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Abstract

Missing data in multivariate time series are common issues that can affect the
analysis and downstream applications. Although multivariate time series data
generally consist of the trend, seasonal and residual terms, existing works mainly
focus on optimizing the modeling for the first two items. However, we find that the
residual term is more crucial for getting accurate fillings, since it is more related
to the diverse changes of data and the biggest component of imputation errors.
Therefore, in this study, we introduce frequency-domain information and design
Frequency-aware Generative Models for Multivariate Time Series Imputation
(FGTI). Specifically, FGTI employs a high-frequency filter to boost the residual
term imputation, supplemented by a dominant-frequency filter for the trend and
seasonal imputation. Cross-domain representation learning module then fuses
frequency-domain insights with deep representations. Experiments over various
datasets with real-world missing values show that FGTI achieves superiority in
both data imputation and downstream applications.

1 Introduction

Missing data are commonly observed in the multivariate time series due to diverse reasons [25],
which would encumber subsequent analysis and applications [17]. It is not surprising that more
accurate missing data imputation generally leads to better performance in downstream applications.1

Existing techniques [13; 28] have revealed that time series data can be decomposed into three distinct
terms, i.e., trend, seasonal, and residual, and try to compute an imputation by modeling the first
two items as accurately as possible. Figure 1 reports a survey for the imputation accuracy of the
three terms by representative imputation methods over the pre-decomposed KDD [6] dataset with
10% missing values.2 The dataset comprises 8,034 consecutive readings of meteorological and air
quality data taken over a year in Beijing. In this dataset, the trend term may reflect long-term changes
in climate or air quality conditions, and the seasonal term might capture patterns associated with
different seasons. Moreover, the residual term may consist of short-term, irregular, and high-frequency
changes. As shown in Figure 1, the imputation error is mainly caused by the residual term, which has
not been well studied, unfortunately.

Recent studies indicate that the high-frequency components are intricately related to the residual
[46; 58; 26] and contain critical information for imputing the residual term. Unfortunately, deep
learning architectures cannot generalize well in modeling high-frequency components. [38; 43]. To

∗Corresponding authors.
1Please see an empirical study in Section 4.5.
2Please see Section 2 for a brief survey, see Appendix A.5.1 for detailed experiment setup.
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Figure 1: Improving the imputation accuracy of the residual term is the key to boosting the imputation
performance of the model.

meet this challenge, we design Frequency-aware Generative Models for Multivariate Time Series
Imputation (FGTI), which can extract frequency-domain information and use two cross-domain
(i.e., time-domain and frequency-domain) representation learning modules to guide the generation
process of deep models. Specifically, we start with the high-frequency filter designed to extract the
high-frequency information essential for guiding the accurate imputation of the residual term. This
choice is consistent with recognizing the critical role of high-frequency information in imputation
accuracy. Then, we introduce the dominant-frequency filter to address the potential challenge
posed by high-frequency information for imputing trend and seasonal terms [4]. Furthermore, our
cross-domain representation learning frameworks combine frequency-domain information with deep
representations in the time-domain, enabling seamlessly intertwining frequency-domain information
with time and attribute dependencies modeling.

Our research makes several notable contributions:

• We design a frequency-aware generative model FGTI with frequency-domain information
integrated by the high-frequency filter and the dominant-frequency filter, to enhance the
awareness of the frequency-domain.

• We introduce two cross-domain representation learning modules that provide models with
prior knowledge of intricate frequency-related patterns for missing data imputation.

• We evaluate FGTI on three time series datasets with real-world missing values, which
demonstrates the superiority of FGTI in both imputation accuracy and downstream applica-
tions.

2 Related work

Traditional imputation methods usually employ the statistics, such as mean value [23], median value
[16], or last observed value [3], to impute missing data for multivariate time series. It is not surprising
that such traditional signals cannot make full use of the valuable semantics of available data. BTMF
[9] and TIDER [28] employ the low-rank matrix factorization to impute missing data. Unfortunately,
due to the matrix capacity’s limitation, it is still challenging to accurately match imputation values
with the underlying complex relationships and dependencies.

Many studies have shown that deep learning based imputation methods are effective to fill multivariate
time series data, such as BRITS [6], TST [57], SAITS [14], STCPA [54], TimesNet [52]. According
to [48], forecasting models [50; 55] can also be applied to imputation task. Additionally, GRIN [12]
and DAMR [39] use graph neural networks to incorporate known relationships between attributes.
However, these methods with fixed model outputs cannot capture the uncertainty and variability of
missing values. Recently, researchers have attempted to utilize large language models (LLMs) as the
backbone for time series analysis [59]. Since there are significant differences between time series
data and natural language, it still has a lot of room for improvement.
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To capture the uncertainty and variability, researchers introduce generative models [8] into the missing
data imputation by learning the implicit distribution of missing values. In the early stage, researchers
mainly use variational Autoencoders (VAE) or generative adversarial networks (GAN) to generate
new samples that match the distribution of the training dataset and impute missing values with the
generated samples. VAE-based methods learn data distributions by optimizing the reconstruction
error and regularizing in the latent space [31; 15; 35; 36; 11]. However, they may not capture the
complex variability of missing data well and may produce inaccurate results, especially when the
latent spaces are not well aligned. GAN-based approaches use the adversarial training technique of
the generator and discriminator to improve the imputation results [56; 29; 30; 34]. Unfortunately,
they may face convergence difficulties that can affect the imputation accuracy.

Diffusion models have been introduced into the imputation task recently, considering the success in
various fields [40; 18; 24]. To impute time series data, CSDI [44] designs conditional score-based
diffusion models with the conditions only on observed values, and SSSD [2] utilizes both conditional
diffusion models and structured state space models. Additionally, MIDM [49] develops the noise
sampling, addition, and denoising mechanisms, and PriSTI [27] further studies the enhanced prior
modeling by extracting spatio-temporal dependencies as contextual conditions for spatio-temporal
data imputation. However, as analyzed in the introduction, existing studies underestimate the
importance of accurately modeling the residual term for missing data imputation.

For the time series imputation methods in frequency domain, mvLSWimpute [51] utilizes wavelet
transforms to guide imputation, APDNet [60] uses the Fourier Temporal and Fourier Variable
Interaction modules to model dependencies. In addition, the frequency domain time series forecasting
methods FEDformer [58], FreTS [55] can also be applied to imputation task. However, they did not
consider using frequency domain information to model the missing data’s residual terms accurately,
which is critical for boosting the overall imputation performance.

In contrast, our FGTI captures high-frequency information and dominant-frequency information to
get a more accurate modeling of the residual term, while assisting in describing trend and seasonal
terms.

