions exhibit a more even spread in the feature space. This indicates that the model
is fair to all classes and does not exhibit biases towards specific classes. Finally, both the variance
collapse term and class fairness term are min-max normalized individually to alleviate the impact of
different scales and summed to yield the final FaCe score.

Overall, the main contribution can be summarized as follows: 1) We explore the impact of Neural
Collapse (NC) in the “pre-training then fine-tuning” paradigm and observe that the ranking of NC in
the pre-trained models remains mostly consistent during the fine-tuning process. This observation
inspires us to estimate the transferability by measuring the neural collapse of pre-trained models.
2) We introduce a novel metric Fair Collapse (FaCe) to estimate the transferability of pre-trained
models. FaCe simultaneously takes into account the cues of separation between classes, compact-
ness within each class, and fairness of the pre-trained model towards each class together. 3) To
validate the effectiveness and generality of FaCe, we perform experiments on both computer vision
(image recognition, segmentation) and natural language processing (text classification) tasks. We
also consider various training paradigms for pre-trained models, including multiple model archi-
tectures, multiple loss functions, and multi-source datasets. Experimental results demonstrate that
FaCe yields competitive results for transferability estimation.

2 RELATED WORKS

Transferability Estimation. With the advent of the era of large AI models, the selection of ap-
propriate models for downstream tasks has become a critical issue. Consequently, there has been an
increasing amount of research in the field of transferability estimation. The Bayesian-based methods
(Nguyen et al., 2020; Tran et al., 2019; Li et al., 2021; Agostinelli et al., 2022) measure the domain
gap between the source and target from a probabilistic perspective. Take two typical examples,
LEEP (Nguyen et al., 2020) is the classification performance on the Expected Empirical Predictor
(EEP); NCE (Tran et al., 2019) considers the conditional entropy between the label assignments of
the source and target tasks. Information theory-based methods (You et al., 2021; Bolya et al., 2021;
Tan et al., 2021) measure the information contained within features. LogME (You et al., 2021) is the
maximum value of label evidence (marginalized likelihood) given extracted features. OTCE (Tan
et al., 2021) uses optimal transport to estimate domain difference and the optimal coupling between
source and target distributions. TransRate (Huang et al., 2022) measures the transferability as the
mutual information between features of target examples extracted by a pre-trained model and their
labels. Additionally, feature structure-based methods (Bao et al., 2019; Pándy et al., 2022; Thakur
et al., 2022) set different metrics based on the feature space structure of pre-trained models on the
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target dataset. H-score (Bao et al., 2019) considers between-class variance and feature redundancy.
GBC (Pándy et al., 2022) is the summation of the pairwise class separability using the Bhattacharyya
coefficient. Our method is a typical feature structure-based method, and compared to existing meth-
ods, we further consider the class fairness of pre-trained models towards target classes. NCTI (Wang
et al., 2023) is a concurrent work of our method, which is also inspired by neural collapse. NCTI
consists of three terms, which correspond to three characteristics of neural collapse, respectively.
Different from NCTI, which assesses the geometry structure based on nuclear norm, our method is
based on the class distribution overlapping matrix entropy.

Figure 2: Illustration of Neural Collapse.

Neural Collapse (NC). Existing work (Papyan
et al., 2020) exposes a pervasive inductive bias
in the terminal phase of training (TPT) called
Neural Collapse. TPT begins at the epoch
where the training error first vanishes, which is
a sign of the completion of model training. As
shown in Fig. 2, (Papyan et al., 2020) character-
ize it by four manifestations in the classifier and
last-layer features: (NC1) the within-class vari-
ation collapses to zero; (NC2) the class means
converge to simplex Equiangular Tight Frame;
(NC3) the class means and the weights of linear
classifiers converge to each other; (NC4) the classifier converges to the nearest class-center classifier.
Under the constraint of cross-entropy loss, (NC3) and (NC4) occur simultaneously with (NC1) and
(NC2). There is considerable research on Neural Collapse (Zhu et al., 2021; Li et al., 2022; Baek
et al., 2022; Papyan et al., 2020; Tirer & Bruna, 2022), they mostly directly observe NC using (NC1)
(Li et al., 2022; Zhu et al., 2021) because in well-trained models, (NC2) occurs simultaneously with
(NC1). Actually, these manifestations suggest models are learning maximally separable features be-
tween classes, which can be simplified as three properties: between-class separability, within-class
compactness, and the equiangularity between each pair of class distributions. Some previous works
Kothapalli (2023); Galanti et al. (2022) explore the impact of the neural collapse phenomenon on
generalization and transfer learning. They investigate the impact of pre-trained networks undergo-
ing neural collapse on source training data on various types of target datasets, and obtain various
interesting conclusions. However, our task differs from theirs. We aim to find a metric to estimate
the transferability of any pre-trained models.

