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ABSTRACT

A quasistatic approach is proposed to derive the optimization algorithms’ effec-
tive dynamics on the manifold of minima when the iterator oscillates around the
manifold. Compared with existing strict analysis, our derivation method is sim-
ple and intuitive, has wide applicability, and produces easy-to-interpret results.
As examples, we derive the manifold dynamics for SGD, SGD with momentum
(SGDm) and Adam with different noise covariances, and justify the closeness of the
derived manifold dynamics with the true dynamics through numerical experiments.
We then use minima manifold dynamics to study and compare the properties of
optimization algorithms. For SGDm, we show that scaling up learning rate and
batch size simultaneously accelerates exploration without affecting generalization,
which confirms a benefit of large batch training. For Adam, we show that the speed
of its manifold dynamics changes with the direction of the manifold, because Adam
is not rotationally invariant. This may cause slow exploration in high dimensional
parameter spaces.

1 INTRODUCTION

The ability of stochastic optimization algorithms to explore among (global) minima is believed to be
one of the essential mechanisms behind the good generalization performance of stochastically trained
over-parameterized neural networks. Until recently, research on this topic has focused on how the
iterator jumps between the attraction basins of many isolated minima and settles down around the
flattest one Xie et al. (2020); Nguyen et al. (2019); Dai & Zhu (2020); Mori et al. (2021). However,
for over-parameterized models, the picture of isolated minima is not accurate, since global minima
usually form manifolds of connected minima Cooper (2018). In addition to crossing barriers and
jumping out of the attraction basin of one minima, the optimizer also moves along minima manifold
and search for better solutions Wang et al. (2021). Hence, understanding how optimization algorithms
explore along the minima manifold is crucial to understanding how stochastic optimization algorithms
are able to find generalizing solutions for over-parameterized neural networks.

Some recent works have begun to examine the exploration dynamics of Stochastic Gradient Descent
(SGD) along minima manifolds. Many of these works have identified how a change of flatness in
the minima manifold adds a driving force to SGD as it oscillates around the minima. For example,
Damian et al. (2021) considered an SGD training a neural network with label noise, and showed that
the optimizer can find the flattest minimum among all global minima. A more recent work Li et al.
(2021b) derived an effective stochastic dynamics for SGD on the manifold. The results in Li et al.
(2021b) show that (when the learning rate tends to zero) the changing flatness can give a force to the
SGD iterator along the minima manifold and induce a slow dynamics on the manifold that helps the
SGD move to the vicinity of flatter minima.

In this work, we study the same questions of the flatness-driven exploration along the minima
manifold. Instead of searching for a strict proof, we focus on simple and intuitive ways to derive the
manifold dynamics. Specifically, we propose a quasistatic approach to derive the manifold dynamics
for different optimization algorithms and stochastic noises. The main technique of our derivation is a
time-scale decomposition of the motions perpendicular to and parallel with the minima manifold,
which we call the normal component and the tangent component, respectively. We treat the normal
component as infinitely faster than the tangent component, and thus it is always at equilibrium given
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the tangent component. The effective dynamics of the tangent component, i.e. the manifold dynamics,
is obtained by taking the expectation over the equilibrium distribution of the normal component.
The main step in our analysis involves deriving the equilibrium covariance of an SDE. Compared
with the theoretical analysis in Li et al. (2021b), our derivation and results are simpler and easier to
interpret, and clearly identifies the roles played by each component of the optimization algorithm
(noise covariance, learning rate, momentum). The following simple example demonstrates the main
idea of the our derivations.

A simple illustrative example: Consider a loss function f(x, y) = h(x)y2, where h(x) > 0 is
a differentiable function of x. The global minima of this function lie on the x-axis, forming a flat
manifold, and h(x) controls the flatness of the loss function at any minimum (x, 0). Let z = [x, y]T .
We consider an SGD approximated by SDE Li et al. (2017)Li et al. (2021a)

dzt = −∇f(zt)dt+
√
ηD(zt)dWt, (1)

where η is the learning rate, D is the square root of the covariance matrix of the gradient noise, and
Wt is a Brownian motion. For the convenience of presentation, for points (x, y) that are close to
the x-axis, we assume the noise covariance aligns with the Hessian of the loss function at (x, 0), i.e.

D2(z) = σ2

2 Hf(x, 0) =

[
0 0
0 σ2h(x)

]
, where σ > 0 is a scalar. Then, the SDE equation 1 can

be written as

dxt = −h′(xt)y
2
t dt, dyt = 2h(xt)ytdt+ σ

√
ηh(xt)dWt,

with Wt being a 1-D Brownian motion. When yt is close to 0, the speed of xt is much slower than yt
because of the y2t in the dynamics of x is much smaller than the yt in the dynamics of y. When this
separation of speed is large, the dynamics above can be approximated by the following quasistatic
dynamics

dxt = − lim
τ→∞

Eyτh
′(xt)y

2
τdt, dyτ = 2h(xt)yτdτ +

√
ηh(xt)σdWτ . (2)

which assumes y is always at equilibrium given xt. Solving the Ornstein–Uhlenbeck process 2, we
know the equilibrium distribution of yτ is ∼ N(0, ησ2

4 ), and hence the manifold dynamics is

dxt

dt
= −ησ2h′(xt)

4
.

This derivation shows the slow effective dynamics along the manifold is a gradient flow minimizing
the flatness h(x). This simple quasistatic derivation reveals the flatness-driven motion of SGD along
the minima manifold, and recovers the same dynamics as given by Li et al. (2021b) in this specific
case. On the left panel of Figure 1, we show an SGD trajectory for f(x, y) = (1 + x2)y2, illustrating
the exploration along the manifold due to the oscillation in the normal space. On the right panel we
verify the closeness of the manifold dynamics with the true SGD trajectories for the same objective
function. The “Hessian noise” and “Isotropic noise” represent noises whose covariance are the
Hessian matrix of f (as analyzed above) and the identity matrix (covered by the analysis in Section 2),
respectively.

Figure 1: (left) The trajectory of SGD (real dynamics)
with Hessian noise initialized from (5, 0). (middle)
The x-coordinate of the real dynamics and the manifold
dynamics for SGD with Hessian and isotropic noises.

