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ABSTRACT

One-shot audio-driven talking head generation is a significant task with applica-
tions in the movie industry and virtual avatars. However, existing methods have
limitations in accurately capturing dynamic nuances within the mapping of audio-
to-lip motion. Furthermore, GAN-based models for converting lip motion into
pixel-level video often exhibit unstable training. To overcome these limitations,
recent approaches based on diffusion models are proposed but still face issues
such as time consumption and maintaining temporal consistency due to stochastic-
ity. To circumvent these challenges, we introduce the following two modules: 1)
AToM-Net, tasked with the generation of audio-to-motion pairs, and 2) MC-VDM,
designed to produce high-quality image sequences corresponding to generated
motion sequences reflecting a single identity image. Both modules are grounded
in the framework of diffusion models. AToM-Net, with its inherent stochasticity
akin to diffusion models, excels in capturing the subtleties of lip motion dynam-
ics, avoiding the problem of mode collapse. MC-VDM solves the problems of
the existing diffusion-based talking head by utilizing the efficient tri-plane based
module. Our experiments conducted on the standard benchmark indicate that our
model achieves performance that surpasses that of existing models.

1 INTRODUCTION

Audio-driven talking head generation is a challenging task that synthesizes a video with realistic
lip movement corresponding to a given audio input. This cutting-edge technology has been widely
studied due to its wide range of applications in diverse practical settings such as film production,
digital avatars, etc.

Until recently, the majority of methodologies are based on Generative Adversarial Networks.
Among them, previous works (KR et al., 2019; Prajwal et al., 2020) primarily focused on gen-
erating lip movements that synchronize well with the audio. However, given the inherently high-
dimensional nature of image features in contrast to audio, it becomes challenging to precisely control
lip movements based on audio information, so that they fail to generate natural and realistic videos.
To mitigate this limitation, some methods propose the networks to utilize intermediate facial rep-
resentation such as dense motion fields (Zhang et al., 2023) or 3D facial landmarks (Wang et al.,
2021a;b). Since 3D facial models can explicitly represent the facial motion well, the network using
3D facial landmarks can generate more realistic videos with natural pose motion. Despite the im-
plementation of innovative methods, these approaches exhibit significant limitations, which are the
instability of the GAN learning process and the mode collapse in generated results. There are a few
recent works (Shen et al., 2023; Stypułkowski et al., 2023) using the diffusion model to improve
image quality and model generalization for talking head generation tasks. However, due to the ex-
tensive parameters of the diffusion model, the training process is computationally demanding, and
sampling also takes a considerable amount of time. Moreover, since diffusion is characterized by
its high diversity, they have difficulty in preserving temporal consistency compared to GAN-based
model.

In this work, we divide our task into two-stage models to address these challenges. First, we propose
the diffusion-based AToM-Net to generate the facial landmark corresponding to audio as the inter-
mediate representation. We utilize explicit 3DMM coefficients to extract frontal facial landmarks,
aiming to train the model to generate landmarks with accurate lip shapes by eliminating pose infor-

1



Under review as a conference paper at ICLR 2024

mation. To enhance lip synchronization performance, we present a transformer-based network that
incorporates separate attention mechanisms, distinguishing between lip-related and non-lip-related
regions. To tackle computational challenges caused by huge diffusion model, we employ a tri-plane
approach to generate temporally coherent videos that align with both the reference image conditions
and the motion predictions generated by AToM-Net. Under these designs, we introduce a diffusion-
based model capable of generating high quality talking face videos from just a single-shot image
for the first time. We evaluate our method on HDTF dataset. Experiments demonstrate that our pro-
posed method surpasses the performance of previous talking head generation models, encompassing
both GAN-based and Diffusion-based approaches. Furthermore, we offer comprehensive ablation
studies for a thorough evaluation.

2 RELATED WORK

Talking Head Generation Talking head video generation with lip movements aligned with audio
inputs is a long-standing problem in computer vision. While earlier studies (Kumar et al., 2017;
Suwajanakorn et al., 2017) focused on designing person-specific talking head networks for a single
target individual, more recent studies (Prajwal et al., 2020) have explored unified reconstruction-
based frameworks that can synthesize lip movements for any individual.