3 METHOD

3.1 PROBLEM SETUP

We consider a K-way classification task on target dataset D = {(xi, yi)}ni=1, with a total of n
labeled samples, and there are nk samples in the k-th class. Given a pre-trained model zoo {ϕm}Mm=1
with a total of M pre-trained models, our goal is to determine a metric score Sm for each model ϕm,
and the scores {Sm}Mm=1 should correlate with their ground truth accuracy which is defined by the
test accuracy after fine-tuning.

3.2 FAIR COLLAPSE

Inspired by the three properties of the Neural Collapse (NC) phenomenon (Papyan et al., 2020),
we propose Fair Collapse (FaCe), which considers three aspects of the target feature spaces: 1)
separation between classes; 2) compactness within each class; and 3) class fairness of the model
towards target classes. Specifically, the FaCe score S consists of two terms, variance collapse term
C, corresponding to the first two aspects, and class fairness term F , corresponding to the last aspect.
Due to the presence of different units of measurement, it is necessary to normalize C and F before
adding them together. In summary, for m-th pre-trained model ϕm, FaCe score Sm is formulated as,

Sm = C̃m + F̃m, C̃m =
Cm − Cmin

Cmax − Cmin
, F̃m =

Fm − Fmin

Fmax − Fmin
, (1)

where Cm and Fm are the variance collapse and class fairness score of the m-th pre-trained model
ϕm, respectively. {Cm}Mm=1 and {Fm}Mm=1 are obtained from M pre-trained models and Fmax
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and Cmax are the maximum scores. Fmin and Cmin are the minimum scores in {Fm}Mm=1 and
{Cm}Mm=1. A higher FaCe score Sm indicates that the model’s feature space excels in both variance
collapse and class fairness, thereby possessing greater transferability. Next, we delve into the details
of the variance collapse term and class fairness term.

Variance Collapse. This term considers the overall separability of features from different classes.
In brief, in the features space of the model with high transferability, features within the same class
should be compact, while features between different classes should be far apart. It also measures
the gap between unseen source data and the downstream target data. If the gap is small, the source
model (i.e., the pre-trained model) should also have a highly separable feature space on the target
data. Similar to some works in Neural Collapse studies (Zhu et al., 2021; Li et al., 2022), we
simultaneously consider the within-class compactness and the between-class separation by using
the magnitude of the between-class covariance compared to within-class covariance. Specifically,
for each model, we first calculate the last-layer feature hi for each target sample (xi, yi). Given the
global mean hG = 1

n

∑n
i=1 hi and the class mean hk = 1

nk

∑n
i=1 1(yi = k)hi, where 1(·) denotes

the indicator function, the variance collapse score C is formulated as,

C = − 1

K
trace

(
ΣWΣ†

B

)
, (2)

where K is the number of classes. ΣW is the within-class covariance and Σ†
B is the pseudo inverse

of between-class covariance ΣB . The within-class covariance ΣW and between-class covariance
ΣB are computed as,

ΣW =
1

K

K∑
k=1

n∑
i=1

1

nk
1(yi = k)

(
hi − hk

) (
hi − hk

)⊤
, ΣB =

1

K

K∑
k=1

(
hk − hG

) (
hk − hG

)⊤
.

(3)
A model with a larger C score indicates that its feature space on the target data has a larger between-
class distance and a smaller within-class distance. In other words, a larger C signifies better class
separability for the corresponding pre-trained model.

Figure 3: Two types of feature spaces with similar
variance collapse score. Each point represents a
sample in the feature space, with three different
colors representing three distinct classes.

Class Fairness. In fact, the variance collapse
term is usually explicitly or implicitly con-
sidered in previous many works (Bao et al.,
2019; Pándy et al., 2022; Thakur et al., 2022).
However, the equiangularity property of NC,
i.e., equal-sized angles between each pair of
classes, is usually neglected. In practice, pre-
trained models can exhibit biases towards spe-
cific classes, and relying solely on the variance
collapse term does not account for this phe-
nomenon. Take an intuitive example in Fig. 3,
there are two types of feature spaces with sim-
ilar variance collapse scores. Relying solely on
the variance collapse term might lead to the se-
lection of the model corresponding to (a) as the
best choice. However, this model exhibits bias
towards the purple class, which can be detri-
mental to the model’s training. Note that measuring the equiangularity of class means or classifier
weights directly as existing literature Zhu et al. (2021) may be not suitable for our task. This is
because the pre-trained model exhibits large intra-class variances on the target data, and the class
means can not represent the entire class effectively. Additionally, the classifier dimensions of the
pre-trained model differ from the number of classes in the target dataset. As a result, we further
consider class fairness, inspired by the equiangularity property in NC, to avoid this issue. Specifi-
cally, to better depict the relationships between different classes, we first model each target class as
a Gaussian distribution N (hk,Σk). Σk is the within-class covariance, which is defined as,

