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Abstract

LLM agents are advancing in handling web-
based tasks. However, most LLM web agents
rely on prompting general-purpose, proprietary
models like GPT-4, which are not specifically
trained to process web languages (e.g., HTML)
or perform long-horizon planning. We explore
an alternative paradigm of developing special-
ized web agents, namely supervised fine-tuning
of open-source LLLMs using production-scale
workflow data. This strategy not only reduces
serving costs but also substantially improves
the empirical results—our agent achieves state-
of-the-art action generation performance on the
Mind2Web benchmark and improves the task
success rate by 7.3% over existing prompting-
based agents on WebArena. We further per-
form detailed ablation studies on various de-
sign choices and provide insights into LLM
selection, training recipes, context window op-
timization, and the effect of dataset sizes.

1 Introduction

Large language model (LLM) agents have ad-
vanced significantly in web navigation. They can
carry out user-specified tasks in multiple steps by
reasoning on their own what actions to take and
what external resources to interface with. Recent
studies (Zheng et al., 2024; Lai et al., 2024; Zhang
et al., 2024; Song et al., 2024) have shown that,
with better planning and exploration strategies,
LLM agents can independently solve various web
tasks ranging from simple navigation to more com-
plex tasks, such as booking flights or restaurants.
Despite these improvements, the performance
of existing web agents on research benchmarks
remains significantly below human levels (Deng
et al., 2023; Zhou et al., 2024; Drouin et al.,
2024). One potential reason is their depen-
dence on general-purpose LLMs. Indeed, all top-
performing agents like WebPilot (Zhang et al.,
2024), AWM (Wang et al., 2024), and SteP (Sodhi

et al., 2024) rely on prompting proprietary mod-
els like GPT-4 (OpenAl, 2024a). These general-
purpose LLMs are not optimized for interpreting
web contexts such as HTML,; their pretraining and
alignment processes do not address navigation-
related challenges; and their proprietary nature
presents a major obstacle in adapting them to web
environments via continual training.

In this work, we explore an alternative
paradigm—we develop specialized web agents by
fine-tuning open-source LLMs with large-scale
real-world workflow data' (Figure 1). Through
extensive experiments, we show that this approach
not only boosts the web understanding and plan-
ning abilities of LLMs, achieving state-of-the-art
results on various benchmarks, but also allows us
to obtain agent models smaller than proprietary
LLMs, reducing the serving costs. The primary
contribution of this research is to demonstrate the
feasibility of fine-tuning LLLM agents and provide
new empirical understandings of the critical compo-
nents to enhance the agent’s planning capabilities.

Specifically, we collect a set of proprietary work-
flow data representing action sequences executed
by real users in real web environments. This dataset
encompasses a large spectrum of websites (over
250 domains and 10,000 subdomains), task objec-
tives, task difficulty, and task length. Each step in
a workflow features not only the raw HTML-DOM
of the website but also a comprehensive documen-
tation of the action, including natural language de-
scription, mouse or keyboard operation, and the
CSS selector of the target element. We format the
data into a next-step prediction task and fine-tune
open-source LLMs via LoRA (Hu et al., 2022).

Using the production-scale dataset, we develop
WorkflowAgent, the first family of specialized

"Due to privacy concerns, we restrict access to our pro-
prietary dataset. However, we will release our preprocessing,
training, and inference code (see supplementary material), as
well as agent models trained on open-source data.
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Figure 1: Most existing web agents rely on general-purpose, proprietary LLms like GPT-4 and extensive prompt
engineering. We alternatively develop specialized agents by fine-tuning smaller open-source LL.Ms using high-
quality, real-world workflow data. This boosts LLM’s navigation and planning capacity and reduces serving costs.

LLM agents capable of directly generating the next
step based on the website’s DOM and action history.
This is in contrast with previous multi-stage agents
that first narrow down to a set of candidate elements
using a ranking model and then select one of the
candidates using a actor model (Deng et al., 2023).
To evaluate the capacity and generalization ability
of WorkflowAgent, we test it on public benchmarks
without any further task-specific adaptation. Work-
flowAgent achieves state-of-the-art direct genera-
tion performance on Mind2Web (Deng et al., 2023),
with step success rate surpassing the baselines by
5-10% across all test sets. On WebArena (Zhou
etal., 2024), we improve the previous best task suc-
cess rate from 45.7% to 53%, marking the highest
performance among text-only LLM agents.

Beyond the empirical results, our work also of-
fers actionable insights that can inform future re-
search on web agents: (1) we identify an effec-
tive HTML preprocessing strategy that balances
between preserving essential information and mini-
mizing context length; (2) we provide a thorough
analysis on various design choices in fine-tuning,
such as LLM backbone and context window se-
lection; (3) we illustrate how fine-tuning improves
agent performance as we scale up the dataset.

In summary, our work highlights how targeted
fine-tuning can yield specialized and cost-effective
web agents. We hope our study will reinforce inter-
est in specializing LLMs for challenging real-world
applications. Although the focus of this work is
fine-tuning, WorkflowAgent can be extended to in-
corporate advanced search (Koh et al., 2024; Wang
et al., 2024) or planning frameworks (Yao et al.,
2022; Madaan et al., 2023; Shinn et al., 2023) to fur-
ther enhance the capabilities of LLM web agents.

2 Related Work

Prompting-based agents. The majority of web
agent works use existing LLMs and propose dif-
ferent prompting strategies to improve action pre-

diction. One line of research exploits previous ex-
perience via self-feedback (Sun et al., 2023) AND
in-context demonstrations (Fu et al., 2024; Zheng
et al., 2024; Wang et al., 2024; Ou et al., 2024;
Shen et al., 2024b). Other works focus on encour-
aging exploration using external evaluators (Pan
et al., 2024), synthesized instructions (Murty et al.,
2024b), and advanced search algorithms (Sodhi
et al., 2024; Koh et al., 2024; Zhang et al., 2024).
These methods rely heavily on the quality of the
LLM used. Proprietary models like GPT-4 gen-
erally outperform open-source LLMs. However,
fine-tuning proprietary LLMs are restricted to be-
ing done through APIs and can be costly and chal-
lenging. This implies an opportunity for enhancing
open-source LLMs to match proprietary agents.

Fine-tuned agents. Compared to developing bet-
ter prompting frameworks, less attention has been
given to optimizing the LLMs themselves. Due to
the difficulty of directly generating a single target
element from the raw HTML, which often contains
thousands of elements, MindAct (Deng et al., 2023)
fine-tunes a small LM to filter the web elements
and a larger LM to select from the filtered ele-
ments. AutoWebGLM (Lai et al., 2024) fine-tunes
a single ChatGLM3 6B (GLM et al., 2024) using a
combination of curriculum learning, reinforcement
learning, and rejection sampling. NNetnav (Murty
et al., 2024a), a concurrent work to ours, leverages
synthetic demonstrations collected by LLMs for
fine-tuning. Despite the complicated training and
inference procedures, these methods underperform
GPT-4-based agents. In contrast, our work shows
that given sufficient high-quality workflow data,
fine-tuning a single LLM can achieve strong per-
formance, even outperforming GPT-4 and the more
powerful ol-preview (OpenAl, 2024c).

Beyond the aforementioned work, there is an
earlier line of research that fine-tunes LL.Ms for
HTML question-answering tasks (Gur et al., 2022;
Nakano et al., 2022; Liu et al., 2023). However,



these models cannot be used to generate a sequence
of actions based on the user objective.

Lastly, we note that there is an emerging line
of research for multi-modal web agents that use
screenshots (Hong et al., 2023; Cheng et al., 2024,
Furuta et al., 2024; He et al., 2024; JaceAl, 2024).
Due to the lack of effective visual preprocessing
schemes, we focus purely on text-based agents
in this work and thus do not compare with multi-
modal methods in our experiments. We leave devel-
oping multi-modal WorkflowAgent as future work.