Wav2Lip (Prajwal et al., 2020) adopts an inpainting method to match the mouth movements with the
audio inputs, leveraging the pretrained syncnet (Chung & Zisserman, 2017) as a lip sync expert to
achieve high-quality results. However, it suffers from blurring artifacts, in which the reconstructed
lip area and the original upper face area are not blended well. Furthermore, several studies (Zhou
et al., 2021; Ji et al., 2022) have proposed methods to synthesize not only lip movements but also
other visual components such as pose and emotions. MakeItTalk (Zhou et al., 2020) employs 3D
landmarks to generate personalized head motions and expressions, whereas PC-AVS (Zhou et al.,
2021) devises an implicit low-dimensional pose code to control lip movements and head poses re-
spectively. GC-AVT (Liang et al., 2022) uses individual encoders for head pose, audio content, and
emotional expression to decouple all of these factors. To capture the detail of facial motions, recent
models (Zhang et al., 2021; Ren et al., 2021) utilize 3D Morphable Model parameters which consist
of expression, pose, and identity. Sadtalker (Zhang et al., 2023) design the sub-networks that can
independently generate lip expressions and head pose parameters with enhanced accuracy. While it
successfully produces high-quality video, it is impossible to avoid the inherent limitations of GAN
models.

Recently, DiffTalk (Shen et al., 2023) proposed the multi-shot talking face generation network
utilizing the diffusion model for the first time. While it can generate high-quality talking face videos,
it demands numerous computational resources to train and a huge inference time to generate videos.
To address these challenges, we introduce a novel approach – the diffusion-based one shot talking
face generation model. Our model operates efficiently, requiring minimal computational resources.

Video Diffusion Diffusion models have demonstrated exceptional performance in generative
tasks, causing a great impact in the field of computer vision. Especially, LDM (Rombach et al.,
2022) proposed a model that performs the diffusion process in a lower-dimensional latent space,
thus resolving the issue of high computational cost. Motivated by the impressive generative per-
formance achieved by LDM, some models (Blattmann et al., 2023; Wu et al., 2022; Liu et al.,
2023), which extend the pre-trained T2I diffusion model to the video task, have been developed.
Although they exhibit impressive results with minimal computational resources, there are still cer-
tain limitations that need to be addressed. Because the results are generated frame by frame, they
have difficulties in achieving temporal consistency and generating smooth videos at a high frame
rate. Additionally, these models struggle with producing realistic images, such as human faces, as
they are influenced by the bias inherent in the pre-trained diffusion model, which typically generates
synthetic images.

On the other hand, several methodologies (Ho et al., 2022; Yu et al., 2023; Hu et al., 2023; Wang
et al., 2023) have been proposed for training diffusion models from scratch using video datasets.
These models have shown the performance to produce greater outcomes that exhibit temporal con-
sistency and authenticity. However, they still face limitations related to memory inefficiencies and
controllability. To overcome the computational problem, PVDM (Yu et al., 2023) utilizes the diffu-
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Figure 1: Overview of the proposed talking face video generation model. We synthesize a audio-
driven talking portrait in two stages. First, motion generation aims to generate lip-syncronized
frontal face. Second, Video generation create natural results using synthesized frontal landmarks
and identity conditions.

sion model for video generation, focusing on generative modeling in low-dimensional latent space,
but it has a critical limitation that only produces unconditional results. LaMD (Hu et al., 2023)
solves Image-to-Video (I2V) and Text-Image-to-Video (TI2V) tasks by using the autoencoder mod-
ule which incorporates a 3D CNN encoder and a multi-scale 2D CNN encoder. LEO (Wang et al.,
2023) proposes a diffusion model for human video generation by representing motion as a sequence
of flow maps. By doing so, it can produce both image-conditioned and unconditioned videos. Our
novel diffusion model based on the tri-plane structure can efficiently generate smoothed talking face
video corresponding to a one-shot identity image and the sequences of landmarks produced by our
audio-to-land model.

3 METHODOLOGY

3.1 OVERVIEW.

Our entire model consists of two parts as shown in Fig.1. As illustrated in Fig.2, Audio-To-Motion
Generator, named AToM-Net is composed of a diffusion model, which reconstructs 3D landmarks
by incorporating audio features and an initial 3D landmark as conditions. Especially, we propose the
transformer based generator that separates lip and non-lip regions to improve lip-sync performance.
Then, we train the diffusion-based Motion-to-Video network, named MC-VDM to generate realistic
talking face video by utilizing predicted landmarks and a single identity image in Fig.3. In this
section, we explain the proposed AToM-Net approach and MC-VDM approach in detail.

