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Abstract
We study multi-agent reinforcement learning in
the setting of episodic Markov decision processes,
where multiple agents cooperate via communi-
cation through a central server. We propose a
provably efficient algorithm based on value iter-
ation that enable asynchronous communication
while ensuring the advantage of cooperation with
low communication overhead. With linear func-
tion approximation, we prove that our algorithm
enjoys an Õ(d3/2H2

√
K) regret with Õ(dHM2)

communication complexity, where d is the feature
dimension, H is the horizon length, M is the total
number of agents, and K is the total number of
episodes. We also provide a lower bound showing
that a minimal Ω(dM) communication complex-
ity is required to improve the performance through
collaboration.

1 Introduction

Multi-agent Reinforcement Learning (RL) has been suc-
cessfully applied in various application scenarios, such as
robotics (Williams et al., 2016; Liu et al., 2019; Ding et al.,
2020; Liu et al., 2020), games (Vinyals et al., 2017; Berner
et al., 2019; Jaderberg et al., 2019; Ye et al., 2020), and
many other real-world systems and settings (Bazzan, 2009;
Yu et al., 2014; 2020; Fei & Xu, 2022; Min et al., 2022b;
Xu et al., 2023b). In particular, in the cooperative setting,
agents benefit from collaboration via (in)direct communi-
cation among each other. It thus requires the RL algorithm
to effectively coordinate the communication in a flexible
way, in order to fully exploit the advantage of cooperation.
Towards this goal, in this paper, we study cooperative multi-
agent RL with asynchronous communication, and show
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that the same performance as single-agent methods can be
achieved with efficient communication strategy.

We focus on the so-called parallel RL setting (Kretchmar,
2002; Grounds & Kudenko, 2007), where agents interact
with the environment in parallel to solve a common problem.
More specifically, we consider a model of episodic Markov
decision processes (MDPs) called linear MDPs (Yang &
Wang, 2019; Jin et al., 2020), where both the transition
probability and reward functions are linear in some known
d-dimensional feature mapping. We assume there are M
agents, which share the same underlying MDP model, but
interact with the environment independently in parallel. The
agents cannot communicate directly with each other, and
the information exchange is realized only through a central
server. We emphasize that in our setting, the communica-
tion between the agents and server is not required to be
synchronous, and any communication is initiated solely by
the agent, thus providing flexibility for practical needs. The
goal of the agents is to achieve a low total regret with as less
communication as possible.

Notably, a recent work by Dubey & Pentland (2021) stud-
ied cooperative multi-agent RL with linear MDPs. They
proposed a cooperative variant of the LSVI-UCB algo-
rithm (Jin et al., 2020) named Coop-LSVI, which achieves
an Õ(d3/2H2

√
K) regret1 with O(dHM3) communication

complexity. However, their algorithm mandates the par-
ticipation of all agents in a round-robin fashion, which is
impractical as it imposes a stringent synchronous constraint
on the agents’ interaction with the environment and their
communication with the server. It is possible that some
agents might be temporarily unavailable in a round, or the
connection with the server is disrupted due to infrastruc-
ture failure. These anomalies demand the algorithm to be
resilient to irregular participation patterns of the agents.

To this end, we propose an asynchronous version of
LSVI-UCB (Jin et al., 2020). We eliminate the synchronous
constraint by carefully designing a determinant-based crite-

1Their original result is written as Õ(d3/2H2
√
MT ). Here d

is the feature dimension, H is the horizon length, M is the total
number of agents, and K is the total number of episodes. Because
of their round-robin-type participation, their MT is equivalent to
K, which is the total number of episodes under our notation.
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rion for deciding whether or not an agent needs to commu-
nicate with the server and update the local model. This crite-
rion depends only on the local data of each agent, and more
importantly, the communication triggered by one agent with
the server does not affect any other agents. As a comparison,
in the Coop-LSVI algorithm in Dubey & Pentland (2021),
if some agents decide to communicate with the server, the
algorithm will execute a mandated aggregation of data from
all agents. As a result, our algorithm is considerably more
flexible and practical, though this presents new challenges
in analyzing its performance theoretically.

As mentioned before, the participation order of the agents
can be arbitrary and irregular, resulting in some agents hav-
ing the latest aggregated information from the server while
others may have outdated information. This issue of in-
formation asymmetry prohibits direct adaption of existing
analyses for LSVI-type algorithms, such as those in Jin
et al. (2020); Dubey & Pentland (2021). To address this,
we need to carefully calibrate the communication criterion,
so as to balance and regulate the information asymmetry.
We achieve this by examining the quantitative relationship
between each agent’s local information and the virtual uni-
versal information, yielding a simple yet effective commu-
nication coefficient. The final result confirms the efficiency
of the proposed algorithm (see Theorem 5.1).

Besides the positive result, we further investigate the funda-
mental limit of cooperative multi-agent RL. Inspired by the
construction of hard-to-learn instance for federated bandits
in Wang et al. (2020); He et al. (2022a), we characterize the
minimum amount of communication complexity required
to surpass the performance of a single-agent method.2 (see
Theorem 5.5).

The main contributions of this paper are summarized as
follows:

• We propose a provably efficient algorithm (Al-
gorithm 2) for cooperative multi-agent RL with
asynchronous communication under episodic linear
MDPs (Yang & Wang, 2019; Jin et al., 2020). Our
algorithm allows an arbitrary participation order of the
agents and independent communication between the
agents and the server, making it significantly more flex-
ible than the existing algorithm in Dubey & Pentland
(2021) for the synchronous setting. A comparison with
baseline methods is presented in Table 1.

• We prove that under standard assumptions, the pro-
posed algorithm enjoys an Õ(d3/2H2

√
K) regret with

Õ(dHM2) communication complexity. Our theoreti-
cal analysis identifies and resolves the information as-

2Here by ‘single-agent methods’ we mean all agents indepen-
dently run a single-agent algorithm without communication.

symmetry due to asynchronous communication, which
may be of independent interest.

• We also provide a lower bound for the communication
complexity, showing that an Ω(dM) complexity is nec-
essary to improve over single-agent methods through
collaboration. To the best of our knowledge, this is the
first result on communication complexity for learning
multi-agent MDPs.

Notation. We denote [n] := {1, 2, . . . , n} for any positive
integer n. We use I to denote the d× d identity matrix. We
useO to hide universal constants and Õ to further hide poly-
logarithmic terms. For any vector x ∈ Rd and positive semi-
definite matrix Σ ∈ Rd×d, we denote ∥x∥Σ =

√
x⊤Σx.

For any a, b, c ∈ R ∪ {±∞} with a ≤ b, we use the short-
hand [c][a,b] to denote the truncation (or projection) of c into
the interval [a, b], i.e., [c][a,b] = argminc′∈[a,b] |c − c′|. A
comprehensive clarification of notation is also provided in
Appendix A.

2 Related Work

Multi-Agent RL. Various algorithms with convergence
guarantees have been developed for multi-agent RL (Zhang
et al., 2018b; Wai et al., 2018; Zhang et al., 2018a), e.g.,
federated version of TD and Q-learning (Khodadadian et al.,
2022), and policy gradient with fault tolerance (Fan et al.,
2021). In contrast, in this work we study algorithms with
low regret guarantee cooperative multi-agent RL with asyn-
chronous communication.

As mentioned above, we focus on the homogeneous set-
ting where the underlying MDP for every agent is the same.
There are also existing works on cooperative multi-agent
RL with non-stationary environment and/or heterogene-
ity (Lowe et al., 2017; Yu et al., 2021; Kuba et al., 2022; Liu
et al., 2022; Jin et al., 2022). Besides homogeneous parallel
linear MDP, Dubey & Pentland (2021) further studied het-
erogeneous parallel linear MDP (i.e., the underlying MDPs
can be different from agent to agent) and Markov games in
linear multi-agent MDPs. These generalized setups are be-
yond the scope of the current paper, and we leave as future
work to study algorithms compatible with asynchronous
communication in these settings.

We consider multi-agent RL with linear function approxi-
mation to incorporate large state and action space. More
powerful deep learning techniques have been used for fed-
erated RL in Clemente et al. (2017); Espeholt et al. (2018);
Horgan et al. (2018); Nair et al. (2015); Zhuo et al. (2019).
We refer the reader to Qi et al. (2021) for a recent survey on
federated RL. Our work is also related to the broader context
of distributed learning, where a collective of agents collabo-
rate towards a common objective (Bottou, 2010; Dean et al.,
2012; Littman & Boyan, 2013; Li et al., 2014; Liang et al.,
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Setting Algorithm Regret Communication Low-switching Allow asynchronous
communication

Single-agent LSVI-UCB
d3/2H2

√
K N/A ✘ N/A

(Jin et al., 2020)

Multi-agent Coop-LSVI
d3/2H2

√
K dHM3 ✓ ✘

(Dubey & Pentland, 2021)

Multi-agent Async-Coop-LSVI-UCB
d3/2H2

√
K dHM2 ✓ ✓(ours)

Table 1. Comparison of our result with baseline methods for linear MDPs. Our result achieves regret comparable to that of the single-agent
setting under low communication complexity. Here d is the dimension of the feature, M is the number of agents, and K is the total
number of episodes by all agents. Logarithmic factors are hidden from the regret and the communication complexity.

2018; Hoffman et al., 2020; Ding et al., 2022; Zhan et al.,
2021; 2022; Xu et al., 2023a). Interested readers may refer
to the survey article by Verbraeken et al. (2020).

RL with Linear Function Approximation. Function ap-
proximation techniques in RL enable extension beyond the
restricted setting of tabular MDP. Recent years have espe-
cially witnessed rapid progress in the research of single-
agent RL with linear function approximation, among which
two major parallel lines of work (for online RL) focus on
linear MDPs (Yang & Wang, 2019; Jin et al., 2020; Zanette
et al., 2020; Neu & Pike-Burke, 2020; He et al., 2021; Wang
et al., 2021; Hu et al., 2022; He et al., 2022b; Agarwal et al.,
2022; Lu et al., 2023) and linear mixture MDPs (Modi et al.,
2020; Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021b;
Cai et al., 2020; Zhou et al., 2021a; Zhang et al., 2021; Kim
et al., 2021; Min et al., 2022a; Zhang et al., 2022; Zhou &
Gu, 2022), respectively.

In this paper, we follow the design of the LSVI-UCB algo-
rithm (Jin et al., 2020) to devise an asynchronous algorithm
for cooperative linear MDP. Indeed, our algorithmic design
can also be carried over to tabular MDPs and linear mixture
MDPs, which will be discussed later in Section 4.

3 Preliminaries

In this section, we first provide the formal definition of linear
MDPs, and then introduce our model of cooperative multi-
agent linear MDPs with asynchronous communication.