Theoretical applications of the manifold dy-
namics: The minima manifold dynamics of
optimization algorithms can be used as a tool to
study and compare the behaviors of optimization
algorithms. In Section 3, we illustrate how our
derivations can be applied to study the behav-
ior of SGD on a matrix factorization problem.
Two more interesting applications are discussed
Section 4 and 5. In Section 4, we focus on
SGDm, and study the role played by the learn-
ing rate, batch size, and momentum coefficient
in its manifold dynamics. Based on the analysis,
we explore approaches to reliably accelerate the
manifold dynamics, which may help accelerate training. Especially, we show that scaling up learning
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rate and batch size simultaneously accelerates exploration without affecting generalization, which
confirms a benefit of large batch training. In Section 5, we study adaptive gradient methods, and show
that the speed of the manifold dynamics of Adam Kingma & Ba (2014) changes with the direction of
the manifold, because Adam is not rotationally invariant. When the manifold does not align well with
some axis direction, the exploration of Adam along the manifold is even slower than SGD with the
same learning rate. This shows the sensitivity of Adam (and other adaptive gradient methods) to the
parameterization and a potential weakness of Adam on the exploration among global minima.

Additional related work: Besides the important related works discussed above, our work is related
broadly with the topic of implicit regularization of optimization algorithms for overparameterized
models. Such works include global minima selection Wu et al. (2018); Ma & Ying (2021), the max-
margin bias of some homogeneous models Soudry et al. (2018); Lyu & Li (2019); Lyu et al. (2021),
and others such as Gunasekar et al. (2017); Li et al. (2018); Woodworth et al. (2020); Neyshabur et al.
(2017) (not to be comprehensive). One work that is worth mentioning is Blanc et al. (2020), in which
the implicit regularization effect of SGD under label noise is studied by understanding the SGD as a
Ornstein-Uhlenbeck process (OU process), which also plays an important role in our derivation.

For applications, we give theoretical explanations for the benefit of large batch training, which is
an important and extensively studied empirical topic You et al. (2019; 2017); Hoffer et al. (2017);
Geiping et al. (2021). Our study on adaptive gradient methods concerns the family of widely used
methods which adjusts the learning rate adaptively (and usually coordinatewise) Duchi et al. (2011);
Tieleman & Hinton (2012); Kingma & Ba (2014).

2 THE QUASISTATIC DERIVATION FOR MANIFOLD DYNAMICS

In this section, we introduce our quasistatic approach for deriving minima manifold dynamics, which
is an effective exploration dynamics of optimization algorithms on minima manifolds.

Notations: Let M be a smooth manifold in Rd with Euclidean metric. Throughout this paper, we
use z to denote points in Rd, including M, and use x and y to denote components of z used in the
quasistatic derivation for speed separation. For any z ∈ M, let TzM be the tangent space of M at z.
Let TzM⊥ be the orthogonal complement of TzM, which is the normal space of M at z. Let PM
be the projection operator onto M, i.e. for any z ∈ Rd, PMz gives the closest point on M to z (if
exists and unique). PM is well defined when z is close to M Lee (2013). In the paper, we ignore the
subscript M for PM when there is no confusion.

Problem settings We consider a boundless k-dimensional smooth manifold M in Rd, formed by
(local or global) minima of a function f : Rd → R. Since we are interested in the behavior of
stochastic optimizers near the minima manifold M, we ignore the landscape of f when x is far away
from M, and only consider a quadratic expansion of f at M. Specifically, let H(·) : M → Rd×d be
a function on M that gives the Hessian of the loss function on the minima manifold. For any z ∈ M,
we assume H(z) is positive semidefinite, and its 0-eigenspace is exactly TzM. The loss functions
that we consider take the form

f(z) = (z − Pz)TH(Pz)(z − Pz), z ∈ Rd. (3)

For the optimization dynamics, we start from SGD, approximated by the following SDE Li et al.
(2017)Li et al. (2021a)

dzt = −∇f(zt)dt+
√
ηD(Pzt)dWt, (4)

where Wt is a Brownian motion in Rd and D : M → Rd×d is the square root of the noise covariance.
Later we will extend our analysis to SGDm and Adam. Strictly speaking, the noise of SGD depends
on z, which is not always on M. However, in settings that we study, we assume it only depends on
Pz because z is close to M.

2.1 FLAT MANIFOLD

We start from the case in which the minima manifold M is flat. The derivation in this case is
similar to the 2-D example given in the introduction. For any z ∈ Rd, let z = [xT ,yT ]T , with
x ∈ Rk and y ∈ Rd−k. Without loss of generality, we assume M = {z = [xT ,yT ]T : y = 0},
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i.e. M is the linear subspace formed by the first k axes. Then, for any z =

[
x
y

]
, we have

Pz =

[
x
0

]
and z − Pz =

[
0
y

]
. For the loss function f , since we assume its Hessian has zero

eigenvalues along the tangent space of M, the Hessian must take the form H(x) =

[
0 0

0 H̃(x)

]
with H̃(x) ∈ R(d−k)×(d−k). Here, we can treat H as a function of x because it is defined on M.
Hence, written as a function of x and y, the loss function 3 becomes

f(x,y) = yT H̃(x)y. (5)

Next, we rewrite the SDE 4 using x and y. Again, since the noise coefficient D in 4 is defined on

M, it can be treated as a function of x. For any x, let D(x) =

[
D̃11(x) D̃12(x)

D̃21(x) D̃22(x)

]
∈ Rd×d with

D̃11(x) ∈ Rk×k. Then, D̃11 represents the noise in the tangent space, D̃22 represents the noise in the
normal space, and D̃12, D̃21 represent the interaction of the tangent space and normal space noises.
In many cases, the noise covariance matrix of SGD aligns with the Hessian Mori et al. (2021). Hence,
D̃22 dominates the other three components. (Actually, when the noise covariance strictly aligns with
the Hessian, only D̃22 is nonzero.) In the following, we assume the interactions D̃12 and D̃21 are 0,
while D̃11 can still be nonzero. Then, by the form of the loss function in 5, the SDE 4 can be written
as the following system of x and y:

dxt = −yT
t ∂xH̃(xt)ytdt+

√
ηD̃11(xt)dW

(1)
t

dyt = −2H̃(xt)ytdt+
√
ηD̃22(xt)dW

(2)
t , (6)

where ∂xH̃(xt) is a (d− k)× (d− k)× k tensor containing all partial derivatives of x̃. When z is
close to M, y is small, in which case the dynamics of y is much faster than that of x, because the
drift term for x depends quadratically with y while the drift term for y only depends linearly with y.
Therefore, we can use a quasistatic dynamics to approximate the original dynamics. The quasistatic
dynamics assumes that y is always at equilibrium:

dxt = − lim
τ→∞

yT
τ ∂xH̃(xt)yτdt+

√
ηD̃11(xt)dW

(1)
t (7)

dyτ = −2H̃(xt)ytdt+
√
ηD̃22(xt)dW

(2)
τ . (8)

Fixing xt, the dynamics for yτ is a linear SDE. We have yτ as lim
τ→∞

Eyτ = 0 and lim
τ→∞

Eyτy
T
τ = Vt,

where Vt ∈ R(d−k)×(d−k) satisfies H̃(xt)Vt + VtH̃(xt) = ηD̃22(xt)D̃22(xt)
T /2. The derivations

here are standard. Readers can refer to textbooks or lecture notes such as Herzog (2013). Substituting
the moments into the u-dynamics in 7, we have

dxt = −
n−k∑
i,j=1

(Vt)ij∇x(H̃(xt)ij)dt+
√
ηD̃11(xt)dW

(1)
t . (9)

Understanding x as a vector on M, equation 9 gives the effective manifold dynamics on M. This
result recovers the simple example in the introduction if we take f(x, y) = h(x)y2 and D2 = σ2H/2.

