
Is Kernel Prediction More Powerful than Gating in
Convolutional Neural Networks?

Lorenz K. Müller 1

Abstract

Neural networks whose weights are the output
of a predictor (HyperNetworks) achieve excellent
performance on many tasks. In ConvNets, kernel
prediction layers are a popular type of HyperNet-
work. Previous theoretical work has argued that
a hierarchy of multiplicative interactions exists
in which gating is at the bottom and full weight
prediction, as in HyperNetworks, is at the top.
In this paper, we constructively demonstrate an
equivalence between gating combined with fixed
weight layers and weight prediction, relativizing
the notion of a hierarchy of multiplicative interac-
tions. We further derive an equivalence between a
restricted type of HyperNetwork and factorization
machines. Finally, we find empirically that gat-
ing layers can learn to imitate weight prediction
layers with an SGD variant and show a novel prac-
tical application in image denoising using kernel
prediction networks. Our reformulation of pre-
dicted kernels, combining fixed layers and gating,
reduces memory requirements.

1. Introduction
A powerful generalization of neural networks is to transform
their weights from static parameters to dynamic predictions
from the network’s current input. Such networks have been
termed HyperNetworks (Ha et al., 2016) and Fast Weight
Networks (Schmidhuber, 1992). While not always viewed
under this perspective, models of this kind are part of widely
used methods in recommender systems (Rendle, 2010) (Fac-
torization Machines (FM)), natural language processing
(NLP) (Vaswani et al., 2017) (Transformers) and various
image processing tasks (Howard et al., 2019; Bako et al.,
2017) (Attention, Kernel Prediction).

1Computing Systems Lab, Huawei Technologies, Zurich,
Switzerland. Correspondence to: Lorenz K. Müller
<lorenz.muller@huawei.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Gating mechanisms in neural networks are commonly used
in recurrent neural network (RNN) architectures (Hochre-
iter & Schmidhuber, 1997; Chung et al., 2014), where they
have enabled successes in tasks like speech recognition and
machine translation (Lipton et al., 2015). The gating mech-
anism dynamically controls information flow in these archi-
tectures, particularly in the sequence dimension. Addition-
ally, such mechanisms can prevent the vanishing gradient
problem of RNNs (Hochreiter & Schmidhuber, 1997).

In several applications for which RNNs have been the state-
of-the-art approach for some time, now transformer archi-
tectures (Vaswani et al., 2017) achieve even better results.
One key aspect in which transformers differ from gating
architectures is how they handle data dependency across the
sequence dimension: Recurrence and gating are supplanted
by dynamic prediction of attention weight matrices (Bah-
danau et al., 2016), which express relationships between
positions in the sequence dimension. Transformers have
now also spread to domains like image processing (Doso-
vitskiy et al., 2021) and recommender systems (Sun et al.,
2019).

Also, many architectures exist in convolutional networks
that use weight prediction (or kernel prediction). In this
context predicting weights can be especially effective when
it enables the ‘feed-forward’ network (for which the weights
are predicted) to be limited to a constrained form: E.g., a
single color transformation matrix per pixel (Gharbi et al.,
2017), a denoising kernel per pixel (Mildenhall et al., 2018)
or an explainable, linear model (Bohle et al., 2021). Addi-
tionally, predicted kernels in convolutional networks allow
decoupling parameter count from required FLOPs, which
can benefit lightweight compute settings (Muller, 2021).

Gating layers have recently been adopted outside their origi-
nal application sphere in RNNs. In the NLP domain, gMLPs
(Liu et al., 2021) propose to use a gating layer as a stand-in
for the standard multi-headed attention in a transformer-like
architecture. In image enhancement, NAFNet (Chen et al.,
2022) uses multiple forms of linear gating for highly effec-
tive image denoising. In implicit representations, element-
wise multiplication has also been used as a lightweight
alternative to full HyperNetworks (Mehta et al., 2021).

Here, we extend the prior perspective (Jayakumar et al.,

1



Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?

2020) on the relationship of weight prediction and gating by
taking into account the impact of fixed-weight layers that
are virtually always present adjacent to gating layers. When
not considering fixed-weight layers, gating misleadingly
appears less general than weight prediction. In this paper,
we show that they are on equal footing from this more
realistic perspective.

1.1. Contributions

The main contributions of our paper are:

• Showing that the hierarchy of multiplicative interac-
tions of (Jayakumar et al., 2020) misses an important
piece of the puzzle: The hierarchy is flat if fixed layers
are taken into account.

• Theoretically motivating works like (Liu et al., 2021;
Mehta et al., 2021; Chen et al., 2022) by deriving a new
relationship between gating layers and HyperNetworks
(Theorem 3.1) also for the case spatial filters (Corollary
3.2).

• Empirically studying the learnability of given weight
prediction layers by gating layers (Sec. 4) for random
and trained networks.

• Applying gating layers to reduce the memory foot-
print of a real-world image burst denoising network
(Sec. 4.3) based on kernel prediction.

• Deriving a new relationship between FMs / low-rank
matrix factorization and HyperNetworks (Theorem
3.3)

2. Background
This section summarizes informal descriptions of the models
we will examine in the rest of the paper and provides the
formal definitions we will use later.

2.1. HyperNetworks

Motivated by neuroscientific observations (Kupfermann,
1979), researchers in natural language processing have ar-
gued (long before practical demonstrations) that having
weights in a neural network with different time constants
(‘fast’ and ‘slow’ weights), allows for more powerful models
(Hinton, 1987).

Specifically, (Schmidhuber, 1992) describes Fast Weight
Memories as using a slowly learning feed-forward network
that predicts weight changes for a second ‘fast-weight’ Net-
work. Several following papers propose the idea of pre-
dicting weights for neural networks with neural networks
independently, e.g., as HyperNetworks (Ha et al., 2016) and

(in the convolutional case) as Dynamic Convolutions (Klein
et al., 2015; Riegler et al., 2015).

The transformer (Vaswani et al., 2017) is a particularly wide-
spread variant of HyperNetworks (Schlag et al., 2021) (in
the sense of the definition for HyperNetworks we use here).
The multi-headed attention of transformers predicts a weight
matrix that is to be applied; the distinguishing features com-
pared to a general HyperNetwork are that the predicted ma-
trix is applied to the ‘sequence’ dimension of the input (not
e.g., the ‘channel’ dimension) and that the weight predic-
tion takes a particular form (multi-headed attention). Some
further explanations are given in the appendix, Sec. A.5.3.

