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Abstract

People with brain or spinal cord-related paralysis often need to rely on others for
basic tasks, limiting their independence. A potential solution is brain-machine
interfaces (BMIs), which could allow them to voluntarily control external devices
(e.g., robotic arm) by decoding brain activity to movement commands. In the
past decade, deep-learning decoders have achieved state-of-the-art results in most
BMI applications, ranging from speech production to finger control. However, the
’black-box’ nature of deep-learning decoders could lead to unexpected behaviors,
resulting in major safety concerns in real-world physical control scenarios. In these
applications, explainable but lower-performing decoders, such as the Kalman filter
(KF), remain the norm. In this study, we designed a BMI decoder based on Kalman-
Net, an extension of the KF that augments its operation with recurrent neural
networks to compute the Kalman gain. This results in a varying “trust” that shifts
between inputs and dynamics. We used this algorithm to predict finger movements
from the brain activity of two monkeys. We compared KalmanNet results offline
(pre-recorded data, n = 13 days) and online (real-time predictions, n = 5 days)
with a simple KF and two recent deep-learning algorithms: tcFNN (non-ReFIT
version) and LSTM. KalmanNet achieved comparable or better results than other
deep learning models in offline and online modes, relying on the dynamical model
for stopping while depending more on neural inputs for initiating movements.
We further validated this mechanism by implementing a heteroscedastic KF that
used the same strategy, and it also approached state-of-the-art performance while
remaining in the explainable domain of standard KFs. However, we also see two
downsides to KalmanNet. KalmanNet shares the limited generalization ability of
existing deep-learning decoders, and its usage of the KF as an inductive bias limits
its performance in the presence of unseen noise distributions. Despite this trade-off,
our analysis successfully integrates traditional controls and modern deep-learning
approaches to motivate high-performing yet still explainable BMI designs.

1 Introduction

Millions of people worldwide live with a neurological or spinal cord condition that limits their ability
to interact with the world [1]. These patients have to rely on others for basic tasks such as eating,
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moving, or even communicating with their loved ones, which severely limits their independence.
Existing assistive devices, such as sip-and-puff controllers or eye trackers, can take advantage of
small residual movements–if available–but are limited in the degrees of freedom (DoF) they can
control. Brain-machine interfaces (BMIs) have started gaining traction in the past decades as a
viable alternative that can control multiple DoFs while taking advantage of the existing hardware for
computation: the brain.

Brain-machine interfaces work by reading electrical activity from the brain, decoding the activity
with a decoding algorithm, and then using the algorithm’s output to interact with an external device.
Similar to existing applications such as language and image generation [2]–[6] and understanding
[7]–[10], deep learning has become the norm in decoding algorithms for BMIs. New BMI applications
such as handwriting detection from a person unable to move [11] and real-time speech production
from a person unable to speak [12]–[14] have been enabled recently through the use of deep learning
algorithms. Additionally, many deep learning models have demonstrated state-of-the-art results in
BMI applications that previously only used linear decoders, such as real-time prediction of finger
movement [15]–[17] and cursor control [18], [19].

These promising results using deep learning algorithms are enabled, in part, by an increase in the
complexity of the models [20]. This can make interpreting their structure and results very difficult
[10], [21], [22]. It is also difficult to predict the algorithm’s behavior with out-of-distribution inputs.
This complexity has caused deep learning algorithms to be seen as “black boxes,” limiting their
practical application in more sensitive domains such as vehicular control or lower limb prosthetics.
Interaction with the physical world inevitably involves safety concerns. There, conventional control
approaches that use explainable linear models are the norm, usually involving Kalman filters (KFs)
because they are not as likely to exhibit unexpected behaviors. In BMIs, KFs and explainable linear
models are still regularly employed in applications where the safety of the user is in question, such as
when moving a robotic arm [23] or controlling a paralyzed arm through electrical stimulation [24].
Thus, researchers are confronted with the need to sacrifice potentially better decoder performance in
the name of safety and explainability. Here we ask: can we have the best of both worlds?

In this paper, we examine the trade-offs between linear, explainable models and high-performing
deep-learning approaches. To interpolate between these two regimes (model-based and data-driven),
we modify and retrain the recently proposed KalmanNet [25], which combines the long-standing KF
with the abstractness of deep models by augmenting its operation with a set of flexible recurrent neural
networks (RNNs). We demonstrate the effectiveness of KalmanNet in real-time BMI experiments
where monkeys with brain implants perform a dexterous finger task and show that we can match or
outperform two previously published algorithms: tcFNN (non-ReFIT version) [16] and LSTM [17].
By leveraging the explainable portion of KalmanNet and its velocity dependence, we explain how this
approach works through abrupt changes in the relative trust of the brain or dynamical models. Under
the injection of additional noise, however, we find that while KalmanNet can reject low-magnitude
noise, the LSTM actually outperforms all other models for large-magnitude out-of-distribution noise.
Finally, we tested the ability of the models to generalize across task contexts and found better
generalization for the simple KF than for all deep-learning-based models.