3 Frequency-aware Generative Models

In this paper, we focus on the incomplete multivariate time series imputation problem. The input
multivariate time series X = (X1, . . . ,XD) ∈ RD×L is a set of D attribute values recorded at
L consecutive timestamps, where each attribute series Xd ∈ RL. Each element xij in X is the
observation of the i-th attribute at the j-th timestamp, which is probably missing. We use the binary
mask matrix M ∈ {0, 1}D×L to represent the missing status of observations in X, where mij = 1 in
M denotes that xij is complete, otherwise xij = 0. In our context, we refer to the imputation target
as X̂. During the training of the imputation model, we choose some observations as the imputation
target. When we impute missing values, we treat all the missing values as the imputation target.

In Figure 1, it is evident that the main obstacle to improving multivariate time series imputation is the
residual term. Considering a recognized fact that the residual term often contains high-frequency
components from the perspective of Fourier analysis [46; 58; 26], introducing prior knowledge of
frequency-domain information can be a feasible approach to enhancing model performance.

As a class of superior data imputation models, deep generative models treat the time series imputation
task as calculating the conditional imputation target probability distribution q(X̂0|C), where q(X̂0)
is the clean data distribution and existing deep generative imputation models [56; 29; 44] use the
observed values X in the time-domain as the condition C for probability distribution calculation.
Note that we denote the complete or the imputed imputation target as the clean imputation target X̂0.

However, frequency principal [38; 43] reveals that deep models cannot generalize well to high-
frequency information. As a result, it may not accurately impute the residual term [13] inherent in
the time series dataset that cannot be trivialized in the imputation task [28].

To tackle the above challenge, we incorporate frequency-domain information into condition C to
enhance the performance of generative models. Our FGTI implements the condition C that contains
time-domain observation condition XC, as well as the frequency-domain conditions CH and CD.
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Figure 2: The high-frequency filter with F = 0.3 and the dominant-frequency filter with κ = 3.

3.1 Frequency-domain Condition Filter

Our frequency-domain condition includes the nonlinear transformation of two parts: the high-
frequency condition that guides the residual term and the dominant-frequency condition that contains
background structure information to impute the trend and seasonal terms, as shown in Figure 2.

3.1.1 High-frequency Filter

The high-frequency filter extracts high-frequency information CH from the time-domain observations,
which is used to guide the imputation of residual terms in time series. Since different attributes in a
multivariate time series can be heterogeneous, we consider extracting high-frequency information
separately for each attribute series Xd ∈ RL, where d = 1, . . . D.

We first interpolate Xd, then obtain the amplitude vector A ∈ R⌊(L+1)/2⌋ for Xd over sample
frequency components F = { 1

L , . . . ,
1
L⌊(L+ 1)/2⌋} by the Fast Fourier Transform (FFT):

(A,F) = FFT (Xd) . (1)

To get the high-frequency condition, we discard the frequency components below a cutoff threshold
F and map the remaining components to time-domain by the Inverse Fast Fourier Transform (IFFT),

CH
d = IFFT [A⊙ (F > F)] , (2)

where ⊙ denotes the Hadamard product.

Finally, we concatenate the corresponding high-frequency information vectors CH
d for each attribute

sequence to form the high-frequency condition CH ∈ RD×L,

CH = Concat
({

CH
d

}D
d=1

)
. (3)

For the whole input time series X, the time complexity of performing the high-frequency filtering is
O(DL logL). Since the time complexity of performing FFT for each attribute series is O(L logL),
selecting high-frequency components in the frequency domain has a time complexity of O(L), and
performing IFFT costs O(L logL) time.

3.1.2 Dominant-frequency Filter

The conditions extracted by the dominant-frequency filter from the time-domain observations not
only provide the background structure information for generative models to guide the imputation of
the trend and seasonal terms, but also mitigate the interference of the high-frequency condition on the
imputation of the trend and seasonal terms3.

The dominant-frequency information is mainly composed of frequency components with large
amplitudes. If we have obtained the representation (A,F) of Xd in the frequency-domain from
Equation 1, we can find the top-κ frequency components with the largest amplitude according to A,

{f1, . . . , fκ} = argF topκ(A). (4)
3Please see an empirical study in Section A.5.1.
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Figure 3: The pipeline of FGTI implemented by the frequency-aware diffusion model. FGTI
incorporates high-frequency representations to guide the residual term and compensates for the trend
and seasonal terms with the dominant-frequency representations. With cross-domain representation
learning, our FGTI includes frequency-domain information into time and attribute dependencies
modeling to estimate the diffusion noise.

Then we project these κ frequencies to the time-domain via the Inverse Fast Fourier Transform,

CD
d = IFFT [A⊙ (F ∈ {f1, . . . , fκ})] . (5)

Finally, we compose the dominant-frequency condition CD ∈ RD×L by concatenating all CD
d ,

CD = Concat
({

CD
d

}D
d=1

)
. (6)

Similar to the high-frequency filter, the time complexity of performing dominant-frequency filtering
for the whole input X is O(DL logL).

3.2 Cross-domain Representation Learning

With the aim of integrating frequency-domain conditions into deep generative models, we first use an
encoder to map the conditions to representation CF ∈ RD×L×K in the latent space,

CF = Encoder
[
Concat

(
CH,CD

)]
, (7)

where K is the channel number of the latent space. In this paper, we implement the Encoder(·)
with the well-acknowledged transformer [47] backbone, since it can self-adaptively extract critical
information in CH and CD by the self-attention mechanism.

To accurately capture time and attribute dependencies guided by frequency-domain information, we
design two frameworks: Time-frequency representation learning and Attribute-frequency representa-
tion learning. They integrate the current intermediate hidden representations Rin ∈ RD×L×K in the
time-domain of deep generative models with the frequency-domain representation CF.

Specifically, we use the cross-attention mechanism that can efficiently learn the various input modali-
ties [21; 40] for representation fusion.

3.2.1 Time-frequency Representation Learning

To capture time dependencies with the aid of frequency-domain information, we divide input hidden
representation Rin = {Rin

d ∈ RL×K}Dd=1 and frequency information CF = {CF
d ∈ RL×K}Dd=1

into D segments according to attributes. For each pair of latent representation segment (Rin
d ,CF

d ),
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the learning process to obtain time-frequency representation of each attribute Rt
d ∈ RL×K is

Rt
d = Softmax

(
QdKd

⊤
√
K

)
·Vd, (8)

where Qd = CF
d ·W

Q
t , Kd = CF

d ·WK
t , Vd = Rin

d ·WV
t , WQ

t , WK
t , WV

t ∈ RK×K are
learnable weight matrices.