3  WorkflowAgent

In this section, we overview the general setup of
LLM web agents and detail our method to develop
specialized agents from open-source LLMs.

3.1 General Setup

We consider solving a web-based task as a sequen-
tial decision-making process guided by a high-level
objective. For each task, the user specifies an ob-
jective and a starting web page. Then, at every
step, the agent outputs an action based on the task
objective, the current web page, and the history.

Formally, denote the user objective as q. The
web environment is governed by a transition func-
tion 7' that can evolve over time. The agent is
instantiated by a language model L. At each
time step ¢, the agent observes o; produced by
the environment state s; and observes the his-
tory hy = H(01.4—1,a1.4—1). It outputs an action
a; = L(q, 04, hy), which is executed in the envi-
ronment, and the state changes correspondingly
st+1 = T'(sy, ar). This iterative process stops when
the agent issues a stop signal, or it has reached a
predefined maximum number of steps.

For single-modal, text-only agents, the obser-
vation oy typically consists of the website’s URL,
the HTML-DOM (Object Model for HTML, which
defines HTML elements and their properties, meth-
ods, and events), and potentially the accessibility
tree (a representation that can be understood by as-
sistive technologies like screen readers). Since the
raw HTML-DOM is often long and contains redun-
dant structural information, most methods employ
pruning strategies, which could be as simple as
retaining a fixed set of HTML tags and attributes
or more complex ones like LLM-based element
ranking and filtering (Deng et al., 2023).

The action a; emulates the keyboard and mouse
operations available on web pages. The most gen-

eral action space in existing work consists of ele-
ment operations, such as clicking, typing, and key
combination pressing; tab actions, such as opening,
closing, and switching between tabs; navigation
actions, such as going forward and backward in the
browsing history (Zhou et al., 2024).

3.2 Collecting Production-Scale Data

We collected a large set of real-world, user-
annotated, proprietary data through a software that
streamlines the creation of step-by-step guides for
web-based tasks. This software allows users to
record their interactions with the web through a
browser extension and converts the interactions
into well-annotated instructions. For double-blind
review, we omit the name of the software for
now. The collected dataset encompasses diverse
domains, including social platforms like Facebook
and LinkedIn; shopping sites like Amazon and
Shopify; productivity tools like Notion and Cal-
endley; customer relationship management tools
like HubSpot and Salesforce; and many others.

Each workflow features a high-level user objec-
tive and a step-by-step documentation of the action
sequence to achieve the task. The objective spans
a wide range of topics, such as “add a user in a
Salesforce" or “invite someone to manage Face-
book ad accounts". Each step contains the current
web page’s URL, raw HTML-DOM, a natural lan-
guage description of the action performed, the type
of action, and the autogenerated CSS selector to
identify the action target.

The dataset includes three types of actions:
mouse_click_action, keyboard_sequence_action
(typing a string of characters), and keyboard_
combination_action (pressing multiple keys, e.g.,
ctrl+c). Note that there is no scroll action because
the full DOM is captured and accessible from a
system-level perspective. To maintain data quality,
we remove workflows with invalid selectors.

The resulting dataset is at production scale: us-
ing raw data collected over a two-month period, we
extract workflow data from more than 250 domains
and 10,000 subdomains with an average task length
of 11 steps, which correspond to about 6 billion
training tokens. This large-scale, real-world dataset
is unmatched in prior web agent research.

3.3 DOM Preprocessing

The observation space of WorkflowAgent consists
mainly of the URL and HTML-DOM, which pro-
vides the agent with all structural and content infor-



mation about the web page necessary to generate
the next step. In particular, while a drop-down
menu may not be visible on the website before ex-
pansion, the agent can detect the menu items from
the DOM and determine whether to click and ex-
pand it. We do not use accessibility tree because it
may lose information about the HTML elements,
such as the drop-down items, and does not general-
ize across different browsers and devices.

However, due to the dense information embed-
ded in it, the DOM of common websites can span
from 10K to 100K tokens, exceeding the context
window of prevailing open-source LLMs. To re-
duce the DOM sizes, we develop a preprocessing
procedure that maintains the essential structure and
content while eliminating redundant or disruptive
elements that could hinder LLM’s understanding.

Specifically, we utilize a tag-attribute white list
to retain only interactive elements and useful at-
tributes. As some attribute values can contain ran-
dom character sequences that do not provide useful
information, we propose a new detection method
that removes the attributes with character-to-token-
ratio smaller than 2, i.e., m < 2,
where s denotes the value string. Intuitively, if each
character in a string is encoded using a separate to-
ken, it is highly likely that the string is not seman-
tically meaningful. After pruning, we assign each
tag in the HTML with a unique ID by traversing
the HTML tree from bottom to top. More details
about preprocessing and analysis about tokenizer
pruning can be found in Appendix A.1.

We restrict the action space of WorkflowAgent
to the three types of operations specified in Sec-
tion 3.2. To facilitate fine-tuning, we rewrite each
step into five lines as follows:

1.

Description: Click the “Menu" button to browse all
food options

Action: mouse_click_action

Node: 832

Target: <svg class="open-hamburger-icon"
node="832" role="img" >

The first line represents the current time step. The
second line is the natural language description of
the action, which can help LLMs to learn about the
rationale behind applying a specific action. The
third line is one of the three operations in the action
space. The fourth line is the unique ID assigned to
the target element. The last line details the HTML
tag and attributes, which can be directly obtained
from the processed DOM. In Appendix A.2, we
provide an example of a full workflow.

For the history, we consider only previous ac-
tions, omitting previous observations due to the
extensive length of DOMs. Thus, at each step, our
agent is given the task objective, URL, HTML-
DOM, and all previous actions in the above five-
line format. Its goal is to output the next action
a; = L(q, 04, a14—1) that completes the task.

3.4 Fine-Tuning with LoRA

After preprocessing, we divide the dataset into two
splits. The test set comprises of 1200 workflows.
We use the remaining workflows as fine-tuning data.
For each fine-tuning example, the label is a single
next-step instead of all remaining steps needed to
complete the task. The agent is trained to generate
all information in the five-line format, including
the natural language description.

To reduce fine-tuning cost, we opt for the pa-
rameter efficient LoRA (Hu et al., 2022) instead of
full fine-tuning, since we have not observed signifi-
cant performance gain by updating all parameters.
Based on empirical observations, we set the fine-
tuning epoch to 2, effective batch size to 32, LoRA
rank to 64 and « to 128. We use a cosine scheduler
with 30 warmup steps and a learning rate of 1e-4.

3.5 Exploring the Design Space

There are multiple design choices that might af-
fect the prediction accuracy, fine-tuning cost, and
inference latency. We focus on three aspects and
perform detailed ablation studies.

Pretrained LLM Selection. Intuitively, the qual-
ity of a fine-tuned web agent should be relevant
to the quality of the pretained LLM. We identify
two axes that are crucial to performance—model
architecture and model size—and explore seven
open-source LL.Ms spanning these axes: Llama 3.1
8B (Dubey et al., 2024), Mistral 7B (MistralAl,
2023), Mixtral 8x7B (MistralAl, 2024b), Qwen2
7B (Yang et al., 2024a), Qwen2 57B (Yang et al.,
2024a), Qwen2.5 14B (Team, 2024), Qwen2.5
32B (Team, 2024), and Codestral 22B (MistralAl,
2024a). We fine-tune these models with 1 billion
training tokens and evaluate their performance on
the test split of the dataset we collected.