3.1 Linear MDPs

Episodic MDPs are a classic family of models in RL (Sutton
& Barto, 2018). Let S be the state space, A be the action
space, and H be the horizon length. Each episode starts
from some initial state s0 ∈ S. For step h = 1, 2, . . . ,H ,
the agent at state sh ∈ S takes some action ah ∈ A, and
receives a reward rh(sh, ah), where rh : S × A → R
is the reward function at step h. Then the environment
transits to the next state sh+1 ∼ Ph(· | sh, ah), where
Ph : S × S ×A → R is the transition probability function

for step h. We call the strategy the agent interacts with
the environment a policy, and a policy π consists of H
mappings, πh : S → A for every h ∈ [H]. The agent will
run for K episodes in total. The goal of the agent is then
to find the optimal policy that maximizes the cumulative
reward across an episode through this online process.

In this work we consider the time-inhomogeneous linear
MDP setting where the transition probabilities and the re-
ward functions can be parametrized as linear functions of
a known feature mapping ϕ. This is a popular setting con-
sidered by various authors (Bradtke & Barto, 1996; Melo
& Ribeiro, 2007; Yang & Wang, 2019; Jin et al., 2020; Min
et al., 2021; Yin et al., 2021). The formal definition is given
by the following assumption.

Assumption 3.1 (Linear MDPs, Yang & Wang 2019; Jin
et al. 2020). MDP(S,A, H, {rh}Hh=1, {Ph}Hh=1) is called a
linear MDP with a known feature mapping ϕ : S×A → Rd,
if for any h ∈ [H], there exist γh and µh ∈ Rd, such that
for any state-action pair (s, a) ∈ S ×A,

Ph(· | s, a) = ⟨ϕ(s, a),µh(·)⟩,
rh(s, a) = ⟨ϕ(s, a),γh⟩, (3.1)

where max
{∥∥µh(S)

∥∥
2
, ∥γh∥2

}
≤
√
d for all h ∈ [H].

We assume that at any step h ∈ [H], for any state-action
pair (sh, ah) ∈ S ×A, the reward received by the agent is
given by rh(sh, ah). Without loss of generality, we assume
0 ≤ rh(s, a) ≤ 1 and ∥ϕ(s, a)∥2 ≤ 1 for all (s, a) ∈ S×A.
We assume A is large but finite, while S is possibly infinite.

3.2 Cooperative Multi-agent RL with Asynchronous
Communication

We assume there is a group of M agents. The process pro-
ceeds in an episodic fashion, where the total number of
episodes is K. At each episode k, there is only an active
agent participating and we denote this agent by mk. This
agent adopts a policy πmk,k and starts from an initial state
sk,1. For each step h ∈ [H], agent mk picks an action
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Figure 1. Illustration of Star-shaped Communication Network

ak,h ∈ A according to ak,h ∼ πk,h(· |sk,h), receives a re-
ward rk,h ∼ rh(sk,h, ak,h), and transitions to the next state
sk,h+1. The episode k terminates when agent mk reaches
sk,H+1 and there is zero reward at step H +1. Note that we
consider the homogeneous agent setting, where reach agent
has the same transition kernel and reward functions.

Asynchronous Communication. In the multi-agent set-
ting, the agents need to communicate (i.e. share data) to
collaboratively learn the underlying optimal policy while
minimizing the regret. Without communication, the prob-
lem would reduce to M separate single-agent linear MDP
problems. This would lead to a worst-case regret of order
Õ(M

√
K/M), which suffers from an extra

√
M factor

as compared to the Õ(
√
K) regret in the single-agent K-

episode setting (Jin et al., 2020). In the following sections
we will show that this extra factor can be avoided at the cost
of a small number of communication rounds.

We now describe our communication protocol as follows:
In this paper we assume the existence of a central server
through which all the agents can share their local data (Fig-
ure 1). Each agent can communicate with the server by
uploading local data and downloading global data from the
server. This is also known as the star-shaped communication
network (Wang et al., 2020; Dubey & Pentland, 2020; He
et al., 2022a).

Moreover, each agent can decide whether to trigger a com-
munication with the server or not. Specifically, at the end
of episode k, the active agent mk can choose whether to
upload its local trajectory to the central server and download
all the data uploaded to the server by that time. The com-
munication complexity is measured by the total number of
communication rounds between the agents and the server.

Importantly, we consider an asynchronous setting satisfying
the following two properties:

(i) Full participation or a round-robin-type participation
is not required.

(ii) The communication between one agent and the server
will not cause mandatory download for other agents.

This setting is much more flexible than the synchronous set-

Algorithm 1 Communication Protocol

1: for k = 1, . . . ,K do
2: Agent mk is active
3: Receives sk,1 from the environment
4: for h = 1, · · · , H do
5: Take action ak,h ← πk,h(·|sk,h)
6: Receive sk,h+1 ∼ Ph(·|sk,h, ak,h)
7: Receive reward rk,h
8: end for
9: if Communication Triggered then

10: Send local data SERVER.
11: Download from SERVER
12: Update policy using all available data
13: end if
14: end for

ting where no offline agent is allowed. As a comparison, in
Dubey & Pentland (2021), all agents are required to partici-
pate in a round-robin fashion. Our setting is more general
than the synchronous setting since it gives the agents the
extra flexibility to decide whether to participate or not. The
pseudo-code of the communication protocol is summarized
by Algorithm 1.

Communication Complexity and Switching Cost. We
define the communication complexity of an algorithm to
be the total number of rounds of communication (i.e. one
upload and download operation) between any agent and the
central server. Note that some papers also use the number
of bits to measure the communication complexity (Wang
et al., 2020). Here we follow the notation of communication
complexity in Dubey & Pentland (2021).

The policy switching cost refers to the number of times
the agents change their policies (Kalai & Vempala, 2005;
Abbasi-Yadkori et al., 2011). In the RL setting where the
agents choose to adopt a greedy policy according to their
estimated Q-functions, the switching cost is also equal to
the number of times the estimated Q-functions are updated.

Learning Objective. For any policy π = {πh}Hh=1, we
define the corresponding value functions as

V π
h (s) := E

[ H∑
h′=h

rh′(sh′ , πh′(sh′))

∣∣∣∣sh = s

]
, ∀h ∈ [H].

Since the horizon H is finite and action space A is also
finite, there exists some optimal policy π⋆ such that

V π⋆

h (s) = sup
π

V π
h (s),

and we denote V ⋆
h = V π⋆

h . Due to space limit, more defini-
tion details of the value functions and Q-functions can be
found in Appendix A.
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The objective of all agents is to collaboratively minimize
the aggregated cumulative regret defined as

R(K) :=

K∑
k=1

[
V ⋆
1 (sk,1)− V

πmk,k

1 (sk,1)
]
, (3.2)

where mk is the active agent in episode k, πmk,k =
{πmk,k,h}Hh=1 is the policy adopted by agent mk in episode
k, and sk,1 is the initial state of episode k.

4 The Proposed Algorithm

Now we proceed to present our proposed algorithm, as dis-
played in Algorithm 2. After explaining the detailed design
of Algorithm 2, we will also discuss possible extensions
to other MDP settings in Section 4.2. Here for notational
convenience, we abbreviate ϕk,h := ϕ(sk,h, ak,h).

4.1 Algorithmic Design

Algorithm 2 adopts an execute-then-update framework on a
high level: In each episode k ∈ [K], there is one active agent
denoted by m = mk (Line 4 in Algorithm 2). Here we omit
the subscript k for better readability. Each episode involves
an interaction phase (Line 6-13) and an event-triggered
communication and policy update phase (Line 14-26).

Phase I: Interaction. Agent m will first interact with the
environment by executing the greedy policy with respect to
its current Q-function estimates {Qm,k,h}Hh=1 (Line 7 & 8),
and collect the data from the trajectory of the current
episode (Line 9 & 10). Then the agent will update its local
dataset and covariance matrices (Line 11 & 12).

Phase II: Communication and Policy Update. The sec-
ond phase involving communication and policy update is
triggered by a determinant-based criterion (Line 14). Once
the criterion is satisfied, the agent will upload all the accu-
mulated local data to the central server (Line 18), and then
download all the available data from the server (Line 20).
Using this latest dataset, the agent then updates its Q-
function estimates (Line 21-23).

More specifically, the Q-function estimate is obtained by
using backward least square value iteration following Jin
et al. (2020): Given the estimate Qm,k+1,h+1 for step h+1,
we solve for wm,k+1,h that minimizes the Bellman error in
terms of a ridge linear regression:

wm,k+1,h = Λ−1
m,k+1,h

∑
τ∈Dm,k,h

ϕ(sτ,h, aτ,h)

·
[
rτ,h +max

a
Qm,k+1,h+1(sτ,h+1, a)

]
.

(4.1)

In the above summation we use τ ∈ Dm,k,h to denote
the collection of indices of all the episodes whose data is

available to agent m by the end of episode k. Recall from
line 11 of Algorithm 2 that the original definition of Dm,k,h

is the dataset of trajectories available to agent m. Here we
slightly abuse the definition of Dm,k,h to reflect the fact that
wm,k+1,h is computed using only available trajectories to
agent m by the end of episode k. The Q-function estimate
for step h is given by

Qm,k+1,h(·, ·) (4.2)

=
[
ϕ(·, ·)⊤wm,k+1,h + Γm,k+1,h(·, ·)

]
[0,H−h+1]

,

where Γm,k+1,h is a bonus term that ensures the optimism
of Qm,k+1,h, and is defined by

Γm,k+1,h(·, ·) = β · ∥ϕ(·, ·)∥Λ−1
m,k+1,h

. (4.3)

Otherwise if the criterion is not satisfied, then the local data
as well as the Q-function estimates remain unchanged for
this agent (Line 27).

Discussion on The Criterion. The determinant-based cri-
terion is a common and important technique in single-agent
contextual bandits (Abbasi-Yadkori et al., 2011; Ruan et al.,
2021) and RL with linear function approximation (Zhou
et al., 2021c; Wang et al., 2021; Min et al., 2022a), where it
is often used to reduce the policy switching cost. While in
our multi-agent linear MDP setting, we apply it to determine
the appropriate time for communication and the correspond-
ing policy update. The similar idea has been adopted by
other works on multi-agent bandits and RL problems (Wang
et al., 2020; Li & Wang, 2022; He et al., 2022a; Dubey &
Pentland, 2020; 2021).

In our Algorithm 2, the criterion is adjusted by a parameter
α that controls the communication frequency: smaller α
indicates less frequent communication and larger α implies
otherwise. As will be shown in Section 5, α determines
the trade-off between the total number of communication
rounds (or equivalently, policy updates) and the total regret
of Algorithm 2. With a proper choice of α, we show that our
algorithm achieves a regret nearly identical to that under the
single-agent setting (Jin et al., 2020) at a low communication
complexity which depends only logarithmically on K.