Then we concatenate Rt
l of all attributes to obtain the representation Rt ∈ RD×L×K ,

Rt = Concat
({

Rt
d

}D
d=1

)
. (9)

3.2.2 Attribute-frequency Representation Learning

To capture dependencies between different attributes based on frequency-domain information,
we divide the latent time-frequency representation Rt = {Rt

l ∈ RD×K}Ll=1 and CF =
{CF

l ∈ RD×K}Ll=1 into L segments, according to timestamps. The learning process to obtain
attribute-frequency representation of each timestamp Ra

l ∈ RL×K is as follows:

Ra
l = Softmax

(
QlKl

⊤
√
K

)
·Vl, (10)

where Ql = CF
l ·W

Q
a , Kl = CF

l ·WK
a , Vl = Rtf

l ·WV
a . To get the updated representation Ra,

we need to concatenate all Ra
l according to timestamps,

Ra = Concat
(
{Ra

l }
L
l=1

)
. (11)

3.3 Frequency-aware Diffusion Model

Recently, diffusion generative models have demonstrated remarkable proficiency and have emerged
as the leading generative models in numerous fields [24; 18]. Thus, we take the diffusion model as an
example to introduce how to use frequency-domain conditions to boost missing data imputation.

Specifically, we implement FGTI by the frequency-aware diffusion model. Our frequency-aware
diffusion model fuses with frequency-domain conditions to learn the conditional imputation target
distribution q(X̂0 | X,CH,CD), through two Markov chain processes of diffusion step T , i.e., the
diffusion forward process and the diffusion reverse process.

The diffusion forward process involves gradually adding Gaussian noise into the imputation target,

q(X̂1:T | X̂0) =

T∏
t=1

q(X̂t | X̂t−1), (12)

where q(X̂t | X̂t−1) = N (
√
αtX̂t−1, βtI), βt ∈ (0, 1), is a hyperparameter satisfying βt < βt+1

for t = 1, . . . , T − 1. In addition, αt = 1− βt and q(X̂0) is the complete data distribution.

According to DDPM [20], X̂t has a closed-form solution,

X̂t =
√
αtX̂0 +

√
1− αtϵ, (13)

where ϵ ∼ N (0, I), αt =
∏t

i=1 α
i. Therefore, we can directly obtain X̂t from X̂0. The details for

deriving the closed-form solution can be found in Appendix A.2.1. Note that when T is large enough,
q(X̂T | X̂0) ≈ q(X̂T ), q(X̂T ) ≈ N (0, I).

Our diffusion reverse process gradually removes Gaussian noises added to the imputation target
based on the time-domain observation condition XC, the high-frequency condition CH and the
dominant-frequency condition CD, which can be formalized as the Markov chain,

pθ(X̂
T−1:0 | X̂T ) =

T∏
t=1

pθ(X̂
t−1 | X̂t,XC,CH,CD), (14)
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where pθ(X̂
t−1 | X̂t,XC,CH,CD) = N

(
µθ

[
X̂t−1 | X̂t,XC,CH,CD

]
,
[
σt−1

]2)
.

We next show that introducing the high-frequency condition CH and dominant-frequency condition
CD can reduce the uncertainty of the diffusion reverse process, improving the imputation accuracy.

Proposition 3.1. The conditional entropy

H
(
X̂t−1 | X̂t,XC,CH,CD

)
< H

(
X̂t−1 | X̂t,XC

)
,

with additional high-frequency condition CH and dominant-frequency condition CD in the diffusion
reverse process.

It can be proved by the chain rule of the conditional entropy, as detailed in Appendix A.1.

Based on the classifier-free guidance diffusion model [19; 20], pθ(X̂t−1 | X̂t,XC,CH,CD) can be

parameterized as µθ

[
X̂t−1 | X̂t,XC,CH,CD

]
= 1√

αt

[
X̂t − βt√

1−αt
ϵθ

(
t, X̂t,XC,CH,CD

)]
,[

σt−1
]2

= (1−αt−1)βt

1−αt
, where ϵθ(·) is the denoising network with learnable parameter set θ as present

in Appendix A.3.1. The mathematical details are presented in Appendix A.2.2.

As shown in Figure 3, the denoising network incorporates frequency-domain information into
modeling time dependencies and attribute dependencies, through the time-frequency representation
learning module and attribute-frequency representation learning module to guide the denoising.

For training the denoising network, we randomly select some observed values as the imputation target
X̂ and use the remaining observations as the observation condition XC for each update step, since
the ground truth of missing values is unknown. We train the denoising network by minimizing the
following objective function Lθ,

Lθ = E
∥∥∥ϵ− ϵθ

(
t, X̂t,XC,CH,CD

)∥∥∥2 , (15)

where t ∼ Uniform {1, . . . , T} , X̂0 ∼ q(X̂0), ϵ ∼ N (0, I).

For data imputation, we treat all missing values as the imputation target and all the observed values
as the observation condition, i.e., X̂ = X⊙ (1−M), XC = X. We start from X̂T ∼ N (0, I) and
perform the T -step diffusion reverse process following Equation 14, to obtain final imputation values
X̂0. Please see the detailed training and imputation algorithms in Appendix A.3.2.

4 Experiment

This section experimentally evaluates both the imputation effectiveness and the improvement of real
downstream applications for our FGTI, against various competing methods. All experiments are
performed on a machine with Intel Core 3.0GHz i9 CPU, NVIDIA GeForce RTX 3090 24GB GPU,
and 64GB RAM. The source code and datasets are available online [1].

4.1 Experimental Setup

4.1.1 Datasets

We employ three real time series datasets with real-world missing values. KDD [6] collects 8,034
meteorological and air quality readings of nine stations from January 30, 2017 to January 31, 2018 in
Beijing, with 4.46% real missing values. This dataset is collected every one hour and eleven sensor
readings are recorded at each station. Guangzhou [10] records traffic speeds per ten minutes on
214 anonymous roads in Guangzhou from August 1, 2016 to September 30, 2016. There are 1.29%
real missing values in the dataset. PhysioNet [42] contains 37 measurement readings from 11,988
patients within 48 hours of the ICU admission. 79.71% measurements are missing in the dataset,
and 1,707 patients died after 48 hours of the ICU admission. Following existing studies [29; 30],
since the ground truth is unavailable, we ignore these missing values when evaluating the imputation
accuracy in comparative experiments and model analysis, but consider them in the application study.
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Table 1: Imputation performance of various methods over real datasets with different missing rates

Dataset Miss. Metric Mean BTMF TIDER BRITS TST SAITS TimesNet LaST FreTS GRIN TimeCIB GAIN CSDI SSSD PriSTI FGTI