Given that many of the evaluated LLMs have a
maximum context window of approximately 32K,
and the processed DOM can exceed this limit, we
divide the DOM sequentially into chunks that fit
into the context window. For fine-tuning, we use
the chunk that contains the correct target. For evalu-



Before Fine-Tuning

After Fine-Tuning

Model # Params
EM (%) Calibrated EM (%) EM (%) Calibrated EM (%)

Mistral-7B-Instruct-v0.3 7B 3.89 5.13 19.92 26.31
Qwen2-7B-Instruct 7B 6.06 7.92 29.34 38.72
Llama-3.1-Instruct-8B 8B 1.42 1.88 28.34 37.42
Qwen?2.5-14B-Instruct 14B 8.79 11.60 31.76 41.89
Codestral-22B-v0.1 22B 4.53 6.08 31.11 41.25
Qwen2.5-32B-Instruct 32B 10.02 13.21 32.98 43.51
Mixtral-8x7B-Instruct-v0.1  56B-A12B 7.35 9.82 28.38 37.49
Qwen2-57B-Al4-Instruct ~ 57B-A14B 5.72 7.51 31.02 40.10

Table 1: Performance of different LLMs fine-tuned on 1B workflow tokens on the test split of our proprietary dataset.
We highlight the best results for small/medium/large models. EM is short for Exact Match.

ation, we use the last part. Thus, there are tasks that
do not have the correct target in the DOM, i.e., the
tasks are unachievable. To reflect this, we report
two metrics: (1) exact match (EM) measures the
model’s ability to select exactly the same HTML
tag as the ground truth; (2) calibrated exact match
(CEM) measures the EM only on the set of achie-
veable examples. As we scale the context window,
these two metrics converge.

We report the performance of different LLMs
before and after fine-tuning in Table 1. Notably,
for all models, specialized fine-tuning drastically
improves the prediction accuracy. We also observe
performance gains as model size increases, €.g., the
CEM for Qwen2 57B is almost 2% higher than its
7B counterpart. However, fine-tuning larger mod-
els requires significantly more resources—while
Qwen2 7B can be fine-tuned using 8 H100 GPUs
in just one day, Qwen2 57B takes over a week
using the same hardware configuration. Overall,
the Qwen family demonstrates better performance
across small, medium, and large models.

Context Window Length. We evaluate the mod-
els with 65K context window to add additional con-
text and increase the rate of solvable tasks (Table 2).
On both Qwen2 and Qwen?2.5, scaling the context
window from 32K to 65K leads to approximately
2% performance boost for EM but approximately
2.5% performance drop for CEM, possibly because
it becomes harder to pick the correct target given
twice as many options to choose from. Besides,
using 65K context window increases the inference
time by approximately four times in practice.

Dataset Size. Lastly, we study the effect of fine-
tuning dataset size by sampling our training set
without replacement into smaller subsets and fine-
tune Qwen2 7B on them. Results are shown in
Table 3. Plotting on a log-linear scale, we observe

Model Context EM (%) CEM (%)
Qwen2 7B 32K 29.34 38.72
Qwen2 7B 65K 31.42 36.22
Qwen2.5 14B 32K 31.76 41.89
Qwen2.5 14B 65K 33.96 39.15
Qwen2.5 32B 32K 32.98 43.51
Qwen2.5 32B 65K 36.16 41.69

Table 2: Ablations on context window length.

# Train Tokens EM (%) CEM (%)
1B 29.34 38.72
3B 32.65 43.06
6B 34.96 46.42

Table 3: Ablations on dataset size. All settings are evalu-
ated with Qwen2-7B-Instruct and 32K context window.

that there is a roughly 2% performance boost when
we double our dataset size.

To sum up, our experiments reveal that (1) scal-
ing parameter count generally improves predic-
tion quality, but the latency and training time of
large LLMs can be prohibitive; (2) using longer
context window boosts prediction accuracy but in-
creases the inference time significantly; (3) the per-
formance also scales with the number of training
data. Based on these insights, we develop two
agents: WorkflowAgent-Small, fine-tuned from
Qwen?2 7B, and WorkflowAgent-Large, fine-tuned
from Qwen2.5 32B. Both agents leverage the full
6B-token dataset and 32K context window. While
WorkflowAgent-Large demonstrates better perfor-
mance in both internal and external evaluations,
the 7B WorkflowAgent-Small is cheaper to serve
at inference time, particularly when compared to
large-scale proprietary models.

4 Results

We evaluate WorkflowAgent on three web datasets:
static, text-based benchmarks, including our propri-
etary dataset and Mind2Web (Deng et al., 2023), as
well as the interactive benchmark WebArena (Zhou



Model EM (%) CEM (%)
Qwen2 7B 6.28 8.20
GPT-40 mini 12.60 13.26
GPT-40 15.24 16.02
WorkflowAgent-Small ~ 34.96 46.42
WorkflowAgent-Large ~ 37.67 49.67

Table 4: WorkflowAgent v.s. non-fine-tuned, general-
purpose baselines on the full test set with 32K context.

Models EM (%) CEM (%)
ol-mini 17.40 18.32
ol-preview 22.60 23.79
GPT-40 mini 13.80 14.53
GPT-40 16.60 17.96
WorkflowAgent-Small ~ 47.60 50.11
WorkflowAgent-Large 50.00 52.60

Table 5: Comparing WorkflowAgent with OpenAl base-
lines on 500 test samples with 128K context window.

et al., 2024). To evaluate the generalization ability
of WorkflowAgent, we do not perform any task-
specific adaptation for Mind2Web and WebArena,
even when additional training data is available. Re-
ported results are single-run due to cost constraints.

4.1 Proprietary Dataset

We first compare the performance of WorkflowA-
gent with general-purpose baselines on our pro-
prietary test data. We consider the non-fine-tuned
Qwen2 7B, GPT-40, and GPT-40 mini. We use
in-context demonstrations to prompt them to gener-
ate actions in the same five-line format as defined
in Section 3.3. All OpenAl baselines in this work
follow the prompt in Appendix A.3.2.

Results on the test workflows are shown in Ta-
ble 4. WorkflowAgent significantly outperforms
the proprietary GPT-40 and 40 mini, showing
the benefit of specialized fine-tuning over using
general-purpose LLMs. Moreover, while the non-
fine-tuned Qwen?2 performs extremely poorly, fine-
tuning with our dataset (WorkflowAgent-Small)
boosts its performance by nearly 6 times, which
highlights the importance of domain-specific data.

We also compare with OpenAl ol series (Ope-
nAl, 2024c), which have better planning ability.
Due to API call limitations, we subsample 500
workflows for evaluation. As shown in Table 5,
ol-preview performs the best among all general-
purpose baselines. However, WorkflowAgent still
outperforms it by a wide margin. It is important
to note that WorkflowAgent-Small only has 7B
parameters, while WorkflowAgent-Large has 32B
parameters In contrast, most proprietary baselines
are typically larger in size and require higher in-

ference costs. This makes WorkflowAgent a better
choice in terms of accuracy, latency, and cost.

4.2 Mind2Web

Mind2Web (Deng et al., 2023) features a real-world
web tasks, such as booking a hotel on Airbnb. At
each step, the agent is asked to predict a single
action, consisting of an operation and the target
element. Performance is measured by element ac-
curacy (EA), which checks if the correct target is
selected; action F1 (AF1), which measures oper-
ation correctness like text input; step success rate
(SR), which evaluates whether both the target el-
ement and the operation are correct; and task SR,
indicating all steps are correct.

The original Mind2Web benchmark consider
two sets of baselines: (1) multi-stage, multi-choice
question-answering (QA) agents first use a pre-
trained element-ranking model to filter out 50 can-
didate elements from the full DOM and then use a
separate LLM to recursively select an action from
five candidates until one action is chosen; (2) single-
stage agents directly generate the operation and
the target based on the full DOM. The multi-stage
baselines generally show higher metrics than direct
generation models, as the element selection process
effectively filters out noise, simplifying the task.