2.2 GENERAL MANIFOLD

For general smooth manifold, the manifold dynamics can be derived locally by approximating M
using a flat manifold. The resulting dynamics is different from 9 only in that the gradients are taken
on the manifold. To see this, consider any point z0 ∈ M. Without loss of generality, we assume

there exists x0 ∈ Rk, such that z0 =

[
x0

0

]
, and Tz0

M =

{[
x
0

]
: x ∈ Rk

}
. Because M is

a smooth manifold, around z0 the projection operator onto Tz0M, denoted by Pz0 , induces an 1-1
map between M and Tz0M, and we have ∥z − Pz0z∥ = O(∥z − z0∥2). Let P−1

z0
: Tz0M → M

be the inverse of this 1-1 map. With an abuse of notations, for z = [xT ,0]T ∈ Tz0
M, we sometimes

also use P−1
z0

x to denote P−1
z0

z. Let Oz0 = {e1, ..., ed} be the standard orthonormal basis for Rd,
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with {e1, ..., ek} being an orthonormal basis for Tz0
M. Also because M is smooth, for any z ∈ M

close to z0, there exists an orthonormal basis Oz = {ez1 , ..., ezd} for Rd which is close to Oz0
, such

that {ez1 , ..., ezk} form an orthonormal basis for TzM. Specifically, for any 1 ≤ i ≤ d we have
∥ezi − ei∥ = O(∥z − z0∥2).
Now, consider SDE 4 with the loss function f defined in 3. For any z ∈ M close to z0, let

H(z) =

[
0 0

0 H̃(z)

]
and D(z) =

[
D̃11(z) 0

0 D̃22(z)

]
be the Hessian and the noise coefficient

matrix expressed in Oz . The zeros in the expressions are due to assumptions on H and the noise, i.e.
TzM is in the 0-eigenspace of H , and there is no interaction between the tangent space noise and the
normal space noise. Now, we define a companion loss function f̃ whose minima manifold is Tz0M
by f̃(z) = yT H̃(P−1

z0
x)y, where z = [xT ,yT ]T , and consider a companion SDE

dzt = −∇f̃(zt)dt+
√
ηD(P−1

z0
Pz0

zt)dWt. (10)

The SDE above approximates an SGD minimizing f̃ , whose minima manifold is flat. Hence, using
the results from the previous subsection, we can derive a manifold dynamics on Tz0

M,

dx = −
n−k∑
i,j=1

(Vt)ij∇x(H̃(P−1
z0

x)ij)dt+
√
ηD̃11(P

−1
z0

x)dW
(1)
t , (11)

where Vt is obtained by H̃(P−1
z0

x)Vt + VtH̃(P−1
z0

x) = ηD̃22(P
−1
z0

x)D̃22(P
−1
z0

x)T /21. By the
discussions above, around z0 the SDE 4 is close to 10, because f̃(z) ≈ f(z) and D(P−1

z0
Pz0

zt) ≈
D(Pz). Hence, the effective manifold dynamics of 4 is close to 11 in a neighborhood of z0, and this
approximation is better in smaller neighborhood of z0. Therefore, at z = z0 the manifold dynamics
is approximately 11 taking x = x0, which leads to

dz = −
n−k∑
i,j=1

Vij∇x(H̃(z)ij)dt+
√
ηD̃11(z)dW

(1)
t .

Since ∇x(H̃(z)ij) are gradients in the tangent space Tz0
M, under Euclidean metric they are

gradients on the manifold at z0. Hence, at z0 the manifold dynamics can be written as

dz = −
n−k∑
i,j=1

Vij∇M(H̃(z)ij)dt+
√
ηD̃11(z)dW

(1)
t . (12)

Since the above analysis holds for any z0 ∈ M, the manifold dynamics of 4 is given by 12 at any z.

Examples: One interesting case is when the noise covariance matrix is proportional with the
Hessian. In this case, D2(z) = σ2H(z) for any z ∈ M. Since H̃(z) contains all the nonzero
eigenvalues of H(z) and the nonzero eigenspace corresponds to TzM⊥, we have D̃11 = 0 and

D̃22(z) = σ
√
H̃(z). In this case, Vt satisfies H̃(zt)Vt + VtH̃(zt) = ησ2H̃(zt)/2, which gives

Vt =
ησ2

4 I . Substituting Vt into the dynamics equation 12 we have the following effective dynamics

dzt = −ησ2

4
∇M Tr(H̃(zt))dt. (13)

In the case of a flat manifold, this result above corresponds to the dynamics we derived in the
introduction. Effectively, the SGD is minimizing ησ2

4 Tr(H(z)) on the manifold using a gradient
flow. (Note that Tr(H̃(z))=Tr(H(z)) for z ∈ M).

For another case, if we assume the noise in TzM⊥ is isotropic with a constant magnitude, we have
D̃22(z) = σI for some σ. Hence, we have Vt =

ησ2

4 H̃−1(zt), and the manifold dynamics becomes

dzt = −ησ2

4
∇M Tr(log H̃(zt))dt. (14)

Effectively, the SGD is minimizing ησ2

4 Tr(log H̃(z)) on the manifold with a gradient flow.

1Although 11 is a dynamics for x ∈ Rk, it can be understood as a dynamics for z on Tz0M, in which the y
component is always 0.
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Remark 1. The manifold dynamics we derive is similar to that studied in Li et al. (2021b). Instead
of providing a rigorous proof, our main contribution is to give a simple and intuitive quasistatic
approach to derive the manifold dynamics. Our methods can be applied to a wide class of noise
models, and also can be applied to other optimizers such as SGD with momentum (See Section 2.3)
and Adam (See Section 5).