2 Related Work

Our work builds on previous modifications of the KF for BMI decoding, as well as advancements in
deep learning and model-based techniques. Modifications to the standard KF, such as adapting it to
non-linear dynamics or observation models, are common for BMI decoding. For example, Li et al.
[26] used an unscented KF with a quadratic neural tuning model, achieving superior performance
over the traditional KF, while others have shown that online adaptation of the KF parameters can
have significant impacts on performance [27]–[29]. Additionally, modifying the trust variable of the
KF–the Kalman gain–has been used to improve the computational efficiency by pre-fixing the trust
value [30]. Our work further extends this concept by allowing the Kalman gain to vary over time,
enabling a more flexible trust with a deep RNN. Pure recurrent and feed-forward neural networks
have shown promise in BMIs. Feed-forward networks with a temporal convolution layer have
outperformed the KF in an online finger control task when using the ReFIT recalibration method
[16], while RNN approaches, such as [31] and [17] have achieved even better results in predicting
hand and fingers position and velocities in primates. KalmanNet incorporates the benefits of these
deep learning approaches with the knowledge of real-world dynamics to improve the explainability
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of the model while achieving similar performance. Thus, our work also aligns with broader efforts in
model-based deep learning [32], where domain knowledge is combined with deep learning to enhance
performance and explainability. For example, physics-informed neural networks [33] incorporate
physical knowledge into the loss function as a regularizer. KalmanNet can be framed similarly, with
real-world dynamics serving as a regularizer for the underlying deep neural networks.

3 Methods

3.1 Neural Decoders

Throughout this study, we compared the performance of four neural decoders, three of which have
been studied before in a BMI context: the Kalman filter (KF, [34]), the temporal convolutional
feed-forward network (tcFNN [16]), and a decoder based on the long short-term memory recurrent
neural network (LSTM [17]). Here, we additionally adapt a recent model, KalmanNet (KNet, [25]), to
the BMI setting. Each decoder took in processed neural features and predicted movement kinematics
(positions and velocities of the fingers; see Technical Appendix for more details).

Kalman filter. The KF algorithm tracks a state from noisy observations using a state-space (SS)
description of the dynamics and the relationship between the observations and the tracked state.
These are modeled as linear functions assuming Gaussian noise [35, Ch. 4]. In our study, the KF
tracks a state composed of the position and velocity of both finger groups (total length of four). Like
all algorithms in this study, it uses the 50ms binned spiking band power (SBP [36]) of the brain
activity as observations of the state (Figure 1, B). The KF computes the level of trust in the dynamics
versus the observations with a variable called the Kalman gain (Figure 1, C), and then uses it to merge
both sources of information. When the linear Gaussian SS representation holds, the KF is known
to achieve the optimal mean-squared error (MSE) [35, Ch. 4]. Equation 1 shows how the Kalman
gain (KG) is used to output a kinematics prediction by interpolating between the prediction given by
the dynamics and the one given by the brain activity: a high value of the Kalman gain up-weights
the brain activity as the main source of information, while a low value ensures the dynamics are the
dominant term. The trainable parameters for the KF correspond to the linear observation model (C),
the linear dynamics model, and the noise covariances of the state and the observations.

Predicted
Kinematics =

Dynamics
Prediction × (I − KG × C) +

Brain
Activity × KG (1)

tcFNN. The temporal convolutional feed-forward neural network (tcFNN, [16], [37]) is a “pure”
(data-driven) deep learning approach that uses a temporal convolutional layer on the input, four
fully-connected linear layers, and a two-dimensional output to predict finger velocities. It has been
shown to predict finger velocities better than linear approaches in offline and online BMI experiments
[16], [37]. The specific tcFNN architecture used throughout this paper was presented in [37] (see
Technical Appendix for more details). Here, however, the ReFIT process [27], which showed the best
results for online experiments in [16] was not included, to compare only the baseline performance
across algorithms.

LSTM. The long short-term memory (LSTM [17]) network is a type of RNN that uses memory cells
and gates to control what information to remember and what to forget. The LSTM has achieved
state-of-the-art results in finger movement predictions, outperforming the tcFNN, the KF, and other
linear and non-linear approaches [17]. The specific LSTM architecture used throughout this paper
was presented in [17].

KalmanNet. KalmanNet [25] is a tracking algorithm that uses a (possibly mismatched) SS repre-
sentation combined with deep learning [38]; It uses the KF as an inductive bias, by incorporating
a deep learning architecture based on RNNs that augments the Kalman gain computation (Figure
1, C). This inclusion of the RNN allows for a more flexible modulation of trust between dynamics
and observations while maintaining the linear model used to model dynamics (evolution model, A)
and the relationship between states and observations (observation model, C). It differs from the KF
in that it does not need an explicit model of the noise covariance of dynamics or observations, nor
does it need to track the state covariance through time. The parameters of KalmanNet are the SS
model parameters (necessary for the KF) and the trainable parameters of the included RNNs. Here,
we modified KalmanNet to use the same dynamics and observation models that have shown success
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in the KF in the past [15], [39], modified the loss function to account for the difference in scales
between positions and velocities, and optimized the hyperparameters of the network for predicting
finger positions and velocities.

3.2 Task and Data Acquisition

Two non-human primates, Monkeys N and W, were implanted with microelectrode arrays in the hand
area (precentral gyrus) of the right motor cortex of the brain. Monkey N was implanted with two
64-channel arrays and Monkey W with a single 96-channel array; in both cases, recordings were
limited to the best 96 channels. We recorded the SBP (power in the 300-1000Hz band) on each
channel, a useful and low-power feature for BMI applications [36]. The SBP was averaged in 50ms
nonoverlapping bins for each channel. For training and testing, we only used the “active” channels
(i.e., those with at least one threshold crossing per second on average, approximately 20-30 total
channels each day) for KalmanNet. For all other decoders, we used all channels that had threshold
crossings morphologically consistent with action potentials [16], [17] (approximately 60-70 total
channels, which included the “active” channels).