Σk =
1

nk

n∑
i=1

1(yi = k)
(
hi − hk

) (
hi − hk

)⊤
, (4)

where hk is the k-th class mean defined in Eq. (3). Specifically, we calculate the overlaps between
each pair of class distributions by using the Bhattacharyya coefficient, which has a closed-form
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solution when applied between Gaussian distributions. Bhattacharyya distance D between class ki
and kj is calculated as follows,

D (ki, kj) =
1
8

(
hki

− hkj

)⊤
Σ−1

(
hki

− hkj

)
+ 1

2 ln
|Σ|√

|Σki ||Σkj |
, (5)

where Σ = 1
2

(
Σki

+Σkj

)
. Then, the Bhattacharyya coefficient is defined as B (ki, kj) = exp −

D (ki, kj), which indicates the overlap between different class distributions. We can thus obtain the
overlap matrix B. To highlight the difference between nearby classes and far-away classes, we first
convert the overlaps between classes into a probabilistic distribution P by using temperature scaling
and softmax function. Then, we calculate the entropy for each row of the overlap matrix and define
the class fairness score F as,

F = − 1

K

K∑
i=1

K∑
j=1

Pij logPij , Pij =
exp (B (ki, kj) /t)∑
j′ exp (B (ki, kj′) /t)

, (6)

where t is the temperature in softmax function. Note that, when each row of P approaches a uniform
distribution, the class fairness score F reaches its maximum value, which indicates that any class
distribution has a similar overlap with the distributions of other classes. From the perspective of
Neural Collapse, larger F indicates that the class distributions are closer to various vertices of the
simplex Equiangular Tight Frame. From the perspective of model fairness, it suggests that the pre-
trained model is fair and exhibits no bias towards specific classes.

4 EXPERIMENTS

Baseline Methods. In all the experiments, we compare our method with several state-of-the-art
methods of various types2: LEEP (Nguyen et al., 2020) and NCE (Tran et al., 2019), which are
based on the joint distribution of source and target; H-score (Bao et al., 2019) and GBC (Pándy
et al., 2022), which are based on the class separability; LogME (You et al., 2021), which is based on
the maximum value of label evidence.

Metric. The coefficient between our metric and the fine-tuned accuracy is measured by weighted
Kendall rank correlation τw (You et al., 2021), which is usually used to measure non-linear, hier-
archical, or sequential relationships, and Pearson correlation ρ (Wright, 1921), which is used for
measuring linear relationships.

4.1 IMAGE CLASSIFICATION: HETEROGENEOUS MODEL ZOO WITH A SINGLE SOURCE

Experiment Setup. We construct a model zoo with 15 models pre-trained on ImageNet (Deng
et al., 2009) across 5 architecture families: ResNet50, ResNet101, ResNet152 (He et al., 2016),
DenseNet121, DenseNet169, DenseNet201 (Huang et al., 2017), MobileNetV1 (Howard et al.,
2017), MobileNetV2 (Sandler et al., 2018), MobileNetV3 (Howard et al., 2019), EfficientNetB0,
EfficientNetB1, EfficientNetB2, EfficientNetB3 (Tan & Le, 2019), Vgg16, and Vgg19 (Simonyan
& Zisserman, 2015). These pre-trained models are directly provided by Pytorch Model Hub3. We
use 7 standard image classification datasets as the target datasets: basic image recognition datasets
CIFAR-10 (Krizhevsky, 2009) and CIFAR-100 (Krizhevsky, 2009); animal dataset Oxford Pets
(Parkhi et al., 2012) and CUB (Wah et al., 2011); traffic sign dataset GTSRB (Houben et al., 2013);
and describable textures dataset DTD (Cimpoi et al., 2014).

Training Details. For the fine-tuning of pre-trained models with different target datasets, We follow
the official partitioning to split the training set and validation set. For those without a validation
set, we randomly select 10% of the samples to serve as the validation set. Specifically, we use
learning rate 1e-2, which always achieves the best accuracy of the validation set in each down-
stream task, this is sufficient to obtain good transferred models. This protocol is the same as LEEP
(Nguyen et al., 2020), and the source selection task in GBC (Pándy et al., 2022). The temperature
t in Eq. (6) is empirically set to 0.05. Our experiments are conducted using the PyTorch frame-
work on a 24G NVIDIA Geforce RTX 3090 GPU, and the results are the average of seed 0, 1, 2.