KDD 10% RMSE 0.993 0.529 0.777 0.700 0.594 0.542 0.484 0.473 0.630 0.565 0.589 0.864 0.459 0.697 0.472 0.406
MAE 0.718 0.285 0.527 0.407 0.360 0.304 0.313 0.287 0.412 0.322 0.367 0.607 0.177 0.397 0.169 0.149

20% RMSE 1.007 0.554 0.797 0.729 0.740 0.575 0.542 0.532 0.741 0.607 0.613 0.877 0.500 0.701 0.534 0.451
MAE 0.718 0.286 0.531 0.416 0.371 0.310 0.307 0.310 0.489 0.339 0.369 0.606 0.187 0.392 0.180 0.161

30% RMSE 0.997 0.541 0.783 0.720 0.642 0.574 0.578 0.574 0.796 0.617 0.603 0.870 0.519 0.717 0.547 0.448
MAE 0.717 0.286 0.528 0.420 0.376 0.319 0.357 0.350 0.546 0.360 0.370 0.612 0.199 0.413 0.195 0.176

40% RMSE 1.001 0.548 0.790 0.734 0.702 0.593 0.648 0.634 0.850 0.650 0.611 0.883 0.569 0.747 0.581 0.478
MAE 0.718 0.287 0.532 0.428 0.387 0.332 0.418 0.393 0.591 0.387 0.372 0.623 0.220 0.435 0.217 0.205

Guang. 10% RMSE 0.799 0.384 0.549 0.481 0.368 0.417 0.400 0.347 0.456 0.466 0.451 0.804 0.306 0.434 0.242 0.230
MAE 0.592 0.252 0.392 0.299 0.249 0.264 0.270 0.244 0.340 0.354 0.300 0.550 0.210 0.293 0.170 0.170

20% RMSE 0.799 0.384 0.537 0.481 0.398 0.415 0.433 0.440 0.602 0.501 0.448 0.804 0.324 0.460 0.324 0.258
MAE 0.592 0.252 0.382 0.300 0.275 0.264 0.303 0.312 0.460 0.385 0.298 0.550 0.220 0.315 0.197 0.176

30% RMSE 0.799 0.384 0.536 0.485 0.442 0.420 0.481 0.545 0.709 0.542 0.448 0.805 0.364 0.545 0.510 0.291
MAE 0.592 0.252 0.382 0.301 0.312 0.267 0.348 0.388 0.547 0.419 0.298 0.551 0.242 0.384 0.271 0.202

40% RMSE 0.800 0.385 0.541 0.491 0.540 0.422 0.542 0.637 0.787 0.584 0.449 0.807 0.439 0.622 0.650 0.356
MAE 0.592 0.253 0.387 0.306 0.397 0.270 0.401 0.458 0.611 0.455 0.299 0.554 0.283 0.444 0.381 0.254

Phy. 10% RMSE 0.932 0.630 0.879 0.732 0.632 0.645 0.776 0.768 0.804 0.682 0.697 1.006 0.619 0.875 0.652 0.580
MAE 0.678 0.348 0.605 0.446 0.389 0.371 0.525 0.516 0.540 0.424 0.450 0.747 0.310 0.528 0.369 0.286

20% RMSE 0.935 0.627 0.889 0.718 0.640 0.641 0.806 0.786 0.825 0.670 0.683 0.988 0.664 0.834 0.638 0.577
MAE 0.675 0.362 0.624 0.451 0.417 0.384 0.569 0.550 0.576 0.434 0.455 0.740 0.335 0.507 0.376 0.309

30% RMSE 0.934 0.658 0.911 0.734 0.688 0.670 0.849 0.825 0.861 0.695 0.697 0.995 0.805 0.882 0.661 0.624
MAE 0.676 0.382 0.638 0.457 0.452 0.404 0.600 0.578 0.603 0.446 0.459 0.738 0.360 0.545 0.387 0.336

40% RMSE 0.932 0.677 0.935 0.739 0.732 0.688 0.872 0.850 0.883 0.708 0.698 0.983 0.705 0.904 0.679 0.669
MAE 0.677 0.412 0.658 0.466 0.493 0.431 0.623 0.603 0.626 0.464 0.466 0.729 0.395 0.555 0.406 0.376

4.1.2 Criteria

Following previous studies [33; 27], we employ RMSE [22] and MAE [7] to evaluate the imputation
accuracy. For both, the smaller the value is, the more effective the imputation will be. For the air
quality prediction application over the KDD dataset in Section 4.5, we also use RMSE as the metric.
In addition, the AUC score [32] is used to measure the patient mortality forecasting application over
the PhysioNet dataset. The large the value is, the better the forecasting result will be.

4.1.3 Baselines

We compare with fifteen widely adopted time series imputation methods, including statistics-based
Mean [41], matrix factorization based BTMF [9] and TIDER [28], deep learning based BRITS
[6], TST [57], SAITS [14], TimesNet [52], LaST [50] and FreTS [55], GNN-based GRIN [12],
VAE-based TimeCIB [11]. GAN-based GAIN [56], Diffusion-based CSDI [44], SSSD [2], and
PriSTI [27]. For methods such as GRIN and PriSTI that require an adjacency matrix as input to
show relationships between attributes, we use the identity matrix by default, where every attribute
has dependencies with others in the time series. Since LaST and FreTS only focus on the time series
forecasting task, we adapt them to the imputation task based on the seting of TimesNet. For methods
in which the authors recommend parameters such as SAITS, MIWAE, GPVAE, CSDI and PRiSTI,
we use these parameters as suggested. The other methods are also configured in a best-effort fashion
by iteratively choosing good parameters.

4.2 Comparative Experiments

We first explore the imputation performance of different methods over real datasets with different
missing rates. The observed values with various missing rates are randomly removed under the miss-
ing completely at random (MCAR) mechanism [5] to form the imputation target. Each experiment is
repeated five times with different generated missing values and random seeds, and the average result
is reported in Table 1. Note that RMSE reflects the absolute difference between the imputation value
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Figure 4: Varying the missing mechanism over KDD dataset with 10% missing values

Table 2: Ablation analysis of FGTI with 10% missing values

Method KDD Guangzhou PhysioNet
RMSE MAE RMSE MAE RMSE MAE

w/o Cross-domain 0.4210 0.1603 0.2365 0.1607 0.6288 0.3748
w/o Frequency condition 0.4151 0.1505 0.2402 0.1635 0.6165 0.3719
w/o Dominant-frequency filter 0.4151 0.1518 0.2383 0.1625 0.6540 0.3799
w/o High-frequency filter 0.4128 0.1493 0.2367 0.1611 0.7294 0.3654
FGTI 0.4057 0.1489 0.2325 0.1584 0.5801 0.2856

and ground truth in the context of the data scale, and is not bounded by a specific range. The missing
rates in the table are with respect to the observed values.