Both monkeys were trained to do a 2-degree-of-freedom (2-DoF) dexterous finger task in which
they had to move the index and middle-ring-small (MRS) fingers independently to acquire targets
shown on a screen (Figure 1, A). To successfully acquire targets, monkeys had to move their fingers
to the required position and hold for a minimum hold time (750 ms). A new set of targets appeared
on each trial, and the monkey had five seconds to acquire them; if the monkey could not acquire
the targets during that time, the trial was labeled as unsuccessful. On hand control trials, finger
kinematics were measured using resistive bend sensors and shown to the monkey in real-time using
a custom visualization tool (MSMS [40]). On brain control trials, the 50-ms binned SBP was fed
in real-time to a decoder that predicted finger kinematics and controlled the output visualization.
The two modes—hand control and brain control–were almost identical, with the exception being
the reduced hold time (500 ms) during brain control trials to lower their difficulty. Analyses of
performance during hand and brain control trials are referred to as offline and online, respectively.
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Figure 1: Task and Neural Decoders. (A) We trained a monkey to do a 2-DoF finger task (shown on
screen) while brain activity and finger kinematics (index and middle-ring-small (MRS) traces shown
below) are recorded. The monkey can do the task in hand control, using his hand, or in brain control.
(B) In brain control, the SBP of each brain channel is extracted and binned every 50 milliseconds.
Each neural decoder takes in a bin and predicts position and velocity, or only velocity. (C) The KF
and KalmanNet differ in how they compute the Kalman gain: the KF uses the equation shown, while
KalmanNet uses a set of RNNs.

3.3 Decoder Training and Testing

For offline decoder testing, decoders were trained in a supervised manner using a pre-recorded set of
400-500 hand-control trials from each day with synchronized brain activity and finger kinematics.
The decoders were then tested on a different set of 100-500 hand-control trials from the same day to
evaluate offline performance. We trained decoders daily, as micro-movements in the microelectrode
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array can cause large changes in the recorded neural activity across days [41]. We trained and
tested 13 different instances of each decoder overall, 8 using Monkey N’s data, and 5 using Monkey
W’s data, and they were evaluated by their ability to predict finger positions and velocities (for KF,
KalmanNet, and LSTM) or just finger velocities (for the tcFNN).

When running online (real-time trials), decoders were trained on a similar initial set of 400-500
hand-control trials and then tested in pairs each day in an ABA manner: decoder 1 for a set of trials,
decoder 2 for another set, and then back to decoder 1 for another set, to account for possible shifts in
signals or monkey behavior. All decoders were tested using a similar number of trials in each set.
KalmanNet was compared online with the KF on four days, with the tcFNN on two days (during
which the KF was also run), and with the LSTM on one day. All days on which the monkey attempted
to do online trials with KalmanNet and at least one more decoder were included in our analysis. Only
Monkey N was used for online experiments.

3.4 Performance Metrics

We used different metrics to determine decoder performance when tested offline versus online. When
testing a decoder offline, we have access to the ground-truth finger kinematics and thus can directly
measure prediction accuracy. We used the Pearson correlation coefficient and the MSE between
the ground truth and the predictions and then averaged across fingers to get a single value for each
position and velocity. To compare offline performance across models, we used a combination of
frequentist and Bayesian statistical methods. First, paired-sample t-tests on the MSEs as well as in the
Fisher Z-transformed correlation coefficients [42] determined whether the difference was significant
(α = 0.05) under the null hypothesis assumption. Second, we computed the Bayes factor (B01) to
determine the ratios of likelihoods between the null and alternative hypotheses.

When testing a decoder online, without access to ground-truth finger kinematics, we can simply
measure how well the monkey completed the trials. We used four metrics for online performance:
success rate, trial times, path efficiency, and throughput. The success rate is the ratio of the number
of trials successfully completed to the number of trials attempted. Trial time is the time taken to
acquire both finger targets minus the hold time: higher trial times mean a slower or more erratic
movement. The path efficiency measures the smoothness of the movements by computing the ratio
between the distance between the start position and the target and the distance traveled by the monkey
when completing the trial: higher path efficiencies mean smoother paths. Finally, the information
throughput (measured in bits/s) accounts for each trial’s difficulty (distance between start and target)
and completion time [16], with a higher throughput representing faster target acquisitions. Note
that all metrics except the success rate were computed only with successful trials. Since there is
some variability in performance across days due to micro-movements of the electrode array [41], we
normalized all the metrics–except success rate–from each online day by the average performance of
KalmanNet during that day, to be able to aggregate each decoder’s performance across testing days.

3.5 KalmanNet as a Non-linear Trust System

To understand the mechanism used by KalmanNet to accurately predict finger kinematics, we
inspected the network’s output, which corresponds to the Kalman gain matrix in the KF. For easier
interpretation, we computed the Frobenius norm of KalmanNet’s Kalman gain and compared it to the
norm of the predicted velocities. As a metric of the relationship, we used the Pearson correlation
coefficient between the Frobenius norm of the Kalman gain and the vector norm of the velocities over
time across all 13 offline days tested for both monkeys (n = 8 for Monkey N, n = 5 for Monkey W).