2LEEP, NCE, LogME: github.com/thuml/LogME; H-score: git.io/J1WOr; GBC is implemented by us.
3pytorch.org/hub

5



Under review as a conference paper at ICLR 2024

-1.0 -0.8 -0.5 -0.2

94

96

98

ST
L-

10

LEEP

-0.3 -0.2 -0.2

94

96

98

NCE

8.0 8.5

94

96

98

H-score

0.6 0.8 1.0

94

96

98

LogME

-0.4 -0.2 0.0

94

96

98

GBC

0.0 1.0 2.0

94

96

98

FaCe

-2.5 -2.2 -2.0

55

60

65

70

DT
D

-1.5 -1.4

55

60

65

70

40.0 50.0 60.0 70.0

55

60

65

70

2.0 4.0 6.0

55

60

65

70

-4.0 -3.0 -2.0 -1.0

55

60

65

70

0.5 1.0 1.5 2.0

55

60

65

70

-1.5 -1.2 -1.0 -0.8
90

92

94

96

Pe
ts

-0.8 -0.8 -0.7 -0.7
90

92

94

96

25.0 30.0
90

92

94

96

0.8 1.0 1.2
90

92

94

96

-1.0 -0.5
90

92

94

96

0.0 1.0 2.0
90

92

94

96

-1.5 -1.2 -1.0

95

96

97

98

CI
FA

R-
10

-1.2 -1.0 -0.8

95

96

97

98

6.0 6.5 7.0

95

96

97

98

0.3 0.4 0.5

95

96

97

98

-4.0 -2.0

95

96

97

98

0.0 1.0 2.0

95

96

97

98

-4.2 -4.0 -3.8 -3.5

65

70

75

80

CU
B

-3.4 -3.3

65

70

75

80

100.0 150.0

65

70

75

80

1.3 1.3 1.3 1.3

65

70

75

80

-40.0 -20.0

65

70

75

80

0.5 1.0 1.5

65

70

75

80

ResNet50
ResNet101
ResNet152

DenseNet121
DenseNet169
DenseNet201

MobileNetv1
MobileNetv2
MobileNetv3

EfficientNetB0
EfficientNetB1
EfficientNetB2

EfficientNetB3
vgg16
vgg19

Figure 4: Qualitative results on the heterogeneous model zoo with a single source. For five various
datasets, we show the visualized correlation between the accuracy of the fine-tuned model (Y-axis)
and the transferability scores (X-axis) of LEEP, NCE, H-score, LogME, GBC, and FaCe.

Table 1: Heterogeneous model zoo with a single source.
Bold is the best result, underline is the second-best.

Target Method

LEEP NCE LogME H-score GBC FaCe

K
en

da
ll

(τ
w

)

CIFAR-10 0.62 0.81 0.75 0.71 0.79 0.81
CIFAR-100 0.70 0.85 0.52 0.60 0.89 0.83

Pet -0.12 0.82 0.57 0.32 0.34 0.39
CUB -0.34 -0.19 0.06 0.23 0.23 0.33

GTSRB 0.20 0.07 -0.37 0.10 -0.05 0.10
DTD -0.02 0.54 0.29 0.46 0.52 0.56

STL-10 -0.24 0.83 0.87 0.54 0.83 0.90
Avg. 0.11 0.53 0.38 0.42 0.51 0.56

Pe
ar

so
n

(ρ
)

CIFAR-10 0.57 0.87 0.76 0.82 0.87 0.89
CIFAR-100 0.69 0.89 0.62 0.56 0.93 0.85

Pet -0.34 0.93 0.71 0.45 0.59 0.64
CUB -0.38 0.03 0.12 -0.02 0.57 0.39

GTSRB 0.28 0.15 -0.71 0.18 0.00 -0.05
DTD -0.10 0.58 -0.31 0.01 0.48 0.71

STL-10 -0.30 0.92 0.91 0.65 0.85 0.91

Avg. 0.06 0.62 0.30 0.38 0.61 0.62

Results. We present the quantitative
results in Table 1. The proposed FaCe
archives the highest average perfor-
mance across the seven datasets with
τw = 0.56 and ρ = 0.62. Among
these datasets, we have the highest τw
on CIFAR-10, CUB, DTD, and STL-
10, and the highest ρ on CIFAR-10,
DTD, and STL-10. Joint distribution-
based method NCE archives the same
average ρ as FaCe, and the highest
τw on CIFAR-10, the highest ρ on
Oxford Pets and STL-10. Further-
more, GBC also yields competitive
results. GBC is the summation of
between-class overlap, sharing some
similarities in motivation with FaCe.
However, FaCe additionally consid-
ers class fairness, resulting in supe-
rior performance compared to GBC.
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Table 2: Heterogeneous model zoo with mul-
tiple sources.