3.2 AUDIO-TO-MOTION GENERATION

Audio and Motion Representation Generating the landmark of talking portraits from audio is
challenging task, given the ill-posed property of diverse head pose. Many early approaches follow
the pre-estimated structural information, using a face landmark detector with a head pose estimator
(Zhou et al., 2020; Zhang et al., 2021; Ren et al., 2021). However, they tend to synthesize unrealistic
lip-sync motion due to the high dimensionality of facial movement. To achieve faithful talking face
generation with lip-syncing, we introduce a diffusion-based Audio-to-Motion Generator to perform
expressive lip motion sequences.

Our method utilize a diffusion models (DMs) with strong audio feature extractor and 3D facial mor-
phable model (3DMM). To obtain the meaningful information from the raw waveform of the speech
signal, we extract audio features using HuBERT which have demonstrated a state-of-the-art perfor-
mance on automatic speech recognition (ASR). Regarding the motion representation, we take 68
face landmark from the reconstructed 3D face mesh and use them as facial motion representations.

With 3DMM, a 3D face mesh M can be represented as a linear combination of identity and expres-
sion basis.
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Figure 2: Audio-to-Landmark(AToM) pipeline overview (Left) Our AToM learn to denoise facial
landmark sequence from diffusion process. The model aims to generate the corresponding lip sync
landmark according to the audio feature and initial lip condition. (Right) Our AToM module splits
the upper and lower parts of the face so that the audio only responds to relevant keypoints.

M = M +Midαid +Mexpαexp, (1)

where M is the mean face shape; Mid and Mexp denotes the identity and expression matrices; αid

and αexp denotes the identity and expression parameters. To separate the movement of the lip motion
from the pose, we transformed the posed face keypoints into a frontal face keypoints as follows:

LM3D = {(M −M)i|i ∈ I}, (2)

Here, LM3D ∈ R68×3 represent 3D face landmarks, M and M correspond to the 3DMM mesh and
mean face mesh.

Audio-to-Motion Generator Given a single reference image r, our goal is generating synchro-
nized landmarks according to the audio. To facilitate robust lip synchronization, we leverage a
transformer-based architecture where audio features caud and reference landmarks clmd are incor-
porated into timestep t. Specifically, we design AToM-Net to disentangle a face keypoints into
two components of lip-related and non-related parts. By categorizing them into two parts, we can
improve lip synchronization quality with audio-related condition. Additionally, we utilize a feature-
wise linear modulation block (FiLM) to effectively handle the conditioning information. Overall
architecture of AToM-Net is shown in Fig.2.

Training Process Following the DDPM (Ho et al., 2020) definition, we perform diffusion process
on the facial motion sequences. Given a facial motion sequence l0 ∼ pdata(l0), we train diffusion
models to generate landmark sequence from Gaussian distribution lT ∼ N (0, I). The forward
noising process is gradually adding noise to l0 according to a predefined variance schedule:

q(lt|l0) ∼ N (
√
ᾱtl0, (1− ᾱt)I), (3)

where ᾱt are monotonically decreasing variance schedule and the data point xT becomes Gaussian
noise as ᾱt get closer to 0. In the reverse process, diffusion model learn a backward process by
estimating l̂θ(xt, t, a, l) ≈ l. Where we denote θ as model parameters and t as timestep. In the end,
we optimize θ with a simplified version of objective as follow:

Lsimple = El,t
[
∥l− l̂θ(lt, t, caud, clmd)∥22

]
. (4)

3.3 MOTION-CONDITIONAL VIDEO DIFFUSION MODEL

After generating landmark sequences synchronized with the audio, we synthesize a pixel-level frame
sequence using given landmark sequence as a spatial condition. Previous methods (Stypułkowski
et al., 2023; Shen et al., 2023) whose backbone image generation models are diffusion models (Ho
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Figure 3: Motion-Conditional Video Diffusion model(MC-VDM) pipeline overview. MC-VDM
takes the landmark and reference condition as input and synthesizes the corresponding video frame.

et al., 2020; Rombach et al., 2022) have struggled to maintain consistency in portraying a single
person across a video due to stochasticity caused by denoising processes. (Shen et al., 2023) em-
ployed frame-by-frame generation where an upper face ground truth is provided for each frame. To
address this challenge, we propose the Motion-Conditional Video Diffusion Model, dubbed MC-
VDM which generate temporal consistent frames corresponding given facial condition sequences.

