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Abstract

Neural forecasting of spatiotemporal time series drives both research and industrial
innovation in several relevant application domains. Graph neural networks (GNNs)
are often the core component of the forecasting architecture. However, in most
spatiotemporal GNNs, the computational complexity scales up to a quadratic
factor with the length of the sequence times the number of links in the graph,
hence hindering the application of these models to large graphs and long temporal
sequences. While methods to improve scalability have been proposed in the context
of static graphs, few research efforts have been devoted to the spatiotemporal
case. To fill this gap, we propose a scalable architecture that exploits an efficient
encoding of both temporal and spatial dynamics. In particular, we use a randomized
recurrent neural network to embed the history of the input time series into high-
dimensional state representations encompassing multi-scale temporal dynamics.
Such representations are then propagated along the spatial dimension using different
powers of the graph adjacency matrix to generate node embeddings characterized
by a rich pool of spatiotemporal features. The resulting node embeddings can be
efficiently pre-computed in an unsupervised manner, before being fed to a feed-
forward decoder that learns to map the multi-scale spatiotemporal representations to
predictions. The training procedure can then be parallelized node-wise by sampling
the node embeddings without breaking any dependency, thus enabling scalability
to large networks. Empirical results on relevant datasets show that our approach
achieves results competitive with the state of the art, while dramatically reducing
the computational burden.

1 Introduction

As graph neural networks (GNNs; [1, 2]) are gaining more traction in many application fields, the need
for architectures scalable to large graphs – such as those associated with large sensor networks – is
becoming a pressing issue. While research to improve the scalability of models for static graph signals
has been very prolific [3–6], little attention has been paid to the additional challenges encountered
when dealing with discrete-time dynamical graphs, i.e., spatiotemporal time series. Several of
the existing scalable training techniques rely on subsampling graphs to reduce the computational
requirements of the training procedure, e.g., [3, 5]. However, sampling the node-level observations
as if they were i.i.d. can break relational (spatial) dependencies in static graphs and it is even more
problematic in the dynamic case, as dependencies occur also across the temporal dimension. Indeed,
complex temporal and spatial dynamics that emerge from the interactions across the whole graph
over a long time horizon, can be easily disrupted by perturbing such spatiotemporal structure with
subsampling. As an alternative, precomputing aggregated features over the graph allows for factoring
out spatial propagation from the training phase in certain architetures [6]. However, similarly to
the subsampling approach, extending this method to the spatiotemporal case is not trivial as the
preprocessing step must account also for the temporal dependencies besides the graph topology.
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Figure 1: Overview of the framework. An Echo-
State Network (ESN) – with shared parameters
across nodes – encodes temporal dynamics. Then,
K graph shift operators are used to propagate spa-
tial information. The resulting K + 1 representa-
tions are concatenated and fed to an MLP to obtain
predictions.

In this paper, we propose a novel scalable
encoder-decoder architecture for processing spa-
tiotemporal data. Fig. 1, shows a high-level
overview of the architecture. The spatiotem-
poral encoding scheme is training-free: first,
it exploits a deep randomized recurrent neural
network [7, 8] to encode the history of each se-
quence in a high-dimensional vector embedding;
then, it uses powers of the graph adjacency ma-
trix to build informative node representations of
the spatiotemporal dynamics at different scales.
According to the downstream task at hand, the
decoder maps the node representations into the
desired output, e.g., the future values of the time
series associated with each node. To improve
efficiency, we exploit the structure of the ex-
tracted embedding to design the decoder to act
as a collection of filters localized at different
spatiotemporal scales.

Since the spatiotemporal encoder requires neither training nor supervision, the representation of each
node and time step can be computed in a preprocessing stage, without the constraints that come from
online training on GPUs with limited memory. The decoder is the only component of the architecture
with trainable parameters. However, since spatiotemporal relationships are already embedded in the
representations, the embeddings can be processed independently from their spatiotemporal context
with two consequent advantages. First, training can be done node-wise, allowing for sampling
node representations in mini-batches of a size proportional to the hardware capacity. Second, the
decoder can be implemented similarly to a standard multilayer perceptron (MLP) readout, which
is fast and easy to train. Let T and E be the number of steps and the number of edges in the
input graph, respectively. The cost of training a standard spatiotemporal GNN on a mini-batch of
data has a computational and memory cost that scales as O(TE), or O(T 2E) in attention-based
architectures [9]. Conversely, in our approach mini-batches can be sampled disregarding the length
of the sequence and size of the graph, thus making scalability in training constant, i.e., O(1), w.r.t.
the spatiotemporal dimension of the problem.

Our contributions can be summarized as follows.