We can find that our method achieves the best imputation accuracy under various missing rates. When
there is more missing data, deep learning based imputation models are less accurate due to the lack
of observation condition information. Nevertheless, our approach uses frequency domain information
and achieves superior results. Our FGTI model surpasses the state-of-the-art generative imputation
models in various cases, thanks to the incorporation of high-frequency and dominant-frequency
condition information.

Moreover, since missing data are usually associated with the environment in reality, we consider two
additional typical missing data injection mechanisms following the same line of the existing study
[33], i.e., missing at random (MAR) [53] and missing not at random (MNAR) [45]. Specifically, the
probability of missing data in MAR is higher when the temperature reading is low in the KDD dataset.
On the other hand, in the MNAR scenario, there is a higher probability of missing data during the
periods when the reading of each feature is lower. Figure 4 and Figures 8-9 in Appendix A.4.1 show
the corresponding imputation results. One can find that the imputation results under different missing
mechanisms are relatively similar, and our FGTI achieves optimal performance consistently. This
result demonstrates that FGTI can handle missing data in various missing scenarios.

4.3 Ablation Analysis

We explore the effect of different elements in our FGTI on imputation performance through the
following four ablation scenarios. (1) w/o Cross-domain: No extra condition representation is
provided for cross-domain representation learning frameworks, where the fusion processes degrade
to the standard self-attention. This scenario is used to validate the role of cross-domain representation
for imputation. (2) w/o Frequency condition: In this scenario, the frequency-domain information
is absent, and only the observations in the time-domain are utilized as the condition, to investigate
the impact of the frequency-domain information. (3) w/o Dominant-frequency filter: Remove the
dominant-frequency filter from the structure to observe its impact on data imputation performance.
(4) w/o High-frequency filter: This case exemplifies how crucial the high-frequency filter is, by
removing it from the pipeline.

Based on the results presented in Table 2, it is evident that cross-domain representation learning frame-
works and the two types of frequency-domain information are crucial in the process of imputation,
which verifies the necessity of each component in our FGTI.

4.4 Resource Consumption

We present the resource consumption results of different methods in Figure 5. It can be observed that
the running time of FGTI is roughly at the same level as other diffusion-based methods. The overall
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Figure 6: Application results of air quality prediction over KDD dataset and mortality forecast over
Physionet dataset

resource consumption of FGTI, implemented based on the diffusion model, is slightly higher than that
of CSDI, due to the inclusion of high-frequency information and dominant-frequency information.
However, since FGTI can achieve better imputation results than other methods, as shown in Table 1,
we argue that it is acceptable to incur such an extra resource consumption.

4.5 Application Study

To validate the effectiveness of applying imputation in real-world downstream applications, we con-
sider air quality prediction and mortality forecasting tasks. For the air quality prediction application,
we first impute real-world missing data in the KDD dataset by various imputation methods. Then, we
analyze the records in the previous twelve hours and use the AdaBoost regressor [37] to estimate the
average PM2.5 concentration for the upcoming six hours. Figure 6(a) shows that our method achieves
the highest improvement in the air quality prediction task. Figure 6(b) reports the mortality forecast
performance over the PhysioNet dataset. We train the MLP classifier [37] to forecast the mortality
on the data without/with imputation. As shown, FGTI achieves the best performance again, which
verifies the applicability of our work. Notably, various imputation methods provide a noteworthy and
favorable impact on the forecast task, which demonstrates the necessity of imputation.

5 Conclusion

In this paper, we study imputing incomplete multivariate time series data, through reducing the
imputation error in the residual term. By effectively incorporating frequency-domain insights into
the generative framework, our FGTI surpasses existing models by capturing high-frequency infor-
mation and dominant-frequency information. The introduced cross-domain representation learning
frameworks further enhance its capability to handle time and attribute dependencies. Comprehensive
experimental evaluations over real-world incomplete datasets demonstrate the superiority of FGTI in
both the imputation accuracy and the improvement of downstream applications.
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A Appendix

A.1 Proof of Proposition 3.1

We use the conditional entropy in information theory to reflect the amount of uncertainty. For the
reverse process in [20], the imputation target X̂t is specified as the condition, thus we use

H
(
X̂t−1 | X̂t

)
= −

∫
pθ

(
X̂t−1, X̂t

)
log pθ

(
X̂t−1 | X̂t

)
dX̂t−1

to model the uncertainty of the reverse process of DDPM.

Similarly, we use H
(
X̂t−1 | X̂t,XC

)
to model the uncertainty of the reverse process of the

CSDI [44] model, which only uses the observations as the condition. For our FGTI, we utilize
H
(
X̂t−1 | X̂t,XC,CH,CD

)
.

According to the property of the conditional entropy, we first have

H
(
X̂t−1 | X̂t

)
≤ H

(
X̂t−1

)
.

Using the definition of mutual information, we have

I
(
X̂t−1; X̂t

)
= H

(
X̂t−1

)
−H

(
X̂t−1 | X̂t

)
.

From Equation 12, we know that I
(
X̂t−1; X̂t

)
> 0, we thus have

H
(
X̂t−1 | X̂t

)
< H

(
X̂t−1

)
.

According to the chain rule of the entropy, we have

H
(
X̂t−1, X̂t,XC

)
= H

(
X̂t−1 | X̂t,XC

)
+H

(
X̂t,XC

)
.

Then we can get

H
(
X̂t−1 | X̂t,XC

)
= H

(
XC | X̂t−1, X̂t

)
+H

(
X̂t−1, X̂t

)
−H

(
XC | X̂t

)
−H

(
X̂t
)

= H
(
X̂t−1 | X̂t

)
+H

(
XC | X̂t−1, X̂t

)
−H

(
XC | X̂t

)
.

According to the Equation 12, X̂t−1 adds the noise one less time than X̂t, which indicating that
X̂t−1 is closer to the observations. Thus, we have

H
(
XC | X̂t−1, X̂t

)
< H

(
XC | X̂t

)
.

By substituting this, we can obtain

H
(
X̂t−1 | X̂t,XC

)
< H

(
X̂t−1 | X̂t

)
.

Following the same line, we can also derive that

H
(
X̂t−1 | X̂t,XC,CH,CD

)
< H

(
X̂t−1 | X̂t,XC

)
.