Target Method
LEEP NCE LogME H-score GBC FaCe

Kendall (τw)
DTD 0.09 0.44 0.41 0.21 0.52 0.66
Pet 0.40 0.48 0.62 0.62 0.59 0.63

STL-10 0.36 0.41 0.54 0.39 0.52 0.57
Avg. 0.28 0.44 0.52 0.40 0.54 0.62

Pearson (ρ)
DTD 0.34 0.63 0.16 -0.07 0.78 0.90
Pet 0.44 0.49 0.57 0.63 0.82 0.61

STL-10 0.35 0.52 0.67 0.62 0.71 0.84
Avg. 0.37 0.55 0.47 0.39 0.77 0.78

Table 3: Homogeneous model zoo with mul-
tiple sources and loss functions.

Target Method
LEEP NCE LogME H-score GBC FaCe

Kendall (τw)
DTD -0.13 0.37 0.65 0.02 0.33 0.53

STL-10 -0.40 -0.25 0.42 0.63 0.04 0.58
CIFAR-100 -0.20 0.05 0.29 0.27 0.19 0.02

Avg. -0.24 0.06 0.46 0.31 0.19 0.38

Pearson (ρ)
DTD 0.14 0.74 0.93 0.17 0.35 0.70

STL-10 -0.78 -0.54 0.44 0.71 -0.10 0.68
CIFAR-100 -0.74 -0.11 -0.05 -0.02 -0.01 -0.30

Avg. -0.46 0.03 0.44 0.29 0.08 0.37

We show the qualitative results in Fig. 4, i.e., correlation scatter figure between the fine-tuned ac-
curacy and the transferability scores of the comparison methods, where the X-axis is the fine-tuned
accuracy, the Y-axis is the transferability score. Pre-trained models with higher fine-tuned accuracy
should have higher transferability scores. Therefore, methods where the scatter plot shows an in-
creasing trend are considered superior. We do not achieve the best results in individual experiments,
but we still exhibit an obvious increasing trend.

4.2 IMAGE CLASSIFICATION: HETEROGENEOUS MODEL ZOO WITH MULTIPLE SOURCES

Experiment Setup. We construct a more complex model zoo in this experiment. Specifically,
there are a total of 30 heterogeneous pre-trained models from 3 similar magnitude architec-
tures (ResNet50, DenseNet121, and EfficientNetB2) pre-trained on 10 source datasets (CIFAR-10
(Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009), CUB (Wah et al., 2011), Oxford Flowers (Nils-
back & Zisserman, 2006), Stanford Cars (Krause et al., 2013), Country211 (Radford et al., 2021),
Food101 (Bossard et al., 2014), SVHN (Netzer et al., 2011), FGVC Aircraft (Maji et al., 2013)).
These datasets encompass a wide range of image types, including animals, plants, digits, food,
street, transportation, etc. We conduct the experiments on three benchmark target datasets DTD
(Cimpoi et al., 2014), Oxford Pets (Parkhi et al., 2012), and STL-10 (Coates et al., 2011). For the
training of pre-trained models on different source datasets, we train the ImageNet model for 100
epochs, using an SGD optimizer with a learning rate of 0.01, and a batch size of 64. The fine-tuned
models are obtained under the best hyperparameters.

Results. The results are presented in Table 2, the proposed FaCe has the top performance on the
average τw and ρ, and achieves the best result on two of the three target datasets. Compared to
its superior performance in single-source scenarios, NCE appears somewhat less effective in multi-
source situations. In contrast, class separability-based method GBC continues to achieve highly
competitive results. We speculate that it is inaccurate to use the joint distribution of classifier outputs
to estimate the gap between source and target domains in the complex model zoo. Conversely, high-
dimension feature-based methods leverage richer information, resulting in superior performance.

4.3 IMAGE CLASSIFICATION: HOMOGENEOUS MODEL ZOO WITH MULTIPLE SOURCES AND
LOSS FUNCTIONS

Experiment Setup. We also construct a homogeneous model zoo, to comprehensively assess the
capability of our method. There are a total of 21 ResNet50 models pretrained on 3 source datasets
(CIFAR-10 (Krizhevsky, 2009), Oxford Pets (Parkhi et al., 2012) and CUB (Wah et al., 2011)) with
7 widely-employed loss functions 4 (cross entropy (Cover, 1999), label smoothing (Müller et al.,
2019), MixUp (Zhang et al., 2018), CutMix (Yun et al., 2019), Cutout (DeVries & Taylor, 2017),
large margin softmax cross entropy (Liu et al., 2016), and Taylor softmax cross entropy (Banerjee
et al., 2020)). We conduct the experiments on target datasets DTD (Cimpoi et al., 2014), STL-10
(Coates et al., 2011), and CIFAR-100 (Krizhevsky, 2009). The training details of the pre-trained
model and fine-tuned model are the same as the setting in Section 4.2 and 4.1, respectively.