• We propose a general scalable deep learning framework for spatiotemporal time series, which
exploits a novel encoding method based on randomized recurrent components and scalable GNNs
architectures.

• We apply the proposed model to forecast multivariate time series, whose channels are subject to
spatial relationships described by a graph.

• We carry out a rigorous and extensive empirical evaluation of the proposed architecture and
variations thereof. Notably, we introduce two benchmarks for scalable spatiotemporal forecasting
architectures.

Empirical results show that our approach performs on par with the state of the art while being easy to
implement, computationally efficient, and extremely scalable. Given these considerations, we refer to
our architecture as Scalable Graph Predictor (SGP).

2 Preliminaries and Problem Definition

We consider discrete-time spatiotemporal graphs. In particular, given N interlinked sensors, we
indicate with xi

t ∈ Rdx the dx-dimensional multivariate observation associated with the i-th sensor at
time-step t, with Xt ∈ RN×dx the node attribute matrix encompassing measurements graph-wise, and
with Xt:t+T the sequence of T measurements collected in the time interval [t, t+ T ) at each sensor.
Similarly, we indicate with Ut ∈ RN×du the matrix containing exogenous variables (e.g., weather
information related to a monitored area) associated with each sensor at the t-th time-step. Then,
we indicate additional, optional, static node attributes as V ∈ RN×dv . The relational information
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Figure 2: Overview of the SGP encoder. Input time series are fed into a randomized network with
recurrent connections and embedded into a hierarchical vector representation. A graph shift operator
is used to propagate and aggregate spatial information of different order which is then concatenated
to obtain a final embedding.

is encoded in a, potentially dynamic, weighted adjacency matrix At ∈ RN×N . We indicate with
the tuple Gt = ⟨Xt,Ut,V ,At⟩ the graph signal at the t-th time-step. Note that the number of
sensors in a network is here considered fixed only to ease the presentation; we only request nodes
to be distinguishable across time steps. The objective of spatiotemporal forecasting is to predict
the next H observations given a window of W past measurements. In particular, we consider the
family of forecasting models Fθ(·) such that X̂t:t+H = Fθ (Gt−W :t), where θ indicates the learnable
parameters of the model and X̂t:t+H the H-step ahead point forecast.

Echo-State Networks Echo state networks [7, 10] are a class of randomized architectures that
consist of recurrent neural networks with random connections that encode the history of input signals
into a high-dimensional state representation to be used as input to a (trainable) readout layer. The
main idea is to feed an input signal into a high-dimensional, randomized, and non-linear reservoir,
whose internal state can be used as an embedding of the input dynamics. An echo state network
is governed by the state update equation ht = σ (Wxxt +Whht−1 + b) , where xt indicates a
generic input to the system, Wx ∈ Rdh×dx and Wh ∈ Rdh×dh are the random matrices defining the
connectivity pattern in the reservoir, b ∈ Rdh is a randomly initialized bias, ht indicates the reservoir
state, and σ is a nonlinear activation function (usually tanh). If the random matrices are defined
properly, the reservoir will extract a rich pool of dynamics characterizing the system underlying the
input time series xt and, thus, the reservoir states become informative embeddings of xt−T :t [10].
Thanks to the non-linearity of the reservoir, the embeddings are commonly processed with a linear
readout that is optimized with a least squares procedure to perform classification, clustering, or time
series forecasting [11].

3 Scalable Spatiotemporal GNNs

This section presents our approach to building scalable GNN architectures for time series forecasting.
Our method is based on a hybrid encoder-decoder architecture. The encoder first constructs represen-
tations of the time series observed at each node by using a reservoir that accounts for dynamics at
different time scales. Representations are further processed to account for spatial dynamics described
by the graph structure. In particular, as shown on the right-hand side of Fig. 2, we use incremental
powers of the graph adjacency matrix to propagate and aggregate information along the spatial
dimension. Each power of the propagation matrix accounts for different scales of spatial dynamics.
The final embedding is then built by concatenating representations obtained w.r.t. each propagation
step, thus resulting in a rich encoding of both spatial and temporal features.

The encoder does not need any training and, once computed, the embeddings can be uniformly
sampled over time and space when training a nonlinear readout to perform H-step-ahead predictions.
The straightforward choice for the decoder (i.e., readout) is to map the encodings to the outputs (i.e.,
predictions) by using a linear transformation or a standard MLP. However, to further enhance
scalability, our decoder exploits the structure of the embedding to reduce the number of parameters
and learn filters that are localized in time and space. As we will discuss, this is done by learning
separate weight matrices for each spatiotemporal scale. In the following, we describe each component
of the architecture in detail.
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Spatiotemporal Encoder We consider as temporal encoders deep echo state networks (Deep-
ESN; Gallicchio et al. 8) with leaky integrator neurons [12]. In particular, we consider networks
where the signal associated with each node is encoded first as hi,(0)

t =
[
xi
t∥ui

t

]
and then by a stack

of L randomized recurrent layers s.t.