This result implies that adding CH and CD to the condition can simplify the distribution that the
diffusion models need to learn by reducing the entropy. This simplification can lead to more efficient
learning and improve the model’s imputation performance by narrowing down the scope of the target
distribution’s randomness and making its outcomes more predictable.
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A.2 Mathematical details of FGTI

A.2.1 Details of Equation 13

If the complete imputation target distribution q(X̂0) is known, we can first get a sampled complete
imputation target X̂0 ∼ q(X̂0). Following Equation 12, we can obtain X̂t by

X̂t =
√
αtX̂t−1 +

√
1− αtϵt, ϵt ∼ N (0, I).

Similarly, we can also obtain X̂t−1 by

X̂t−1 =
√
αt−2X̂t−2 +

√
1− αt−1ϵt−1, ϵt−1 ∼ N (0, I).

Combining the above two equations, we get

X̂t =
√
αt
(√

αt−1X̂t−2 +
√
1− αt−1ϵt−1

)
+
√
1− αtϵt

=
√
αtαt−1X̂t−2 +

(√
αt(1− αt−1)ϵt−1 +

√
1− αtϵt

)
.

As ϵt−1 ∼ N (0, I), ϵt ∼ N (0, I), we can infer that
√

αt(1− αt−1)ϵt−1 ∼ N (0, [αt(1− αt−1)]I),√
1− αtϵt ∼ N (0, (1− αt)I). Therefore, we can get

X̂t =
√
αtαt−1X̂t−2 +

√
1− αtαt−1ϵ

=
√
αtαt−1αt−2X̂t−3 +

√
1− αtαt−1αt−1ϵ

= . . .

=

√√√√ t∏
i=1

αiX̂0 +

√√√√1−
t∏

i=1

αiϵ,

where ϵ ∼ N (0, I).

A.2.2 Details of the Parameterization

Combining the Bayes’ theorem, we start by

pθ(X̂
t−1 | X̂t,XC,CH,CD) = pθ(X̂

t | X̂t−1,XC,CH,CD)
pθ(X̂

t−1 | XC,CH,CD)

pθ(X̂t | XC,CH,CD)
.

According to Equation 12, the expected pθ(X̂
t | X̂t−1,XC,CH,CD) is

pθ(X̂
t | X̂t−1,XC,CH,CD) ∼ N (

√
αtX̂t−1, (1− αt)I).

Furthermore, by incorporating Equation 13, we can obtain

pθ(X̂
t−1 | XC,CH,CD) ∼ N (

√
αt−1X̂0

θ, (1−
√
αt−1)I),

pθ(X̂
t | XC,CH,CD) ∼ N (

√
αtX̂0

θ, (1−
√

αt)I),

where X̂0
θ is a virtual result that is expected to be obtained through Equation 14. Combining

Equation 12, we can parameterize it by X̂t =
√
αtX̂0

θ +
√

1− αtϵθ

(
t, X̂t,XC,CH,CD

)
, where

ϵθ(·) outputs the predicted added noise to X̂t−1 based on the parameter set θ. In other words,
X̂0

θ = 1√
αt

[
X̂t −

√
1− αtϵθ

(
t, X̂t,XC,CH,CD

)]
.
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By merging the above three distributions, we can derive

pθ(X̂
t−1 | X̂t,XC,CH,CD) ∝ exp

{
−1

2

[
(X̂t −

√
αtX̂t−1)2

1− αt
+

(X̂t−1 −
√
αt−1X̂0

θ)
2

1− αt−1

− (X̂t −
√
αtX̂0

θ)
2

1− αt

]}

= exp

{
−1

2

[(
αt

βt
+

1

1− αt−1

)
(X̂t−1)

2

−

(
2
√
αtX̂t

βt
+

2
√

αt−1X̂0
θ

1− αt−1

)
X̂t−1 + . . .

]}
,

where (X̂t−1)
2

denotes the inner product of X̂t−1.

On the other hand, from the probability density function of the Gaussian distribution, we can also
obtain

pθ(X̂
t−1 | X̂t,XC,CH,CD) ∝ exp

−1

2

(
X̂t−1 − µθ

[
X̂t−1 | X̂t,XC,CH,CD

])2
[σt−1]

2


= exp

{
−1

2

[
1

[σt−1]
2 (X̂

t−1)
2

+
2µθ

[
X̂t−1 | X̂t,XC,CH,CD

]
[σt−1]

2 X̂t−1 + . . .

 .

Therefore, we can get
1

[σt−1]
2 =

αt

βt
+

1

1− αt−1
,

2µθ

[
X̂t−1 | X̂t,XC,CH,CD

]
[σt−1]

2 =
2
√
αtX̂t

βt
+

2
√
αt−1X̂0

θ

1− αt−1
.

We can first obtain the following result from the first equation as αt = 1− βt

[
σt−1

]2
=

(1− αt−1)βt

1− αt
.

After that, we take it into the second equation

µθ

[
X̂t−1 | X̂t,XC,CH,CD

]
(1− αt)

(1− αt−1)βt
=

√
αtX̂t(1− αt) +

√
αt−1X̂0

θβ
t

(1− αt−1)βt
.

As the virtual result X̂0
θ = 1√

αt

[
X̂t −

√
1− αtϵθ

(
t, X̂t,XC,CH,CD

)]
, we have

µθ

[
X̂t−1 | X̂t,XC,CH,CD

]
=

√
αt(1− αt−1)

1− αt
X̂t +

√
αt−1βt

1− αt

1√
αt−1

X̂t

−

√
αt−1βt

1− αt

√
1− αt√
αt−1

ϵθ

(
t, X̂t,XC,CH,CD

)
=

1√
αt

[
X̂t − βt√

1− αt
ϵθ

(
t, X̂t,XC,CH,CD

)]
.
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Figure 7: Architecture of the Denoising Network ϵθ(·) in FGTI

A.3 Implementation Details

A.3.1 Detailed Architecture of the Denoising Network

In this section, we present the detailed architecture of the denoising network ϵθ(·) in FGTI model. As
shown in Figure 7, the input projector of the noise imputation target and the observation condition
is an MLP layer, and the output projector is a 2-layer MLP with ReLU activation function. For
the encoder of the frequency-domain information, it is implemented by a transformer backbone
consisting of the position encoding layer and the transformer encoder layer.