4github.com/fastai/fastai
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Figure 5: Quantitative and qualitative results on semantic segmentation model zoo.

Results. The results are shown in Table 3. In the homogeneous model zoo, half of the methods are
ineffective. LogME achieves the highest performance, and FaCe is the second-best. We observe that
the performance gap between our method and LogME is marginal. This indicates that our method
approaches the state-of-the-art level in estimating the transferability of the homogeneous model zoo.

4.4 SEMANTIC SEGMENTATION

Experiment Setup. To validate the generalizability of our method, we also conduct experiments in
the semantic segmentation scenario. We train 8 models on PSPNet (Zhao et al., 2017) with ResNet50
backbone to construct our segmentation model zoo. These models are trained on 8 different source
datasets: ADE20K (Zhou et al., 2017), VOC (Everingham et al., 2012), VOC Aug (Everingham
et al., 2012), SBU shadow (Vicente et al., 2016), MSCOCO (Lin et al., 2014), LIP (Gong et al.,
2017), kitti (Geiger et al., 2012), and Camvid (Brostow et al., 2009). We compare our method
with the state-of-the-art methods on the standard segmentation target dataset CityScapes (Cordts
et al., 2016). Following an open-source segmentation benchmark 5, in the pre-training stage, we use
SGD optimizer with a learning rate of 1e-4, momentum of 0.9, and WarmupPolyLR scheduler. The
training epoch is set to 60, the batch size is 8. To obtain the fine-tuned pixel accuracy and mean IoU,
we fine-tune these models on the Cityscapes dataset with the best hyperparameters.

Results. We present both quantitative and qualitative results in Fig. 5. In the scenario of pixel
accuracy, most of these methods have a satisfactory result, while in the scenario of mean IoU,
the performance of these methods has an obvious drop. Pixel accuracy is a metric on the pixel
classification problem, while semantic segmentation is essentially a dense prediction problem. FaCe
obtains competitive results on pixel accuracy, and the best results on mean IoU. LogME fails in
mean IoU, while NCE and H-score also have a certain degree of decline. LEEP, GBC, and FaCe
yield similar results under both metrics, demonstrating the generalizability of these three methods
in segmentation tasks.

4.5 TEXT CLASSIFICATION

Experiment Setup. To validate the effectiveness of FaCe on other modalities, we conduct ex-
periments on the Chinese text classification model zoo. We train 6 language models on various
architectures and loss functions: NEZHA (Wei et al., 2019), Roberta (Liu et al., 2019), and Roberta
with highway (Srivastava et al., 2015), multidrop (Srivastava et al., 2014), Rdrop (Srivastava et al.,
2014), and poly loss (Leng et al., 2022). We pre-train these heterogeneous models on source dataset
IFLYTEK (Xu et al., 2020), which consists of over 17,000 annotated long-text descriptions related
to various app themes relevant to daily life. It encompasses 119 different classes. To obtain the fine-
tuned accuracy, we fine-tune these pre-trained models on target dataset TNEWS (Xu et al., 2020),
which is derived from the news section of Today’s Headlines and comprises news articles from

5github.com/Tramac/awesome-semantic-segmentation-pytorch
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Figure 6: Quantitative and qualitative results on text classification model zoo.

Table 4: Ablation study on (a) heterogeneous model zoo with a single source, (b) heterogeneous
model zoo with multiple sources, and (c) homogeneous model zoo with multiple sources and loss
functions. The values in the table are the average results on the target datasets.

(a)

C F FaCe

τw 0.49 0.56 0.56

ρ 0.52 0.61 0.62

(b)

C F FaCe

τw 0.59 0.52 0.62

ρ 0.77 0.56 0.78

(c)

C F FaCe

τw 0.36 0.37 0.38

ρ 0.27 0.37 0.36

15 different categories, including travel, education, finance, military, and more. We use the same
training hyperparameters in a text classification benchmark 6 for both source model pre-training and
target model fine-tuning, where epoch is 10, batch size is 16, AdamW (Loshchilov & Hutter, 2017)
optimizer with a learning rate 2e-5.

Results. Both the quantitative and qualitative results are presented in Fig. 6. LogME, GBC, and
FaCe achieve competitive results. Among them, LogME and FaCe can be considered as the optimal
solutions of this model zoo since both of them achieve a Kendall rank correlation coefficient τw of 1,
which is the best result attainable. This demonstrates the generalizability and effectiveness of FaCe
in the text modality.