2.3 EXTENDING ANALYSIS TO SGD WITH MOMENTUM

The quasistatic approach we take can be extended to derive the effective manifold dynamics for
SGDm. We consider the following SGDm scheme on the same loss function f studied above:

mk+1 = µmk − η∇f(zk), zk+1 = zk +mk+1, (15)
where η is the learning rate, µ ∈ [0, 1) is the momentum factor, and m is the momentum. By the
derivation in Li et al. (2017), we consider the following SDE system that approximates 15:

dmt = −
(1− µ

η
mt +∇f(zt)

)
dt+

√
ηD(Pzt)dWt, dzt =

1

η
mtdt. (16)

By the discussion for SGD, the manifold dynamics can be obtained by assuming that M is flat, and
applying a quasistatic analysis on a decomposition of tangent and normal components. We put the
details in Appendix A. The resulting manifold dynamics on a general manifold is

dmt = −

1− µ

η
mt +

n−k∑
i,j=1

(V sgdm
t )ij∇M(H̃(zt)ij)

 dt+
√
ηD̃11(zt)dWt, dzt =

1

η
mtdt,

(17)

where the form and derivation of V sgdm
t are given in Appendix A (equation 39). Note that when

η is small, equation 39 is close to H̃V + V H̃ = η
2(1−µ)D̃22D̃

T
22. Let Ṽ sgdm be the solution of

this equation. We have V sgdm ≈ Ṽ sgdm = V sgd

1−µ , where V sgd is the matrix V for SGD used in
previous sections. This shows that the momentum amplifies the flatness driven force by a factor
of 1/(1− µ). Besides this acceleration, the momentum scheme itself also accelerates the speed of
manifold dynamics. To see this, when there is no noise along the manifold direction, i.e. D̃11 = 0,
by Kovachki & Stuart (2021), the ODE

żt = − 1

1− µ

n−k∑
i,j=1

(V sgdm
t )ij∇M(H̃(zt)ij) (18)

is a first-order approximation of the manifold dynamics 17 (This approximation assumes the momen-
tum is always at equilibrium). The term 1/(1 − µ) is the acceleration brought by the momentum
scheme. In this case, compared with SGD, the approximate manifold dynamics for SGDm is

żt = − 1

(1− µ)2

n−k∑
i,j=1

(V sgd
t )ij∇M(H̃(zt)ij),

which is 1/(1− µ)2 faster than SGD. The full derivation for SGDm are put in Appendix A.

Examples: We still consider the example where D̃11 = 0 and D̃22(z) = α
√
H̃(z). In this case,

V sgdm ≈ Ṽ sgdm = ηα2

4(1−µ)I . Then, the approximate effective dynamics according to equation 18 is

żt = − ηα2

4(1− µ)2
∇M Tr(H̃(zt)). (19)

As a numerical justification for the manifold dynamics we derived for SGDm, for the same function
f(x, y) = (x2 +1)y2 tested in Figure 1, we compare the true x-coordinate dynamics, the SGDm-like
discretization for equation 17, and the ODE solution of 19. Shown in the left panel of Figure 2, the
three dynamics are close for all µ tested. The results also show that the manifold dynamics get faster
for larger µ, as predicted by its expression.

3 APPLICATION ON MATRIX FACTORIZATION PROBLEMS

In this section, we consider an objective function f(U, V ) = ∥UV T −M∥2F with U ∈ Rm×p, V ∈
Rn×p and an SGD with Hessian noise, i.e. the noise covariance is proportional with the Hessian of f .
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Figure 2: (left) SGDm and its manifold dynamics for different µ. (middle) The
distance between the real optimization dynamics and the manifold dynamics for SGD
and SGDm with Hessian noise, compared with the displacement of the optimization
dynamics’ iterators. (right) The distance and displacement curves for average
trajectories of SGD when there is noise long the minima manifold.

Let H(U, V ) be the
Hessian matrix of
f . Theoretically,
it is easy to verify
that Tr(H(U, V ))
is proportional to
∥U∥2F + ∥V ∥2F wher-
ever UV T = M .
Therefore, the man-
ifold dynamics of
SGD minimizes
∥U∥2F + ∥V ∥2F and
drives the iterator to
the most balanced
global minimum, which is also the flattest. Numerically, we take m = n = p = 5 and compare the
true dynamics with the manifold dynamics. The experiments are initialized from U0 = M,V0 = I .
The middle panel of Figure 2 shows the distance between the true dynamics and the manifold
dynamics, as well as the distance traveled by the true dynamics, for SGD and SGDm. On the right
panel, we inject an isotropic noise on the tangent space for SGD and do the same comparison. The
results show good approximation of the manifold dynamics to the real dynamics. Under the Hessian
noise, then, the SGD indeed moves towards minima with smaller Frobenius norm, same as the
manifold dynamics.

4 LEARNING RATE, BATCH SIZE, AND MOMENTUM

With the manifold dynamics, we can study the impact of hyperparameters on the behavior of
optimizers around manifold of minima. Here, we focus on the learning rate η, batch size B, and
momentum µ of the SGDm algorithm. Written in the SDE form, the batch size changes the covariance
of the noise by a factor 1/B. Hence, using equation 16, the SDE with batch size B is

dmt = −
(1− µ

η
mt +∇f(zt)

)
dt+

√
η

√
B
D(Pzt)dWt, dzt =

1

η
mtdt. (20)

To focus on the drift dynamics on the manifold and avoid the influence of the noise, we consider
Hessian noise which only exists in the normal space of the manifold, i.e. we assume D̃11 = 0,

D̃22(z) = σ
√
H̃(z). Then, by equation 18, the first-order ODE on the minima manifold representing

the manifold dynamics is

żt = − ησ2

4B(1− µ)2
∇M Tr(H̃(zt)). (21)

By equation 21, the manifold dynamics takes the same trajectory with different speed for different hy-
perparameters. Let z̃t be the trajectory of żt = −σ2

4 ∇M Tr(H̃(zt)). Considering the discretization,

an SGDm with learning rate η, batch size B, and momentum µ takes TB(1−µ)2

η2 iterations to solve for
z̃t until t = T . Hence, decreasing the batch size, or increasing the learning rate or momentum factor,
can accelerate the (discrete) manifold dynamics. We let s(η, µ,B) := η2

B(1−µ)2 be the speed factor
for the dynamics. The experiment results in the left panel of Figure 3 justify that the speed factor
indeed controls the dynamics’ speed.