A.3.2 Algorithms

Algorithm 1 Training process of FGTI implemented by the diffusion model
Input: Incomplete time series X, the number of diffusion step T
Output: Optimized denoising network ϵθ(·)

1: repeat
2: X̂0 ← select observed values in X
3: t ∼ Uniform {1, . . . , T}
4: ϵ ∼ N (0, I)

5: X̂t ←
√
αtX̂0 +

√
1− αtϵ

6: Perform Gradient Descent by∇Lθ = ∇θ

∥∥∥ϵ− ϵθ

(
t, X̂t,XC,CH,CD

)∥∥∥2
7: until converged

In this section, we provide the detailed training process of our proposed FGTI model implemented by
the diffusion model in Algorithm 1, and the imputation process in Algorithm 2.

A.4 Supplemental Experiments

A.4.1 Missing Mechanisms

In this section, we explore the imputation performance of the missing at random (MAR) [53] and
missing not at random (MNAR) [45] missing mechanisms over the Guangzhou dataset and the
PhysioNet dataset.
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Algorithm 2 Imputation process of FGTI implemented by the diffusion model
Input: A incomplete time series sampleX, the number of diffusion step T , the optimized denoising
network ϵθ(·)
Output: Filled missing values X̂0

1: X̂← missing values in X

2: X̂T ∼ N (0, I)
3: for t = T, . . . , 1 do
4: if t > 1 then
5: ϵ ∼ N (0, I)
6: else
7: ϵ← 0
8: end if

9: X̂t−1 ← 1√
αt

[
X̂t − βt√

1−αt
ϵθ

(
t, X̂t,X,CH,CD

)]
+

√
(1−αt−1)βt

1−αt
ϵ

10: end for

As shown in Figure 8 and Figure 9, FGTI consistently achieves optimal performance, demonstrating
its ability to handle missing data in various scenarios.
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Figure 8: Varying the missing mechanism over Guangzhou dataset with 10% missing values
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Figure 9: Varying the missing mechanism over PhysioNet dataset with 10% missing values

A.4.2 Hyperparameter Evaluation

In this section, we perform parameter sensitivity experiments on two critical hyperparameters: the
cutoff frequency of the high-frequency filter and the maximum magnitude frequency number of the
dominant-frequency filter.

Effect of the cutoff frequency F . Figure 10 shows the imputation results with various cutoff
frequencies F of the high-frequency filter. It can be found that if F is too small, the model may not
be able to accurately capture the high-frequency information necessary for guiding the imputation
of the time series residual term. The reason is that the high-frequency filter output may include too
much low-frequency information. Conversely, if F is too large, the model cannot obtain enough
high-frequency information to guide the imputation of the residual term.

Effect of the maximum magnitude frequency number κ. We investigate the imputation results
when adjusting the maximum amplitude frequency number κ used for the dominant-frequency filter
in Figure 11. As shown in the figure, the imputation model cannot perform well with a small κ. This
is because the dominant-frequency filter cannot obtain enough smoothing information, which causes
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Figure 10: Varying the cutoff frequency F of the high-frequency filter with 10% missing values
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Figure 11: Varying the number of maximum magnitude frequency κ of the dominant-frequency filter
with 10% missing values

high-frequency signals to interfere with the imputation of the trend and seasonal terms of the time
series. On the contrary, if κ is too large, it can cause some high-frequency information to mix with
the output condition of the dominant-frequency filter. This can prevent the model from effectively
obtaining background structure information needed for imputing the trend and seasonal terms. As a
result, the imputation result for extreme cases may not be optimal.

Based on the experimental results, we set the cutoff frequency F of the high-frequency filter to 0.3
and set the number of maximum magnitude frequency κ of the dominant-frequency filter to 10. In
addition, for other settings related to the diffusion model, we adopt hyperparameters recommended by
the existing well-established models [44; 24]. These models have demonstrated strong performance
in similar tasks, and their hyperparameters have been extensively validated in the paper.

A.4.3 Imputation Target Select Strategies

For training the denoising network, we randomly select some observed values as the imputation
target. In this process, the mask ratio and mask pattern to get the imputation target directly determine
the effectiveness of training. Thus, in this section, we explore the performance of FGTI with different
mask ratios and mask patterns.

Effect of Mask Ratio We first mask different ratios of observations as the imputation target for
training, the performance of FGTI with different mask ratios is shown in Table 3. In addition, we
consider a special case where observations with different ratios are randomly masked as imputation
targets at each training step, instead of using a fixed masking ratio.

We can find that since the random ratio mask strategy can increase the learning complexity and
enhance the modeling ability of the diffusion model, the random ratio mask strategy achieves optimal
or sub-optimal performance in most cases. So we use the random ratio mask strategy by default.

Effect of Mask Pattern Then we explore the performance when using different mask patterns.
Following CSDI [44] and PriSTI [27], we consider three mask pattern strategies: (1) Block missing
(2) Mix missing (3) Random missing. The results is shown in Table 4
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Table 3: Varying the mask ratio of the imputation target when training the denoising network with
10% missing values

Mask Ratio KDD Guangzhou PhysioNet

RMSE MAE RMSE MAE RMSE MAE

10% 0.4372 0.1925 0.2388 0.1647 0.5992 0.3235
20% 0.4143 0.1700 0.2312 0.1576 0.5853 0.2893
30% 0.4257 0.1707 0.2335 0.1600 0.5836 0.2800
40% 0.4185 0.1697 0.2372 0.1634 0.6181 0.3105
50% 0.4183 0.1714 0.2343 0.1578 0.6308 0.3138

Random Ratio 0.4057 0.1489 0.2325 0.1584 0.5801 0.2856

Table 4: Varying the mask pattern of the imputation target when training the denoising network with
10% missing values

Mask Pattern KDD Guangzhou PhysioNet

RMSE MAE RMSE MAE RMSE MAE

Block missing 0.4187 0.1778 0.2387 0.1596 0.6224 0.3384
Mix missing 0.4193 0.1792 0.2325 0.1531 0.6034 0.3208

Random missing 0.4057 0.1489 0.2325 0.1584 0.5801 0.2856

It can be found that Block missing or Mix missing strategy is not comparable to Random missing
in most cases due to the possibility that the mask pattern may not correspond to the actual missing
scenario. So we use the Random missing mask pattern by default.

A.5 Comparative Experiments of Generative Baselines

To compare the imputation performance of FGTI with probabilistic generative baselines in more
detail, we adopt CRPS [44] to evaluate the gap between the learned and ground truth distributions for
different probabilistic generative methods following [44; 27].

First, we inject different rates of missing values by the MCAR mechanism, and report the CRPS
performance with different missing rates in Table 5. Then we report the CRPS by varying the missing
mechanism with 10% missing values in Table 6.

We can find that our method outperforms other probabilistic generative methods for all cases due to
the introduction of frequency-domain conditions, thus providing empirical evidence for Proposition
3.1. It can be also found that the variations of CRPS are basically the same as RMSE and MAE for a
specific model with different settings.