We evaluate WorkflowAgent on both multi-stage
QA and direct generation. For the multi-stage set-
ting, we first use the pretrained Mind2Web ranker
to obtain the element ranking. Then, given the out-
put of WorkflowAgent, we traverse the sorted list
of HTML elements from top to bottom and stop
when the agent’s generated HTML element is a
subchild of the element. We then replace Work-
flowAgent’s prediction by the element. For direct
generation, we simply compare the output of our
agent to the ground truth action and target. As
stated earlier, we do not fine-tune our agents to test
their out-of-distribution generalization abilities.

We report results in Table 6. For the multi-stage
setting, WorkflowAgent-Large achieves the best
overall zero-shot performance. Our element accu-
racy and step success rate metrics are competitive
with the best fine-tuned baseline, HTML-T5-XL,
on cross-website and cross-domain tasks. However,
our task success rates are not satisfactory, which
is mainly due to the distribution differences be-
tween our training data and the Mind2Web data.
Upon inspection, we find that the primary failure
cases are (1) predicting the subchild element of
the ground truth instead of the ground truth; (2)



Cross-Task

Cross-Website Cross-Domain

Method
EA AF; StepSR Task SR EA AF; Step SR Task SR EA AF; Step SR Task SR
Uses M2W Train Set
MindAct (Flan-T5 ) 43.6 76.8 41.0 4.0 32.1 67.6 295 1.7 339 673 316 1.6
MindAct (Flan-T57) 534 757 503 . 39.2 67.1 353 1.1 39.7 672 373 2.7
MindAct (Flan-T5x ) 55.1 757 520 52 42.0 652 389 5.1 42.1 66.5 39.6 2.9
AWM-offline (GPT-4) 50.6 573 45.1 4.8 414 462 337 2.3 364 41.6 326 0.7
Multi- HTML-T5-XL 60.6 81.7 57.8 10.3  47.6 719 429 5.6 50.2 749 483 5.1
Stage QA Zr9-Shot
MindAct (GPT-4) 41.6 60.6 36.2 2.0 35.8 51.1 30.1 2.0 21.6 528 18.6 1.0
AWM-online (GPT-4) 50.0 564 43.6 4.0 42.1 451 339 1.6 409 463 355 1.7
WorkflowAgent Small (Ours) 42.6 50.1  39.7 449 50.1 41.6 0.6 44.1 514 414 0
WorkflowAgent Large (Ours) 53.5 529 51.2 534 528 513 2.3 53.3 547 512 0
Uses M2W Train Set
Flan-T5p 20.2 520 175 13.9 447 110 0 142 447 119 0.4
Direct Synapse (GPT-3.5) 34.0 - 30.6 24 29.1 - 24.2 0.6 29.6 - 26.4 1.5
Generation 7,., ¢
WorkflowAgent Small (Ours) 28.6 50.1  26.8 27.6 50.1 25.6 0 32.0 514 299 0
WorkflowAgent Large (Ours) 38.0 52.9 35.6 34.1 52.7 325 0 394 547 373 0

Table 6: WorkflowAgent achieves SOTA zero-shot results on Mind2Web. Numbers are bolded for each category.

predicting another element with identical function
but is different from the ground truth; and (3) our
agent tends to decompose type actions into click
followed by type actions. In many cases, we actu-
ally correctly predict the action description. These
situations can be addressed by improving the eval-
uation procedure, which we discuss later in this
section and in Appendix A.5.3.

As for direct generation, WorkflowAgent-Large
outperforms all existing baselines. Our step success
rates are 2-3 times higher than those achieved by
the fine-tuned Flan-T5 and show an improvement
of 5-10% over Synapse, which utilizes GPT-3.5.
We attribute WorkflowAgent’s strong performance
to the diversity and high quality of the workflows
in our dataset. Relatedly, the three test sets (Cross-
Task, Cross-Website, Cross-Domain) are designed
to capture different degrees of domain generaliza-
tion difficulty. Since we do not train on Mind2Web
data, the performance is similar across test sets.

As mentioned earlier, we observe limitations in
the Mind2Web evaluation that underestimate our
agent’s performance. In particular, the evaluation
strictly compares element IDs, but WorkflowAgent
might select a functionally identical element lo-
cated in a different part of the website (e.g., con-
sider clicking on the next page button vs. clicking
on the page number). To better reflect our agent’s
capabilities, we refine the evaluation by relaxing
the labels to include subchildren of the ground
truths and introducing an element attribute match-
ing step that compares not only the element IDs but
also tag and text attributes. More details and the
refined results are shown in Appendix A.5.3.

We observe an average of 8% increase in task
success rate and element accuracy for WorkflowA-

gent, showing the need for enhancing evaluation
of text-based benchmarks. It is worth noting again
that results in Table 6 follow the original evalu-
ation procedures to ensure fair comparison with
established baselines.

4.3 WebArena

WebArena (Zhou et al., 2024) features 812 tasks
across five domains: shopping, Reddit, GitLab,
content management (CMS), and online map. Un-
like the static Mind2Web, it implements a dynamic
environment and allows for assessing the functional
accuracy of action sequences. Since the WebArena
environment is implemented to accept only tar-
get element IDs specified in the accessibility tree,
whereas WorkflowAgent operates on DOM and
outputs targets in HTML, we employ GPT-40 to
map between the different representations.

More specifically, we develop a multi-agent sys-
tem that utilizes GPT-40 to simulate user inter-
actions with WorkflowAgent. The system con-
tains the following stages: (1) objective refinement:
GPT-40 adds details to the task objective to help
complete the task; (2) action generation: Work-
flowAgent outputs an action based on the current
website and action history; (3) action mapping:
GPT-40 maps the agent’s output in HTML to the
accessibility tree format and decides whether the
task is completed. More details about the pipeline
can be found in Appendix A.6.

We compare our performance with all top-
performing, text-only agents on the WebArena
leaderboard. We note that we do not include Au-
tonomous Web Agent (AWA) 1.5 (JaceAl, 2024)
as a baseline because it uses a proprietary system
to parse the HTML-DOM and web screenshots,



Method LLM Total SR Shopping CMS Reddit GitLab Maps
AutoWebGLM ChatGLM3 6B 18.2 - - - - -
NNetnav Llama 3 8B Instruct 7.2 7.4 4.2 0 0 28.5
AutoEval GPT+4 20.2 25.5 18.1 254 28.6 319
BrowserGymgyce GPT-4 15.0 17.2 14.8  20.2 19.0 255
SteP GPT-4 33.0 37.0 24.0 59.0 32.0  30.0
AWM GPT+4 355 30.8 29.1 509 31.8 433
WebPilot GPT-40 37.2 36.9 2477  65.1 39.4 339
Broswing+API Hybrid Agent GPT-40 35.8 25.7 412 283 444 459
AgentOccam with Judge GPT-4-Turbo 45.7 433 46.2 67.0 389 523
. WorkflowAgent-Small + GPT-40 513 48.1 355 70.2 58.8 51.9
Multi-Agent System (Ours) WorkflowAgent-Large + GPT-40  53.0 458 379 737 597 563

Table 7: Task success rates (SR) on WebArena domains. WorkflowAgent consistently outperforms considered
text-only baselines, often improving the previous-best results by more than 5%.

Method LLM Total SR Shopping CMS  Reddit GitLab Maps
Single-Agent ~ GPT-4o 34.2 319 21.3 44.7 38.2 42.6
Multi-Agent WorkflowAgent-Small + GPT-40 51.3 48.1 35.5 70.2 58.8 51.9

Table 8: We replace WorkflowAgent with GPT-40 to study how much WorkflowAgent contributes to the performance.
Given the large number of tasks and evaluation costs, we perform our ablation studies using WorkflowAgent-Small.

rather than building from the WebArena GitHub.
This allows them to have richer observations and
bypass the accessibility tree action mapping step.