Implications in practical cases: For the training process of over-parameterized neural networks,
the exploration around the minima manifold is an important source of implicit regularization. The
driven force of the movement along the manifold is still the change of flatness. However, in this more
complicated case, the discussion above may face two problems: (1) The curvature in the directions
perpendicular with the manifold may not be quadratic. Which leads to different manifold trajectory if
the range of oscillation is different. (i.e. if the iterator oscillates in a larger range, the flatness driven
force may change its direction.) (2) The manifold dynamics is just a first-order approximation of the
true dynamics, which may not be accurate for a long time period. The second problem is intrinsic
to all studies that use continuous dynamics to approximate discrete dynamics. It will not impose
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Figure 3: (Left) The x-coordinate dynamics of three experiments for SGD with different hyperparameters,
on function f(x, y) = (1 + x2)y2 with Hessian noise. Two experiments have the same s(η, µ,B), while
the other one has a smaller s(η, µ,B). Here the role of B is played by 1/σ2. (Middle left) The moving
average of y-magnitude for the three experiments shown in the left panel. The three experiments have the same
r(η, µ,B), hence the y-magnitudes are on the same order. (Middle right) The test accuracy curves of two neural
network runs with different hyperparameters but the same s and r. Experiments are conducted on ResNet18 and
CIFAR100 dataset. (Right) The distance between the manifold projection and the origin of Adam iterators for
loss function equation 23 with different θ, compared with that for SGD.

a serious problem as long as the curvature on and around the minima manifold does not change
drastically. The first problem motivates us to find ways to accelerate the manifold dynamics without
changing the range of oscillation. By the discussion in Section 2.3, the range of the oscillation
is given by V sgdm, which is ηα2

4B(1−µ)I . Let r(η, µ,B) := η
B(1−µ) be the “range factor”. Then,

Combining the discussions above, we want to increase the speed factor s(η, µ,B) while keeping
the range factor r(η, µ,B) fixed. Since the ratio η/(1− µ) appears in both factors, to increase the
dynamics speed without changing the oscillation range we must change B. Concretely, if we pick
B′ = cB and η′, µ′ such that η′

1−µ′ = c η
1−µ , then

η′

B′(1− µ′)
=

η

B(1− µ)
,

η′2

B′(1− µ′)2
= c

η2

B(1− µ)2
, (22)

i.e. the range factor is not changed while the speed factor is multiplied by c. In the second panel
of Figure 3, we show for synthetic problem that r(η, µ,B) is indeed proportional to the range of
oscillation. In the third panel, we show for neural networks that two experiments with the same speed
and range factors but different hyperparameters indeed follow the same test loss curve with respect
to epochs. On the other hand, if the oscillation range is not kept, the training trajectories may go to
different solutions (with different training and testing error).
Remark 2. By equation 22, increasing the batch size while changing other hyperparameters ac-
cordingly can accelerate the training speed without changing the training trajectory. However, this
acceleration happens on the level of number of iterations. Since the batch size changes accordingly,
the number of samples used during the training period does not change. This means we are training
for less iterations, but the same number of epochs. This is shown in the third panel of Figure 3.
Nevertheless, this usually saves time because training one big batch is faster than training several
small batches with the same number of total samples. Therefore, our results reveals a theoretical
mechanism underpinning the empirical benefit of large batch training You et al. (2019; 2017); Hoffer
et al. (2017); Geiping et al. (2021).

5 ADAPTIVE GRADIENT METHODS AND ROTATIONAL INVARIANCE

We can also study the manifold dynamics of adaptive gradient methods. We start with experiments
which show that the manifold dynamics of Adam changes according to the direction of the manifold.
This is due to the fact that adaptive gradient methods are not rotational invariant. We consider the
loss function,

f(x, y) = (x sin θ + y cos θ)2((x cos θ − y sin θ)2 + 1), (23)
which is the counterclockwise rotation of (x2 + 1)y2 by θ2. The minima manifold of f is the line
x sin θ + y cos θ = 0. We run Adam Kingma & Ba (2014) on f with different θ with Hessian noise.
The right panel of Figure 3 compares the dynamics projected onto the minima manifold. The results

2Our analysis works for any loss function with the form f(x, y) = (x sin θ + y cos θ)2h(x cos θ − y sin θ).
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show that Adam moves very fast along the manifold when the manifold aligns well with an axis.
When the manifold does not align with an axis, Adam moves much slower, sometimes even slower
than a plain SGD. This is because in Adam the adaptive learning rate is computed for each coordinate,
and hence when the manifold direction is close to an axis, the learning rate along the manifold can be
drastically increased due to the small gradient on this corresponding axis direction. Otherwise, all
axis directions have big gradients due to the oscillation and the learning rate along the manifold is
not increased in a desirable way.

Using the SDE approximation for Adam recently derived in Malladi et al. (2022), we can derive
and compare the manifold dynamics for Adam on the loss equation 23 for different θ. Consider an
Adam algorithm with hyperparameters (β1, β2, η, ϵ), where β1 and β2 are momentum coefficients
for the first and second order moments, respectively, η is the learning rate, and ϵ is the small number
that prevents division by zero Kingma & Ba (2014). By Malladi et al. (2022), let Σ be the gradient
noise covariance matrix depending on the parameters, and σ be a additional noise strength (i.e. the
real noise covariance is σΣ), define σ0 = ση, ϵ0 = ϵη, c1 = (1 − β1)/η

2, c2 = (1 − β2)/η
2,

γ1(t) = 1− e−c1t, and γ2(t) = 1− e−c2t, then the Adam trajectory is approximated by the SDE:

dxt = −
√
γ2(t)

γ1(t)
P−1
t mtdt, dmt = c1(∇f(xt)−mt)dt+ σ0c1Σ

1/2(xt)dWt, (24)

dut = c2(diag(Σ(xt))− ut)dt, Pt = σ0diag(ut)
1/2 + ϵ0

√
γ2(t)I.

Here, f is the loss function, x is the parameter, and Wt is a Brownian motion. The time scale of
the SDE above is t = kη2, which is different from the usual time scale t = kη studies for other
optimization algorithms.