4.6 ABLATION STUDY

We validate the effectiveness of the two terms in FaCe, i.e., variance collapse (C) term and class
fairness (F ) term on the three types of model zoos described in Section 4.1, 4.2, and 4.3. In Table
4, we provide results using only C and F separately, and the results using complete FaCe. The
ablation experiments reveal that the effectiveness of FaCe’s two terms varies across different tasks.
For instance, in (a) a heterogeneous model zoo with a single source, the CF component yields better
results, while in (b) a heterogeneous model zoo with multiple sources, the opposite is true. C
measures the within-class compactness and between-class separation in the feature space, while F
measures the uniformity of class distributions in the feature space. These two terms provide different
perspectives on the feature space structure metric. FaCe combines the strengths of both, resulting in
the best overall performance.

5 CONCLUSION

In this paper, we study the transferability estimation problem and propose a novel metric Fair Col-
lapse (FaCe) which is motivated by the Neural Collapse (NC) phenomenon. Specifically, we inves-
tigate the Neural Collapse of pre-trained models and their fine-tuned models and observe a strong
correlation between the NC of the fine-tuned models and the corresponding pre-trained models. In-
spired by this observation, we introduce FaCe to estimate the transferability from two perspectives,
i.e., variance collapse and class fairness. Our class fairness term in FaCe considers the bias of the
pre-trained model towards specific classes, addressing an issue that has been neglected in prior re-
search. Fair Collapse serves as an application of the Neural Collapse phenomenon in the context of
transferability estimation tasks, and we aspire that our work can shed some light on the community.

6github.com/shawroad/Text-Classification-Pytorch
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our method, we provide the pseudo-code in the Appendix, and all
the hyper-parameters are given in Section 4. The image classification benchmark in Section 4.1, 4.2,
and 4.3 is implemented by us. The semantic segmentation 7. and text classification benchmarks8 are
implemented based on open-source repositories. We provide the code of our image classification
benchmark and FaCe metric in the supplementary zip file.
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A APPENDIX

A.1 ALGORITHM

Algorithm 1 Algorithm of the proposed FaCe.

Input: A Model Zoo {ϕm}Mm=1 with M pre-trained models; target dataset D = {(xi, yi)}ni=1, with
a total of n labeled samples, and there are nk samples in the k-th class;

1: repeat
2: Given a pre-trained model ϕm, obtain the last-layer features {hi}ni=1 on D = {(xi, yi)}ni=1;
3: Calculate the variance collapse score Cm for ϕm by Eq. (2);
4: Calculate the class fairness score Fm for ϕm by Eq. (4);
5: until Obtain {Cm}Mm=1 and {Fm}Mm=1 for {ϕm}Mm=1;
6: Rescale {Cm}Mm=1 and {Fm}Mm=1, and obtain the FaCe score {Sm}Mm=1 by Eq. (1).

Output: Transferability ranking of pre-trained models.

A.2 DISCUSSION

Table 5: Comparison between
our class fairness term and the
naive equiangularity metric.

CF NC2(A)

τw 0.56 0.32

ρ 0.61 0.37

FaCe is a method inspired by Neural Collapse, and the class fair-
ness term is a variant of the equiangularity in Neural Collapse.
A solution (Zhu et al., 2021; Papyan et al., 2020) to estimate the
equiangularity is to quantify the closeness of the classifier weights
to a simplex Equiangular Tight Frame (ETF) directly: NC2(W ) =∥∥∥ WW⊤

∥WW⊤∥F
− 1√

K−1

(
IK − 1

K1K1⊤
K

)∥∥∥
F

, where W ∈ RK×d is
the weight of the classifier. In our task, this is actually an equiangu-
larity metric for the unknown source dataset rather than the target
dataset, since the model is pre-trained on the source dataset. Due to
the self-duality between model weights and class means, a naive so-
lution is to replace W in the above equation with target class means
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Table 6: Heterogeneous model zoo with a single source. Bold is the best result, underline is the
second-best.

Target Method

LEEP NCE LogME H-score GBC FaCe

K
en

da
ll

(τ
w

)

CIFAR-10 0.62 0.81 0.75 0.71 0.79 0.81
CIFAR-100 0.70 0.85 0.52 0.60 0.89 0.83

Pet -0.12 0.82 0.57 0.32 0.34 0.39
CUB -0.34 -0.19 0.06 0.23 0.23 0.33

GTSRB 0.20 0.07 -0.37 0.10 -0.05 0.10
DTD -0.02 0.54 0.29 0.46 0.52 0.56

STL-10 -0.24 0.83 0.87 0.54 0.83 0.90
Food-101 0.22 0.54 0.26 0.28 0.60 0.58

Avg. 0.13 0.53 0.37 0.24 0.52 0.56

Pe
ar

so
n

(ρ
)