Formally, let a HyperNetwork layer be a neural network
layer, whose weights have been predicted by a ‘weight-
prediction’ neural network NNW (·) (whose output is two
dimensional, a matrix)

xl
j = f

(∑
i

[NNW (x⃗0)]ij · xl−1
i

)
(1)

where x⃗0 is the input, x⃗l is the lth layer’s activation, and
f(·) is the non-linearity. The collection of such layers,
excluding the weight-prediction, will be referred to as the
‘feed-forward’ network. This definition corresponds closely
to the ideas of (Ha et al., 2016; Schmidhuber, 1992).

A common special case is that the weight prediction network
NNW and the feed-forward network share some parameters.
This is, for example, the case when NNW takes as its inputs
the output of the directly preceding feed-forward layer rather
than the input of layer 0.

2.2. Factorization Machines

A factorization machine (FM) (Rendle, 2010) generalizes
low-rank matrix factorization. The two are equivalent when
the input to the FM is binary. The key feature of an FM
is that the quadratic interactions are formulated efficiently,
such that it computes a matrix entry in O(kn) for an n× n
matrix approximated at rank k.

Formally, (Rendle, 2010) defines the factorization machine
(FM) by the equation

yj = wj +

n−1∑
i=0

wjixi +

n−1∑
i=0

n−1∑
k=i+1

(
nl−1∑
l=0

vjilvjkl

)
xixk.

(2)

Here x⃗ are input features, y⃗ is the regression target, w⃗ are
biases for y⃗, W are the learned weights of a linear predictor
and the learned weight tensor V is used to construct a low-
rank 3-tensor that weighs feature-crosses of x⃗; j indexes
entries of y⃗, i, k index x⃗, and finally l indexes (low-rank)
dimension of the V .

2



Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?

+ + + +

1 1 1 1 1 1

+ + + +

1 1 1 1 1 1

NNA

NNW

Input Neurons

Predicted
Weights

Output Neurons: sum of product

Input Neurons

Hidden Layer Multiplier of hidden layer

Hidden Layer with multiplier

Output Neurons: sum of product

Fixed Weights

Fixed Weights

Figure 1. Predicting weights with a neural network NNW is equivalent to predicting an element-wise multiplier (with NNA) combined
with two fixed layers of appropriate size (without non-linearity). The fixed layers are used to project into a high enough dimension in
which the element-wise multipliers can take the role of weights. See Theorem 3.1 for details. Best viewed on a screen.

2.3. Gating Layers

In a gating layer, two sets of activations (or, for convolutions,
feature maps) are multiplied element-wise. The output of
such an operation is sometimes referred to as a dynamic fea-
ture (Han et al., 2021). Some key examples where such an
operation is used in practice are recurrent neural networks
(e.g., in LSTMs (Hochreiter & Schmidhuber, 1997)), MLP
variants (e.g. gMLP (Liu et al., 2021)), convolutional neural
networks (e.g., NAFNet (Chen et al., 2022)) or implicit neu-
ral networks (e.g., modulated periodic activations (Mehta
et al., 2021)). Some authors label such operations as a form
of attention (e.g., squeeze-and-excitation layers (Hu et al.,
2018) or simplified channel attention (Chen et al., 2022)).

Formally, given two input vectors x⃗, a⃗ a gating layer com-
putes an output y⃗ by

yi = xi · σ(ai) (3)

where σ(·) is some activation function (and may also be the
identity).

Given two collections of feature maps X,A, a gating layer
computes an output collection of feature map Y by

Ycij = Xcij · σ(Acij) (4)

where c indexes the channel and i, j the two spatial dimen-
sions.

3. Theory
3.1. HyperNetwork Layers and Gating Layers

Let a gated double layer (GDL) be

xl
j = f

(
nk∑
k=1

ukj · [NNa(x⃗0)]k ·

(
ni∑
i=1

vik · xl−1
i

))
(5)

where x⃗0 is the network’s input, x⃗l is the lth layer’s activa-
tion, f(·) is the non-linearity, ukj and vik are fixed weight
matrices, and [NNa(x⃗0)]k is a neural network, whose out-
put is vectorial (with nk entries). Note that the only non-
linearities occur inside NNa and at the end with f(·). Fi-
nally, ni is the input, nj is the output, and nk is the latent
dimensionality.

Theorem 3.1. For any HyperNetwork layer H (Eq. 1),
there exists a gated double layer G (Eq. 5) that produces
the same output y⃗ for any given input x⃗ if nk ≥ nj · ni.

Proof. A visual example of the central idea of this proof is
given in Fig. 1. In summary, we can use the matrices ukj

and vik as indexes such that each entry of [NNa(x⃗0)]k maps
to exactly one entry of [NNW (x⃗0)]ij . This is possible when
there are sufficiently many entries in [NNa(x⃗0)]k, namely
when nk ≥ nj · ni. The detailed proof is in the appendix in
Sec. A.1.

Note that this further implies that HyperNetworks and net-
works consisting of GDLs have equal representational power
and relativizes the notion of a hierarchy of multiplicative
interactions in the presence of fixed weight layers.

3.1.1. KERNEL PREDICTION

An interesting variant of this construction concerns Kernel
Prediction Networks (Mildenhall et al., 2018), where a deep
network predicts denoising kernels per pixel of an input
image sequence. A convolutional variant of the gated double
layer can emulate the application of these dynamic, local
kernels.

Let a kernel prediction layer acting on input feature maps
X ∈ RC×H×W (where C,H,W are the input’s number

3



Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?

of channels, height and width respectively) to output Y ∈
R1×H×W be a layer that applies an individual predicted
kernel [NNK(X)] of size f × f centered on each pixel; as
a formula

Yij =
∑

c,fi,fj

X(i+fi)(j+fj)c · [NNK(X)]ijc fi fj (6)

Let a convolutional gated double layer acting on X to output
Y (as above) be a fixed convolution layer, followed by an
element-wise multiplier (that is predicted from input) and
another fixed convolution layer; as a formula (assuming that
the second fixed filter convolution is 1x1 for better legibility)

Yij =
∑

c,fi,fj ,h

X(i+fi)(j+fj)c ·Fhc fi fj · [NNA(X)]ijh ·Gh

(7)

Here, indices i, j run over horizontal and vertical pixel po-
sitions, fi, fj filter positions, and c, h index the channel di-
mension. G and F are filter banks and X,Y and [NNA(X)]
are sets of feature maps.

Corollary 3.2. For any kernel prediction layer K with filter
size f , there exists a convolutional gated double layer L
that produces the same output for any given input if Ck ≥
CX · CY · f2.

Proof. We can reformulate K as a HyperNetwork layer H
by appropriately reshaping the input tensor X by flattening
it. The number of entries in the resulting predicted matrix is
CX · CY ·H ·W · f2, so by Theorem 3.1 we need to make
sure that 1) the element-wise multiplier we construct has
at least this many entries (and again use the fixed layers to
do indexing) and that 2) the filter size of at least one of the
fixed filters in the gated double layer has sufficient spatial
extent (i.e. f × f ).