Using the quasistatic approach, in Appendix B we derive the approximate manifold dynamics for two
cases: (1) θ = 0, in which the minima manifold aligns with one axis, and (2) θ = π/4, in which the
angles between the minima manifold and coordinate axes are maximized. After some approximations
which are detailed in Appendix B (such as γ1(t) = γ2(t) = 1 which happens when t is large), we
have the following effective dynamics on the minima manifold:

θ = 0 : dmx,t = c1

(
σ0h

′(xt)

4
√

h(xt)
−mx,t

)
dt, dxt = −mx,t

ϵ0
dt. (25)

θ =
π

4
: dmx,t = c1

(
σ0h

′(xt)

2
√

2h(xt)
−mx,t

)
dt, dxt = −

√
2mx,t

σ0

√
h(xt)

dt. (26)

Here, x is the coordinate along the manifold direction, and m is a corresponding momentum. The
SDEs equation 25 and equation 26 show the difference of the manifold dynamics for different θ.
When θ = 0, the x dynamics is very fast, because of the ϵ0 on the denominator. When θ = π/4,
instead, the x dynamics is slower. If we further make a first-order approximation of the dynamics by
assuming the momentum is always at equilibrium, like we did for SGDm in equation 18, we have the
following manifold dynamics:

θ = 0 : ẋ = − σ0h
′(x)

4ϵ0
√
h(x)

, θ =
π

4
: ẋ = − h′(x)

2h(x)
. (27)

Here we see that when θ = 0 we get a gradient flow minimizing
√
h(x) on the minima manifold,

while when θ = π/4 we get a gradient flow minimizing lnh(x). The former dynamics is much
faster due to the ϵ0 on the denominator. For the detail of the analysis please see Appendix B. When
the dimension of the parameter space is high, it is hard for the minima manifold to align well with
coordinate directions. Hence, the exploration of Adam (as well as other adaptive gradient methods)
on the minima manifold is slower than SGD and SGDm. This may be one reason that Adam does not
generalize as good as SGD in many cases Keskar & Socher (2017); Wilson et al. (2017).

Remark 3. Unlike the effective dynamics for SGD and SGDm, the dynamics in equation 27 do not
depend on the learning rate η. This is because in the SDE approximation the time scale is t = kη2.
Therefore, a η factor will appear if we transform the time scale to t = kη.
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A SGD WITH MOMENTUM

Consider the following SDE approximation for SGDm:

dmt = −
(1− µ

η
mt +∇f(zt)

)
dt+

√
ηD(Pzt)dWt, dzt =

1

η
mtdt. (28)

By the discussion for SGD, the manifold dynamics can be obtained by assuming that M is flat. The
result for non-flat manifold is different only by a gradient taken on the manifold. In the flat case, still
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letting z = [xT ,yT ]T with x in the tangent space and y in the normal space, the dynamics 28 can be
written as an SDE system for x and y.

dmx,t = −
(
1− µ

η
mx,t + vT

t ∂uH̃(xt)yt

)
dt+

√
ηD̃11(xt)dW

(1)
t , dxt =

1

η
mx,tdt,

dmy,t = −
(
1− µ

η
my,t + 2H̃(xt)yt

)
dt+

√
ηD̃22(xt)dW

(2)
t , dyt =

1

η
my,tdt. (29)

Here, mx,t and my,t denote the momentum for x and y components, respectively. Again, since the
y dynamics is faster than the x dynamics, we take a quasistatic approach by assuming yt is always at
the equilibrium given xt, and taking expectation on yt in the x dynamics. Note that the two equations
for my,t and yt form a linear system of SDEs, we can still compute the first and second moments
of yt at equilibrium and substitute the results into the equations for mx,t and x, which gives the
following effective dynamics for x

dmx,t = −

1− µ

η
mx,t +

n−k∑
i,j=1

(V sgdm
t )ij∇x(H̃(xt)ij)

 dt+
√
ηD̃11(xt)dWt, dxt =

1

η
mx,tdt,

where the form and derivation of V sgdm
t are given in the next subsection. Finally, replacing x by z

on M and consider gradients on M, we have the following effective dynamics on general minima
manifold:

dmt = −

1− µ

η
mt +

n−k∑
i,j=1

(V sgdm
t )ij∇M(H̃(zt)ij)

 dt+
√
ηD̃11(zt)dWt, dzt =

1

η
mtdt,

(30)

A.1 THE DERIVATION FOR V sgdm

In this section, we derive Vsgdm from the SDE for SGDm equation 16. Assume xt and mx,t is fixed,
we search for the equilibrium of the following system of y and my:

dmy,τ = −
(
1− µ

η
my,τ + 2H̃(x)yτ

)
dτ +

√
ηD̃22(xt)dW

(2)
τ ,

dyt = τ =
1

η
my,τdτ.

The SDE system above is linear. Let uτ =

[
my,τ

yτ

]
, the SDE can be written as

duτ = Auτdτ +
√
ηDdBτ , (31)

where we have

A =

[
− 1−µ

η I −2H̃(xt)
1
η I 0

]
∈ R2(d−k)×2(d0k), D =

[
0 D̃22

0 0

]
∈ R2(d−k)×d,

and Bτ is a Brownian motion.

Let Cτ be the second moment matrix Euτu
T
τ . By Herzog (2013), Cτ satisfies the ODE

d

dτ
Cτ = ACτ + CτA

T + ηDDT .

Therefore, taking τ → ∞, let C∞ = lim
τ→∞

Cτ be the moment matrix at equilibrium, we have

AC∞ + C∞AT = −ηDDT . (32)

By the definition of u, we have

C∞ =

[
Emy,∞mT

y,∞ Emy,∞yT
∞

Ey∞mT
y,∞ Ey∞yT

∞

]
.

12
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We are interested in the Ey∞yT
∞ in the above matrix. By the symmetry of C∞, let

C∞ =

[
C1 C2

CT
2 C3

]
.

Then, we want to derive C3. Substituting the blockwise C∞ into equation 32, we have[
− 1−µ

η I −2H̃(x)
1
η I 0

] [
C1 C2

CT
2 C3

]
+

[
C1 C2

CT
2 C3

] [
− 1−µ

η I 1
η I

−2H̃(x) 0

]
= −η

[
D̃22D̃

T
22 0

0 0

]
,

which gives

−2(1− µ)

η
C1 − 2

(
H̃(x)CT

2 + C2H̃(x)
)
= −ηD̃22D̃

T
22, (33)

1

η
C1 −

1− µ

η
C2 − 2H̃(x)C3 = 0 (34)

1

η
C2 +

1

η
CT

2 = 0. (35)

By equation 35, C2 is skew symmetric. By definition, C1 and C3 are symmetric. Hence, adding equa-
tion 34 with its transpose, we obtain

1

η
C1 −

(
H̃(x)C3 + C3H̃(x)

)
= 0,

which gives
C1 = η

(
H̃(x)C3 + C3H̃(x)

)
. (36)

Substituting into equation 35, we have

C2 =
η

1− µ

(
C3H̃(x)− H̃(x)C3

)
. (37)

Plugging equation 36 and equation 37 into equation 33, we have

2(1− µ)
(
H̃(x)C3 + C3H̃(x)

)
+

2η

1− µ

(
C3H̃(x)2 + H̃(x)2C3 − 2H̃(x)C3H̃(x)

)
= ηD̃22D̃

T
22. (38)

There, denote H̃ = H̃(x), Vsgdm is the solution of

H̃V + V H̃ +
η

(1− µ)2

(
V H̃2 + H̃2V − 2H̃V H̃

)
=

η

2(1− µ)
D̃22D̃

T
22. (39)

B ADAM AND RMSPROP

In this section, we derive the effective dynamics equation 25 and equation 26 for Adam, on the 2-D
problem equation 23:

f(x, y) = (x sin θ + y cos θ)((x cos θ − y sin θ)2 + 1).