Our module MC-VDM, based on PVDM (Yu et al., 2023) that represents video voxels using three
2D latents, generates multiple frames simultaneously. This approach allows for the preservation of
identity while mitigating common issues associated with diffusion-based models like jittering. Ex-
ploiting the temporal and spatial redundancy of video is highly effective for talking head generation
due to the nature of the task, which deals with datasets that have a static background and consistent
content.

Facial motion alignment Since AToM-Net is trained with a dataset pre-processed to align with
the mean face of the 3DMM, the generated motion sequence is a facial motion fixed at the position
and pose of the 3DM template mean face.

The 3D facial landmarks generated by the audio-to-motion module are modified to match the face
position, size, and pose of the driving video. Specifically, 2D landmarks are extracted from each
frame in the pose driving video and used with generated 3D facial landmarks to calculate rotation
and translation matrix using the POS algorithm. An affine transformation is then applied to align a
sequence of motion landmarks, originally associated with the mean face of a 3DMM, with the face
in the driving video, adjusting for its position, pose, and size.

Conditional video diffusion model for talking head MC-VDM is comprised of two main com-
ponents: a video autoencoder and a denoising Unet model. The video autoencoder consists of an
encoder Eϕ and a decoder Dψ (Bertasius et al., 2021) with projection networks (Vaswani et al.,
2017).

We utilize samples of clips x ∈ RS×H×W composed with S frames from data distribution pdata(x).
The video encoder Eϕ compress each clips into three 2D latents zx = [zxxy, zxxt, zxyt]. Denoising
module learns the distribution of dataset while learning the process of denoising noisy projected
latents. During the training process, the video diffusion model learns the distribution within the
dataset. Therefore, being able to generate unconditional videos that accurately depict natural lip and
head movement between neighboring frames. Moreover, this can be achieved efficiently without
compromising on quality by employing three 2D-latent representations.

However, we cannot control over the content appeared in synthesized clips, which is the most im-
portant factor within the talking face generation. To overcome this limitation, we introduce practical
conditioning approach, dubbed MC-VDM. We inject the identity visual ques r ∈ R1×H×W and mo-
tion sequences conditions l ∈ RS×H×W into the video diffusion model.To obtain the conditioning
latents, we use encoder Eϕ to compress a reference frame r ∈ R1×H×W into reference latents zr
= [zrxy, zrxt, zryt]. Then, we use the latent zrxy extracted through our video encoder as the iden-
tity condition. Additionally, encoder Eϕ encode facial landmark frames l ∈ RS×H×w into zl =
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[zlxy, zlxt, zlyt]. We concat extracted zx, zl, zrxy from a pre-trained video encoder latents making
z =[zx, zl, zrxy]. By leveraging the latent zrs which capture the identity information, we can effec-
tively guide the generation of subsequent frames and ensure coherence throughout the synthesized
video sequence.

Training Process MC-VDM model involving two autoencoder modules is trained under a two-
stage training process, respectively. The first auto encoder compress the cubic representation of
video into image-like three 2D latents. Eϕ : X → Z with Eϕ(x) = z and a decoder Dψ : Z → X
with Dϕ(z) = x̃ so that x̃ becomes x. For training, the sum of objective functions: pixel-level
reconstruction loss and the negative of perceptual similarity are used. The corresponding objective
can be formulated as:

Lrec = Ex∼X [∥x− x̃∥1] . (5)

LLPIPS = Ex∼X [∥ϕ(x)− ϕ(x̃)∥1] . (6)

where ϕ denotes the perceptual feature extractor.

L = λ1Lrec + λ2LLPIPS. (7)

where we choose λ1 = λ2 = 1 in our experiments.

The second denoising autoencoder learns the data distribution within pdata(z) by gradual denoising
process, making Gaussian prior distribution to pdata(z). For training, Noise prediction objective is
used. More specifically, the training process of our motion controllable image-to-video diffusion
model is formalized as the following:

Eϵ,t
[
λ||ϵ− ϵθ(zt, t)||2].

where z0 =[zx, zl, zrxy] = E(x), zt =
√
ᾱtz0 +

√
1− ᾱtϵ.