In Sec. 4, we show empirically that this substitution works
in practice (even for a memory-saving low-rank approxi-
mation) for the same setup as the one by (Mildenhall et al.,
2018) on the task of image burst denoising.

3.2. Linear One-layer HyperNetworks are FMs

Let a single (low-rank) linear HyperNetwork layer with
linear weight prediction LinearW be

x1
j =

∑
i

[LinearW (x⃗0)]ij · x0
i + wj (8)

=

n−1∑
i=0

(
wji +

n−1∑
k=0

urank-nl

jik xk

)
︸ ︷︷ ︸

weff
ji

xi + wj

where x⃗0 are input features (indexed by j), x⃗1 is the regres-
sion target (indexed by i, k), w⃗ is the bias for each target
(indexed by j), W are the biases of the linear weight pre-
diction (indexed by j, i), and U is the (low-rank) tensor that
linearly maps input features to predicted weights (indexed
by j, i, k).

Theorem 3.3. Low-rank linear HyperNetwork layers with
linear weight prediction (Eq. 8) are Factorization Machines
(Eq. 2) for binary input vectors.

The proof is in the appendix in Sec. A.2.

Note that binary inputs are not an artificial but practically
relevant case for FMs: Binary input FMs correspond to low-
rank matrix factorization (Rendle, 2010). In the non-binary
case, the low-rank linear HyperNetwork layer is an FM with
self-interactions, i.e. non-zero coefficients in front of square
terms.

4. Experiments
In this section, we demonstrate empirically that for a given
HyperNetwork layer H , an equivalent gated double layer G
does not only exist but can also be learned (for definitions,
see Sec.3). We tackle this question in three different settings.

In the first two settings, the task for the gated double layer
G is to reproduce the output of a fixed HyperNetwork layer
H . The construction of H differs between the two: First,
the weights of H are drawn at random and second, H is
trained on CIFAR-10.

The third experiment takes a ‘real-world’ network, the Ker-
nel Prediction Network (KPN) of (Mildenhall et al., 2018),
trained for image burst denoising. Instead of learning to re-
produce the output of a pre-trained network, we train a KPN
variant from scratch, where a convolutional gated double
layer replaces the kernel prediction.

We do not perform experiments relating to Theorem 3.3,
because in this case there is a one-to-one correspondence of
parameters between the FM and the linear HyperNetwork,
such that the learning dynamics are also identical.

For better reproducibility, we include code for the two fol-
lowing subsections in the supplemental materials1. The total
compute budget for this experimental section amounts to a
few GPU days.

4.1. Random Networks

Here we examine the question: Given a fixed, random Hy-
perNetwork layer H , will a gated double layer G be able
to emulate H when trained with an SGD variant? This

1Found here: https://drive.proton.me/urls/
W8S6343JZ4#gpGZdMJM4eTv

4

https://drive.proton.me/urls/W8S6343JZ4#gpGZdMJM4eTv
https://drive.proton.me/urls/W8S6343JZ4#gpGZdMJM4eTv


Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?

question is relevant because while Theorem 3.1 guarantees
the existence of such a G and gives a way to construct it
by hand, in practice, neural networks are trained by SGD
variants. Whether or not SGD can find the given (or a dif-
ferent) assignment of variables in G such that it matches H
can give us an idea of whether GDLs can replace predicted
weights in practice.

We are also interested in how low-rank or over-complete
variants of G affect trainability and vary the hidden layer’s
size in G. We also train an MLP M to emulate H as an
illustrative baseline. M is dimensioned such that it is at
least as large as G in terms of FLOPs. See Fig. 2 for details
of H , G and M .

To train G and M we feed 5’000’000 random normal vectors
of length 128 into H and observe its output. G and M are
trained with Adagrad2 (Lydia & Francis, 2019) and a cosine
learning rate schedule (Loshchilov & Hutter, 2017) on the
L2 loss to match this output. After each epoch, we test
the L2 loss of G and M ’s predictions on 1’000 previously
unseen random normal vectors.

The architectures of H , G and M are described schemati-
cally in Fig. 2. We introduce a scale parameter s that scales
the hidden layer of G and M . When s = 1, the hidden
layer of G has the minimum size required that there exists
a weight assignment for G that matches any given H in
general (this corresponds to the equality of the condition
nk ≥ nj · ni in Theorem 3.1).

Fig. 3 shows the training curve of a single run and the final
relative error (MSE divided by the mean of the square of
the output of H) as a function of the ratio ‘scale’ between
the number of predicted weights in H and number of the
predicted element-wise multiplier in G (for different sizes
‘dim’ of the predicted weight in H).

We observe that sufficiently large G approximate H well,
while M plateau at a higher error. Neither of the networks
overfits the training data (which is unsurprising given the
high number of training samples). We also see that larger
networks converge to a smaller error within the same num-
ber of epochs; in principle even at scale 1 a perfect solution
exists (as shown in Theorem 3.1), but it appears Adagrad
does not recover it perfectly with the given hyperparameters
and training time.

One might at first think that this indicates that the decom-
position is not useful when training from scratch. However,
we will see in the following experiments that for practical
applications, even a low-rank approximation (scale < 1) can
be sufficient to match the output quality in a practical task
(image burst denoising). Related work shows further such

2We tested Adam (Kingma & Ba, 2017), SGD and Adagrad at
scale 1 and used the last as it worked best for both G and M .

cases, e.g., (Liu et al., 2021; Mehta et al., 2021). This is
important because the GDL at full rank is potentially less
efficient than a HyperNetwok.

4.2. Trained Networks

Here, we examine the question: Given a HyperNetwork
layer H trained on CIFAR-10, will a gated double layer G
be able to emulate H when trained with SGD? In contrast
to the previous section with random networks, there is a
finite probability that the predicted weight in H is low-rank,
making it easier to predict for smaller G.

Again, we are also interested in how low-rank or over-
complete variants of G affect trainability and vary the hidden
layer’s size in G. We also train an MLP M to emulate H as
an illustrative baseline. M is dimensioned such that it is at
least as large as G in terms of FLOPs.

CIFAR-10 (Krizhevsky et al., 2009) is a dataset of 60’000
colour images of size 32 × 32 of 10 different classes. As
customary, we train on 50’000 images and use 10’000 for
testing in the standard split. A fixed weight ConvNet (ar-
chitecture details are given in the appendix) first extracts
feature vectors of length l ∈ {16, 32, 64, 128} from each
image. On these feature vectors (and corresponding target
weights), we train H and then train G and M to reproduce
the output of H .