The results are shown in Table 7. Compared
with existing text-only baselines, WorkflowAgent
augmented with GPT-40 obtains the highest task
success rate in 4 of 5 categories, leading to 7.3%
performance improvements in total success rate
over the previous-best GPT-4-Turbo-based Agen-
tOccam (Yang et al., 2024b). In particular, on Red-
dit and GitLab tasks where the domains are more
realistic and thus closer to the ones in our train-
ing data, WorkflowAgent demonstrates stronger
generalization ability and higher task success rates
than in other domains. Despite known issues with
combobox selection and the absence of scroll ac-
tions in our training data, our agent effectively nav-
igates these challenges through strategic keyboard
actions. More details are given in Appendix A.6.2.

To better understand the contribution of Work-
flowAgent to the multi-agent system, we perform
an ablation study that uses GPT-4o for all stages
of the proposed pipeline. As shown in Table 8, us-
ing WorkflowAgent consistently outperforms only
using GPT-40, and the GPT-40-only setting is less
effective than existing agents like WebPilot. This
shows that our strong results on WebArena can be
mainly attributed to the action generation process
of WorkflowAgent. Apart from getting better re-
sults, the multi-agent system is cheaper than using
GPT-40 alone, as calling WorkflowAgent to gener-
ate an action incurs negligible cost locally.

5 Limitations

The long-context nature of DOMs presents great
challenges in adapting LL.Ms. In the short term,
we aim to enable WorkflowAgent to compare and
reason over multiple DOM chunks so that its ob-
servation is always complete. This might require
integrating a memory component, which could also
aid in maintaining context or state across interac-
tions to improve multi-step reasoning. Besides, we
currently do not incorporate planning into Work-
flowAgent, so its output will be directly used as
the next action. However, adding better action se-
lection strategies such as Monte Carlo Tree Search
(MCTS) could potentially facilitate online plan-
ning and exploration, further improving the agent’s
decision-making processes in complex scenarios.
In the long run, we aim to expand WorkflowAgent’s
capabilities to handle multi-modal inputs and mul-
tilingual content. This would significantly broaden
its applicability across different linguistic and vi-
sual contexts, making it more versatile and robust
in real-world web environments.

6 Conclusion

In this work, we explore how fine-tuning open-
source LL.Ms with high-quality real-world work-
flow data can benefit developing specialized web
agents. We present WorkflowAgent, which consis-
tently outperforms existing methods that prompt
proprietary models in various evaluation settings
and benchmarks. We also provide empirical in-
sights into data processing and model fine-tuning.
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A Appendix

A.1 Preprocessing

A.1.1 Preprocessing Pipeline

To ensure the quality of the data, we remove
workflows with invalid selectors, i.e., the selec-
tor cannot be used to locate a target element in
the DOM. We also remove non-English workflows
to reduce dataset complexity and enable us to ex-
plore English-only LL.Ms like Mistral 7B (Mis-
tralAl 2023).

For DOM pruning, we first use the Beautiful-
Soup library (Richardson, 2007) to remove non-
essential components such as metadata, CSS, and
JavaScript. Then, we utilize a tag-attribute white
list to retain useful tag level information like retain-
ing interactive elements. Then, we apply tokenizer
pruning for attribute values longer than 32 charac-
ters. Lastly, we remove the comments and extra
whitespaces to clean up the DOM.

The code for DOM pruning, DOM chunking,
fine-tuning, and inference can be found in the sup-
plementary material. Since this dataset is collected
from real users and might contain sensitive and con-
fidential information, it will not be released to the
public to protect user privacy. The dataset is solely
for research purposes and has been anonymized to
prevent the identification of any individual.

A.1.2 Tokenizer Pruning

In this section, we provide more details on the
tokenizer-based detection method to remove ran-
dom character strings. The rationale behind our
approach is based on the observation that typical
English words consist of more than two characters.
Assuming the token count is ¢ and the character
count is s, this means that whent = 1, s > 2,
leading to § > 2. By setting the pruning thresh-
old to 2 and removing tag attributes with 3 < 2,
we aim to eliminate strings composed solely of
single-character tokens, which are likely to be non-
sensical.

In our actual implementation, we employ this
technique only for tag attributes with s > 32, being
more lenient for shorter attributes. To show that
this tokenizer pruning strategy is effective and to
study the performance across different tokenizers
and pruning thresholds, we perform the following
experiments.

We take three tokenizers from different mod-
els: Qwen2-7B-Instruct, Mistral-7B-Instruct-v0.3,
and Meta-Llama-3-8B. For each tokenizer, we
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vary the pruning thresholds across a set of values:
{1.5,1.75,2,2.25,2.5}. Note that it is meaning-
less to study overly small thresholds (e.g., it is im-
possible to have 3 < 1) or overly large thresholds
(e.g., 7 < 3 could result in the loss of meaningful
attributes, as many English words contain three let-
ters). We randomly sample 1000 DOMs from our
proprietary test dataset, apply our standard pruning
pipeline followed by tokenizer pruning, and then
perform three analysis:

* False positives: we use the Python enchant
library to detect if there are meanful English
words within the pruned strings. Note that
even though these are actual words, many of
them are related to DOM structure and can
be safely ignored. Still, we count them as
false positives since the tokenizer method is
designed to remove random character strings.

* Average s and t for the entire DOM before
and after tokenizer pruning: this is for under-
standing the reduction in content length.

 Lastly, we sort tags and attributes by the fre-
quency of being pruned to identify patterns.

As shown in Table 9, there is a clear trade-off
between precision and context reduction: greater
reductions in content length tend to result in higher
false positive rates. While different tokenizers ex-
hibit varying sensitivities to the pruning thresholds,
a threshold of 2 achieves the most balanced trade-
off, which aligns with our intuition. We then list
the top-5 tag-attribute pairs most frequently pruned
under threshold 2 along with their pruning counts:

* Qwen: (‘div’, ‘class’): 3188, (‘span’, ‘class’):
11426, (‘a’, ‘href’): 8802, (‘button’, ‘class’):
6844, (‘1°, ‘class’): 5010

e Mistral: (‘div’, ‘class’): 5288, (‘span’,
‘class’): 15824, (‘a’, ‘href’): 12948, (‘button’,
‘class’): 7998, (‘svg’, ‘class’): 5871

e Llama: (‘div’, ‘class’): 29559, (‘span’,
‘class’): 8823,(‘button’, ‘class’): 5889, (‘1’,
‘class’): 4608, (‘svg’, ‘class’): 2577

Attributes such as ‘class’ often contain random
character strings and are frequently pruned. How-
ever, we observe differences in how tokenizers han-
dle the href attribute: both Qwen and Mistral tok-
enizers tend to prune it away, whereas the Llama



Tokenizer Prune Threshold False Positive (%) | Before Pruning (K) After Pruning (K)
s t s t At
1.5 0.025 2214 77.11 2.03
1.75 0.013 2173  74.67 447
Qwen2-7B-Instruct 2 0.18 224.3 79.14 2157 73.89 521
2.25 0.36 2139 73.13 6.01
2.5 0.38 210.0 71.63 17.51
1.5 0.012 219.5 87.10 344
1.75 0.18 216.1 85.07 547
Mistral-7B-Instruct-v0.3 2 0.44 224.3 90.54 212.7 8340 7.14
2.25 0.49 2053 80.20 10.34
2.5 11.28 190.3 7444 16.10
1.5 0.0097 223.1 70.60 0.84
1.75 0.012 2183 67.85 3.59
Meta-Llama-3-8B 2 0.035 224.3 71.44 216.8 67.09 343
2.25 0.043 2152 6641 5.03
2.5 0.10 212.7 6546 598

Table 9: Tokenizer pruning analysis.

tokenizer preserves it, indicating its better capabil-
ity in tokenizing URLs. Although we currently use
the Qwen tokenizer in our preprocessing pipeline
to align with the backbone model of WorkflowA-
gent, the Llama tokenizer can be a compelling al-
ternative for future consideration since it is better
at recognizing URLs and producing shorter token
sequences. In general, we believe developing spe-
cialized models can be important to achieve strong
results, as evidenced in prior works (Shen et al.,
2024a; Tu et al., 2022; Shen et al., 2022; Roberts
et al., 2021).