Additionally, to replicate KalmanNet’s observed correlation between Kalman gain and velocity in
the regular KF, we modified the KF to have heteroscedastic process noise. We refer to this model as
the heteroscedastic Kalman filter (HKF). The process noise determines how noisy we believe the
dynamics to be: with noisier dynamics, the KF will trust observations more (higher Kalman gain),
and with less noisy dynamics, the KF will trust the dynamics more (lower Kalman gain). Thus, to
force the Kalman gain to covary with the velocity, we made the process noise, specifically the parts
related to the velocities, increase linearly with the norm of the ground truth velocity (see Technical
Appendix for more details). Note that this model needs the ground truth velocity to properly vary the
process noise, which makes it unsuitable for online experiments.
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3.6 Robustness to Real-World Operation

To test the models’ offline robustness to real-world operation, we first simulated noise spikes on
the data. This may happen in a real-world scenario with, for example, movement artifacts or loose
electrical connections, and we investigated whether this would have unsafe consequences when
controlling a physical device, such as big spikes in the velocity predictions. The noise spikes were
simulated by adding a fixed magnitude to all neural channels of the testing dataset for a given number
of 50-millisecond bins. We varied the magnitude from 0.1 to 100 times the standard deviation of the
training set SBP and varied the duration from one to five 50-millisecond bins. While this may seem
like a large amount of noise, for BMI applications, it is possible to have unexpected mV level noise
added to µV level neural signals. The noise was injected randomly for 5% of the total time steps on
each testing day, and we tested it offline across 13 different days for both monkeys. We measured the
impact of the noise in the models with the MSE of the velocity normalized by the baseline velocity
MSE (no noise added to the testing dataset).

Additionally, we tested the decoders’ ability to generalize to unseen task contexts, a key property
for decoders to work in real-life scenarios rather than just in highly constrained research settings
[37], [43]. On six different days, we modified the task by having the wrist flexed by 30 degrees
and adding a spring to resist flexion and facilitate extension [43]. Then, we trained off-context and
on-context decoders. Off-context decoders were trained on a normal set of trials (no wrist or spring
modifications) and then tested on the last 20% of the spring+wrist context trials. On-context decoders
were trained on the first 80% of the spring+wrist context trials and then tested on the last 20% (see
Figure 6, A). We evaluated the generalization performance of each algorithm by measuring the
percentage increase in velocity MSE from the on-context to the off-context decoders.

4 Results

4.1 Offline and Online Performance

To determine how well KalmanNet could fit the data compared to state-of-the-art deep learning
techniques, we first assessed its offline performance in predicting finger kinematics from brain data.
We evaluated KalmanNet over n = 13 days across the two monkeys, comparing it with the KF and
the deep learning based tcFNN and LSTM models.

The LSTM was the highest-performing approach in a previous study [17]. In terms of correlation
with velocity, which controls the visualization when running online, KalmanNet did not significantly
differ from the LSTM (p = 0.64, B01 = 3.3) and had a significantly higher correlation than the KF
(p < 1e−7, B01 = 0.048) and the tcFNN (p < 0.001, B01 = 0.062; Figure 2, B). All approaches
had similar correlations with position, other than the tcFNN, which is a velocity-only approach.
Regarding velocity MSE, there was also no significant difference between KalmanNet and the LSTM
(p = 0.72, B01 = 3.4) or between KalmanNet and the tcFNN (p = 0.29, B01 = 2.1). However,
KalmanNet significantly outperformed the KF (p < 0.01, B01 = 0.14). In terms of position, there
were no significant differences in correlation (KNet vs. LSTM, p = 0.32, B01 = 2.4; KNet vs KF,
p = 0.93, B01 = 3.5; LSTM vs. KF, p = 0.08, B01 = 1.1) or MSE (KNet vs. LSTM, p = 0.26,
B01 = 2.0; KNet vs KF, p = 0.77, B01 = 3.5; LSTM vs. KF, p = 0.1, B01 = 1.1), although
KalmanNet had higher variance in MSE. Overall, it is important to note that the absence of p-values
below the significance level for position and velocity correlations and MSE between the LSTM
and KalmanNet should not be interpreted as definitive evidence that the two models are equivalent.
Instead, it indicates that the data did not provide strong enough evidence to conclude that the models
were different. However, the Bayes factor (B01) values between 2 and 3.4 suggest that the models
may have comparable performance, with the null hypothesis (models are equivalent) being at least
twice as likely as the alternative hypothesis (models are different). This suggests a higher likelihood
that any observed differences are not substantial, though it remains essential to consider the variability
and sample size when interpreting these results.

However, because this is a motor control application, it is important to evaluate performance online,
with a user in the loop. Therefore, we tested all algorithms online across five sessions (number
of trials: KF = 601, tcFNN = 576, KNet = 2801, LSTM = 393) and compared their performance
in terms of success rate, throughput, trial times, and path efficiencies. Figure 3 (right) shows the
performance of all approaches normalized to the performance of KalmanNet (except for the success
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Figure 2: Offline Performance. (A) Traces of ground truth index position and velocity (in blue)
versus the predictions from each neural decoder. Note that tcFNN only predicts finger velocity.
(B) Velocity (left) and position (right) performance in terms of correlation and MSE for each
neural decoder. Square markers and error bars denote the mean and the standard error of the mean,
respectively. Tested across n = 13 days from both monkeys.