ĥ
i,(l)
t = tanh

(
W (l)

u h
i,(l−1)
t +W

(l)
h h

i,(l)

t−1 + b(l)
)
,

h
i,(l)
t = (1− γl)h

i,(l)
t−1 + γlĥ

i,(l)
t , l = 1, . . . , L

(1)

where γl ∈ (0, 1] is a discount factor associated with l-th layer, W (l)
u ∈ Rd

hl×d
hl−1 , Wh ∈ Rd

hl×d
hl ,

b ∈ Rd
hl are random weight matrices, hi,(l)

t indicates the hidden state of the system w.r.t. the i-th
node at the l-th layer, and ∥ indicates node-wise concatenation. As Eq. 1 shows, DeepESNs are a
hierarchical stack of reservoir layers that, e.g., by changing the discount factor at each layer, extract a
rich pool of multi-scale temporal dynamics [8]2. Given a DeepESN encoder, the input is represented
by the concatenation of the states from each layer, i.e., we obtain node-level temporal encodings h

i

t

for each node i and time-step t as h
i

t =
(
h
i,(0)
t ∥hi,(1)

t ∥ . . . ∥hi,(L)
t

)
. We indicate as Ht the encoding

for the whole graph at time t. The extraction of the node-level temporal embeddings is depicted on
the left-end side of Fig. 2, where, to simplify the drawing, we depict an ESN with a single layer.

The next step is to propagate information along the spatial dimension. As discussed at the beginning of
the section, we use powers of a graph shift operator Ã to propagate and aggregate node representations
at different scales. We then obtain spatiotemporal encodings as

S
(0)
t = Ht =

(
H

(0)
t ∥H(1)

t ∥ . . . ∥H(L)
t

)
,

S
(k)
t = ÃS

(k−1)
t =

(
ÃkH

(0)
t ∥ÃkH

(1)
t ∥ . . . ∥ÃkH

(L)
t

)
,

(2)

with St =
(
S

(0)
t ∥S(1)

t ∥ . . . ∥S(K)
t

)
and where Ã indicates a generic graph shift operator matching

the sparsity pattern of the graph adjacency matrix. In practice, by indicating with D the graph degree
matrix, we use Ã = D−1A in the case of a directed graph and the symmetrically normalized adja-
cency Ã = D−1/2AD−1/2 in the undirected case. Furthermore, for directed graphs we optionally
increase the number of representations to 2K + 1 to account for bidirectional dynamics, i.e., we
repeat the encoding process w.r.t. the transpose adjacency matrix similarly to [14]. Intuitively, each
propagation step ÃS

(k−1)
t propagates and aggregates – properly weighted – features between nodes

connected by paths of length k in the graph. As shown in Eq. 2, features corresponding to each order
k can be computed recursively with K sparse matrix-matrix multiplications (Fig. 2). Alternatively,
each matrix Ãk can be precomputed and the computation of the different blocks of matrix St can
be distributed in a parallel fashion. Even in the case of extremely large graphs, features St can be
computed offline by exploiting distributed computing as they do not need to be loaded on the GPU
memory.

Multi-Scale Decoder The role of the decoder is that of selecting and weighing from the pool of
the (possibly redundant) features extracted by the spatiotemporal encoder and mapping them to the
desired output. Representations St can be fed into an MLP that performs node-wise predictions. Since
the representations are large vectors, a naïve implementation of the MLP results in many parameters
that hinder scalability. Therefore, we replace the first MLP layer with a more efficient implementation
that exploits the structure of the embeddings. As we described in the previous paragraph, St is the
concatenation of the representations corresponding to different spatial propagation steps which, in
turn, are obtained from the concatenation of multi-scale temporal features. To exploit this structure,
we design the first layer of the decoder with a sparse connectivity pattern to learn representations Zt

such that

Z
(k)
t = σ

(
ÃkH

(0)
t Θ

(0)
k ∥ . . . ∥ÃkH

(L)
t Θ

(L)
k

)
= σ

S
(k)
t

Θ
(0)
k 0

. . .
0 Θ

(L)
k

 , (3)