4.2 Extension to Other MDP Settings

We remark that though designed for linear MDPs, Algo-
rithm 2 can be easily extended to other MDP settings.

Note that for any tabular MDP with small state and action
space, we can represent it using the one-hot feature mapping
as discussed in Example 2.1 in Jin et al. (2020). Thus
Algorithm 2 can be applied directly to tabular MDPs, and
the determinant-based criterion in Line 14 would become
a criterion based on the visitation count for every state-
action pair. However, we anticipate that Theorem 5.1 would

5
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Algorithm 2 Asynchronous Multi-agent LSVI

1: Input: number of episodes K, β, α
2: Initialize: Λm,1,h ← λId×d, wm,1,h ← 0, Qm,1,h ←

[β[ϕ(·, ·)⊤(Λm,1,h)
−1ϕ(·, ·)]1/2][0,H−h+1],

Λloc
m,0,h ← 0, Dm,0,h ← ∅, ∀m,h ∈ [M ]× [H]

3: for k = 1, . . . ,K do
4: Agent m = mk is active
5: Receive sk,1 from the environment
6: for h = 1, . . . ,H do
7: πm,k,h(·)← argmaxa∈A Qm,k,h(·, a)
8: Take action ak,h ∼ πm,k,h(·|sk,h)
9: Receive next state sk,h+1 ∼ Ph(·|sk,h, ak,h)

10: Receive reward rk,h
11: Dm,k,h ← Dm,k−1,h ∪ {sk,h, ak,h, sk,h+1, rk,h}
12: Λloc

m,k,h ← Λloc
m,k−1,h + ϕk,hϕ

⊤
k,h

13: end for
14: if ∃h s.t.

det(Λm,k,h+Λloc
m,k,h)

det(Λm,k,h)
> 1 + α then

15: Qm,k+1,H+1 ← 0
16: for h = H,H − 1, · · · , 1 do
17: Agent m sends local data to SERVER:
18: Λser

k,h ← Λser
k,h + Λloc

m,k,h, Dser
k,h ← Dser

k,h ∪
Dm,k,h

19: SERVER sends global data back to agent m:
20: Λm,k+1,h ← Λser

k,h, Dm,k,h ← Dser
k,h

21: Update estimate wm,k+1,h by (4.1)
22: Update bonus Γm,k+1,h by (4.3)
23: Update Q-function estimate Qm,k+1,h by (4.2)
24: end for
25: Reset Λloc

m,k,h ← 0, ∀ h ∈ [H]
26: else
27: Qm,k+1,h ← Qm,k,h, Λm,k+1,h ← Λm,k,h,

Λser
k+1,h ← Λser

k,h, Dser
k+1,h ← Dser

k,h, ∀ h ∈ [H]
28: end if
29: for all other inactive agents m′ ̸= m do
30: Qm′,k+1,h ← Qm′,k,h, Λm′,k+1,h ← Λm′,k,h,

∀ h ∈ [H]
31: end for
32: end for

produce in this case an regret upper bound that is suboptimal
in |S| and |A|, which is possibly due to that the one-hot
feature mapping is not a good representation.

Moreover, the algorithm design can also be applied to lin-
ear mixture MDPs where we would have a tenary fea-
ture mapping ϕ : S × A × S → Rd. Then for exam-
ple, the UCRL-VTR algorithm (Jia et al., 2020; Ayoub
et al., 2020) can be adapted to the asynchronous cooper-
ative setting by designing a similar communication criterion
based on the covariance matrix defined over ϕV (·, ·) :=∑

s∈S ϕ(s, ·, ·)V (s), instead of the Λ defined over only the
feature mapping in our case of linear MDPs.

There have also been other more advanced algorithms for
linear MDPs (Hu et al., 2022; He et al., 2022b; Agarwal
et al., 2022) that exploit variance information to further
reduce the dependence of the regret bound on problem pa-
rameters. We leave it as future work to develop and analyze
variance-aware variants of Algorithm 2.

5 Main Results

We now present the main theoretical results. We provide
the regret upper bound for Algorithm 2 in Theorem 5.1,
and compare it with existing related results. Then as a
complement, in Theorem 5.5, we provide a lower bound
on the communication complexity for cooperative linear
MDPs.

5.1 Regret Upper Bound

The following theorem provides the regret upper bound of
Algorithm 2.

Theorem 5.1 (Regret Upper Bound). Under Assump-
tion 3.1, there exists some universal constant cβ such that
by choosing

β = cβdHC̃

[
log

(
2 +K

δmin{1, λ, αλ}

)
+ log

(
HdC̃

)]
,

where C̃ := M
√
α +
√
1 +Mα, then with probability at

least 1− δ, the regret of Algorithm 2 can be bounded as

O
(
β
√
1 +MαH

√
dK log (2dK/min{1, λ}δ)

)
.

Moreover, the communication complexity and policy switch-
ing cost (in number of rounds) are upper bounded by

O (dH(M + 1/α) log(1 +K/λd)) .

Remark 5.2. Theorem 5.1 indicates that by setting the
parameters α = 1/M2 and λ = 1 in Algorithm 2, the regret
upper bound can be simplified to Õ(d3/2H2

√
K), and the

communication complexity is bounded by Õ(dHM2).

Remark 5.3. We compare our upper bound with the
best known result by Dubey & Pentland (2021). In
their Theorem 1, Dubey & Pentland (2021) present an
Õ(d3/2H2

√
MT ) regret upper bound for the homogeneous-

agent setting (i.e. the same transition kernel and reward
functions shared among all agents), which is identical to
the multi-agent linear MDP setting considered in our paper.
However, their communication protocol is synchronous in a
round-robin fashion (see line 4 of their Algorithm 1), and
thus MT under their setting is equal to our K. Therefore, by
Theorem 5.1, our regret upper bound for the asynchronous
setting matches that for the synchronous setting.

6



Cooperative Multi-Agent Reinforcement Learning: Asynchronous Communication and Linear Function Approximation

Remark 5.4. Our result generalizes that of the multi-agent
linear bandit setting (He et al., 2022a) and the single-agent
linear MDP setting (Jin et al., 2020). Specifically, with
H = 1, our upper bound becomes Õ(d

√
K) and the number

of communication rounds becomes Õ(dM2). Note that
we save a

√
d factor in the regret bound compared to the

original d3/2 dependence from Theorem 5.1 since there is
no covering issue when H = 1. Both the regret and the
communication reduce to those under the bandit setting
(He et al., 2022a). When M = 1, our regret reduces to
Õ(d3/2H2

√
K), matching that of Jin et al. (2020).

5.2 Regret Lower Bound

Theorem 5.5 (Regret Lower Bound). Suppose d,H ≥ 2
and number of episodes K ≥ dM , then for any algorithm
Alg with expected communication complexity less than
dM/11400, there exist a linear MDP, such that the expected
regret for algorithm Alg is at least Ω(H

√
dMK).

Remark 5.6. Theorem 5.5 suggests that, for any algo-
rithm Alg with communication complexity o(dM), the re-
gret is no better than Ω(

√
MK). On the other hand, if

each agent perform the LSVI-UCB algorithm (Jin et al.,
2020), the total regret of M agents is upper bounded by∑M

m=1 Õ(
√
Km) = Õ(

√
MK), where Km is the number

of episodes that agent m is active. Thus, in order to im-
prove the performance through collaboration and remove
the dependency on the number of agent M , an Ω(dM) com-
munication complexity is necessary.

Remark 5.7. Though Theorem 5.5 requires the number of
stage H ≥ 2, it is not difficult to extend the result for H = 1
with stochastic reward function rh(s, a). In this situation,
Theorem 5.5 will reduce to bandit problem with adversarial
contexts and improves the communication complexity in He
et al. (2022a) with a factor of d. We also compare our result
with the communication lower bound in Amani et al. (2022).
In this work, they measured the communication complexity
by bits, which is strictly larger than our definition, and also
provided a Ω(dM) communication complexity (in bits) for
stochastic contexts.

6 Overview of the Analysis

In this section, we discuss the technical challenges of ana-
lyzing Algorithm 2 and our solutions.

6.1 Technical Challenges

The asynchronous communication protocol causes a unique
challenge in the theoretical analysis. To illustrate the chal-
lenge, let us first recall the synchronous setting with a round-
robin-type participation, as studied in Dubey & Pentland
(2021). Note that under this setting, the order of participa-
tion is fixed. This implies that if ϕk,h is uploaded to the

server, then for all k′ < k, the vectors ϕk′,h must also have
already been uploaded to the server. As a sharp comparison,
the above important condition is no longer satisfied under
the asynchronous setting. We name the violation of this
condition the information asymmetry issue.

Technically, this issue causes two consequences. Recall
from the analysis of LSVI-UCB that the final regret bound
depends on two technical lemmas: the concentration of
self-normalized martingales, and the elliptical potential
lemma (Abbasi-Yadkori et al., 2011; Jin et al., 2020). The
first lemma determines the width of the confidence region
(i.e. β), and the second is crucial for bounding the sum of
the bonus terms (i.e.

∑K
k=1 ∥ϕk,h∥Λ−1

m,k,h
). Both lemmas

require a well-defined and fixed order of ϕk,h vectors in
the collected data in order to be applied. Unfortunately,
such an order does not exist in the asynchronous setting,
since the data receiving process by the server and every
agent is stochastic. The analysis of this stochastic process
is also prohibitive because our agents have full freedom to
decide whether to participate. Therefore, this arbitrary pat-
tern in the data collected by Algorithm 2 forbids the directly
application of these two tools.

To address this information asymmetry issue, we develop
a novel form of the self-normalized martingale concentra-
tion lemma (Lemma B.4), and an asynchronous elliptical
potential lemma (Lemma 6.4). The main idea is a refined
analysis of the local covariance matrix Λm,k,h and the uni-
versal covariance matrix and their comparison under the
partial ordering defined by matrix positive definiteness. In
the remaining of this section, we overview some key steps
and the definition of some important quantities behind the
upper bound in Theorem 5.1. The full details are included
in Appendix B.

6.2 Key Ingredients of the Proof

For any agent m ∈ [M ] and episode k ∈ [K], define the
following indices:

• mk: the active agent of episode k. Note that in Algo-
rithm 2 we use m instead of mk due to space limit.

• tk(m): for any agent m, tk(m) ≤ k is the last episode
when agent m adopts a newly updated a policy by
the end of episode k. If no policy updating has been
conducted by the end of episode k, then by default
tk(m) = 1.

For the participating agent mk in episode k, its adopted
Q-function Qmk,k,h would be equal to Qmk,tk,h, for all
h ∈ [H], according to the definition. In the following, we
may write tk = tk(mk) whenever there is no confusion. A
comprehensive clarification of notation is also provided in
Appendix A.
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Regret Decomposition. By Definition 3.2, the regret is

R(K) :=

K∑
k=1

[
V ⋆
1 (sk,1)− V

πmk,k

1 (sk,1)
]

≤
K∑

k=1

[
Vmk,k,1(sk,1)− V

πmk,k

1 (sk,1)
]

(6.1)

=

K∑
k=1

[
Vmk,tk(mk),1(sk,1)− V

πmk,k

1 (sk,1)
]
.