We first describe the relation between two coordinate systems. Let xOy be the coordinate system on
which the loss function equation 23 is defined, and Adam is conducted. Let x′Oy′ be the coordinate
system obtained by rotating xOy counterclockwise by θ. Then, the x′ axis aligns with the direction
of the minima manifold of f . In this coordinate system, f has the form:

f(x, y) = ((x′)2 + 1)(y′)2.

Let Rθ be the rotation matrix counterclockwise by θ, i.e. Rθ =

[
cos θ − sin θ
sin θ cos θ

]
. Then, for any

vector x in xOy, let x′ be its coordinate in x′Oy′, we have x′ = R−θx, and x = Rθx
′.

13
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Recall the SDE for Adam derived in Malladi et al. (2022),

dxt = −
√
γ2(t)

γ1(t)
P−1
t mtdt, dmt = c1(∇f(xt)−mt)dt+ σ0c1Σ

1/2(xt)dWt, (40)

dut = c2(diag(Σ(xt))− ut)dt, Pt = σ0diag(ut)
1/2 + ϵ0

√
γ2(t)I,

where x is the parameter vector, m is the first momentum vector, u is the second momentum vector,
and Σ is the noise covariance. All these quantities are defined in the coordinate system xOy. Let x′,
m′, Σ′ be the counterparts of x, m, Σ in x′Oy′, then

x′ = R−θx, m′ = R−θm, Σ′ = R−θΣRθ. (41)

We do not consider u′ as u in x′Oy′, because u is not rotationally invariant. This is the reason that
Adam has different effective dynamics on the minima manifold for different θ.

By the relations equation 41, the SDE equation 40 can be written as

dx′
t = −

√
γ2(t)

γ1(t)
R−θP

−1
t Rθm

′
tdt, dm′

t = c1(R−θ∇f(xt)−m′
t)dt+ σ0c1Σ

′1/2(xt)dBt,

(42)
dut = c2(diag(Σ(xt))− ut)dt, Pt = σ0diag(ut)

1/2 + ϵ0
√

γ2(t)I,

where Bt = R−θWt is a Brownian motion in the x′Oy′ system. Note that R−θ∇f(x) is the gradient
of f in the x′Oy′ system, letting x = [x, y]T and x′ = [x′, y′]T , we have

R−θ∇f(x) =

[
2(x′)y′2

2(x′2 + 1)y′

]
.

From now on, we denote h(x) = x2 + 1. Then

R−θ∇f(x) =

[
h′(x′)y′2

2h(x′)y′

]
.

Our analysis actually works for any positive and differentiable function h. Under the Hessian noise
assumption, we take

Σ′(x) =

[
0 0
0 h(x′)

]
,

then for Σ we have

Σ(x) = RθΣ
′(x)R−θ = h(x′)

[
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

]
.

We do not add a σ before
√
h(x′) because in the derivation of the SDE equation 40 a strength factor

σ is included into σ0.

By the discussion on R−θ∇f(x) and Σ′(x), letting m′ = [mx′ ,my′ ]T , u = [u, v]T , we can
write equation 42 into the following system of x′, y′,mx′ ,my′ , u, v:[

dx′
t

dy′t

]
= −

√
γ2(t)

γ1(t)
R−θP

−1
t Rθ

[
mx′,tdt
my′,tdt

]
dmx′,t = c1(h

′(x′
t)y

′2
t −mx′,t)dt

dmy′,t = c1(2h(x
′
t)y

′
t −my′,t)dt+ σ0c1

√
h(x′

t)dBt

dut = c2(h(x
′
t) sin

2 θ − ut)dt

dvt = c2(h(x
′
t) cos

2 θ − vt)dt

Pt = σ0

[
ut 0
0 vt

]1/2
+ ϵ0

√
γ2(t)I. (43)

In equation 43, Bt is a 1-D Brownian motion.

Next, we consider two cases: θ = 0 and θ = π
4 .
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Case θ = 0. When θ = 0, we have Rθ = R−θ = I . Also, since

Pt = σ0

[
ut 0
0 vt

]1/2
+ ϵ0

√
γ2(t) =

[
σ0

√
ut + ϵ0

√
γ2(t) 0

0 σ0
√
vt + ϵ0

√
γ2(t)

]
,

we have

P−1
t =

 1

σ0
√
ut+ϵ0

√
γ2(t)

0

0 1

σ0
√
vt+ϵ0

√
γ2(t)

 .

Therefore, equation 43 can be written as

dx′
t = −

√
γ2(t)

γ1(t)

mx′,t

σ0
√
ut + ϵ0

√
γ2(t)

dt

dy′t = −
√
γ2(t)

γ1(t)

my′,t

σ0
√
vt + ϵ0

√
γ2(t)

dt

dmx′,t = c1(h
′(x′

t)y
′2
t −mx′,t)dt

dmy′,t = c1(2h(x
′
t)y

′
t −my′,t)dt+ σ0c1

√
h(x′

t)dBt

dut = −c2utdt

dvt = c2(h(x
′
t)− vt)dt. (44)

Using the quasistatic approach, we assume the dynamics of y′ and my′ is at equilibrium at any fixed
t. Hence, fixing x′

t, we consider the system

dy′τ = −
√
γ2(t)

γ1(t)

my′,τ

σ0
√
vt + ϵ0

√
γ2(t)

dτ

dmy′,τ = c1(2h(x
′
t)y

′
τ −my′,τ )dτ + σ0c1

√
h(x′

t)dBτ

and compute lim
τ→∞

Ey′2τ . This is a linear SDE system of y′ and my′ , by techniques in Herzog (2013)
we have

lim
τ→∞

Ey′2τ =
σ2
0

√
γ2(t)

4γ1(t)(σ0
√
vt + ϵ0

√
γ2(t))

. (45)

Substituting equation 45 into equation 44, we have the following effective dynamics only on the
minima manifold:

dx′
t = −

√
γ2(t)

γ1(t)

mx′,t

σ0
√
ut + ϵ0

√
γ2(t)

dt

dmx′,t = c1

(
σ2
0

√
γ2(t)h

′(x′
t)

4γ1(t)(σ0
√
vt + ϵ0

√
γ2(t))

−mx′,t

)
dt

dut = −c2utdt

dvt = c2(h(x
′
t)− vt)dt. (46)

Next, we try to make the manifold dynamics equation 46 simpler by doing some approximations.
First, solving the ODEs for ut and vt, we get

ut = u0e
−c2t, vt = v0e

−c2t + c2

∫ t

0

ec2(s−t)h(x′
s)ds.