2We refer to [13] for more details on the properties and stability of DeepESNs.
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where Θ
(l)
k ∈ Rd

hl×dz are the learnable parameters and σ is an activation function. We indicate

with Zt the concatenated representations Zt =
(
Z

(0)
t ∥Z(1)

t ∥ . . . ∥Z(K)
t

)
. In practice, Zt can be

efficiently computed by exploiting grouped 1-d convolutions (e.g., see Krizhevsky et al. 15) to
parallelize computation on GPUs. In particular, if we indicate the 1-d grouped convolution operator
with g groups and kernel size r as ⋆r,g , and the collection of the decoder parameters Θ(l)

k as Θ, we
obtain Zt = σ

(
Θ ⋆1,g St

)
, with g = L(K+1) in the case of undirected graphs and g = L(2K+1)

for the directed case. Besides reducing the number of parameters by a factor of L(K + 1), this
architecture localizes filters Θ(L)

k w.r.t. the dynamics of spatial order k and temporal scale l. In fact,
as highlighted in Eq. 3, representation Zt can be seen as a concatenation of the results of L(K + 1)
graph convolutions of different order. Finally, the obtained representations are fed into an MLP
that predicts the H-step-ahead observations as x̂i

t:t+H = MLP
(
zi
t,v

i
)

where the static node-level
attributes vi can also be augmented by concatenating a set of learnable parameters (i.e., a learnable
positional encoding).

Training and sampling The main improvement introduced by the proposed approach in terms of
scalability concerns the training procedure. Representations St embed both the temporal and spatial
relationships among observations over the sensor network. Consequently, each sample sit can be
processed independently since no further spatiotemporal information needs to be collected. This
allows for training the decoder with SGD by uniformly and independently sampling mini-batches
of data points sit. This is the key property that makes the training procedure extremely scalable and
drastically reduces the lower bound on the computational complexity required for the training w.r.t.
standard spatiotemporal GNN architectures.

4 Related works

Spatiotemporal GNNs are essentially based on the idea of integrating message-passing modules
in architectures to process sequential data. Notably, Seo et al. [16] and Li et al. [14] use message-
passing to implement gates of recurrent neural networks. Yu et al. [17] and Wu et al. [18, 19]
proposed architectures alternating temporal and spatial convolutions. Wu et al. [9] and Marisca et al.
[20], instead, exploit the attention mechanism to propagate information along both time and space.
Modern architectures often combine some type of relational inductive bias, with full Transformer-like
attention [21] along the spatial dimension [22–24], which, however, makes the computation scale
quadratically with the number of nodes. SGP falls within the category of time-then-graph models,
i.e., models where the temporal information is encoded before being propagated along the spatial
dimension. Gao and Ribeiro [25] showed that such models can be more expressive than architectures
that alternate temporal and spatial processing steps.

Research on scalable models for discrete-time dynamic graphs has been relatively limited. Practition-
ers have mostly relied on methods developed in the context of static graphs which include node-centric,
GraphSAGE-like, approaches [3] or subgraph sampling methods, such as ClusterGCN [4] or Graph-
SAINT [5]. Wu et al. [19], Gandhi et al. [26], Wu et al. [27] are examples of such approaches.
Among scalable GNNs for static graphs, SIGN [6] is the approach most related to our method. Like
in our approach, SIGN performs spatial propagation as a preprocessing step by using different shift
operators to aggregate across different graph neighborhoods, which are then fed to an MLP. However,
SIGN is limited to static graphs and propagates raw node-level attributes. Finally, similar to our work,
DynGESN [28] processes dynamical graphs with a recurrent randomized architecture. However, the
architecture in DynGESN is completely randomized, while ours is hybrid as it combines randomized
components in the encoder with trainable parameters in the decoder.

5 Empirical evaluation

We empirically evaluate our approach in 2 different scenarios. In the first, we compare the performance
of our forecasting architecture against state-of-the-art methods on popular, medium-scale, traffic
forecasting benchmarks. In the second, we evaluate the scalability of the proposed method on large-
scale spatiotemporal time series datasets by considering two novel benchmarks for load forecasting
and PV production prediction.
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Datasets In the first experiment we consider the METR-LA and PEMS-BAY datasets [14], which
are popular medium-sized benchmarks used in the spatiotemporal forecasting literature. In particular,
METR-LA consists of traffic speed measurements taken every 5 minutes by 207 detectors in the
Los Angeles County Highway, while PEMS-BAY includes analogous observations recorded by 325
sensors in the San Francisco Bay Area. We use the same preprocessing steps of previous works to
extract a graph and obtain train, validation and test data splits [18]. For the second experiment, we
introduce two larger-scale datasets derived from energy analytics data. The first dataset contains
data coming from the Irish Commission for Energy Regulation Smart Metering Project (CER-
E; Commission for Energy Regulation 29), which has been previously used for benchmarking
spatiotemporal imputation methods [30]; however, differently from previous works, we consider
the full sensor network consisting of 6435 smart meters measuring energy consumption every 30
minutes at both residential and commercial/industrial premises. The second large-scale dataset is
obtained from the synthetic PV-US3 dataset [31], consisting of simulated energy production by 5016
PV farms scattered over the United States given historic weather data for the year 2006, aggregated in
half an hour intervals. Since the model does not have access to weather information, PV production
at neighboring farms is instrumental for obtaining good predictions. Notably, CER-E and PV-US
datasets are at least an order of magnitude larger than the datasets typically used for benchmarking
spatiotemporal time series forecasting models. Note that for both PV-US and CER-En the (weighted)
adjacency is obtained by applying a thresholded Gaussian kernel to the similarity matrix obtained
by considering the geographic distance among the sensors and the correntropy [32] among the time
series, respectively. We provide further details on the datasets in the supplemental material.