The inequality is from the following optimism property,
which is standard for UCB-type algorithms.

Lemma 6.1 (Optimism). Under the setting of Theorem 5.1,
on the event of Lemma B.5, for all k ∈ [K], h ∈ [H], and
(s, a) ∈ S ×A, we have Q⋆

h(s, a) ≤ Qmk,k,h(s, a).

Proof of Lemma 6.1. See Appendix C.2.

The last step in (6.1) follows from the definition of tk(mk).
We then further decompose the terms as

Vmk,tk,h(sk,h)− V
πmk,k

h (sk,h)

= Qmk,tk,h(sk,h, ak,h)−Q
πmk,k

h (sk,h, ak,h)

≤ ϕ⊤
k,hwmk,tk,h + β

√
ϕ⊤

k,hΛ
−1
mk,tk,h

ϕk,h − ϕ⊤
k,hw

πmk,k

h .

To analyze the above, we establish the following result.

Lemma 6.2. Suppose we choose β as

β = cβHdC̃

[
log

(
2 +K

δmin{1, λ, αλ}

)
+ log

(
HdC̃

)]
,

where C̃ := M
√
α +
√
1 +Mα and cβ is some universal

constant. For any fixed policy π, on the event of Lemma B.5,
for any k ∈ [K], h ∈ [H], and (s, a) ∈ S ×A, it holds that∣∣ϕ(s, a)⊤ (wmk,tk,h −wπ

h)− Ph

[
Vmk,tk,h+1 − V π

h+1

]
(s, a)

∣∣
≤ β

√
ϕ(s, a)⊤Λ−1

mk,tk,h
ϕ(s, a).

Proof of Lemma 6.2. See Appendix C.1.

Taming Information Asymmetry. Lemma 6.2 serves a
purpose similar to Lemma B.4 in Jin et al. (2020). However,
its proof is more involved due to the discrepancy between
Λmk,tk,h and λI +

∑k−1
k′=1 ϕk′,h under the asynchronous

setting. In other words, a random proportion of information
is missing from the covariance matrix Λmk,tk,h, causing the
information asymmetry issue.

To circumvent this issue, we establish a delicate compari-
son of the covariance matrices (B.3) via several auxiliary
matrices (Appendix A.1). By doing so, we can bound the

discrepancy between each Λmk,tk,h and the full informa-
tion matrix λI+

∑k−1
k′=1 ϕk′,h, and then apply the classical

concentration argument for self-normalized martingales.

Lemma 6.2 further allows us to apply the standard recursive
relation for LSVI-type algorithms (Jin et al., 2020).

Lemma 6.3 (Recursion). Define ξk,h = Vmk,tk,h(sk,h)−
V

πmk,k

h (sk,h). On the event of Lemma B.5, it holds that

ξk,h ≤ ξk,h+1 + (E [ξk,h+1|sk,h, ak,h]− ξk,h+1)

+ 2β
√
ϕk,hΛ

−1
mk,tk,h

ϕk,h.

Proof of Lemma 6.3. See Appendix C.3.

Asynchronous Elliptical Potential Lemma. Finally,
Lemma 6.3 allows us to bound the regret by the sum of
bonus terms. However, the standard elliptical potential
lemma (Abbasi-Yadkori et al., 2011) still does not apply
due to the information asymmetry issue. To this end, we
proposed an asynchronous elliptical potential lemma to fa-
cilitate the analysis.

Lemma 6.4 (Asynchronous Elliptical Potential). Let

Bh =

H∑
h=1

2β
√
ϕ(sk,h, ak,h)Λ

−1
mk,tk,h

ϕ(sk,h, ak,h).

Under the same assumption of Theorem 5.1, it holds that
K∑

k=1

min
{
Vmk,tk(mk),1(sk,1)− V

πmk,k

1 (sk,1), Bh

}
≤ O(β

√
1 +MαH

√
dK log (2dK/min{1, λ}δ)).

Proof of Lemma 6.4. See Appendix C.8.

With all the above steps, we can finally establish the regret
upper bound in Theorem 5.1. The remaining details are
provided in Appendix B.

7 Conclusion and Future Work

In this paper we propose a provably efficient algorithm for
cooperative multi-agent RL with asynchronous communi-
cation, and provide a novel theoretical analysis resolving
the challenge of information asymmetry induced by asyn-
chronous communication. We also provide a lower bound
on the communication complexity for such a setting.

There are several possible directions for future work. More-
over, the current lower bound in Theorem 5.5 is arguably not
tight, and it requires novel construction to exhibit the funda-
mental trade-off between reducing communication complex-
ity and lowering regret. Also, for the asynchronous commu-
nication model, it is important to incorporate other aspects
such as agent heterogeneity, environment non-stationarity,
privacy and more general function approximation.
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A Clarification of Notation

In this section, we give a comprehensive clarification on the notation used in the algorithm and the analysis.

Throughout the paper, we use O(·) to hide problem-independent universal constants and Õ(·) to further hide logarithmic
factors. We use (·)[a,b] to denote the truncation of values into the range [a, b].

We also present the following table of notations. The π in the superscript can be replaced by πk or π⋆, where the former
refers to the policy in episode k, and the latter refers to the optimal policy.

Table 2. Notation

Notation Meaning

mk the active agent in episode k

πm,k = {πm,k,h}Hh=1 the policy of agent m at episode k (regardless of agent m being active or not)

{Qm,k,h}Hh=1 Q-functions of agent m at episode k in Algorithm 2

{Vm,k,h}Hh=1

Value functions of agent m at episode k in Algorithm 2, where
Vm,k,h(·) = argmaxa Qm,k,h(·, a)

{V π
h }Hh=1 Value functions under policy π

ϕk,h ϕk,h = ϕ(sk,h, ak,h) for k ∈ [K] and h ∈ [H]

wm,k,h, Λm,k,h underlying parameter and covariance matrix of Qm,k,h in Algorithm 2

Indices of available episodes Recall from line 11 and 20 of Algorithm 2 that the original definition of Dm,k,h is the
dataset of trajectories available to agent m by the end of episode k. However, in our analysis we may use τ ∈ Dm,k,h to
denote the collection of indices of all the episodes whose data is available to agent m at the beginning of episode k. That is,
τ ∈ Dm,k,h refers to all the episodes whose trajectories are available to agent m by the end of episode k. For example, in
(4.1), we use the summation over the indices τ ∈ Dm,k,h to reflect that the parameter wm,k+1,h is computed using only
available trajectories (either the agent’s own local trajectories or downloaded ones) by the end of episode k. This is a slight
abuse of the definition of Dm,k,h, since this τ ∈ Dm,k,h notation is only required in a summation of this kind in the proof
and won’t cause further confusion.

Value and Q-functions For any policy π = {πh}Hh=1, we define the corresponding value functions as

V π
h (s) := E

[
H∑

h′=h

rh′(sh′ , πh′(sh′))

∣∣∣∣∣sh = s

]
, ∀ h ∈ [H].

The Q-functions are defined as

Qπ
h(s, a) = rh(s, a) + E

[
H∑

h′=h+1

rh′(sh′ , πh′(sh′))

∣∣∣∣∣sh = s, ah = a

]
, ∀ h ∈ [H].

Since the horizon H is finite and action space A is also finite, there exists some optimal policy π⋆ such that

V π⋆

h (s) = sup
π

V π
h (s).

We denote V π⋆

h = V ⋆
h . Furthermore, the above definition implies the following Bellman equations

Qπ
h(s, a) = rh(s, a) + PhV

π
h+1(s, a), V

π
h (s) = Qπ

h(s, πh(s)), ∀ h ∈ [H],

where V π
H+1(·) = 0.
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Multi-value quantities. The following quantities from Algorithm 2 can possibly take two different values in an episode
due to the policy update. In our analysis, we assume they refer to the values at the end of the episode k, unless otherwise
stated.

• Dm,k,h; Dser
k,h; Λser

k,h; Λloc
m,k,h.

Indices of episodes. The following indices of episodes are necessary to the analysis under the asynchronous setting:

• tk(m): tk(m) ≤ k is the last episode when agent m adopts a newly updated a policy by the end of episode k. If no
policy updating has been conducted by the end of episode k, then by default tk(m) = 1.

• nk(m): nk(m) < tk(m) is the most recent episode before k when the agent m updates its policy. This newly updated
policy is executed for the first time at episode tk(m). If no policy updating has been conducted before episode k by
agent m, then by default nk(m) = 0.

• Nk(m): Nk(m) ≤ k is the last episode that agent m participates up until the end of episode k. For example, if agent
m participates in episode k, then Nk(m) = k.

The above definition implies 0 ≤ nk(m) < tk(m) ≤ Nk(m) ≤ k.

A.1 Auxiliary Matrices

We further define a few notations that will be used extensively in the proof.

Universal information. We define the following matrix of universal information up to the beginning of episode k:

Λall
k,h = λI+

k−1∑
τ=1

ϕτ,hϕ
⊤
τ,h, ∀ h ∈ [H]. (A.1)

Personal information. We define the uploaded information by agent m until episode k as

Λup
m,k,h =

nk(m)∑
τ=1,mτ=m

ϕτ,hϕ
⊤
τ,h, ∀ h ∈ [H]. (A.2)

Since quantities such as Λloc
m,k,h can possibly take two different values during episode k due to the policy update, in the

following, we assume all these quantities refer to the value at the end of each episode. The matrix Λloc
m,k,h can be rewritten as

Λloc
m,k,h =

k∑
τ=nk(m)+1,mτ=m

ϕτ,hϕ
⊤
τ,h, ∀ h ∈ [H]. (A.3)

B Proof of Regret Upper Bound

B.1 Basic Properties of the LSVI-type Algorithm

In this section, we list a few basic lemmas for our LSVI-type algorithm. Most of these lemmas are modified from those in
Jin et al. (2020). These lemmas are crucial to our regret upper bound.

Lemma B.1 (Lemma B.1 in Jin et al. 2020). Under Assumption 3.1, for any policy π, for any h ∈ [H], let wπ
h be such that

Qπ
h(·, ·) = ⟨ϕ(·, ·),wπ

h⟩. Then for all h ∈ [H], it holds that

∥wπ
h∥ ≤ 2H

√
d.

Lemma B.2. Under Assumption 3.1, for any k ∈ [K] and h ∈ [H], the estimated parameter wm,k,h in Algorithm 2 satisfies

∥wm,k,h∥ ≤ 2H
√
dk/λ.
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Proof of Lemma B.2. See Appendix C.4.