Similar to the section on random networks Fig. 3 shows
training curves and final, relative L2 loss as a function of
the hidden layer size a function of the ratio s between pre-
dicted weights in H and size of the predicted element-wise
multiplier in G. The results look similar to the previous
section: Sufficiently large G approximate H well, also for
trained layers H . One notable difference is that the error
drops off at a lower scale for the trained network. This is
consistent with the possibility that the predicted weight in
H is low-rank.

4.3. Kernel Prediction Network

Here we examine the question: Given a practical network
that contains a HyperNetwork layer H , can we replace this
layer H with a gated double layer L and train the model to
equal quality as the original? Can we gain a computational
benefit using a low-rank approximation of the H?

The standard KPN We consider the kernel prediction net-
work (KPN) of (Mildenhall et al., 2018), an effective image
burst denoiser. The KPN is a U-Net-like (Ronneberger et al.,
2015) CNN that predicts an individual (spatial) denoising
kernel centered on each pixel in the input image burst and
then combines all pixels weighted by their kernels into a
single denoised image. For an illustration of the network

5



Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?

Dense
Layer

ReLU

x

x

MatMul
W

y

n x
 n

y

si
ze

n x
 n

y

Dense
Layer

ReLU

x

x

a
y

s 
n x

 n
y

si
ze

s 
n x

 n
y

n x
 n

y

Element-wise
Multiply

s nx ny

Dense
Layer

ReLU

x y

s 
n x

 n
y

si
ze

2 
s 

n x
 n

y

n x
 n

y

Figure 2. The networks used in the fully connected network experiments. (Left): The HyperNetwork H . (Middle): The gated double
layer G. (Right) The MLP M , dimensioned to at least as many FLOPs as G. x is the input vector, y the output and ni, i ∈ {x, y} their
respective sizes. s is an additional parameter that we vary to examine whether the predicted weight can be approximated at lower rank.

100

scale

10 3

10 2

10 1

Re
la

tiv
e 

Er
ro

r

MLP, dim=16
GDL, dim=16
MLP, dim=32
GDL, dim=32
MLP, dim=64
GDL, dim=64
MLP, dim=128
GDL, dim=128

(a) Random: results

0 10 20 30 40 50
epoch

10 1

100

M
SE

test-error, GDL
train-error, GDL
test-error, MLP
train-error, MLP

(b) Random: learning

100

scale

10 3

10 2

10 1

100

Re
la

tiv
e 

Er
ro

r

MLP, dim=80
GDL, dim=80
MLP, dim=160
GDL, dim=160
MLP, dim=320
GDL, dim=320
MLP, dim=640
GDL, dim=640

(c) Trained: results

0 10 20 30 40 50
epoch

10 4

10 3

10 2

M
SE

test-error, GDL
train-error, GDL
test-error, MLP
train-error, MLP

(d) Trained: learning

Figure 3. Results for learning to emulate a random HyperNetwork layer. (a): Relative L2 error as a function of the hidden layer scale
in the GDL G / in the MLP M . ‘dim’ indicates the size of the predicted weight matrix in H . (b): The training curve for scale s = 1.
The GDL G is better than an equally sized MLP M at emulating a HyperNetwork H at all sizes. (c) and (d) show the same data for a
CIFAR-10 pretrained HyperNetwork layer. (a) and (c) are averaged over 10 random initializations.

layout, see the appendix. Formally it reads

Yijc =
∑

t,fi,fj

X(i+fi)(j+fj)ct · [NNK(X)]ijt,fi,fj (9)

note the additional time dimension (indexed by t) compared
to Eq. 6 that is summed over (instead of over the channels).
For an input image burst of height H , width W , length
T and channel number C, the aim is to predict a single
image of equal height, width and channel count. The tensor
[NNK(X)]ijct,fi,fj that contains the collection of denoising
kernels then has H ×W × T × C × f × f entries, where
f is the edge-length of one individual kernel. We consider
the grey-scale case C = 1.

Gated Double Layer Decomposition We can replace the
kernel prediction stage with the gated double layer as in
Corollary 3.2. An illustration of the resulting network is
given in Fig. 5 in the appendix, alongside an illustration of
the original KPN.

As a formula, the double-gated decomposition reads (assum-
ing that the second fixed filter convolution is 1× 1 for better
legibility; in practice, we use a f × f convolution for both

G and F )

Yijc =
∑

t,fi,fj

X(i+fi)(j+fj)ct ·Fijht fi fj · [NNA(X)]ijh ·Gijh

(10)
note again the additional time dimension (indexed by t)
compared to Eq. 7 that is summed over. F and G are fixed
convolution filter banks. G takes as input all feature maps
of the hidden layer that F projects into, and F takes as
input nc · nt feature maps (one map per input channel per
time-step in the burst). NNA(X) is computed by a network
that looks exactly like NNK except for the last layer, which
now has a different size, namely H ×W × C ×M (where
M is the number of channels in the new hidden layer), such
that it can be cast into the required shape. Note that the ratio
between the sizes of the last layer in the original network
and ours is T×f×f

M .

By choosing the hidden layer’s channel count, M , we can
either approximate the kernels NNK at full rank or lower
rank. Intuitively, it seems unlikely that full rank is required
because some kernels are implausible for image denoising
(e.g., a kernel that combines the four corners and nothing
else; a similar observation is made by (Xia et al., 2020)).
Here, we opt for a channel-count M ∈ {64, 128}. With this
choice, the largest tensor computed in our network variant

6



Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?

is about {2.1, 1.5}× smaller than the largest tensor in the
original KPN.

Setup details Apart from the last layer of the network,
we use the identical setup as (Mildenhall et al., 2018) with
5 × 5 kernels based on the code3 released by the authors.
Hyperparameters are not tuned to our variant but are left as
given in the code.

One modification we make concerns the validation data.
Originally, the authors create a synthetic test set of val-
idation image bursts from a set of non-public validation
images; instead, we create a synthetic test set of validation
image bursts from the publicly available McMaster set of
images (Zhang et al., 2011). However, we use the identical
code for the image to burst transformation. This transfor-
mation adds independently drawn Gaussian read and shot
noise with the following standard deviations to each im-
age I in the burst: σread = 10r, where r ∼ U(−3,−1.5),
σshot = sqrt(I) · 10r, where r ∼ U(−2,−1). Additionally,
the transformation shifts the input image by up to 2 pixels
with high probability and up to 16 pixels with low probabil-
ity. Please consider the code linked in the footnote under the
gamma corrected setting and the paper (Mildenhall et al.,
2018) for further details.