CIFAR-10 0.57 0.87 0.76 0.82 0.87 0.89
CIFAR-100 0.69 0.89 0.62 0.56 0.93 0.85

Pet -0.34 0.93 0.71 0.45 0.59 0.64
CUB -0.38 0.03 0.12 -0.02 0.57 0.39

GTSRB 0.28 0.15 -0.71 0.18 0.00 -0.05
DTD -0.10 0.58 -0.31 0.01 0.48 0.71

STL-10 -0.30 0.92 0.91 0.65 0.85 0.91
Food-101 0.30 0.74 0.31 0.23 0.64 0.73

Avg. 0.09 0.64 0.30 0.36 0.62 0.63

matrix A ∈ RK×d. As shown in Table 5, we conduct the comparison experiments of our class fair-
ness term and this naive solution on the heterogeneous model zoo with a single source. CF is our
class fairness term, which is obviously superior to NC2(A). The equiangularity in Neural Collapse
essentially implies the maximum separability of class distributions in the feature spaces. When the
within-class variance collapses to zero, each class mean can represent the corresponding entire class
distribution. In the cases of a pre-trained model without fine-tuning, the within-class variance is
large, hence the closeness between the class means and a simplex ETF cannot accurately measure
the separability of class distributions.

A.3 MORE RESULTS

We provide additional results on more target datasets on three image classification model zoos. On
the heterogeneous model zoo with single source (corresponding to Table 1), we add a large-scale
dataset Food101 Bossard et al. (2014) in Table 6. On the heterogeneous model zoo with multiple
sources (corresponding to Table 2), we add STL-10 Coates et al. (2011), Cifar-10 Krizhevsky (2009),
Cifar-100 Krizhevsky (2009), and GTSRB Houben et al. (2013) in Table 7. On the homogeneous
model zoo with multiple sources and loss functions (corresponding to Table 3), we add Cifar-10
Krizhevsky (2009), Oxford Pets Parkhi et al. (2012), CUB Wah et al. (2011), GTSRB Houben et al.
(2013) in Table 8.
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Table 7: Heterogeneous model zoo with multiple sources.

Target Method
LEEP NCE LogME H-score GBC FaCe

Kendall (τw)
DTD 0.09 0.44 0.41 0.21 0.52 0.66
Pet 0.40 0.48 0.62 0.62 0.59 0.63

STL-10 0.36 0.41 0.54 0.39 0.52 0.57
Cifar-10 0.06 0.41 0.32 0.28 0.45 0.40

Cifar-100 -0.10 0.20 0.04 -0.02 0.18 0.17
GTSRB 0.15 0.16 -0.16 -0.10 -0.05 -0.05

CUB 0.43 0.45 0.66 0.37 0.62 0.56

Avg. 0.20 0.36 0.35 0.25 0.40 0.42

Pearson (ρ)
DTD 0.34 0.63 0.16 -0.07 0.78 0.90
Pet 0.44 0.49 0.57 0.63 0.82 0.61

STL-10 0.35 0.52 0.67 0.62 0.71 0.84
Cifar-10 0.23 0.32 0.27 0.33 0.61 0.64

Cifar-100 -0.01 0.05 -0.03 -0.03 0.14 0.09
GTSRB 0.36 0.36 0.29 0.23 0.00 0.06

CUB 0.37 0.44 0.31 0.41 0.82 0.77

Avg. 0.30 0.40 0.32 0.30 0.55 0.56

Table 8: Homogeneous model zoo with multiple sources and loss functions.

Target Method
LEEP NCE LogME H-score GBC FaCe

Kendall (τw)
DTD -0.13 0.37 0.65 0.02 0.33 0.53

STL-10 -0.40 -0.25 0.42 0.63 0.04 0.58
CIFAR-100 -0.20 0.05 0.29 0.27 0.19 0.02

Cifar-10 -0.07 -0.12 -0.05 -0.03 -0.10 -0.06
Pet 0.50 0.47 0.38 0.41 0.37 0.35

CUB 0.54 0.70 0.72 0.70 0.83 0.69
GTSRB -0.08 -0.23 -0.16 -0.17 0.24 0.19

Avg. 0.02 0.14 0.32 0.26 0.27 0.33

Pearson (ρ)
DTD 0.14 0.74 0.93 0.17 0.35 0.70

STL-10 -0.78 -0.54 0.44 0.71 -0.10 0.68
CIFAR-100 -0.74 -0.11 -0.05 -0.02 -0.01 -0.30

Cifar-10 -0.03 0.00 -0.11 -0.01 0.08 0.04
Pet 0.52 0.65 0.52 0.76 0.74 0.67

CUB 0.62 0.61 0.45 0.62 0.83 0.72
GTSRB 0.01 -0.18 -0.11 -0.06 0.37 0.38

Avg. -0.04 0.17 0.30 0.31 0.32 0.41
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