Recall the auxiliary matrices defined in Appendix A.1. The following result describes the partial ordering between them.

Lemma B.3 (Covariance matrix ordering). Under the setting of Theorem 5.1, it holds that

λI+
∑

m′∈[M ]

Λup
m′,k,h ⪰

1

α
Λloc

m,k,h, ∀ k, h,m ∈ [K]× [H]× [M ]. (B.1)

Furthermore, for some 1 < t ≤ t̄ ≤ K, suppose agent m is the only participating agent within these episodes (i.e. mk = m
for all k ∈ [t, t̄]), and agent m communicates with the server only at episode k = t during [t, t̄]. Then for all k ∈ [t + 1, t̄], it
holds that

Λm,k,h ⪰
1

1 +Mα
Λall

k,h, ∀ h ∈ [H]. (B.2)

Proof of Lemma B.3. See Appendix C.5.

The following two lemmas provides the concentration of self-normalized martingales in the asynchronous setting, where
the first lemma applies to a fixed V function, and the second one applies to the Vmk,tk,h+1 function in Algorithm 2 via a
covering argument. With a proper choice of α, the bounds can be reduced to Õ(H

√
d) and Õ(Hd), respectively. These are

identical to the result under the single-agent case (Jin et al., 2020).

Lemma B.4. Under the setting of Theorem 5.1, for any fixed V ∈ V , with probability at least 1− δ, for any k ∈ [K] and
h ∈ [H], it holds that∥∥∥∥∥∥

tk−1∑
τ=1,τ∈Dser

tk,h

ϕτ,h [V (sτ,h+1)− PhV (sτ,h, aτ,h)]

∥∥∥∥∥∥
Λ−1

mk,tk,h

≤ 2
(
M
√
α+
√
1 +Mα

)
·H ·


√√√√log

((
K + αλ

αλ

)d/2
)

+ log

((
K + λ

λ

)d/2
)

+ 2 log

(
1

δ

) .

Proof of Lemma B.4. See Appendix C.6.

Lemma B.5. Under the setting of Theorem 5.1, with probability at least 1− δ, for any k ∈ [K] and h ∈ [H], it holds that∥∥∥∥∥∥
tk−1∑

τ=1,τ∈Dser
tk,h

ϕτ,h [Vmk,tk,h+1(sτ,h+1)− PhVmk,tk,h+1(sτ,h, aτ,h)]

∥∥∥∥∥∥
Λ−1

mk,tk,h

≤ C(M
√
α+
√
1 +Mα)H

√
ι+ CdH/

√
λ,

where C is some universal constant and

ι := d log

(
K + αλ

αλ

)
+ d log

(
K + λ

λ

)
+ log

1

δ
+ d log

(
2 +

8k3

λ

)
+ d2 log

(
1 +

8β2k2

λd1.5H2

)
.

Proof of Lemma B.5. See Appendix C.7.

The next lemma is applied to bound the number of communication rounds of Algorithm 2. We first divide the episodes into
different epochs.

Lemma B.6. For each i ≥ 0, define K̃i = min
{
k ∈ [K] : ∃h ∈ [H] s.t. det(Λall

k,h) ≥ 2iλd
}

. Divide all episodes into

epochs where epoch i is given as {K̃i, K̃i + 1, · · · , K̃i+1 − 1}, where i ≥ 0. Then within any epoch i, the total number of
communication rounds is upper bounded by O(H(M + 1/α)).
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Proof of Lemma B.6. The proof follows from the a modified argument from that of Lemma 6.2 in (He et al., 2022a).
Different from He et al. (2022a), by Line 14 of Algorithm 2, a communication is triggered if any of the H determinant
conditions are satisfied. As a result, the communication number is at most H times the upper bound in Lemma 6.2 in He
et al. (2022a).

B.2 Proof of Theorem 5.1

Proof of Theorem 5.1. We first prove the regret upper bound. By Lemma 6.1, the regret can be upper bounded as

R(K) =

K∑
k=1

[
V ⋆
1 (sk,1)− V

πmk,k

1 (sk,1)
]

≤
K∑

k=1

[
Vmk,k,1(sk,1)− V

πmk,k

1 (sk,1)
]

=

K∑
k=1

[
Vmk,tk(mk),1(sk,1)− V

πmk,k

1 (sk,1)
]

≤
K∑

k=1

H∑
h=1

(E [ξk,h+1|sk,h, ak,h]− ξk,h+1)

+

K∑
k=1

min

{
Vmk,tk(mk),1(sk,1)− V

πmk,k

1 (sk,1),

H∑
h=1

2β
√
ϕ(sk,h, ak,h)Λ

−1
mk,tk,h

ϕ(sk,h, ak,h)

}
, (B.3)

where the first inequality is by Lemma 6.1, and the second inequality is by Lemma 6.3. The minimum in the last step might
seems odd at first, but will turn out to be necessary later. Bounding the first term in the above is straightforward using
martingale convergence (Jin et al., 2020). Specifically, by the definition of in Lemma 6.3, the first term can be written as

K∑
k=1

H∑
h=1

(E [ξk,h+1|sk,h, ak,h]− ξk,h+1)

=

K∑
k=1

H∑
h=1

(
E
[
[Vmk,tk,h+1(sk,h+1)− V

πmk,k

h+1 (sk,h+1)]
∣∣∣sk,h+1, ak,h+1

]
− [Vmk,tk,h+1(sk,h+1)− V

πmk,k

h+1 (sk,h+1)]
)

Above summation can be viewed as the sum of a martingale difference sequence since Vmk,tk,h+1 and V
πmk,k

h+1 are
independent of the observation in episode k. Since |Vmk,tk,h+1(sk,h+1)− V

πmk,k

h+1 (sk,h+1)| ≤ 2H , by Azuma-Hoeffding
inequality, with probability at least 1− δ, for all k, h, it holds that

K∑
k=1

H∑
h=1

(E [ξk,h+1|sk,h, ak,h]− ξk,h+1) ≤ 2H3/2
√
K log(2/δ), (B.4)

where {ξk,h}k,h∈[K]×[H] are defined in Lemma 6.3. For the second term, note that instead of bounding

2β
∑K

k=1

∑H
h=1

√
ϕ(sk,h, ak,h)Λ

−1
mk,tk,h

ϕ(sk,h, ak,h) directly, we construct a new term involving a minimum between

the bonus and the per-episode regret bound Vmk,tk(mk),1(sk,1) − V
πmk,k

1 (sk,1). The reason behind this is that the sum
of bonus along cannot be bounded using the standard elliptical potential argument (Abbasi-Yadkori et al., 2011) due to
the asynchronous nature of the communication protocol. Its analysis turns out to be much more involved and therefore is
summarized separately in Lemma 6.4. Now, combining Lemma 6.4 and (B.4), we finish the proof of the regret upper bound.

The proof of the communication complexity of Algorithm 2 is straightforward given the simple form of our determinant-
based criterion. By Lemma B.6, it remains to bound the number of epochs. Recall from Assumption 3.1 that ∥ϕ(·, ·)∥ ≤ 1.
This implies that, for any h ∈ [H],

det(Λall
K,h) ≤

(
λ+

1

d

K∑
k=1

∥ϕk,h∥22

)d

≤ λd

(
1 +

K

λd

)d

.
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By the definition of K̃i from Lemma B.6, in order for K̃i to be non-empty, i should satisfy

2iλd ≤ λd

(
1 +

K

λd

)d

,

which implies i ≤ log 2 · d log(1 +K/λd). Together with Lemma B.6, the total communication number is upper bounded
by H(M + 1/α) · log 2 · d log(1 +K/λd) up to some constant factor. This finishes the proof.

C Proof of Technical Lemmas

C.1 Proof of Lemma 6.2

Proof of Lemma 6.2. Recall the definition of wm,k+1,h from (4.1), and the definition of nk(·) from Appendix A. Then since
wmk,k,h = wmk,tk,h is computed using all the trajectories available to agent mk by the beginning episode tk, we can write

wmk,tk,h = Λ−1
mk,tk,h

tk−1∑
τ=1,τ∈Dser

nk(mk),h

ϕτ,h · [rτ,h + Vmk,tk,h+1(sτ,h+1)] ,

where τ ∈ Dser
nk(mk),h

denotes all the data uploaded to the server by the end of episode nk. Note that this is well-defined
since nk(mk) is the most recent episode before k when agent mk updates its policy, and therefore its local data is also
included in Dser

nk(mk),h
. In the following we simply use nk instead of nk(mk) since there is no confusion. We then write

wmk,tk,h −wπ
h

= Λ−1
mk,tk,h

tk−1∑
τ=1,τ∈Dser

nk,h

ϕτ,h · [rτ,h + Vmk,tk,h+1(sτ,h+1)]−wπ
h

= Λ−1
mk,tk,h

−λwπ
h +

tk−1∑
τ=1,τ∈Dser

nk,h

ϕτ,h

[
Vmk,tk,h+1(sτ,h+1)− PhV

π
h+1(sτ,h, aτ,h)

]
= −λΛ−1

mk,tk,h
wπ

h︸ ︷︷ ︸
v1

+Λ−1
mk,tk,h

tk−1∑
τ=1,τ∈Dser

nk,h

ϕτ,h [Vmk,tk,h+1(sτ,h+1)− PhVmk,tk,h+1(sτ,h, aτ,h)]

︸ ︷︷ ︸
v2

+Λ−1
mk,tk,h

tk−1∑
τ=1,τ∈Dser

nk,h

ϕτ,hPh

[
Vmk,tk,h+1 − V π

h+1

]
(sτ,h, aτ,h)

︸ ︷︷ ︸
v3

. (C.1)

For the first term, we have∣∣ϕ(s, a)⊤v1

∣∣ ≤ √λ ∥wπ
h∥2

√
ϕ(s, a)⊤Λ−1

mk,tk,h
ϕ(s, a) ≤ 2H

√
dλ
√

ϕ(s, a)⊤Λ−1
mk,tk,h

ϕ(s, a), (C.2)

where the first step is by Λ−1
mk,tk,h

≼ λ−1I and the second step is by Lemma B.1. For the second term, we have∣∣ϕ(s, a)⊤v2

∣∣
≤

∥∥∥∥∥∥
tk−1∑

τ=1,τ∈Dser
nk,h

ϕτ,h [Vmk,tk,h+1(sτ,h+1)− PhVmk,tk,h+1(sτ,h, aτ,h)]

∥∥∥∥∥∥
Λ−1

mk,tk,h︸ ︷︷ ︸
χ

·
√
ϕ(s, a)⊤Λ−1

mk,tk,h
ϕ(s, a). (C.3)