Results Table 1 summarizes our results. The best-
performing network uses our double-gated layer rather than
the standard predicted kernel formulation. While the output
quality improvement is insignificant, this network reduces
memory requirements substantially (its widest layer has
1.5× fewer channels) compared to the original network.
Shrinking the hidden layer in the double-gated construction
too far (Gated-64) deteriorates the output quality signifi-
cantly.

5. Discussion
Theorem 3.1 gives a new perspective on why e.g. the
NAFNet architecture (Chen et al., 2022) is so effective: The
use of gating as an activation function effectively allows the
network to implement a rank-constrained kernel prediction.
Note that compared to GDL, the NAFNet layer is ‘missing’
the second fixed-weight layer, but in practice, this second
set of weights can be omitted/absorbed into the first set of
weights of the subsequent layer (if the two layers have the
same size). Generally, gating layers are virtually always
used together with fixed-weight layers. These fixed-weight
layers can ‘absorb’ the fixed weights of the GDL in practice.

A potential reason for the recent popularity of gating in place
of weight prediction could lie in the ease of initialization:
As representative examples, both dealing with a variant of

3 https://github.com/google/burst-denoising

image enhancement for their HyperNetwork (Muller, 2021)
devote a subsection to initialization methods where NAFNet
(Chen et al., 2022) works ‘out-of-the-box’.

Similarly, the effectiveness of ‘modulated periodic activa-
tions’ by (Mehta et al., 2021) as an alternative to HyperNet-
SIRENs in implicit image representation networks (Sitz-
mann et al., 2020) is unsurprising given Theorem 3.1. Here,
the prediction of weights of a layer is supplanted by the
prediction of an activation vector that is introduced into the
network by element-wise multiplication.

Theorem 3.3 gives us a different point of view on what
HyperNetworks are. Because factorization machines are, on
the one hand, a generalization of rank-k matrix factorization
and a special case of a single HyperNetwork layer, we can
now see (multi-layer) HyperNetworks as a kind of (iterated)
generalized rank-k matrix factorization.

5.1. Related Work

5.1.1. NETWORKS WITH GATING LAYERS

Gating layers are a common architectural component of neu-
ral networks, probably popularized by LSTMs (Hochreiter
& Schmidhuber, 1997). Some recent papers have suggested
variants of gating layers as an alternative to predicting full
weight or attention matrices, e.g. gMLP (Liu et al., 2021)
to replace multi-headed attention (Vaswani et al., 2017)
and modulated periodic activations (Mehta et al., 2021) to
replace HyperNet-SIRENs (but without theoretical motiva-
tion).

Our results provide a firm theoretical foundation for such ar-
chitectures: In an appropriate dimension, gating and weight
prediction are equivalent; in a lower dimension, gating is a
low-rank weight prediction.

5.1.2. HYPERNETWORKS IN COMPUTER VISION

Many recent architectures contain a weight (or kernel) pre-
diction step similar to the KPN we studied in detail in this
paper. A brief overview of related works is given in Table 2,
and a more complete explanation of these architectures is
given in the Appendix A.5. Note that many further examples
exist. The empirical success and popularity of predicting
weights evident from this table underlines the relevance of
our theoretical findings.

5.1.3. RELATING HYPERNETWORKS TO OTHER
ARCHITECTURES

(Schlag et al., 2021) show that linearized multi-headed at-
tention is a special kind of HyperNetwork but do not relate
this to gating mechanisms. In our definition of HyperNet-
work layers, we allow non-linearities (such as the softmax
of multi-headed attention); notably, this means that the con-

7

https://github.com/google/burst-denoising


Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?

Table 1. 8-frame-combining KPN compared with the same setup, where a gated double layer replaces the predicted kernel layer as in
Corollary 3.2. Max. Size indicates the total size of all feature maps in the largest layer.

Model Max. Size Test PSNR
Single Frame 1×H ×W 20.0
Original KPN (Mildenhall et al., 2018) 200×H ×W 32.6
Gated-128 (ours) 128×H ×W 32.8
Gated-64 (ours) 64×H ×W 31.9

Table 2. Different HyperNetworks (with a focus on Computer Vision) and their properties. We include the FM as the simplest possible
HyperNetwork. The ‘Conv.’ column marks networks containing convolution layers, and ‘Local’ networks apply spatially varying kernels
locally at each pixel. ‘FFL’ abbreviates ‘feed-forward layer’. See the appendix for further details on these architectures.

Model Conv. Local 1 FFL specific NNW Initial Application
HyperNetwork (Schmidhuber, 1992; Ha et al., 2016) time series
Dynamic Convolution, e.g. (Klein et al., 2015) × img. enhancement
Dynamic Alignment Net (Bohle et al., 2021) × img. classification
Dynamic Filter Net (Jia et al., 2016) × × img. enhancement
Adaptive Convolution, e.g. (Niklaus et al., 2017) × × × video enhancement
HDR-Net (Gharbi et al., 2017) × × × × img. enhancement
CondConv (Yang et al., 2019) × × img. classification
Squeeze-And-Excitation (Hu et al., 2018) × × img. classification
FM (Rendle, 2010) × × recommendation
MHA (Vaswani et al., 2017) × NLP

struction of Theorem 3.1 applies to multi-headed attention
mechanisms as well (in as far as a suitable low-rank basis
can be constructed, see also Sec. 5.2).

(Littwin et al., 2020) characterize infinite-width HyperNet-
works and compute their GP and NTK kernels.

(Jayakumar et al., 2020) propose a hierarchy of multiplica-
tive interactions. Our results show how the simplest layer
(gating) of this hierarchy can emulate the most general (Hy-
perNetwork) with a simple construction (the GDL). This
means that this hierarchy is flat in practice and that weight
prediction is not more powerful than gating, as long as the
gating is combined with fixed weight layers (which in prac-
tice always is the case). In the appendix, we also highlight
the relationship between the Multiplicative Interaction layer
of (Jayakumar et al., 2020) and Factorization Machines.

5.2. Limitations

In the categorization of (Smith et al., 2022), we see two limi-
tations of our work. Firstly, relating to generalizability: The
idea of low-rank kernel prediction applies to all ConvNets
and is simple to generalize to further ConvNets in a useful
way, but e.g., generalization to MHA-based architectures
is not trivial because it is not straightforward to construct
a useful low-rank basis for the MHA-layer (efficient MHA
alternatives are a field of research in their own right, see
e.g., Sec. 2.5.1 of (Wan et al., 2023)).

Secondly, regarding robustness: Our proof of Theorem 3.1
shows how to construct by hand a GDL that matches a HN,
and we show a practically useful application with KPNs;
we do not have a proof that SGD will always be able to
learn a good GDL when a good HN can be learned with
SGD (though this limitation is very wide-spread in deep
learning).