A.5.1 Case Study

In order to verify the role of the high-frequency condition and the dominant-frequency condition,
in this section we conduct a case study of FGTI for trend, seasonal, residual term over the pre-
decomposed KDD dataset.

We first perform STL decomposition of the KDD dataset into Trend, Seasonal and Residual terms.
Then we select 10% observations of the original KDD dataset as the mask positions by MCAR, and
then mask the corresponding positions of the three terms. Finally we imputation the missing values in
the three terms separately and report the performances. Note that this setup is the same as the survey
experiment shown in Figure 1 in Section 1.

To study the role of high-frequency information, dominant-frequency information, and frequency-
domain information, we consider the three ablation scenarios (1)w/o Dominant-frequency filter (2)
w/o High-frequency filter and (3) w/o Frequency condition in Section 4.3.

We report the imputation results of different scenarios over different terms in Table 7
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Table 5: CRPS of various probabilistic generative methods with different missing rates
Dataset Missing Rate TimeCIB GAIN CSDI SSSD PriSTI FGTI

KDD 10% 0.466 0.709 0.224 0.352 0.232 0.158
20% 0.467 0.718 0.245 0.370 0.248 0.170
30% 0.469 0.729 0.259 0.374 0.268 0.186
40% 0.471 0.746 0.278 0.401 0.301 0.216

Guang. 10% 0.360 0.692 0.265 0.316 0.209 0.155
20% 0.357 0.694 0.277 0.299 0.244 0.168
30% 0.356 0.695 0.292 0.353 0.310 0.193
40% 0.358 0.697 0.324 0.382 0.362 0.243

Phy. 10% 0.466 0.739 0.544 0.617 0.444 0.343
20% 0.467 0.761 0.589 0.665 0.457 0.369
30% 0.469 0.787 0.627 0.630 0.467 0.389
40% 0.471 0.814 0.671 0.676 0.491 0.441

Table 6: CRPS of various probabilistic generative methods with different missing mechanisms
Dataset Miss mechanism TimeCIB GAIN CSDI SSSD PriSTI FGTI

KDD MCAR 0.466 0.709 0.224 0.352 0.232 0.158
MAR 0.470 0.710 0.229 0.489 0.239 0.164
MNAR 0.490 0.715 0.244 0.456 0.252 0.174

Guang. MCAR 0.360 0.692 0.265 0.316 0.209 0.155
MAR 0.298 0.692 0.252 0.367 0.208 0.148
MNAR 0.294 0.693 0.251 0.267 0.210 0.144

Phy. MCAR 0.466 0.739 0.544 0.617 0.444 0.343
MAR 0.593 0.739 0.550 0.724 0.454 0.356
MNAR 0.608 0.743 0.566 0.715 0.476 0.366

We can find that for the trend term, retaining the dominant-frequency condition gives the best results,
while the high-frequency condition may interfere with the imputation. For the seasonal term, the
results are similar to the trend term, but the dominant-frequency information contributes less to the
imputation for the seasonal term than for the trend term. This suggests that the seasonl term mainly
corresponds to the dominant-frequency information, but also contains some of the high-frequency
information. In contrast, the results of the experiments on the residual term show that the residual
term mainly corresponds to high-frequency condition. Since we choose the transformer as the encoder
in Cross-domain Representation Learning and utilize cross-attention as the fusion mechanism of the
two frequency-domain conditions in time-frequency representation learning and attribute-frequency
representation learning modules, our method can self-adaptively adjust the weights of the high-
frequency information and the dominant-frequency information for different timestamps. Thus our
method can outperform existing methods for datasets with multiple circumstances in most cases, as
illustrated in Table 1.

A.5.2 Visualizations

To showcase the imputation results of our FGTI model, we visualize the results with the state-of-the-
art imputation methods CSDI and PriSTI in Figure 12 and Figure 13. We can find that the CSDI
imputation results are not quite accurate for some fast-changing points due to the lack of sufficient
condition guidance. On the other hand, both FGTI and PriSTI produced more accurate imputation
results because they both used additional conditions. However, as shown in Tabel 1, FGTI still yields
better results than PriSTI, suggesting that the high-frequency information and the dominant-frequency
information we use are more superior to the interpolation information used by PriSTI.

A.6 Societal Impact Statement

The development our FGTI imputation model could have a significant positive impact on various sec-
tors including healthcare, finance, and environmental monitoring. In healthcare, improved imputation
models can lead to more accurate health monitoring systems, enabling early detection and treatment
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Table 7: Imputation results for the trend, seasonal and residual terms of KDD dataset with 10%
missing values

Component Trend Seasonal Residual

RMSE MAE RMSE MAE RMSE MAE

w/o Frequency condition 0.0480 0.0155 0.0572 0.0364 0.5132 0.2975
w/o Dominant-frequency filter 0.0482 0.0157 0.0533 0.0334 0.4956 0.2814
w/o High-frequency filter 0.0409 0.0143 0.0485 0.0301 0.5129 0.2912

FGTI 0.0448 0.0159 0.0523 0.0325 0.5068 0.2885
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Figure 12: Imputation results visualization compared with CSDI for KDD dataset with 10% missing
values.

of conditions by filling gaps in patient data. This can ultimately improve patient outcomes and reduce
healthcare costs. In the financial sector, enhanced time series imputation can provide better forecasts
and risk assessments, aiding in more informed decision-making and potentially stabilizing markets
by decreasing uncertainty. Environmentally, better data imputation can improve weather prediction
models and climate monitoring systems, aiding in disaster readiness and enhancing our ability to
address climate change.

However, the deployment of advanced imputation models also raises certain concerns. If used in
sensitive areas like surveillance, these models could lead to privacy invasions by reconstructing
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Figure 13: Imputation results visualization compared with PriSTI for KDD dataset with 10% missing
values.

missing or incomplete data to track individuals without consent. In financial markets, sophisticated
imputation methods could also exacerbate inequality by disproportionately benefiting institutions with
the resources to leverage state-of-the-art technology, potentially leading to greater market dominance.
Additionally, reliance on automated data imputation may result in complacency, where errors in
imputation models propagate unnoticed, leading to decisions based on inaccurate or misleading data.

To mitigate negative impacts of our imputation model, implement stringent data privacy laws, and
ethical guidelines, provide equal access to technology resources across entities, and establish rigorous
validation processes to ensure accuracy and fairness. Regular auditing and transparency in algorithm
deployment can also play a critical role.
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dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the necessary computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: In every respect in the paper, we follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include the impact statement in Appendix A.6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data, models, and code in the paper respect the license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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