For the third term, we have

ϕ(s, a)⊤v3 (C.4)
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=

〈
ϕ(s, a),Λ−1

mk,tk,h

tk−1∑
τ=1,τ∈Dser

nk,h

ϕτ,hPh

[
Vmk,tk,h+1 − V π

h+1

]
(sτ,h, aτ,h)

〉

≤

〈
ϕ(s, a),Λ−1

mk,tk,h

tk−1∑
τ=1,τ∈Dser

nk,h

ϕτ,hϕ
⊤
τ,h

∫ [
Vmk,tk,h+1 − V π

h+1

]
(s′)dµh(s

′)

〉

≤
〈
ϕ(s, a),

∫ [
Vmk,tk,h+1 − V π

h+1

]
(s′)dµh(s

′)

〉
− λ

〈
ϕ(s, a),Λ−1

mk,tk,h

∫ [
Vmk,tk,h+1 − V π

h+1

]
(s′)dµh(s

′)

〉
= Ph

[
Vmk,tk,h+1 − V π

h+1

]
(s, a)− λ

〈
ϕ(s, a),Λ−1

mk,tk,h

∫ [
Vmk,tk,h+1 − V π

h+1

]
(s′)dµh(s

′)

〉
≤ Ph

[
Vmk,tk,h+1 − V π

h+1

]
(s, a) + 2H

√
dλ ·

√
ϕ(s, a)Λ−1

mk,tk,h
ϕ(s, a), (C.5)

where the last step holds because ∥µh∥ ≤
√
d by Assumption 3.1. Combining (C.1), (C.2), (C.3) and (C.4), we have∣∣ϕ(s, a)⊤(wmk,tk,h −wπ

h)− Ph

[
Vmk,tk,h+1 − V π

h+1

]
(s, a)

∣∣
≤
(
4H
√
dλ+ χ

)
·
√

ϕ(s, a)Λ−1
mk,tk,h

ϕ(s, a). (C.6)

It remains to show that the choice of β satisfies

4H
√
dλ+ χ ≤ β.

By Lemma B.5, we want to show

4H
√
dλ+ C(M

√
α+
√
1 +Mα)H

√
ι+ CdH/

√
λ ≤ β.

Plugging in the choice of β and the definition of ι from Lemma B.5 and simplifying the expression, it suffices to show that
there exists cβ such that

C

[
log

(
2 +

K

δmin{1, λ, αλ}

)
+ log

(
cβHd(M

√
α+
√
1 +Mα)

)]
≤ c2β

[
log

(
2 +

K

δmin{1, λ, αλ}

)
+ log

(
Hd(M

√
α+
√
1 +Mα)

)]
,

where C is some universal constant. The existence of such cβ is clear. Therefore, we conclude that∣∣ϕ(s, a)⊤ (wmk,tk,h −wπ
h)− Ph

[
Vmk,tk,h+1 − V π

h+1

]
(s, a)

∣∣ ≤ β
√
ϕ(s, a)⊤Λ−1

mk,tk,h
ϕ(s, a).

C.2 Proof of Lemma 6.1

Proof of Lemma 6.1. The proof follows from the same induction argument in Lemma B.5 of (Jin et al., 2020). For
completeness we introduce the proof here. For step H , by Lemma 6.2, we have∣∣ϕ(s, a)⊤wmk,tk,H −Q⋆

H(s, a)
∣∣ ≤ β

√
ϕ(s, a)⊤Λ−1

mk,tk,H
ϕ(s, a),

since Vmk,tk,H+1 = V ⋆
H+1 = 0. This implies

Q⋆
H(s, a) ≤ ϕ(s, a)⊤wmk,tk,H + β

√
ϕ(s, a)⊤Λ−1

mk,tk,H
ϕ(s, a) ≤ Qmk,tk,H(s, a).
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Now suppose we have proved Q⋆
h+1(s, a) ≤ Qmk,tk,h+1(s, a). Then by Lemma 6.2 again, we have

Q⋆
h(s, a) + Ph

[
Vmk,tk,h+1 − V ⋆

h+1

]
(s, a)− ϕ(s, a)⊤wmk,tk,h ≤ β

√
ϕ(s, a)⊤Λ−1

mk,tk,h
ϕ(s, a),

which implies

Q⋆
h(s, a) ≤ ϕ(s, a)⊤wmk,tk,h + β

√
ϕ(s, a)⊤Λ−1

mk,tk,h
ϕ(s, a)− Ph

[
Vmk,tk,h+1 − V ⋆

h+1

]
(s, a)

≤ ϕ(s, a)⊤wmk,tk,h + β
√
ϕ(s, a)⊤Λ−1

mk,tk,h
ϕ(s, a),

where the last step is by the induction hypothesis that Vmk,tk,h+1 − V ⋆
h+1 ≥ 0. Therefore, we conclude that

Q⋆
h(s, a) = min{H − h+ 1, Q⋆

h(s, a)}

≤ min{H − h+ 1,ϕ(s, a)⊤wmk,tk,h + β
√
ϕ(s, a)⊤Λ−1

mk,tk,h
ϕ(s, a)} = Qmk,tk,h = Qmk,k,h.

C.3 Proof of Lemma 6.3

Proof of Lemma 6.3. Lemma 6.2 and the definition of Qmk,tk,h imply that for any k, h ,

Qmk,tk,h(sk,h, ak,h)−Q
πmk,k

h (sk,h, ak,h) ≤ Ph

[
Vmk,tk,h+1 − V

πmk,k

h+1

]
(sk,h, ak,h) + 2β

√
ϕ⊤

k,hΛ
−1
mk,tk,h

ϕk,h.

By the definition of Vmk,tk,h+1 and V
πmk,k

h+1 , we have ξk,h = Qmk,tk,h(sk,h, ak,h)−Q
πmk,k

h (sk,h, ak,h), and it follows that

ξk,h ≤ E[ξk,h+1|sk,h, ak,h] + 2β
√
ϕ(sk,h, ak,h)Λ

−1
mk,tk,h

ϕ(sk,h, ak,h).

C.4 Proof of Lemma B.2

Proof of Lemma B.2. The proof follows from that of Lemma B.2 in (Jin et al., 2020). Specifically, the estimated parameters
wm,k,h take the same form as wk

h’s in (Jin et al., 2020) if we re-index the vectors ϕk,h’s that are available to agent m at
episode k.

C.5 Proof of Lemma B.3

Proof of Lemma B.3. Fix some episode k and agent m. Recall from Appendix A that Nk(m) ≤ k is the last episode that
agent m participates up until the end of episode k. If agent m communicates with server in episode Nk(m), then

λI+
∑

m′∈[M ]

Λup
m′,k,h ⪰ 0 = Λloc

m,Nk(m),h = Λloc
m,k,h.

If agent m does not participates in episode Nk(m), then by Line 14 of Algorithm 2, it holds that, for all h ∈ [H],

det(Λm,Nk(m),h +Λloc
m,Nk(m),h) ≤ (1 + α) det(Λm,Nk(m),h).

Since no further participation happens between [Nk(m) + 1, k], above implies

det(Λm,k,h +Λloc
m,k,h) ≤ (1 + α) det(Λm,k,h).

Applying Lemma E.2, we get

x⊤(Λm,k,h +Λloc
m,k,h)x

x⊤Λm,k,hx
≤

det(Λm,k,h +Λloc
m,k,h)

det(Λm,k,h)
≤ 1 + α,
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and it follows that

x⊤Λloc
m,k,hx ≤ αx⊤Λm,k,hx.

Finally, we conclude that

λI+
∑

m′∈[M ]

Λup
m′,k,h ⪰ Λm,k,h ⪰

1

α
Λloc

m,k,h,

where the first step follows from the fact that Λm,k,h is downloaded at some episode nk(m) < k, and the definition of
Λup

m′,k,h from (A.2). This proves (B.1).

To show (B.2), suppose that agent m communicates with the server at episode t, and is active for k ∈ [t, t̄]. Applying (B.1)
for all M agents and averaging, we have

λI+
∑

m′∈[M ]

Λup
m′,k,h ⪰

1

αM

∑
m′∈[M ]

Λloc
m′,k,h,

and it follows that, for k ∈ [t + 1, t̄],

Λm,k,h = λI+
∑

m′∈[M ]

Λup
m′,t+1,h

= λI+
∑

m′∈[M ]

Λup
m′,k,h

⪰ 1

1 + αM

λI+
∑

m′∈[M ]

Λup
m′,k,h +

∑
m′∈[M ]

Λloc
m′,k,h


=

1

1 + αM
Λall

k,h.

Here the first step follows from the definition of Λup
m′,t+1,h

from (A.2) and the assumption that agent m communicates with
the server in episode t. The second step holds because agent m is the only active agent between [t, t̄] and thus no further
upload has been made by any agent during episodes [t + 1, t̄]. The last step follows from the definition of Λall

k,h and the
assumption that agent m is the only active agent between [t, t̄] (i.e. no other agent can upload during [t, t̄]). This finishes the
proof of (B.2) and that of Lemma B.3.

C.6 Proof of Lemma B.4

Proof of Lemma B.4. Define ητ,h = V (sτ,h+1)− PhV (sτ,h, aτ,h), and

uup
k,h(m

′) =

k∑
τ=1,τ∈Dser

k,h,mτ=m′

ϕτ,hητ,h,

uloc
k,h(m

′) =

k∑
τ=1,τ /∈Dser

k,h,mτ=m′

ϕτ,hητ,h, (C.7)

for all m′ ∈ [M ] and k, h ∈ [K]× [H]. Then we have∥∥∥∥∥∥
tk−1∑

τ=1,τ∈Dser
nk,h

ϕτ,h [V (sτ,h+1)− PhV (sτ,h, aτ,h)]

∥∥∥∥∥∥
Λ−1

mk,tk,h

=

∥∥∥∥∥∥
tk−1∑

τ=1,τ∈Dser
nk,h

ϕτ,hητ,h

∥∥∥∥∥∥
Λ−1

mk,tk,h
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=

∥∥∥∥∥
M∑

m′=1

uup
nk,h

(m′)

∥∥∥∥∥
Λ−1

mk,tk,h

=

∥∥∥∥∥
M∑

m′=1

uup
nk,h

(m′) +

M∑
m′=1

uloc
nk,h

(m′)−
M∑

m′=1

uloc
nk,h

(m′)

∥∥∥∥∥
Λ−1

mk,tk,h

≤

∥∥∥∥∥
M∑

m′=1

uup
nk,h

(m′) +

M∑
m′=1

uloc
nk,h

(m′)

∥∥∥∥∥
Λ−1

mk,tk,h︸ ︷︷ ︸
(I)

+

∥∥∥∥∥
M∑

m′=1

uloc
nk,h

(m′)

∥∥∥∥∥
Λ−1

mk,tk,h︸ ︷︷ ︸
(II)

, (C.8)

where the first and the second steps are by the definition of ητ,h and uup
nk,h

, and the last step is by triangle inequality.