6. Conclusion
This paper introduces two new equivalences between seem-
ingly distinct machine learning models: Firstly, gating lay-
ers combined with linear, fixed-weight layers can implement
dynamically predicted weights, and further, FMs (a gener-
alization of low-rank matrix factorization) are a restricted
kind of HyperNetwork. We show empirically that gating
layers can learn to emulate a given set of predicted weights
with gradient descent to greater accuracy than comparably
sized neural networks with fully connected layers without
gating. A practical, memory-saving application of this to
Kernel Prediction Networks using only static weights and
element-wise multiplication (rather than a dynamic local
filter) is also given.

Importantly, beyond this practical application, our results
lend theoretical support to the empirical success of some re-
cently popular architecture choices (Liu et al., 2021; Mehta
et al., 2021; Chen et al., 2022) and our work revises the
hierarchy of multiplicative interactions (Jayakumar et al.,

8



Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?

2020) as flat, when fixed weight layers are involved.

Impact Statement
This paper presents work that aims to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Bahdanau, D., Cho, K., and Bengio, Y. Neural Machine

Translation by Jointly Learning to Align and Translate.
arXiv:1409.0473 [cs, stat], May 2016.

Bako, S., Vogels, T., Mcwilliams, B., Meyer, M., NováK, J.,
Harvill, A., Sen, P., Derose, T., and Rousselle, F. Kernel-
predicting convolutional networks for denoising Monte
Carlo renderings. ACM Transactions on Graphics, 36
(4):1–14, July 2017. ISSN 0730-0301, 1557-7368. doi:
10.1145/3072959.3073708.

Bohle, M., Fritz, M., and Schiele, B. Convolutional Dy-
namic Alignment Networks for Interpretable Classifica-
tions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10029–
10038. IEEE, 2021.

Chen, L., Chu, X., Zhang, X., and Sun, J. Simple Baselines
for Image Restoration. arxiv:2204.04676, August 2022.
doi: 10.48550/arXiv.2204.04676.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empiri-
cal Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling, December 2014.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An
Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale, June 2021.

Gharbi, M., Chen, J., Barron, J. T., Hasinoff, S. W., and
Durand, F. Deep bilateral learning for real-time image
enhancement. ACM Transactions on Graphics, 36(4):
118:1–118:12, July 2017. ISSN 0730-0301. doi: 10.
1145/3072959.3073592.

Ha, D., Dai, A., and Le, Q. V. HyperNetworks.
arXiv:1609.09106 [cs], December 2016.

Han, Y., Huang, G., Song, S., Yang, L., Wang, H., and Wang,
Y. Dynamic Neural Networks: A Survey, December
2021.

Hinton, G. E. Using fast weights to deblur old memories.
In Proceedings of the Ninth Annual Conference of the
Cognitive Science Society, pp. 177–186. Erlbaum, 1987.

Hochreiter, S. and Schmidhuber, J. Long Short-Term Mem-
ory. Neural Computation, 9(8):1735–1780, November
1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.
1735.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le,
Q. V., and Adam, H. Searching for MobileNetV3. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 1314–1324. IEEE, 2019.

Hu, J., Shen, L., and Sun, G. Squeeze-and-Excitation Net-
works. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 7132–7141.
IEEE, 2018.

Jayakumar, S. M., Czarnecki, W. M., Menick, J., Schwarz,
J., Rae, J., Osindero, S., Teh, Y. W., Harley, T., and
Pascanu, R. Multiplicative Interactions and Where to
Find Them. In International Conference on Learning
Representations, March 2020.

Jia, X., De Brabandere, B., Tuytelaars, T., and Gool, L. V.
Dynamic Filter Networks. In Advances in Neural In-
formation Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization, January 2017.

Klein, B., Wolf, L., and Afek, Y. A Dynamic Convolutional
Layer for Short Range Weather Prediction. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4840–4848. IEEE, 2015.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kupfermann, I. Modulatory Actions of Neurotransmitters.
Annual Review of Neuroscience, 2(1):447–465, 1979. doi:
10.1146/annurev.ne.02.030179.002311.

Lipton, Z. C., Berkowitz, J., and Elkan, C. A Critical Review
of Recurrent Neural Networks for Sequence Learning,
October 2015.

Littwin, E., Galanti, T., Wolf, L., and Yang, G. On Infinite-
Width Hypernetworks. In Advances in Neural Informa-
tion Processing Systems, volume 33, pp. 13226–13237.
Curran Associates, Inc., 2020.

Liu, H., Dai, Z., So, D., and Le, Q. V. Pay Attention to
MLPs. In Advances in Neural Information Processing
Systems, volume 34, pp. 9204–9215. Curran Associates,
Inc., 2021.

Loshchilov, I. and Hutter, F. SGDR: Stochastic Gradient
Descent with Warm Restarts, May 2017.

9



Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?

Lydia, A. A. and Francis, F. S. Adagrad - An Optimizer for
Stochastic Gradient Descent. Int. J. Inf. Comput. Sci., 6
(0972):3, 2019.

Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ra-
mamoorthi, R., and Chandraker, M. Modulated Periodic
Activations for Generalizable Local Functional Represen-
tations. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 14214–14223. IEEE,
2021.

Mildenhall, B., Barron, J. T., Chen, J., Sharlet, D., Ng, R.,
and Carroll, R. Burst Denoising With Kernel Prediction
Networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2502–2510.
IEEE, 2018.

Muller, L. K. Overparametrization of HyperNetworks at
Fixed FLOP-Count Enables Fast Neural Image Enhance-
ment. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 284–293.
IEEE, 2021.

Niklaus, S., Mai, L., and Liu, F. Video Frame Interpolation
via Adaptive Separable Convolution. In Proceedings of
the IEEE International Conference on Computer Vision,
pp. 261–270. IEEE, 2017.

Parikh, A. P., Täckström, O., Das, D., and Uszkoreit, J. A
Decomposable Attention Model for Natural Language
Inference. arXiv:1606.01933 [cs], September 2016.

Rendle, S. Factorization Machines. In 2010 IEEE Interna-
tional Conference on Data Mining, pp. 995–1000. IEEE,
December 2010. doi: 10.1109/ICDM.2010.127.

Riegler, G., Schulter, S., Ruther, M., and Bischof, H. Con-
ditioned Regression Models for Non-Blind Single Image
Super-Resolution. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 522–530,
2015.

Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convo-
lutional Networks for Biomedical Image Segmentation,
May 2015.

Schlag, I., Irie, K., and Schmidhuber, J. Linear Transformers
Are Secretly Fast Weight Programmers. In Proceedings of
the 38th International Conference on Machine Learning,
pp. 9355–9366. PMLR, July 2021.