rate). We found that KalmanNet outperformed the KF and tcFNN across all metrics (Figure 3,
Supplemental Videos 1 and 2, respectively), allowing the monkey to perform faster and more accurate
trials. Compared to the LSTM, KalmanNet achieved lower throughputs (p < 1E − 16) and higher
trial times (p < 1E − 5), meaning slower trials overall. However, it had higher overall success rates
(97% vs. 90%) and more efficient and smoother paths (p < 1E − 7; Figure 3; Supplemental Video
2), which is consistent with the inclusion of KalmanNet’s dynamics model. The online example
traces tell a similar story, with the KF and tcFNN showing more oscillations in the path and more
unsuccessful trials (Figure 3, A).
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Figure 3: Online Performance. (A) Traces of the positions of the index (blue) and middle-ring-small
(yellow) fingers during online control, across neural decoders. Blue-filled boxes represent index tar-
gets in the flexion-extension range, while yellow-filled boxes represent MRS targets. Green-outlined
boxes represent successful trials, while red-outlined boxes show failed trials. (B) Online metrics
of performance. Throughput, trial times, and path efficiencies are normalized to the corresponding
KalmanNet value for each day. Tested on monkey N across T = 601 (KF), 576 (tcFNN), 2801
(KNet), 393 (LSTM) trials in a total of five days.

4.2 Modulating Trust between Dynamics and Observations

Notably, KalmanNet can match or nearly match the highly nonlinear black-box LSTM performance.
In KalmanNet, the structure of the linear KF is intact, such that the performance improvement comes
from the RNNs used to compute the Kalman gain. This is the KF’s metric of trust that determines how
to interpolate between dynamics and observations (see Methods). To analyze this, we first inspected
the regular KF’s Kalman gain and observed that it converges to a fixed value in the first few seconds
of a session (inset in Figure 4, A, orange line), in line with its known steady-state behavior [35, Ch.
4.3]. We then evaluated the KalmanNet gain computation during inference. Interestingly, we found
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that it correlated strongly with KalmanNet’s output velocity, both offline (mean + standard error
of the mean = 0.79 ± 0.02) and online (0.60 ± 0.02; Figure 4, center). This correlation suggests
that KalmanNet behaved as a non-linear trust system, switching rapidly towards trusting the neural
activity when the velocity was high and quickly switching to trusting the dynamics when it needed to
stop.
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velocity for KalmanNet, HKF, and KF, for offline (n = 13 days, across both monkeys) and online
(n = 5 days, only Monkey N) trials. (C) Online trace of the norm of the Kalman gain for KalmanNet
(green), together with the predicted velocity (black). (D) Offline velocity prediction performance
comparison between KF, HKF, and KalmanNet, in terms of correlation coefficient (left) and MSE
(right). Arrows represent the addition of a heteroscedastic process noise to transform the KF into
HKF. Tested across n = 13 days and both monkeys.

To further explore whether this observed modulation of trust is the key to KalmanNet’s improved
performance, we used our knowledge of the true velocity to manipulate the noise covariance of the
regular KF to achieve the same effect. Specifically, we created a new KF model with heteroscedastic
process noise that increased with high velocities and decreased with low velocities, forcing the
Kalman gain to covary with the output velocity (HKF model; Kalman gain correlation with velocity
output across days and monkeys = 0.21± 0.03; Figure 4, B). We found that this modification made
the new model perform as well as KalmanNet when predicting velocity, both in terms of correlation
(HKF = 0.64 vs. KNet = 0.65, p = 0.57) and MSE (HKF = 3.4E − 7 vs. KNet = 3.3E − 7,
p = 0.73), which showcases the benefits of the trust modulation mechanism observed in KalmanNet.

4.3 Robustness to Noise and Change in Task Context

The primary motivation for using a principled KF rather than a black box neural network is its safe
operation, even under new or changing circumstances. The KF conventionally leverages physics-
based SS models to improve kinematic predictions from noisy sensors. Therefore, we evaluated these
approaches in the face of artificially-injected sensor noise of varying magnitudes and duration across
channels (see Methods). This allowed us to study the effect on the output velocity under various
real-world scenarios. Given the small magnitude of brain signals, noise artifacts can be much larger
than the signal features of interest. We modeled those with extreme noise additions 100 times the
standard deviation in the training data. Surprisingly, KalmanNet had the largest increase in MSE
associated with injected noise (by a factor of ∼ 4300 for noise on three consecutive time bins, when
the noise magnitude was 100x the std. dev.). It exhibited high-velocity spikes at the noise injection
points (Figure 5 A and Supplemental Figure 9). Perhaps surprisingly, the best performer was the
LSTM, which changed very little from the no-noise case. It showed just a ∼ 2× increase in velocity
MSE when injected with a noise level 100 times the training data’s standard deviation. It is important
to note that the noise injected was not present in the training data, so even the regular KF performed
poorly. However, unmodeled noise is a common scenario in BMIs stemming from, for example,
problems with the physical connection to the recording electrodes or electrode movement with respect
to neurons [41].
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Figure 5: Robustness to Injected Noise. (A) Offline traces across neural decoders as compared
to the ground truth index velocity (black). Grey columns represent noise injections of 5 times the
standard deviation of the training dataset distribution, for a duration of one time bin. (B) Change in
normalized velocity MSE as the noise magnitude changes, for a fixed noise duration of 3 time bins.
(C) Change in normalized velocity MSE as the noise duration changes, for a fixed noise magnitude of
1× the training dataset distribution’s standard deviation. Tested on 13 days for Monkeys N and W.