For (I), we have that with probability at least 1− δ, for all k,

(I) =

∥∥∥∥∥
nk∑
τ=1

ϕτ,hητ,h

∥∥∥∥∥
Λ−1

mk,tk,h

=

∥∥∥∥∥
nk∑
τ=1

ϕτ,hητ,h

∥∥∥∥∥
Λ−1

mk,nk+1,h

≤
√
1 + αM

∥∥∥∥∥
nk∑
τ=1

ϕτ,hητ,h

∥∥∥∥∥
(Λall

nk+1,h)
−1

≤
√
1 + αM ·

√√√√4H2

[
log

((
K + λ

λ

)d/2
)

+ log

(
1

δ

)]
. (C.9)

Here the first inequality is given by (B.2) in Lemma B.3. The second inequality is derived by applying Theorem E.3 with
|ητ,h| ≤ 2H (according to Line 23), and

det(Λall
nk+1,h) ≤ (∥Λall

nk+1,h∥2)d ≤

∥∥∥∥∥
nk∑
τ=1

ϕτ,hϕ
⊤
τ,h + λI

∥∥∥∥∥
2

≤ (K + λ)d.

For (II), first note that for any m ∈ [M ], Lemma B.3 implies

Λmk,tk,h ⪰ λI+

M∑
m′=1

Λup
m′,nk(mk),h

≥ 1

α
Λloc

m,nk(mk),h
.

It follows that for any m′ ∈ [M ],

Λmk,tk,h ⪰
λI

2
+

1

2α
Λloc

m′,nk(mk),h
=

1

2α

(
αλI+Λloc

m′,nk(mk),h

)
,

and thus ∥∥uloc
nk,h

(m′)
∥∥
Λ−1

mk,tk,h

≤
∥∥uloc

nk,h
(m′)

∥∥
1
2α

(
αλI+Λloc

m′,nk(mk),h

)−1

=
√
2α
∥∥uloc

nk,h
(m′)

∥∥(
αλI+Λloc

m′,nk(mk),h

)−1

≤
√
2α

√√√√4H2

[
log

((
K + αλ

αλ

)d/2
)

+ log

(
1

δ

)]
,
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where the last step holds by Theorem E.3, the definition of uloc
nk,h

(m′) from (C.7), and the definition of Λloc
m′,nk(mk),h

from
(A.3). We then conclude that

(II) ≤ 2M
√
αH

√√√√log

((
K + αλ

αλ

)d/2
)

+ log

(
1

δ

)
. (C.10)

Combining (C.8), (C.9) and (C.10), we conclude that∥∥∥∥∥∥
tk−1∑

τ=1,τ∈Dser
nk,h

ϕτ,h [V (sτ,h+1)− PhV (sτ,h, aτ,h)]

∥∥∥∥∥∥
Λ−1

mk,tk,h

≤ 2
(
M
√
α+
√
1 +Mα

)
·H ·


√√√√log

((
K + αλ

αλ

)d/2
)

+ log

((
K + λ

λ

)d/2
)

+ 2 log

(
1

δ

) .

C.7 Proof of Lemma B.5

With Lemma B.4 established, the proof of Lemma B.5 relies on the classical ℓ∞ covering net argument of the linear MDPs,
developed by Lemma B.3 in Jin et al. (2020).

Lemma C.1 (Lemma D.6, Jin et al. 2020). Let V denote a class of functions from S to R such that each V ∈ V can be
parametrized as

V (·) = max
a∈A

[
ϕ(·, ·)⊤w + β ·

√
ϕ(·, ·)⊤Λ−1ϕ(·, ·)

]
[0,H−h+1]

,

where the parameters (w,Λ, β) satisfy ∥w∥ ≤W , 0 ≤ β ≤ B, and Λ ⪰ λI for some λ > 0. Suppose ∥ϕ(·, ·)∥ ≤ 1. The
ϵ-covering number of V with respect to the ℓ∞ norm satisfies

log(Nϵ) ≤ d log(1 + 4W/ϵ) + d2 log[1 + 8d1/2B2/(λϵ2)].

We can now prove Lemma B.5 using Lemma B.4 and Lemma C.1.

Proof of Lemma B.5. We first fix an ϵ-net of V . For each V ∈ V , there exists some Ṽ in the ϵ-net, such that ∥V − Ṽ ∥∞ ≤ ϵ.
Applying a union bound over the ϵ-net and Lemma B.4, we get that with probability at least 1− δ, for each V ∈ V ,∥∥∥∥∥∥

tk−1∑
τ=1,τ∈Dser

tk,h

ϕτ,h [V (sτ,h+1)− PhV (sτ,h, aτ,h)]

∥∥∥∥∥∥
2

Λ−1
mk,tk,h

≤ 8
(
M
√
α+
√
1 +Mα

)2
·H2 ·

(
log

((
K + αλ

αλ

)d/2
)

+ log

((
K + λ

λ

)d/2
)

+ 2 log

(
Nϵ

δ

))

+ 2

∥∥∥∥∥∥
tk−1∑

τ=1,τ∈Dser
tk,h

ϕτ,h [∆V (sτ,h+1)− Ph∆V (sτ,h, aτ,h)]

∥∥∥∥∥∥
2

Λ−1
mk,tk,h

≤ 8
(
M
√
α+
√
1 +Mα

)2
·H2 ·

(
log

((
K + αλ

αλ

)d/2
)

+ log

((
K + λ

λ

)d/2
)

+ 2 log

(
Nϵ

δ

))

+
8k2ϵ2

λ
,
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where the last step follows from ∥∆V ∥∞ = ∥V − Ṽ ∥∞ ≤ ϵ and Λmk,tk,h ⪰ λI. Finally, by Lemma B.2, we have
∥wm,k,h∥ ≤ 2H

√
dk/λ . Plugging in the bound for Nϵ from Lemma C.1, we get∥∥∥∥∥∥

tk−1∑
τ=1,τ∈Dser

tk,h

ϕτ,h [V (sτ,h+1)− PhV (sτ,h, aτ,h)]

∥∥∥∥∥∥
2

Λ−1
mk,tk,h

≤ 8
(
M
√
α+
√
1 +Mα

)2
·H2 · ι′ + 8k2ϵ2

λ
,

where

ι′ :=
d

2
log

(
K + αλ

αλ

)
+

d

2
log

(
K + λ

λ

)
+ 2 log

1

δ
+ d log

(
2 +

8H2dk

λϵ2

)
+ 2d2 log

(
1 +

8
√
dβ2

λϵ2

)
.

We choose ϵ = dH/k, and conclude that∥∥∥∥∥∥
tk−1∑

τ=1,τ∈Dser
tk,h

ϕτ,h [V (sτ,h+1)− PhV (sτ,h, aτ,h)]

∥∥∥∥∥∥
Λ−1

mk,tk,h

≤ C(M
√
α+
√
1 +Mα)H

√
ι+ CdH/

√
λ,

where

ι = d log

(
K + αλ

αλ

)
+ d log

(
K + λ

λ

)
+ log

1

δ
+ d log

(
2 +

8k3

λ

)
+ d2 log

(
1 +

8β2k2

λd1.5H2

)
.

C.8 Proof of Lemma 6.4

Lemma C.2 (Repeat of Lemma 6.4). Under the same assumption of Theorem 5.1, it holds that

K∑
k=1

min

{
Vmk,tk(mk),1(sk,1)− V

πmk,k

1 (sk,1),

H∑
h=1

2β
√

ϕ(sk,h, ak,h)Λ
−1
mk,tk,h

ϕ(sk,h, ak,h)

}
≤ O(β

√
1 +MαH

√
dK log (2dK/min{1, λ}δ)).

Proof of Lemma 6.4. Suppose that agents communicate with the server at episodes 0 = k0 < k1 < · · · < kN = K + 1.
Here k0 = 0 and kN = K+1 are imaginary episodes created for notational convenience. The first step is to use a reordering
trick to argue that it suffices to consider the case where there is only one active agent in the episodes [ti, ti+1 − 1]. That is,
mti = mti+1 = · · · = mti+1−1.

To see why this is the case, suppose an agent m communicates with the server at some episode k1 and k2. Then the order of
actions between k1 and k2 will not affect agent m’s covariance matrix and dataset at episode k1 or k2, and thus will not affect
the estimated Q-function updated at the end of eposide k1 and k2. Furthermore, agent m’s participation in those episodes
between [k1 + 1, k2 − 1] will also not affect the other agents’ estimated Q-functions since agent m does not upload any new
trajectory. Given the above rationale, we can reorder all the episodes in a way such that each agent communicates with the
server and keeps participating until the next agent kicks in to communicates with the server. Note that the fundamental
reason is that each agent only performs local data update between two communications, which does not affect any other
agents. Consequently, this reordering is always valid under the current communication protocol of Algorithm 2.

From above, in the following we only consider the case where the communication episodes are 0 = k0 < k1 < · · · < kN =
K + 1, and mti = mti+1 = · · · = mti+1−1 for each i = 0, · · · , N − 1. The summation of bonus can thus be rephrased as

K∑
k=1

min

{
Vmk,tk(mk),1(sk,1)− V

πmk,k

1 (sk,1),

H∑
h=1

2β
√

ϕ(sk,h, ak,h)Λ
−1
mk,tk,h

ϕ(sk,h, ak,h)

}
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≤ 2β

N−1∑
i=0

ki+1−1∑
k=ki+1

H∑
h=1

√
ϕk,hΛ

−1
mk,tk,h

ϕk,h︸ ︷︷ ︸
I

+ 2β

N−1∑
i=1

min

{
Vmki

,tki
,1(ski,1)− V

πmki
,ki

1 (ski,1),

H∑
h=1

√
ϕki,hΛ

−1
mki

,tki
,hϕki,h

}
︸ ︷︷ ︸

II

. (C.11)

To bound I, by (B.2) in Lemma B.3 it holds that

I ≤
N−1∑
i=0

ki+1−1∑
k=ki+1

H∑
h=1

√
1 +Mα ∥ϕk,h∥(Λall

k,h)
−1 ≤

√
1 +Mα

K∑
k=1

H∑
h=1

∥ϕk,h∥(Λall
k,h)

−1 . (C.12)

To bound II, we apply a refined analysis tailored from (He et al., 2022a). Specifically, we define the following indices of
episode

K̃i := min
{
k ∈ [K] : ∃h ∈ [H] s.t. det(Λall

k,h) ≥ 2iλd
}
,

and define N ′ to be the largest integer such that K̃N ′ is non-empty. For each interval [K̃i, K̃i+1), consider an arbitrary agent
m ∈ [M ]. Suppose that during this interval agent m communicates with the server at episodes ki,1 < ki,2 < · · · < ki,z .
Note that here we assume there are at least two communication rounds for m. The case of 0 and 1 communication round
is quite straightforward, as will be shown soon. Now, for j = 2, · · · , z, agent m is active at episode ki,j−1 and ki,j . As a
result, we can apply (B.2) in Lemma B.3 with our reordering trick, and get that