4 EXPERIMENTS

4.1 EXPERIMENT DETAILS.

Datasets We use LRES3-TED (Afouras et al., 2018) to train our motion generator, AToM-Net and
HDTF (Zhang et al., 2021) dataset to train video generator, MC-VDM, respectively. LRS3-TED
contains 400 hours of TED videos with a large lip reading corpus. We train AToM-Net by extracting
video frames at 25fps and audio at 16000 sampling rate. As for the MC-VDM, we choose random
312 videos for training and the remaining 98 videos for testing from the HDTF dataset.

Implementation details We train our AToM-Net and MC-VDM separately on 1 NVIDIA RTX 3090
GPU. For AtoM-Net, it takes 300k iterations steps for training. For MC-VDM, we train the model
for 600k iterations which takes about 96 hours. The hyperparameters needed for each model can be
found in the Appendix.

Compared Models We perform method comparisons with several state-of-the-art methods: 1) 2D-
based talking head generation (Audio2Head (Wang et al., 2021a), PC-AVS (Zhou et al., 2021),
Wav2Lip (Prajwal et al., 2020)) ; 2) MakeItTalk (Zhou et al., 2020), which utilize interemediate
representation ; 3) SadTalker (Zhang et al., 2023), which is flow-based approach ; 4) DiffTalk (Shen
et al., 2023), which is diffusion-based method. Moreover, to validate the performance of AtoM-
Net, we employ the variational motion generator from GeneFace (Ye et al., 2023) as a comparative
model.

Evaluation Metrics We assess the performance of our proposed method using several metrics that
have been frequently utilized in previous research. Specifically, we employ the FID (↓) (Heusel
et al., 2017; Seitzer, 2020) metric to gauge the image quality and CPBD (↑) (Narvekar & Karam,
2011) to evaluate the sharpness of the generated frames. Moreover, to examine the identity preser-
vation, we conducted the CSIM(↑) (cosine similarity). For assessing the lip synchronization quality,
which is essential for the audio-driven talking head generation, we conducted SyncNet (Chung &
Zisserman, 2017) score. LSE-D(↓) and LSE-C(↑), higher is better) evaluate the audio-lip syn-
chronization quality and estimate the accuracy of mouth shape by utilizing Syncnet (Chung &
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Figure 4: Qualitative comparison on different reference images and pose.

Zisserman, 2017). LSE-D quantifies synchronization by calculating the L2 distance between audio
and video features and LSE-C focuses on the confidence score associated with the time offset of
audio-video synchronization. Finally, LMD(↓) is L1 loss that measures the accuracy of generate
lip movements by computing distance between each corresponding pairs of landmarks on real video
and synthesized video.

4.2 QUANTITATIVE RESULTS

We conduct quantitative evaluation of our model with other talking head generation methods on
HDTF (Zhang et al., 2021). As presented in Tab.1, our model outperforms the current state-of-the-
art methods in terms of various metrics which measure the video quality. These results demonstrate
that our MC-VDM is faithfully designed to generate natural and high-fidelity images while preserv-
ing identity effectively. Moreover, even in the absence of SyncNet, we achieve competitive scores
when compared to previous methods that employ SyncNet in LSE-C and LSE-D, metrics quantifying
the similarity between lip and audio features. Especially, Our superiority in prossessing efficiency
is shown in Tab.2. Train time is measured with a single NVIDIA 3090Ti 24GB GPU. and inference
time. Inference time is the time it takes to generate a 5-second video of 256 resolution. We achieve
better performance similar to Difftalk while having significantly faster training and inference times.
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Table 1: Comparison with the state-of-the-art method on HDTF dataset. Wav2Lip and DiffTalk
excel in video quality because they only generate the lip region, leaving other areas of the ground-
truth unchanged.

Method Lip Synchronization Video Quality

LSE-C↑ LSE-D↓ FID↓ CSIM↑ CPBD↑
Real Video 8.211 6.982 0.000 1.000 0.428
Wav2Lip (Prajwal et al., 2020) 9.471 5.857 33.298 0.747 0.349
PC-AVS (Zhou et al., 2021) 8.680 6.613 117.848 0.478 0.294
MakeItTalk (Zhou et al., 2020) 4.387 10.229 74.262 0.713 0.433
Audio2Head (Wang et al., 2021a) 7.213 7.496 63.755 0.582 0.373
SadTalker (Zhang et al., 2023) 7.123 7.854 48.480 0.719 0.446
DiffTalk (Shen et al., 2023) 5.745 7.609 84.181 0.592 0.524
Ours 5.295 8.096 33.089 0.739 0.406

Figure 5: Qualitative comparison with GeneFace
on Landmark.