Schmidhuber, J. Learning to Control Fast-Weight Memories:
An Alternative to Dynamic Recurrent Networks. Neural
Computation, 4(1):131–139, January 1992. ISSN 0899-
7667. doi: 10.1162/neco.1992.4.1.131.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wet-
zstein, G. Implicit Neural Representations with Periodic

Activation Functions. In Advances in Neural Information
Processing Systems, volume 33, pp. 7462–7473. Curran
Associates, Inc., 2020.

Smith, J. J., Amershi, S., Barocas, S., Wallach, H., and
Wortman Vaughan, J. Real ml: Recognizing, exploring,
and articulating limitations of machine learning research.
In Proceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency, pp. 587–597, 2022.

Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., and Jiang, P.
BERT4Rec: Sequential Recommendation with Bidirec-
tional Encoder Representations from Transformer. In Pro-
ceedings of the 28th ACM International Conference on
Information and Knowledge Management, CIKM ’19, pp.
1441–1450, New York, NY, USA, November 2019. As-
sociation for Computing Machinery. ISBN 978-1-4503-
6976-3. doi: 10.1145/3357384.3357895.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is All you Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Wan, Z., Wang, X., Liu, C., Alam, S., Zheng, Y., Qu, Z.,
Yan, S., Zhu, Y., Zhang, Q., Chowdhury, M., et al. Effi-
cient large language models: A survey. arXiv preprint
arXiv:2312.03863, 2023.

Xia, Z., Perazzi, F., Gharbi, M., Sunkavalli, K., and
Chakrabarti, A. Basis Prediction Networks for Effec-
tive Burst Denoising With Large Kernels. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11841–11850, Seattle, WA,
USA, June 2020. IEEE. ISBN 978-1-72817-168-5. doi:
10.1109/CVPR42600.2020.01186.

Yang, B., Bender, G., Le, Q. V., and Ngiam, J. CondConv:
Conditionally Parameterized Convolutions for Efficient
Inference. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Zhang, L., Wu, X., Buades, A., and Li, X. Color demo-
saicking by local directional interpolation and nonlocal
adaptive thresholding. Journal of Electronic Imaging, 20
(2):023016, April 2011. ISSN 1017-9909, 1560-229X.
doi: 10.1117/1.3600632.

Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., and Fu, Y.
Image Super-Resolution Using Very Deep Residual Chan-
nel Attention Networks. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 286–301,
2018.

10



Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?

A. Appendix
A.1. Proof Theorem 1

Proof. In detail, we set

vik =

{
1 if k mod ni = i

0 otherwise
(11)

This will copy the input neurons i exactly j times if nk =
nj · ni. Further, we set

ukj =

{
1 if k//ni = j

0 otherwise
(12)

where // denotes integer division. This will sum nj neuron
groups of size ni (in the hidden layer) into a single output
neuron. When nk > nj · ni we set terms vik, ukj where
k > nj · ni to zero.

In between the application of these two indexing matrices,
the element-wise multiplication with ak occurs. We set

ak = wij where k = ni · j + i (13)

In programming parlance, ak is a reshaped wij .

Inserting the given values for vik, ukj and ak into Eq. 5
recovers Eq. 1 and verifies the theorem.

This proof is very simple; the key contribution here is con-
sidering the combination of gating and fixed-weight layers.

A.2. Proof Theorem 2

Proof. The proof can be given by rearranging the terms in
the corresponding definitions.

yj = wj +

n−1∑
i=0

wjixi +

n−1∑
i=0

n−1∑
k=i+1

(
nl−1∑
l=0

vjilvjkl

)
xixk

= wj +

n−1∑
i=0

(
wji +

n−1∑
k=i+1

(
nl−1∑
l=0

vjilvjkl

)
xk

)
xi

=

n−1∑
i=0

xi

(
wji +

n−1∑
k=i+1

urank-nl

jik xk

)
︸ ︷︷ ︸

weff
ji

+ wj

(14)

When we compare this to the Eq. 8 we see that the summa-
tion indices in the inner sum do not match. This means 1)
each term where i ̸= k occurs twice and 2) terms where
i = k do occur. Point 1) can be taken care of by re-scaling
weights by a factor of two. Point 2) is the reason to require

binary inputs; for binary inputs, the element-wise square is
equal to the input itself, and these additional terms can be
canceled by adjusting wji.

A.3. Layout KPNs

Figs. 4, 5 show the layouts of our variant and the original
KPN network.

A.4. Layout of the feature extraction ConvNet for
CIFAR experiments

See Fig. 6

A.5. Formalized Comparison of some HyperNetwork
Variants

This section formally compares different HyperNetwork
variants with a focus on computer vision applications (in
the NLP domain, many variants of attention layers exist
that lie outside the scope of this paper). The motivation for
this section is to simplify and unify published definitions.
Because HyperNetworks are developed somewhat indepen-
dently in various communities, the disparate notations used
by the different authors obfuscate similarities that we want
to highlight.

For simplicity, we omit the sample or ‘batch’ dimension – in
most practical implementations, there is such a dimension
to make use of data parallelism. Note that contrary to fixed
weight matrices, predicted weights cannot be shared across
a mini-batch of samples because a different weight may be
predicted for each input.

For completeness, we repeat the definitions given in the
main text.

A.5.1. DEFINITION HYPERNETWORK LAYER

Let a HyperNetwork (Ha et al., 2016; Schmidhuber, 1992)
layer be a neural network layer whose weights have been
predicted by a ‘weight-prediction’ neural network NNW (·)

xl
j = f

(∑
i

[NNW (x⃗0)]ij · xl−1
i

)
(15)

where x⃗0 is the input, x⃗l is the lth layer’s activation, and
f(·) is the non-linearity.

A.5.2. FACTORIZATION MACHINES, THE SIMPLEST
HYPERNETWORK

For the case of binary inputs x⃗0, a single, (low-rank) linear
HyperNetwork layer with linear NNW is equivalent to a
factorization machine (Rendle, 2010) (and thereby to a low-

11



Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?

2d Convolution Average Pool 2d Bilinear Upsample Skip connection

64

128

256
512 512 512

256

N K2 Image
Burst

*

*

*

*

+

pixel-wise 
Kernels

Single clean
image

Figure 4. The original KPN for comparison to Fig. 5.

2d Convolution Average Pool 2d Bilinear Upsample Skip connection

64

128

256
512 512 512

256

128Image
Burst

128

1

single, clean
image

Element-wise Product

Figure 5. Example of a practical application of Theorem 3.1. A kernel prediction network, where the kernel prediction is replaced with a
gated double layer. Here, we assume a single output color channel and treat the time dimension of the input burst as channels.