H∑
h=1

∥∥ϕki,j ,h

∥∥
Λ−1

m,ki,j ,h

≤
H∑

h=1

∥∥ϕki,j ,h

∥∥
Λ−1

m,ki,j−1+1,h

≤
√
1 +Mα

H∑
h=1

∥∥ϕki,j ,h

∥∥
(Λall

ki,j−1+1,h)
−1 ,

where the first step is by Λ−1
m,ki,j ,h

⪯ Λ−1
m,ki,j−1+1,h. Furthermore, by the definition of K̃i, it holds that

det(Λall
K̃i+1−1,h

)/ det(Λall
ki,j−1+1,h) ≤ 2, which implies

H∑
h=1

∥∥ϕki,j ,h

∥∥
Λ−1

m,ki,j ,h

≤
√
2
√
1 +Mα

H∑
h=1

∥∥ϕki,j ,h

∥∥
(Λall

K̃i+1−1,h
)−1 ≤

√
2
√
1 +Mα

H∑
h=1

∥∥ϕki,j ,h

∥∥
(Λall

ki,j ,h
)−1 . (C.13)

The second step in the above holds since ki,j ≤ K̃i+1 − 1. For those episodes ki,1 (i.e. j = 1), we can trivially bound the
term as max[Vmki

,tki
,1(·)− V

πmki
,ki

1 (·)] ≤ 2H . Together with (C.11) and (C.13), we have

K∑
k=1

min

{
Vmk,tk(mk),1(sk,1)− V

πmk,k

1 (sk,1),

H∑
h=1

2β
√

ϕ(sk,h, ak,h)Λ
−1
mk,tk,h

ϕ(sk,h, ak,h)

}

≤ 2HN ′ + 2β
√
2(1 +Mα)

N−1∑
i=0

ki+1−1∑
k=ki

H∑
h=1

∥ϕk,h∥(Λall
k,h)

−1

≤ 2HN ′ + 4β
√
1 +MαH

√
dK log (2dK/(min{1, λ}δ)),

where the last step follows from the standard elliptical potential argument (Abbasi-Yadkori et al., 2011; Jin et al., 2020). To
bound N ′, by Assumption 3.1, it holds that

det(Λall
k,h) ≤ (λ+K)d,

and therefore N ′ ≤ dH log(1 +K/λ). This finishes the proof.
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D Lower bound

To prove the lower bound, we construct a series of hard-to-learn MDPs as follows. For each hard-to-learn MDP, the state
space S consists of d/2 different states S = {s1, ..., sd/2−2, g0, g1}, where {s1, ..., sd/2−2} are possible initial states and
{g0, g1} are absorbing states. The action space A only consists of two different action {a0, a1}. For each stage, h ∈ [H],
the agent will always receive reward 1 at state g0 and reward 0 at other states. For the stochastic transition process, the initial
state si will transit to the absorbing states g0 or g1, and stay at the absorbing state later. Since the state and action spaces are
finite, these hard-to-learn tabular MDPs can be further represented as linear MDPs with dimension |S| × |A| = d.

Now, for each initial state si, the selection of action a ∈ {a0, a1} can be seemed as a 2-armed bandits problem with
Bernoulli reward (0 for absorbing stage g1 and H − 1 for absorbing stage g0) and we have the following Lemmas:

Lemma D.1 (Theorem 9.1 in Lattimore & Szepesvári 2020). For any 2-armed Bernoulli bandits problem, there exist an
algorithm (e.g., MOSS algorithm in Section 9.1 of Lattimore & Szepesvári (2020)) with expected regret E[Regret(T )] ≤
40
√
T .

The original Theorem 9.1 holds for multi-armed bandit with sub-Gaussian noise and we only need the results for 2-armed
Bernoulli bandits.

Lemma D.2 (Lemma D.2 in Wang et al. 2020). For any algorithm Alg and T , there exist a 2-armed Bernoulli bandits such
that the regret is lower bounded by E[Regret(T )] ≥

√
T/75.

The lemma in Wang et al. (2020) extended the result for Gaussian bandit (Lattimore & Szepesvári, 2020) to Bernoulli
bandits and holds for general multi-arm bandit problem. In this lower bound, we only need the results for 2-armed bandits.

Now, we start to prove the Theorem 5.5, which is an extension of the lower bound results in Wang et al. (2020, Theorem 2)
and He et al. (2022a, Theorem 5.3) from bandits to MDPs.

Proof of Theorem 5.5. Now, we divide the K episodes to d/2 different epochs. For each epoch i (from episodes 2(i −
1)K/d+1 to episode 2iK/d), we set the initial state as si and letting each agent m ∈ [M ] be active for 2K/(dM) different
rounds (where we assume 2K/(dM) is an integer for simplicity). Now, we start to analyse the regret E[Regreti,Algi

] for
each epoch i.

For each epoch i and any algorithm Alg for multi-agent Reinforcement Learning, we construct the auxiliary Algi as follows:
For each agent m ∈ [M ], it performs Alg until there is a communication between the agent m and the server after the
epoch i− 1. After the communication after epoch i− 1, the agent m remove all previous information and perform the used
Algorithm in Lemma D.1(e.g., MOSS algorithm in Lattimore & Szepesvári (2020)).

In this case, for each agent m ∈ [M ], Algi can only communicate with the server before epoch i, which can only provide
information about previous states s1, .., si−1. Since the agent can not receive any information for state si from other agents,
the performance of Algi in epoch i will reduce to a single agent bandit algorithm.

Now, we consider the hard-to-learn Bernoulli bandits in Lemma D.2 with rounds T = 2K/(dM). Since Algi reduces to a
single agent bandit algorithm with Bernoulli reward (0 or H − 1), Lemma D.2 implies that the expected regret for agent m
with Algi is lower bounded by

E[Regreti,m,Algi
] ≥ (H − 1)

√
T/75. (D.1)

Taking the sum of (D.1) over all agents m ∈ [M ], we obtain

E[Regreti,Algi
] =

M∑
m=1

E[Regreti,m,Algi
] ≥M(H − 1)

√
T/75. (D.2)

For each agent m ∈ [M ], let δi,m denote the probability that agent m will communicate with the server during epoch i.
Notice that before the communication, Algi has the same performance as the original Alg and the corresponding regret
of Algi is upper bounded by E[Regreti,m,Alg]. After the communication during epoch i, Algi perform the near optimal
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algorithm in Lemma D.1 and provides a 40(H − 1)
√
T regret guarantee. Combining these results, the expected regret for

agent m with Algi is upper bounded by

E[Regreti,m,Algi
] ≤ E[Regreti,m,Alg] + 40δi,m(H − 1)

√
T . (D.3)

Taking the sum of (D.3) over all agents m ∈ [M ], we obtain

E[Regreti,Algi
] =

M∑
m=1

E[Regreti,m,Algi
]

≤
M∑

m=1

E[Regreti,m,Alg] +

( M∑
m=1

δm

)
40δi,m(H − 1)

√
T

= E[Regreti,Alg] + 40δi(H − 1)
√
T , (D.4)

where δi =
∑M

m=1 δi,m is the expected communication complexity during epoch i. For the regret bounds in (D.2) and (D.4),
after taking an summation over all epoch i ∈ [d/2], we have

d/2∑
i=1

E[Regreti,m,Algi
] ≥ dM(H − 1)

√
T/150,

d/2∑
i=1

E[Regreti,m,Algi
] ≤

d/2∑
i=1

E[Regreti,Alg] + 40δi(H − 1)
√
T = E[RegretAlg] + 40δ(H − 1)

√
T ,

where δ =
∑d/2

i=1 δi,m denotes the expected communication complexity. Combining these results, for any algorithm Alg
with expected communication complexity δ ≤ dM/12000 = O(dM), we have

E[RegretAlg] ≥ dM(H − 1)
√
T − 40δ(H − 1)

√
T ≥ dM(H − 1)

√
T/2 = Ω(H

√
dMK).

This finishes the proof of Theorem 5.5.

E Auxiliary Lemmas

Lemma E.1 (Lemma D.1 in Jin et al. 2020). Let Λt = λI+
∑t

τ=1 ϕτϕ
⊤
τ where ϕt ∈ Rd for all τ , and λ > 0. Then

t∑
τ=1

ϕ⊤
τ Λ

−1
t ϕτ ≤ d.

Lemma E.2 (Lemma 12 in Abbasi-Yadkori et al. (2011)). Suppose A,B ∈ Rd×d are positive definite matrices such that
A ⪰ B. Then for any x ∈ Rd, ∥x∥A ≤ ∥x∥B ·

√
det(A)/ det(B).

E.1 Concentration Inequalities

Theorem E.3 (Hoeffding-type inequality for self-normalized martingales (Abbasi-Yadkori et al., 2011)). Let {ηt}∞t=1 be a
real-valued stochastic process. Let {Ft}∞t=0 be a filtration, such that ηt is Ft-measurable. Assume ηt | Ft−1 is zero-mean
and R-subgaussian for some R > 0, i.e.,

∀λ ∈ R, E
[
eληt|Ft−1

]
≤ eλ

2R2/2.

Let {ϕt}∞t=1 be an Rd-valued stochastic process where ϕt is Ft−1-measurable. Assume Λ0 is a d × d positive definite
matrix, and let Λt = Λ0 +

∑t
s=1 ϕsϕ

⊤
s . Then, for any δ > 0, with probability at least 1− δ, for all t > 0,∥∥∥∥ t∑

s=1

ϕsηs

∥∥∥∥2
Λ−1

t

≤ 2R2 log

(
det(Λt)

1/2 det(Λ0)
−1/2

δ

)
.
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Lemma E.4 (Lemma D.4 in Jin et al. 2020). Let V be a function class such that any V ∈ V maps from S → R and
∥V ∥∞ ≤ R. Let {Ft}∞t=0 be a filtration. Let {st}∞t=1 be a stochastic process in the space S such that st isFt-measurable. Let
{ϕ}∞t=0 be an Rd-valued stochastic process such that ϕt is Ft−1-measurable and ∥ϕ∥2 ≤ 1. Let Λk = λI +

∑k−1
t=1 xtϕ

⊤
t .

Then for any δ > 0, with probability at least 1− δ, for any k, and any V ∈ V , we have∥∥∥∥ k−1∑
t=1

ϕt [V (st)− E [V (st) | Ft−1]]

∥∥∥∥2
(Λk)−1

≤ 4R2

[
d

2
log

(
k + λ

λ

)
+ log

NV
ϵ

δ

]
+

8k2ϵ2

λ
,

where NV
ϵ is the ϵ-covering number of V with respect to the ℓ∞ distance.
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