Furthermore, We compare our landmark
generator AToM-Net with audio-driven
landmark generation methods, Gene-
Face (Ye et al., 2023). As shown in Tab.3,
AToM-Net outperforms GeneFace in LMD.
Also, we achieve competitive performance
in Lip-sync metric even without using
SyncNet. Lip-sync metrics even though
we. GeneFace introduce a variational
motion generator designed to produce pre-
cise and expressive facial landmark. They
employ a Flow-based generative model
to establish a complex, time-dependent
distribution as the prior of the VAE. Unlike
Flow-based method, our transformer-based
diffusion model are learned to generate landmark sequence from Gaussian noise given the initial
face landmark and input audio. Consequently, AToM-Net excels in efficiently capturing long-range
relationships between audio and motion, which proves beneficial for the attention mechanism
within the transformer architecture.

4.3 QUALITATIVE RESULTS

Table 2: training and inference time with
DiffTalk (Shen et al., 2023).

Method Train Inference

DiffTalk 120h 875s
Ours 48h 125s

We illustrate visual results for Tab.1 in Fig.4. We
demonstrate that our model excels in producing
high-quality video results that closely resemble
the target video, surpassing the performance of
other models. Wav2Lip (Prajwal et al., 2020) and
PC-AVS (Zhou et al., 2021) demonstrate precise
lip synchronization but struggle with image qual-
ity, often resulting in blurriness. Conversely, Au-
dio2Head (Wang et al., 2021a) and MakeItTalk (Zhou et al., 2020) show inaccuracies in lip synchro-
nization and produce distorted outcomes. Sadtalker (Zhang et al., 2023) exhibits clumsy movements
in various facial motions, including eye blink and pose, while Difftalk (Shen et al., 2023) exhibits
jittering issues in the lower region, leading to reduced image quality. Thanks to the introduction of
our innovative diffusion-based MC-VDM, which jointly considers the identity image and landmarks,
our model achieves the capability to produce videos that maintain stability and identity coherence
more effectively.

We also show landmark comparison with GeneFace (Ye et al., 2023) in Fig.5.Consistent with the
quantitative findings, our AtoM-Net produces more precise lip landmarks. Notably, unlike Gene-
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Figure 6: Ablation study with visual results. The mouth shapes are same among results but not
synced with pose source.

face, our model is capable of generating personalized landmarks that correspond to a single reference
image, eliminating the necessity for additional networks.

4.4 ABLATION STUDY

Table 3: Ablation Study for AToM-Net.
Method LMD ↓ Lip-sync ↑

Geneface 137.52 0.339
A Baseline 159.47 0.316
B + Ref. Cond. 101.15 0.311
C + Local Attn. 97.16 0.342

The advantage derived from our AtoM-Net is the
accurate facial movement. As shown in Tab.3
and Fig.6, we observe that prediction accuracy im-
proved as audio and facial keypoint features were
disentangled. Especially, the baseline method that
learns generating landmark sequence by simply
concatenating face keypoints and audio fails to
preserve identity and yields poor results. As for
reference-based method, lip-synchronization performance was improved by injecting the starting
point of the landmark which reflect the personality of the reference image. Lastly, our audio-
to-landmark method achieve highest lip-synchronization score with disentanglement for audio-
correlated and uncorrelated motion, ensuring the plausible landmark animation.

5 CONCLUSION

In this research, we present a two-stage diffusion model for generating talking heads from a one-
shot input image. To create synchronized facial landmark sequences from audio, we introduce
AToM-Net, a network comprising transformers specialized for lip-related and non-lip areas. Addi-
tionally, we propose MC-VDM, designed to generate temporally consistent image sequences that
align seamlessly with both motion sequences and a single identity image, utilizing the inherent
stochastic properties of the diffusion model. Our experiments clearly show that our model outper-
forms previous talking head synthesis models, including those based on GANs and diffusion-based
techniques. Especially, as demonstrated in our qualitative assessment, owing to the stability and
remarkable fidelity offered by diffusion models, our approach excels in producing synthetic videos
of high quality. Furthermore, given our ability to generate precise personalized motions, our model
offers a significant advantage in its applicability across a wide range of domains, with particular
relevance to the animation industry.
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