We first assume t is big enough, such that e−t is close to 0. Then, we can take

ut = 0, vt = c2

∫ t

0

ec2(s−t)h(x′
s)ds,

and also γ1(t) = γ2(t) = 1. Moreover, since the dynamics of x′ is slow, we can assume the change
of h(xs) is slow compared with ec2s. In this case, we have

c2

∫ t

0

ec2(s−t)h(x′
s)ds ≈ h(x′

t).
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Hence, we can approximate ut and vt by

ut = 0, vt = h(x′
t). (47)

Substituting equation 47 into equation 46, and taking γ1(t) = γ2(t) = 1, we get the following
approximate manifold dynamics:

dx′
t = −mx′,t

ϵ0
dt

dmx′,t = c1

(
σ2
0h

′(x′
t)

4σ0

√
h(x′

t) + 4ϵ0
−mx′,t

)
dt. (48)

Finally, in the denominator of the dynamics of mx′ , the ϵ0 term is usually small compared with
the σ0

√
h(x′

t) term. Hence, we can take 4σ0

√
h(x′

t) + 4ϵ0 ≈ 4σ0

√
h(x′

t) and write the following
approximate manifold dynamics:

dx′
t = −mx′,t

ϵ0
dt

dmx′,t = c1

(
σ0h

′(x′
t)

4
√

h(x′
t)

−mx′,t

)
dt. (49)

Note that h′(x)√
h(x)

= (2
√
h(x))′, the dynamics equation 49 can be understood as a gradient flow with

momentum that minimizes
√
h on the minima manifold. In the region that h is close to linear, we can

suppose

mx′,t =
σ0h

′(x′
t)

4
√

h(x′
t)
,

and write down the following first-order approximation of the dynamics:

dx′
t

dt
=

σ0h
′(x′

t)

4ϵ0
√
h(x′

t)
. (50)

Note that due to the time scale chosen in the SDE equation 40, one time unit of the manifold dynamics
that we derive corresponds to 1/η2 steps in the SGD trajectory, i.e. each SGD step corresponds to a
time period of η2. If we change the dynamics to the usual time scale, each SGD step correspond to a
time period η, an additional η will appear on the numerator of the dynamics. Therefore, the dynamics
is still a slow dynamics that is an η factor slower than the original SGD dynamics.

Case θ = π
4 . When θ = π

4 , by equation 43, the dynamics of u and v are

dut = c2
(h(x′

t)

2
− ut

)
dt,

dvt = c2
(h(x′

t)

2
− vt

)
dt.

In this case, ut and vt have the same dynamics. If we assume u0 = v0, then we have ut = vt for any
t ≥ 0. Then,

P−1
t =

 1

σ0
√
ut+ϵ0

√
γ2(t)

0

0 1

σ0
√
vt+ϵ0

√
γ2(t)

 =
1

σ0
√
ut + ϵ0

√
γ2(t)

I.

Hence,

R−θP
−1
t Rθ =

1

σ0
√
ut + ϵ0

√
γ2(t)

R−θRθ =
1

σ0
√
ut + ϵ0

√
γ2(t)

I.
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Therefore, equation 43 can be written as

dx′
t = −

√
γ2(t)

γ1(t)

mx′,t

σ0
√
ut + ϵ0

√
γ2(t)

dt

dy′t = −
√
γ2(t)

γ1(t)

my′,t

σ0
√
ut + ϵ0

√
γ2(t)

dt

dmx′,t = c1(h
′(x′

t)y
′2
t −mx′,t)dt

dmy′,t = c1(2h(x
′
t)y

′
t −my′,t)dt+ σ0c1

√
h(x′

t)dBt

dut = c2

(
h(x′

t)

2
− ut

)
dt. (51)

The quasistatic step here still deals with the system of y′ and my′ , and the results take the same form.
we have

lim
τ→∞

Ey′2τ =
σ2
0

√
γ2(t)

4γ1(t)(σ0
√
ut + ϵ0

√
γ2(t))

,

and the following effective dynamics on the minima manifold:

dx′
t = −

√
γ2(t)

γ1(t)

mx′,t

σ0
√
ut + ϵ0

√
γ2(t)

dt

dmx′,t = c1

(
σ2
0

√
γ2(t)h

′(x′
t)

4γ1(t)(σ0
√
ut + ϵ0

√
γ2(t))

−mx′,t

)
dt

dut = c2

(
h(x′

t)

2
− ut

)
dt. (52)

To simplify the manifold dynamics above, we take the similar approximation steps as did for the
θ = 0 case. We first solve the u dynamics, which gives

ut = u0e
−c2t +

c2
2

∫ t

0

ec2(s−t)h(x′
s)ds.

Still assume t is large, and the change of h(x′
s) is slow compared with e−t. Then, we can approxi-

mately take

γ1(t) = 1, γ2(t) = 1, ut =
h(x′

s)

2
.

Substituting the above approximations into equation 52, we obtain

dx′
t = − mx′,t

σ0

√
h(x′

t)
2 + ϵ0

dmx′,t = c1

(
σ2
0h

′(x′
t)

2
√
2σ0

√
h(x′

t) + 4ϵ0
−mx′,t

)
dt. (53)

Dropping the ϵ0 terms on the denominator, equation 53 is approximated by

dx′
t = −

√
2mx′,t

σ0

√
h(x′

t)

dmx′,t = c1

(
σ0h

′(x′
t)

2
√
2h(x′

t)
−mx′,t

)
dt. (54)

Finally, if we assume mx′ is close to its stationary solution, i.e. mx′,t =
σ0h

′(x′
t)

2
√

2h(x′
t)

, we have the

following first-order dynamics for x′ that approximates the manifold dynamics:

dx′
t

dt
= − h′(x′

t)

2h(x′
t)
. (55)
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The dynamics equation 55 is a gradient flow that minimizes lnh(x) on the minima manifold. Again,
due to the time scale choice, the dynamics gets slower for smaller learning rate. Compared with
the dynamics equation 50 for the case θ = 0, this dynamics is slower because there is no ϵ0 on the
denominator.
Remark 4. The approximation steps in the derivations above are conducted intuitively without
rigorous proof. The goal is to unveil and compare the essential components of the dynamics. If strict
theorems are to be proved, conditions and assumptions need to be imposed.
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