Another potential benefit of a KF with a simple linear model is the ability to generalize to new contexts.
Therefore, we evaluated all decoders by slightly varying the monkey task. We trained all models on
the normal task context and then tested them in a new context [37], [43] (off-context performance),
which contained a spring to resist flexion, as well as a 30-degree angle change in wrist position (Figure
6, A). We then compared their performance to training and testing in the new context (on-context
performance). The normal KF showed the lowest drop in absolute performance (7.98% MSE),
exhibiting good generalization to the new model but still showing the lowest absolute performance.
On the other hand, all neural network models, including KalmanNet, showed substantially higher
MSE increases due to the context shift (34.20% for tcFNN, 44.45% for KNet, 50.34% for LSTM).
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Figure 6: Generalization Across Task Contexts. (A) Illustration of how off-context and on-context
decoders are trained. Monkeys performed a variation of the task that included a change in wrist angle
and a spring that resisted flexion. Off-context decoders were trained on a normal set of trials from
the same day and then tested on the last 20% of the trials of the spring+wrist context. On-context
decoders were trained and tested on the same spring+wrist context. (B) Change in velocity MSE
between on and off-context decoders for each decoder. Tested across n = 6 days of Monkey N.

5 Discussion

In this paper, we explored the trade-offs between explainable linear models and deep-learning
approaches to BMI decoding. We modified and retrained KalmanNet [25], which fuses deep learning
techniques with the classic KF. We showed that KalmanNet can match or outperform existing state-of-
the-art decoders in offline and online modalities. We also showed that the explainability of KalmanNet
can be leveraged to improve a linear model up to the state-of-the-art standard but that it comes at the
cost of greater error when faced with out-of-distribution noise.

KalmanNet approached the state-of-the-art performance offline, achieving comparable velocity and
position predictions to the LSTM [17]. This performance does not necessarily transfer to online trials,
as has been studied previously [19], [44], and as we observed here with the tcFNN model. Offline,
the tcFNN had significantly better velocity predictions than the KF, but online, it had overall worse
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success rates, throughput, trial times, and path efficiencies. This lower online performance may follow
from the fact that the monkey is in the loop, reacting in real-time to the output of the decoder, which
may change the dynamics of the problem versus testing decoders offline [19], [44]. Note, however,
that we did not implement ReFIT [16], [27] for tcFNN, a recalibration technique that can improve
tcFNN online performance [16]; a similar method could potentially be developed for all decoders
(albeit with potential differences in performance improvements), and thus we decided to compare
all models with their baseline non-ReFIT performances (see Technical Appendix). KalmanNet,
on the other hand, was able to work well online and did similarly well to the LSTM: it acquired
targets more slowly but had higher success rates as well as smoother paths, which may be more
desirable for applications controlling physical devices. Moreover, while we currently use existing
SS modeling that is learned separately from the filtering task, the fact that KalmanNet converts the
KF into a machine-learning model indicates that one can potentially learn the observation model (C)
and its computation of the Kalman gain. As demonstrated in [45], this could lead to both improved
MSE performance and provide information on the usefulness of existing approaches for forming SS
representations in BMI.

KalmanNet functioned as a non-linear trust system, quickly re-weighting the contributions to its
predictions from either the model inputs or internal dynamics depending on the desired output. For
stopping, since the dynamical model provides an explicit term for exponentially decreasing the
output velocity (see Technical Appendix), KalmanNet learned to trust the dynamical model. For
fast movements, only the neural activity contains this information. Therefore, it chose to put more
confidence in the neural inputs. We constructed a new linear model that enforced this observed
behavior (HKF), and it matched offline state-of-the-art results, albeit assuming that the velocity level
is known. This showcases some of the potential benefits of using a more explainable and, therefore,
trustworthy model compared to a black-box decoder. Additionally, the smart switching between
dynamics and inputs is an interesting behavior that could be enforced even in black-box deep-learning
decoders to potentially improve decoding. Similar approaches were recently explored for speech
neuroprostheses, using a combination of a language model (which can be thought of as language
“dynamics”) and an RNN predicting phonemes from neural activity [14]. One could modify that
approach by, for example, having a model that learns to trust the neural activity for starting words or
when faced with uncommon transitions between phonemes, and to trust the language model on more
common phoneme transitions or for being silent. This approach would be similar to the behavior we
observed in KalmanNet.

A disadvantage of combining a neural network with a Kalman filter is that the overall method carries
over some limitations from both approaches. We found that when faced with out-of-distribution
noise, KalmanNet had the highest increases in MSE, up to 1000×, when faced with noise 100× the
original distribution’s noise. This effect likely follows from the similar behavior exhibited by the KF,
which increased its MSE 100× with the same noise magnitude. Nonetheless, the fact that KalmanNet
preserves the operation of the KF indicates that it can be extended to outlier-robust variations of the
KF, e.g., [46], or alternatively, combined with hypernetworks for handling multiple noise levels [47].
Interestingly, the pure RNN approach (the LSTM) had the lowest increase in error at high noise
magnitudes. This result may be unexpected for control-focused researchers, who often choose linear
approaches due to the perceived higher safety of the more explainable models.