Lastly, during our inspection, we find that 10%
of the action descriptions in the dataset are not
informative (e.g., “click here"). In these cases,
we use GPT-40 (OpenAl, 2024b) to regenerate the
action description from screenshots. We provide
the prompt as well as examples of the regenerated
action descriptions in Appendix A.3.1.

A.2 Example Prompt and Label for
WorkflowAgent

Objective: Grant delegation access to
another user in Gmail settings.

URL: https://mail.google.com/mail/u/0/
Observation: {processed dom}
Step-by-step guide:

1.

Description: Click "See all settings”
Action: mouse_click_action

Node: 254

Target: <button class="Tj" node="254">
2.

Description: Click "Accounts"”

Action: mouse_click_action

Node: 2625

Target: <a class="f@ LJOhwe"
href="https://mail.google.com/mail/u/0/?
tab=#tsettings/accounts” node="2625"
role="tab">

3.

Description: Click "Add another account”
Action: mouse_click_action

Node: 1215

Target: <span class="LJOhwe sA" id=":kp"
node="1215" role="link">

A.3 OpenAl Prompts
A.3.1 Data Preparation

Below is the prompt to generate step descriptions.

You are navigating a webpage to achieve an
objective. Given the objective, a list of

the previous actions, the current action, and a
screenshot of the current action on the webpage.
The objective and previous steps are only here to
ground the current step, the current action and
its screenshot are the most useful to your task.
Give me a concise description of the current
action being done on the webpage. You should look
at the part of the webpage with the red circle,
this is where the user clicked for the current
action. Describe this action and ensure your
response is in the same format, concise, coherent:
Use any relevant information in the image to
ground the action description. Your response
should NOT use any json or markdown formatting.
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The response should be a single sentence that
starts with an action verb. For example,
'Click on the 'SUBMIT' button.'

Regenerated Action Descriptions. We provide
a few examples of generated action descriptions
using GPT-4o.

* “Click on the Submit button."
* “Type in the name of the item."
* “Double-click on the highlighted text."

A.3.2 Proprietary Benchmark Baselines

Below shows the prompt for all OpenAl baselines.
The text is the prepend for every input to which
we append the task input with the corresponding
objective, URL, DOM, and action history.

You are an autonomous intelligent agent
tasked with solving web-based tasks. These
tasks will be accomplished through the use
of specific actions you can issue. Here's
the information you'll have:

- The user's objective: This is the task you
are trying to complete.

- The current web page's URL: This is the
page you're currently navigating.

- Part of the current web page's HTML: Each
element is assigned in descending order with
an unique ID, denoted by the attribute
"node"”. The actions you can perform include:
- mouse_click_action: click

- keyboard_sequence_action: type a sequence
of characters

- keyboard_combination_action: press a set
of keys together (e.g., hotkey like ctrl+c)
You will generate a step-by-step guide to
complete the task based on the given
information. You will only produce a SINGLE
next step. Do NOT use additional punctuation,
or any markdown formatting. The output
should be in the following format:
Description: Click "Users”

Action: mouse_click_action

Node: 93

Target: <a node="93" class="slds-tree__item
-label”>

Now complete the following task by
generating the next step.

{task input}
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Figure 2: Exact Match (EM) comparison between
WorkflowAgent-Small and OpenAl models across dif-
ferent types of websites.

A.4 Proprietary Data Evaluation

Apart from the results shown in the main text, we
also plot the Exact Match metric for four types of
commonly seen domains, including customer rela-
tionship management (CRM) tools, E-commerce
platforms, productivity tools, and social platforms
(Figure 2). While our agent’s performance varies
by domain, with a 6% gap between the best per-
forming domain and the worst performing one, we
observe that WorkflowAgent consistently outper-
forms the general-purpose baselines across all of
them.

A.5 Mind2Web Experiment Details
Mind2Web is distributed with an MIT license.

A.5.1 Preprocessing

Data and Label Conversion. To apply Work-
flowAgent to Mind2Web data, we first re-process
the provided DOM using the procedure detailed in
Section 3.3. We store a map between our node ID
and the backend ID given in the dataset. Then, we
transform the history action provided in the dataset
to our 5-line format. After WorkflowAgent gener-
ates the next step, we check the backend ID of the
provided label and map it to the node ID in our pro-
cessed DOM. We then compare this label with the
target node ID generated by WorkflowAgent. We
provide the code for the DOM processing and label
conversion process in the supplementary material
and will release them later.

DOM Chunking and Action Generation.
When the DOM length exceeds the 32K context
window, we chunk the DOM sequentially and run
the prediction workflow on each piece. For each
piece of DOM, we call WorkflowAgent five times
to obtain five valid actions. We then aggregate
all possible actions and select the one with the



highest number of appearances. We use the fol-
lowing generation configuration: do_sample=True,
top_p=0.95, temperature=0.6.

A.5.2 Baselines and Evaluation Results

For baselines, we note that AutoWebGLM (Lai
et al., 2024) reports only step success rate among
all four metrics. While the reported numbers are
high, it uses a different and possibly more favorable
evaluation procedure, so we do not compare against
it.

The outputs of WorkflowAgent on all Mind2Web
test datasets are included in the supplementary ma-
terial.

A.5.3 Refined Evaluation

As mentioned in the main text, we improve the
Mind2Web evaluation from two perspectives:

* Subchild label relaxation: We hypothesize
that the distribution gap between our training
data for WorkflowAgent and the Mind2Web
test set could be due to Mind2Web prefer-
ring ancestor/parent nodes in the HTML tree,
while WorkflowAgent’s training data prefers
lower HTML elements. To this effect, we re-
lax the Mind2Web set of positive candidates
to include not only the positive candidates, but
also their children (direct children and grand-
children).

* Attribute matching: Direct generation setting
enables higher degree of freedom in element
selection. To address scenarios where the pre-
dicted element has the same function as the
ground truth but is in a different location, we
enhance the direct generation evaluation by
introducing an element attribute comparison
step. Rather than merely comparing the node
ID of the predicted and the ground truth el-
ements, we also evaluate the tag and text at-
tributes (e.g., the text displayed on a button).
If these attributes match, we consider the pre-
diction to be correct as it has identical func-
tionality.

Lastly, we note that in Mind2Web, whenever there
is a textarea or an input tag, the expected behav-
ior is to directly execute the type action. However,
our model is trained to first click on the input ele-
ment and then perform the type action. Thus, for
actions predicted on textarea or input tags, we
adjust our model to replace click actions with type
actions and then compare with the ground truths.
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Table 10 presents the improved performance
of WorkflowAgent after refining the evaluation
method, showing significant gains in both settings.
We find that the label relaxation strategy helps
bridge part of the distribution gap, and our multi-
stage pipeline effectively covers most of the gains
from this label relaxation strategy by using the
Mind2Web ranker. However, inspecting cases that
are not covered by label relaxation, we found that
there still remains a distribution gap. As a result,
there is large room for improving the evaluation
criteria of text-based benchmark to bridge this gap.

A.6 WebArena Experiment Details
WebArena is distributed with an Apache-2.0 li-
cense.

A.6.1 Multi-Agent System

For the most up-to-date prompts, please refer to the

code in the supplementary material.