12



Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?

32

64

128
n

Conv2d +
BachNorm 

Skip
connection

Global 
AvgPool2d

Average Pool 2d

Figure 6. Layout of the CNN used for feature extraction in the
CIFAR experiments in Sec. 4. The number of output features n
varies in the different experiments.

rank matrix factorization).

x1
j =

∑
i

[LinearW (x⃗0)]ij · x0
i (16)

(Jayakumar et al., 2020) propose a multiplicative interaction
(MI) layer, that is, a full-rank, linearized HyperNetwork
layer. In contrast to the factorization machines the MI layer
1) does not concatenate its inputs, but keeps them distinct 2)
expresses the full 3d interaction tensor (i.e. some product
terms occur twice and self-interactions are included) and 3)
models the interactions at full-rank.

A.5.3. SEQUENCE-BASED HYPERNETWORKS

In sequence-based networks (e.g. in NLP), the input operand
X is two-dimensional with entries xi,s, where i is a neuron
ID or channel dimension and s is a position in a sequence.

Fast-weight attention In this notation, the attention mech-
anism of (Bahdanau et al., 2016) can be written as

yi,t =
∑
s

[NNW (X0)]st · xi,s (17)

The output of [NNW (X0)]st is called the attention matrix.
The difference to the HyperNetwork layer in Eq. 1 is that
here the attention matrix mediates between sequence dimen-
sions rather than channel dimensions.

Outer-product attention In dot-product attention mech-
anisms, like in (Parikh et al., 2016), the attention matrix
is predicted at rank 1 (as also suggested by (Schmidhuber,
1992)):

yi,t =
∑
s

fNL
(
[NNW

a (X0)]t · [NNW
b (X0)]s

)
· xi,s (18)

where NNW
a and NNW

b are two (potentially overlapping)
weight prediction networks and fNL(·) is a simple function

(e.g. the identity or a softmax over one of the sequence
dimensions). When fNL(·) is not the identity, the matrix it
outputs can have a rank greater than 1.

Multi-headed attention In multi-headed attention, sev-
eral outer-product attention layers are concatenated. A com-
pact way of writing this is as above, with an additional ‘head’
dimension indexed by h

yi,t,h =
∑
s

fNL
(
[NNW

a (X0)]t,h · [NNW
b (X0)]s,h

)
· xi,s

(19)
This head dimension is finally transposed into the channel
dimension by concatenation, i.e.

yi+h·ni,t =
∑
s

fNL
(
[NNW

a (X0)]t,h · [NNW
b (X0)]s,h

)
·xi,s

(20)
Multi-headed attention is commonly used in transformers
(Vaswani et al., 2017) and seems particularly effective at
balancing low-rank constraints (due to memory limitations)
and expressiveness. Some definitions of MHA include lin-
ear layers acting on xi,s; here, we treat them separately.
Further, some definitions of MHA require specific forms of
NNa,NNb, e.g. an affine transformation of xi,s.

A.5.4. CONVOLUTIONAL HYPERNETWORKS

In (2d) convolutional HyperNetworks, the input operand
X is three dimensional with entries xj,rs, where j is the
channel dimension and r, s are two spatial dimensions.

Dynamic convolution The convolutional HyperNetwork
layer then reads

xl
j,rs = f

 ∑
i,dr,ds

[NNW (X0)]ij,drds
· xl−1

i,(r+dr)(s+ds)


(21)

where a multi-channel image / feature map X has entries
xj,rs. The indexes i, j index channels, the r, s are spatial
coordinates and dr, ds are offsets in these spatial coordi-
nates. The sum now goes over all input channels and offsets
(dr, ds) in the spatial dimension (i.e. it is a convolution
with kernel-size (dr, ds) over the spatial dimensions). The
weight prediction network [NNW (X0)]ij,drds

predicts full
convolution kernels whose dimensions are input channels i,
output channels j, spatial dim. 1 offset dr and spatial dim.
2 offset ds.

This definition corresponds to (Klein et al., 2015) and is
known as a dynamic convolution.

The dynamic alignment net (Bohle et al., 2021) finds an
interesting application of such layers: By using many pre-
dicted weights after each other, without non-linearity in
between, a more interpretable network can be constructed

13



Is Kernel Prediction More Powerful than Gating in Convolutional Neural Networks?

(because for any input sample, the feed-forward network is
linear, though this linear network may be different for each
sample).

Dynamic filter network The convolutional HyperNet-
work layer with local filters reads

xl
j,rs = f

 ∑
i,dr,ds

[NNW (X0)]ij,sr,drds
· xl−1

i,(r+dr)(s+ds)


(22)

This differs from the above in that the weight prediction
network now outputs different filter for each spatial location,
such that its output is six-dimensional: i input channels,
j output channels, s and r spatial dimensions and ds, dr
spatial dimension offsets.

This definition corresponds to (Zhang et al., 2018) and is
known as a dynamic filter network.

Adaptive Convolution and Kernel Prediction Networks
This (Niklaus et al., 2017; Bako et al., 2017) is the single
feed-forward layer variant of the previous

xout
j,rs = f

 ∑
i,dr,ds

[NNW (X0)]ij,sr,drds
· x0

i,(r+dr)(s+ds)


(23)

Having only a single layer in the feed-forward network can
be desirable to constrain the complexity of the transforma-
tion that is applied to any given input.

Deep Bilateral Learning This (Gharbi et al., 2017) is a
simplified special case of the previous, namely

xout
j,rs =

∑
i

[NNW (X0)]ij,sr · x0
i,rs (24)

where the spatial offsets ds, dr are always zero (i.e. a
1x1 convolution), and there is no non-linearity in the feed-
forward net. Importantly, NNW has a special form including
a bilateral grid (see (Gharbi et al., 2017)). This NNW can
be computed efficiently and yet is expressive.

Squeeze-And-Excitation Layer This (Hu et al., 2018) is
a special case of the general dynamic convolution, where
the predicted weight is decomposed into the product of
fixed weight and a channel-wise dynamic component. The
predicted weight reads

W eff
ij,drds

= MLP[Pool(NNW (X0))]i ·Wij,drds
(25)

and the resulting restricted dynamic convolution is

xl
j,rs = f

 ∑
i,dr,ds

W eff
ij,drds

· xl−1
i,(r+dr)(s+ds)

 (26)

CondConv The approach of Yang and colleagues (Yang
et al., 2019) is comparable to the squeeze-and-excitation
layer, where the predicted weight for the CondConv reads

W eff
ij,drds

=
∑
k

MLP[Pool(NNW (X0))]k ·Wkij,drds
(27)

i.e., it is computed as a weighted sum of several weights.

14