In conclusion, the results shown here with KalmanNet suggest that we may not need to sacrifice
explainability to achieve results in line with the state-of-the-art deep-learning models and that using a
mechanism based on gating trust between dynamics and observations may provide valuable insight
for developing future models.
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A Technical Appendix

A.1 Kalman filter

A.1.1 Structure

The regular Kalman filter was first introduced by Kalman [34] and provides a reliable way of tracking
state variables over time, given periodic sensor measurements that contain some information about
the state. In our case, the state to track is composed of the kinematics of both finger groups:

x = [pidx pmrs vidx vmrs] (2)

Where pi represents the flexion angle in arbitrary units (from 0 to 1) for finger group i, while vi
represents the flexion velocity in arbitrary units/s for finger group i. The sensor measurements, in our
case, correspond to the spiking band power (SBP) of the neural channels. Thus, an observation at
time k would be:

yt = [y1 y2 ... yn] (3)

Where n corresponds to the number of neural channels used during the experiment. The KF predicts
a new state by first computing the Kalman gain, which uses information about the noise covariance
of the dynamics (W ) and observations (Q) to determine the optimal interpolation between dynamics
and observation predictions (equation 6).

xt|t−1 = Axt−1|t−1 (4)

Pt|t−1 = APt−1|t−1A
T +W (5)

Kt = Pt|t−1C
T (CPt|t−1C

T +Q)−1 (6)

xt|t = (I −KtC)xt|t−1 +Ktyt (7)

In equations 4 through 7, A represents the linear dynamical model that encodes the natural evolution
of the state through time, C the linear observation model that relates the observations to the state,
and Pk|k the covariance of the state prediction. Equation 7 uses those models, together with the
Kalman gain, to compute a prediction of the state at time t, xt|t. When running the Kalman filter
online, since the monkey can see in real-time the position of each finger group of the virtual hand, we
set the covariance of the position estimate to zero, which has shown to improve results previously
[15], [39]. Additionally, to control the virtual hand on the screen in online trials, we calculated its
position using the following equation: post = 0.02 · ˆpost + 0.98(post−1 + 50 · v̂elt), which allowed
us to interpolate between the position predicted directly ( ˆpost), and the position predicted through the
velocity (v̂elt). The velocity term allows for smooth movements, while the position term helps to
stabilize the overall position prediction, and the specific values were found empirically.

A.1.2 Model Training

The Kalman filter parameters (dynamics model A, observation model C, and noise covariances Q and
W ) were computed using a combination of domain knowledge and a data-driven approach. The linear
dynamics model A, which represents the evolution of the state through time, had the structure shown
in equation 8 [39]. The model integrates velocity (with dt = 50ms being the bin size) and assumes
no relationship between positions at time t− 1 and those at time t, as well as no relationship between
velocities at time t − 1 and velocities at time t. The velocity transition sub-matrix, represented in
equation 8 with Avel, was learned from an initial calibration run (see Methods) using a least-squares
approximation. Note that across days, the diagonal elements of Avel were always strictly greater than
0 and lower than 1, representing an exponential attenuation of the velocity through time: if no input
is applied to the movement, the dynamical model allows for fast stopping.
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A =

1 0 dt 0
0 1 0 dt
0 0

Avel0 0

 (8)

The observation model C was computed in a similar way. The only difference is that no assumptions
were made about the structure, and a bias term was added to account for the difference in base levels.
Then, given A and C, we computed the noise covariance for the dynamics (W ) and the observations
(Q) using the maximum likelihood estimation. For W , we additionally set the noise covariance of the
position terms to zero, assuming that the error is only propagated through the velocity term [39].

In the training of Kalman filter model, an ASUS TUF A15 laptop equipped with an NVIDIA 1660 Ti
GPU was utilized. The model took approximately 10 seconds to train for each day.

A.2 KalmanNet

A.2.1 Structure

The main difference between KalmanNet and the Kalman Filter is that KalmanNet uses a set of
recurrent neural networks (RNNs) to compute the Kalman Gain. In our implementation, KalmanNet
uses the same linear dynamics (A) and observation (C) models, but now does not require an explicit
definition of the noise covariances. The full architecture, explained in more detail in [25], is shown in
Figure 7. Briefly, it attempts to compute the Kalman gain by using gated recurrent units (GRUs, a
type of recurrent neural network) to implicitly model the noise covariance of the dynamics (GRU 2 in
Figure 7), the noise covariance of the observations (GRU 1 in Figure 7), and the prediction covariance
of the observations (GRU 3 in Figure 7. This implicit modeling of the noise covariances allows
KalmanNet to dynamically shift the Kalman gain depending on the current state and inputs to choose
a better interpolation between states and observations. Overall, the set of equations for KalmanNet is
reduced to equations 4 and 7, with Kt corresponding to the output of the network at time t.

The inputs to the KalmanNet network are variations on the Kalman filter variables: the observation
difference (F1, eq. 9), the innovation difference (F2, eq. 10), the forward evolution difference (F3,
eq. 11), and the forward update difference (F4, eq. 12) [25].

F1 = yt − yt−1 (9)
F2 = yt − Cxt|t−1 (10)

F3 = xt−1|t−1 − xt−2|t−2 (11)

F4 = xt−1|t−1 − xt−1|t−2 (12)

When running online, the position of the virtual hand was calculated as for the Kalman filter,
integrating the velocity prediction and using 2% of the position prediction for stabilization.

A.2.2 Model Training

To train the KalmanNet network, the loss function used was a scaled mean-squared error (MSE)
that accounted for the differences in scale between position and velocity, computed between the
predicted and ground truth output. The network does not produce the predicted state directly; instead,
it generates the Kalman gain, for which we do not have a ground truth. Consequently, for each
time step, a standard update and prediction procedure was executed, incorporating the KalmanNet
network output as a component of the computation (using equations 4 and 7). Sequences of sixty
time bins (equivalent to three seconds of data) were passed through the network, and then the loss
was computed as the average scaled MSE between the output at each time step and the ground truth
state from the training data.