Objective Refinement GPT-4o refines the intent.
We use the following prompt:

T have a simple task objective related to [DOMAIN], rewrite it into a single paragraph of detailed
step-by-step actions to achieve the task. When revising the objective, follow the rules:

- Assume you are already on the correct starting website and are logged in.

- Do not include any newlines, tabs, step numbers in the rewritten objective.

- Follow the example as much as possible.

- [IN-CONTEXT DEMONSTRATIONS FOR DOMAIN RULES]

Here is an example:

Simple Task Objective:[IN-CONTEXT DEMONSTRATION]

Detailed Task Objective: [IN-CONTEXT DEMONSTRATIONS]

Now, rewrite the following objective:

Action Generation We process the environment-
generated DOM using our preprocessing proce-
dure. When the DOM length exceeds the 32K
context window, we chunk the DOM sequentially
and run the prediction workflow on each piece.
For each piece of DOM, we call WorkflowA-
gent multiple times to obtain multiple valid ac-
tions. We use the following generation config-
uration: do_sample=True, top_p=0.95, tempera-
ture=0.6. We then aggregate all possible actions,
pick the top candidates, and prompt GPT-40 to se-
lect the best candidate using the following prompt:

You are an autonomous agent helping users to solve web-based tasks. These tasks will be
accomplished through series of actions. The information you’ll have includes:

- The user’s objective

- The current web page’s URL

- The current web page’s accessibility tree

- Previous steps performed by the user, where each step includes a description of the action and
the target web element

- Several proposed next steps, labeled by “No.”

Your goal is to select the best next step that can complete the task and output this candidate’s
number, follow the following rules:

- Do not repeat previous steps

- Reject candidates with incorrect intentions, e.g., searching for an item different from the one
specified in the objective

- Reject candidates with factual errors, e.g., the description and the chosen web target do not
match

- Only output a single number after to represent the selected candidate but not explanation
Now analyze the following case:




Cross-Task Cross-Website Cross-Domain

Models Eval
EA AF; StepSR TaskSR EA AF; StepSR TaskSR EA AF; StepSR Task SR
WorkflowAgent-  M2W 426 501 397 0 449 501 416 06 441 514 414 0
Multi-  Small M2W + Subchild 426 501 398 0 452 501 415 06 443 514 416 0
Stage WorkflowAgent- M2W 535 529 512 0 534 528 513 23 533 547 512 0
Large M2W + Subchild 538 529 513 0 540 528 519 23 535 547 514 0
WorkflowAgent-  M2W 286 50.1 268 0 276 501 256 0 320 514 299 0
Direct Small M2W + Subchild + Attr Match  48.8  60.8 483 55 580 662 567 68 529 621 524 6.5
Gen WorkflowAgent-  M2W 380 529 356 0 341 527 325 0 394 547 373 0
Large M2W + Subchild + Attr Match 580 63.8  52.0 57 673 694 598 118 620 637 529 10.8

Table 10: We also refine the evaluation procedure to better reflect WorkflowAgent’s capacity.

Target Mapping GPT-40 maps the agent out-
put to accessibility tree format using the following
prompt. The action is then returned to the environ-

ment for execution.

You are an autonomous agent helping users to solve web-based tasks. These tasks will be ac-
complished through series of actions. The information you’ll have includes:

- The user’s objective

- The current web page’s URL

- A snippit of the current web page’s HTML

- A snippit of the current web page’s accessibility tree

- Previous steps performed by the user

Your goal is to translate a proposed next step, which consists of an action and a HTML element,
into the following format:

- “click [accessibility tree id]’: This action clicks on an interactive (non-static) element with
a specific id. Note this id is the number inside “[]” in the accessibility tree, not the HTML
attribute “node”. Brackets are required in the resp For le, a valid resp is “click
[1234)”

- ‘type [accessibility tree id] [content]’: Use this to type the content into the field with a specific
id in the accessibility tree. For example, a valid response is “type [1234] [New York]”. The
second bracket should include everything that needs to appear in the textbox, but not only the
added content. Do not change the letter case

- ‘press [key_comb]’: Simulates pressing a key combination on the keyboard (e.g., press
[PageDown], press [Enter])

- ‘go_back‘: Return this when the current web page does not contain useful information and the
user should go back to the previous web page

‘When mapping the next step into actions in the above formats, follow the following rules:

- Take the user’s objective into consideration, so the action must help complete the task

- Do not repeat previous steps

- Only output a single step in the above format but not explanation

Note also: [IN-CONTEXT DEMONSTRATION OF RULES]

Now analyze the following case:

Task Completeness Evaluation GPT-4o evalu-
ates if the task objective is achieved. For opera-

tional tasks, if the task is completed, nothing i

N

returned. For information seeking tasks, if the task
is completed, GPT-4o retrieves the answer to the

question. The prompt looks like the following:

You are an autonomous agent helping users to solve web-based tasks. These tasks will be ac-
complished through series of actions. The information you’ll have includes:

- The user’s task, including a high-level objective and a more detailed illustration

- The current web page’s URL and accessibility tree

- Previous steps performed by the user, where each step includes a description of the action and
the target web element

You should follow the rules: [IN-CONTEXT DEMONSTRATION RULES]

You will decide whether the task specified by the high-level objective is completed (which
means the **last** step of the detailed instruction is completed and the current webpage com-
pletes the task) and respond “completed” or “incomplete”. If the task requires returning a
number or a string and the answer can be obtained in the current webpage, reply “completed,
[answer]” where “[answer|” is the number or string. If the task requires finding a webpage and
the current webpage satisfies the requirement, reply “completed, [answer]” where “[answer]” is
the current URL. Now analyze the following case. First provide the reasonings. Then summa-
rize the answer with “Summary:”, followed by “completed” or “incomplete”, followed by the
answer to the question if applicable. Do not include newlines after “Summary:”.

A.6.2 Scrolling Actions and Combobox
Selection

In our data collection process, we capture the ful

1

DOM from a system perspective, which inherently
includes the entire webpage as observed from the
backend. This method differs from user-centric
data collection, where only the elements within
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the visible browser viewport are captured. Con-
sequently, there is no concept of scrolling in our
training datasets since all elements are already fully
accessible in the captured data.

However, we recognize the importance of scroll
actions in solving WebArena from a user perspec-
tive. To address this, before issuing any action to
the environment, our multi-agent system includes
a viewport check that uses the bounding box posi-
tion to determine if the target element is within the
visible webpage area. If not, the system manually
inserts necessary scroll actions to bring the element
into view. This ensures accurate interaction with
web elements in a typical user scenario.

To handle combox selection, our agent discovers
a workaround that bypasses the need for scrolling
through comboboxes. Specifically, after clicking
on the combobox, it types the name of the desired
item in the combobox, which brings the item to the
top of the dropdown menu. Then, the agent can
simply click the item or press Enter. This approach
avoids the need for scrolling and is especially ef-
fective in densely populated lists. It improves the
task success rate on a large number of Map, Reddit,
and GitLab tasks.

A.6.3 GPT-40-Only Setting

When we use GPT-4o for stage 2, we use the fol-
lowing prompt:

You are an autonomous intelligent agent tasked with solving web-based tasks. These tasks
will be accomplished through the use of specific actions you can issue. Here’s the information
you’ll have:

- The user’s objective: This is the task you’re trying to complete.

- The current web page’s URL: This is the page you’re currently navigating.

- The current web page’s HTML: Each element is assigned with an unique ID, denoted by the
attribute “node”.

The actions you can perform include:

- mouse_click_action: click

- keyboard_sequence_action: type a sequence of characters

- keyboard_combination_action: press a set of keys together (e.g., hotkey like ctrl+c)

You will generate a step-by-step guide to complete the task based on the given information. At
each step, you can perform only one action to one web element. The output should be in the
correct format: a single step consisting of a text description, an action, as well as the node and
HTML of the target web element to perform the action. Be coherent, concise, and accurate
in your response. Do NOT use any special characters (e.g., “*”, “#”, etc.) in your response.
Follow EXACTLY the format of the response below.

Here is one example:

Description: click “Users”

Action: mouse_click action

Node: 93

Target: <a class="slds-tree__item-label” node="93">

Now complete the following task by generating a single next step:




A.6.4 Results

Below, we provide example action trajectories pro-
duced by our agent and explanations to shed light
on its decision making process. The full trajecto-
ries for all tasks are included in the supplementary
material.

Domain: Shopping

Task ID: 466

Intent: Add 2 Hawaiian Bamboo Orchid Roots
#z¢50 - by Discount Hawaiian Gifts to my wish
list.

Actions:

1. click [1585] where [1585] is combobox
‘Search’ autocomplete: both hasPopup: list-
box required: False expanded: False — Click
on the search bar.

2. type [1585] [Hawaiian Bamboo Orchid Roots
#z¢50 - by Discount Hawaiian Gifts ] where
[1585] is combobox ‘Search’ focused: True
autocomplete: both hasPopup: listbox re-
quired: False expanded: True — Type the
target item name.

3. press [enter] — Do the search.

4. scroll [down] — Scroll down the page to find
out the target item.

5. click [4859] where [4859] is link ‘2 Hawaiian
Bamboo Orchid Roots #zc50 - by Discount
Hawaiian Gifts’ — Open the item page.

6. click [6733] where [6733] is link ‘Add to Wish
List’— Add item to wish list.

Domain: CMS

Task ID: 244

Intent: Show me the email address of the cus-
tomer who is the most unhappy with Olivia zip
jacket.

Actions:

1. click [108] where [108] is link ‘MARKET-
ING’ — Click on the “MARKETING" button
in the side bar.

2. click [419] where [419] is link ‘All Reviews
— Clicking the side bar shows more option.
We can then click on the “All Reviews" button.

3. click [2195] where [2195] is button ‘Reset
Filter’ — Remove all previous set filters.
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4. type [4435] [olivia] where [4435] is textbox

¢ required: False — In the search box, type
“olivia".

. press [enter]— Do the search

. stop [emma.lopez @gmail.com] — Inspect all

listed reviews and return the email of the neg-
ative review.

Domain: Reddit

Task ID: 403

Intent: Change my reddit bio to “Awesome
Prompt Artist"

Actions:

1.

click [12] where [12] is button ‘MarvelsGrant-
Man136’ hasPopup: menu expanded: False
— Click my user name on the top right corner.

. click [249] where [249] is link ‘Profile’ —

After the drop-down menu shows up, click
“Profile".

. click [886] where [886] is link ‘Edit biogra-

phy’ — Click the “Edit biography" button.

. type [2456] [Awesome Prompt Artist]

where  [2456] is textbox  ‘Biogra-
phy’  required: False  describedby:
user_biography_biography_help — Type the
target content.

. click [2474] where [2474] is button ‘Save’ —

Save the new profile.

Domain: GitLab

Task ID: 293

Intent: Show me the command to clone Su-
per_Awesome_Robot with SSH.

Actions:

1.

click [1507] where [1507] is textbox ‘Search
GitLab’ required: False — Click on the search
bar.

type [1516] [Super_Awesome_Robot] where
[1516] is searchbox ‘Search GitLab’ focused:
True describedby: search-input-description —
Type the repo name in the search bar.

click [2082] where [2082] is link ‘Convex
Eggtart / Super_Awesome_Robot” — Click
on the correct repo.



Agent Backbone # Train Tokens Total SR (158) Shopping (36) CMS (39) Reddit (24) GitLab (33) Maps (26)
Mistral 7B 1B 41.8 41.7 30.8 50.0 42.4 423
Qwen2 7B 1B 443 52.8 33.3 50.0 48.5 423
Qwen2 7B 3B 47.5 55.6 333 58.3 48.5 46.2
Qwen2 7B 6B 55.0 58.3 41.0 70.8 63.6 46.2

Table 11: Task success rates on a subset of WebArena. The numbers after the domains indicate the number of tasks
considered. All models are used along with GPT-40 to formulate the multi-agent system. We see that the general
trends agree with what we found on our proprietary dataset.

4. click [2699] where [2699] is link ‘Clone’ —
Click on the “Clone" button.

stop [git clone

trends suggest that improvements on our propri-
etary dataset lead to even greater improvements on
WebArena, further highlighting the advantages of
fine-tuning web agents with large-scale datasets.

ssh://github/convexegg/super_awesome_robot.git]

— Read the command from the pop-up win-
dow.

Domain: Maps

Task ID: 7

Intent: Tell me the full address of all interna-
tional airports that are within a driving distance of
50 km to Carnegie Mellon University.

Actions:

1. click [35] where [35] is textbox ‘Search’ fo-
cused: True required: False — Click on the
search box.

type [35] [airport Pittsburgh] where [35] is
textbox ‘Search’ focused: True required:
False — Type “airport Pittsburgh" in the
search box.

. stop [Pittsburgh International Airport, Air-
port Boulevard, Findlay Township, Allegheny
County, 15231, United States.] — Re-
turn “Pittsburgh International Airport, Air-
port Boulevard, Findlay Township, Allegheny
County, 15231, United States." as the answer.

A.6.5 Using WebArena to Verify Proprietary
Evaluation Results

We also use WebArena to verify the signals ob-
served in our proprietary test data. To do so, we
randomly select a subset of 158 WebArena tasks
with non-overlapping objective templates and run
ablation studies following the ones presented in
Section 3.5 to study the effect of LLM backbones
and the number of training tokens. As shown in
Table 11, on all domains, Qwen2 7B outperforms
Mistral 7B, and the task success rate increases as
the number of training tokens increases. These
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A.7 Broader Impact

This paper calls for ML community’s attention to
take advantage of LLMs and apply them to a wider
range of real-world problems beyond the traidtional
NLP domains, such as web navigation. This moves
towards truly democratizing machine learning in
real life. In terms of broader societal impact, our
work can exert a positive influence as it contributes
to reusing existing models and resources, reducing
the computational burden of developing new large-
scale models on massive data. However, lowering
the barrier for applying LLMs to a wide range of
tasks necessarily comes with the risk of misuse.
For instance, LLM agents can exhibit unintended
biases, and they also have the potential to cause
harm to users (e.g., economically) in the real world
if there are not careful safeguards. Hence, it is im-
perative to develop adaptation methods with better
privacy, safety, and fairness guarantees.

A.8 Intended Use

The code released with this paper is only for re-
search purposes and helps with developing web
agents. The models we presented in this paper
are not intended for direct deployment in practical
applications in their current state due to a lack of
safeguards.



	Introduction
	Related Work
	WorkflowAgent
	General Setup
	Collecting Production-Scale Data
	DOM Preprocessing
	Fine-Tuning with LoRA
	Exploring the Design Space

	Results
	Proprietary Dataset
	Mind2Web
	WebArena

	Limitations
	Conclusion
	Appendix
	Preprocessing
	Preprocessing Pipeline
	Tokenizer Pruning

	Example Prompt and Label for WorkflowAgent
	OpenAI Prompts
	Data Preparation
	Proprietary Benchmark Baselines

	Proprietary Data Evaluation
	Mind2Web Experiment Details
	Preprocessing
	Baselines and Evaluation Results
	Refined Evaluation

	WebArena Experiment Details
	Multi-Agent System
	Scrolling Actions and Combobox Selection
	GPT-4o-Only Setting
	Results
	Using WebArena to Verify Proprietary Evaluation Results

	Broader Impact
	Intended Use