The KalmanNet network for each day was trained for 300 iterations, each taking a batch of 16 random
sequences of length 60 in the training data (Figure 8). Since to produce an output, KalmanNet needs
to do a forward pass on the network, as well as a Kalman filter step, most of the pyTorch optimizations
for network training could not be used, which slowed down training. Overall, the network training
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Figure 7: KalmanNet architecture Diagram of the components of the KalmanNet network. It
consists of three GRUs plus seven linear + ReLU layers that try to model the normal way of
computing the Kalman gain [25]. F1 through F4 correspond to the input features from equations 9
through 12.

took around 10-15 minutes per day on an Asus TUF A15 laptop equipped with an NVIDIA 1660 Ti
GPU.

Figure 8: Sensitivity analysis of sequence length during training. Offline velocity correlation (left)
and MSE (right) for KalmanNet, under different sequence lengths employed during training. The
horizontal axis represents the number of 50ms bins; the one used throughout corresponds to 60, or
equivalently, three seconds. Computed across all n = 13 days for both monkeys.

A.3 Heteroscedastic Kalman filter

The heteroscedastic Kalman filter (HKF) is equivalent to the KF in all but the process noise covariance
(W ). To enforce a behavior similar to what we observed with KalmanNet’s output covarying with the
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velocity, we forced the dynamics noise covariance in the HKF to also covary with velocity. At time t,
and given a base dynamics noise model W (shown in equation 13), we modified the velocity-related
terms using the ground truth velocity of index and MRS at time t, vt, to produce a new time-synced
noise model Wt (equation 14). In the new noise model, α corresponds to a constant scaler and vmax
to the maximum absolute velocity observed across all experiments.

W =

0 0 0 0
0 0 0 0
0 0 σ2

vidx σvidxσvmrs

0 0 σvidxσvidx σ2
vmrs

 (13)

Wt = α


0 0 0 0
0 0 0 0

0 0 σ2
vidx

|vidx
t |

vmax
σvidxσvmrs

||vt||
vmax

0 0 σvidxσvmrs
||vt||
vmax

σ2
vmrs

|vmrs
t |

vmax

 (14)

Note that since we are changing the noise model, rather than the Kalman gain directly, the output
Kalman gain of the HKF does not perfectly track the velocity, as the Kalman gain takes a few steps to
account for changes in the noise model.

A.4 tcFNN

The tcFNN stands for temporally convolved Feedforward Neural Network, and was introduced by
[16] and then further studied by [37]. It consists of an initial time convolutional layer that takes
in three time bins (150ms) of neural activity followed by four linear layers using ReLU activation
functions, batch normalization, and 50% dropout. Note that tcFNN only predicts velocity outputs,
rather than position and velocity, as the other decoders tested in this study do. See [16] and [37] for
more details on architecture and implementation.

The tcFNN was trained for 15 epochs using the hyperparameters used in [37], and the training took
around 1 minute per day on an Asus TUF A15 laptop equipped with an NVIDIA 1660 Ti GPU.

When running online, the position of the virtual hand was calculated by integrating the velocity
prediction since no position prediction was available. Additionally, note that previous work with
tcFNN has shown that implementing a recalibration feedback intention-training (ReFIT) step after the
initial training can substantially improve online performance by assuming that errors during online
trials are mostly due to errors in decoder output. In this work, we decided to compare to the base
(non-ReFIT) tcFNN, as ReFIT has also been shown to greatly improve performance in the Kalman
filter and a similar concept could also be implemented for recurrent approaches, such as the LSTM
and the KalmanNet network.

A.5 LSTM

The long short-term memory (LSTM) network is a type of recurrent neural network that has more
control over what to remember and what to forget about long-term relationships between inputs. In
this study, we refer to LSTM as the architecture used in [17], consisting of a single-layer LSTM
with a linear layer mapping its hidden output to position and velocity predictions. See [17] for more
details on architecture and hyperparameters.

The LSTM used the same hyperparameters as in [17] and was trained with a scheduler that adapted the
learning rate according to the validation loss, and stopped after the validation loss stopped improving.
The training took around 2 minutes per day on an Asus TUF A15 laptop equipped with an NVIDIA
1660 Ti GPU.

When running online, the position of the virtual hand was calculated as for KalmanNet and the Kalman
filter, integrating the velocity prediction and using 2% of the position prediction for stabilization.
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Figure 9: Resistance to noise injection. (A) Offline velocity MSE for KalmanNet (green) and LSTM
(brown) across n=13 days for both monkeys, with noise values closer to those present in the training
data. A noise of zero magnitude is equivalent to not adding noise (i.e., baseline shown in Figure 2).
(B) Full product of normalized velocity MSE across models for all values of noise magnitude and
duration. The logarithmic color bar on the right represents the MSE value for each combination of
noise magnitude and duration, normalized to each model’s baseline performance (without noise).
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work directly in part of the results, as well as
in part of the discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the full experimental setup as well as the architectures of the
deep-learning models used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code will be released at publication time.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details on training and architecture can be found in the Technical Appendix,
as well as in the code to be released at publication time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All results are shown with error bars representing the standard error of the
mean.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on compute resources are shown in the Technical Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All animal experiments detailed in this paper were approved by the Institutional
Animal Care and Use Committee of [Anonymized University].

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss in the introduction how brain-machine interfaces can change
people’s lives, and good BMI decoders can play a big role in that.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The base models used in this study are widely available.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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Answer: [NA]
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or other labor should be paid at least the minimum wage in the country of the data
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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