Baselines We consider the following baselines:

1. LSTM: a single standard gated recurrent neural network [33] trained by sampling window of
observations from each node-level time series by disregarding the spatial information;

2. FC-LSTM: an LSTM processing input sequences as if they were a single high-dimensional
multivariate time series;

3. DCRNN: a recurrent graph network presented in [14] – differently from the original model we
use a recurrent encoder followed by a linear readout (more details in the appendix);

4. Graph WaveNet: a residual network that alternates temporal and graph convolutions over the
graph that is given as input and an adjacency matrix that is learned by the model [18];

5. Gated-GN: a state-of-the-art time-than-graph [25] model introduced in [24] for which we consider
two different configurations. The first one – indicated as FC – uses attention over the full node set
to perform spatial propagation, while the second one – indicated as UG – constrains the attention
to edges of the underlying graph.

6. DynGESN: the echo state network for dynamical graphs proposed in [28].

For all the baselines, we use, whenever possible, the configuration found in the original papers or
in their open-source implementation; in all the other cases we tune hyperparameters on the holdout
validation set.

Experimental setup For the traffic datasets, we replicate the setup used in previous works. In
particular, each model is trained to predict the 12-step-ahead observations. In SGP, the input time
series are first encoded by the spatiotemporal encoder, and then the decoder is trained by sampling
mini-batches along the temporal dimension, i.e., by sampling B sequences Gt−W :t of observations.

For the large-scale datasets, we focus on assessing the scalability of the different architectures rather
than maximizing forecasting accuracy. In particular, for both datasets, we consider the first 6 months
of data (4 for months for training, 1 month for validation, and 1 month for testing). The models are
trained to predict the next {00:30, 07:30, 11:00} hours. We repeat the experiment in two different
settings to test the scalability of the different architectures w.r.t. the number of edges. In the first
setting, we extract the graph by sparsifying the graph adjacency matrix imposing a maximum of 100
neighbors for each node, while in the second case we do not constrain the density of the adjacency
matrix.

3https://www.nrel.gov/grid/solar-power-data.html
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Table 1: Results on benchmark traffic datasets (averaged over 3 independent runs). We report metrics
averaged over a one-hour (12 steps) forecasting horizon and MAE for H ∈ {15, 30, 60} minutes
time steps. Bold numbers are within a standard deviation from the best reported average result.

METR-LA PEMS-BAY

15 min 30 min 60 min Average 15 min 30 min 60 min Average

MAE MAE MAE MAE MAPE (%) MAE MAE MAE MAE MAPE (%)

LSTM 2.99 ± 0.00 3.58 ± 0.00 4.43 ± 0.01 3.58 ± 0.00 10.19 ± 0.05 1.39 ± 0.00 1.83 ± 0.01 2.35 ± 0.01 1.79 ± 0.00 4.16 ± 0.05
FC-LSTM 3.33 ± 0.01 3.43 ± 0.01 3.67 ± 0.01 3.46 ± 0.01 10.15 ± 0.09 2.22 ± 0.01 2.25 ± 0.01 2.34 ± 0.02 2.26 ± 0.01 5.33 ± 0.04

DynGESN 3.27 ± 0.00 3.99 ± 0.00 5.00 ± 0.00 3.98 ± 0.00 11.11 ± 0.01 1.57 ± 0.00 2.13 ± 0.01 2.81 ± 0.02 2.09 ± 0.01 4.74 ± 0.01
DCRNN 2.82 ± 0.00 3.23 ± 0.01 3.74 ± 0.01 3.20 ± 0.00 8.88 ± 0.05 1.36 ± 0.00 1.71 ± 0.00 2.08 ± 0.01 1.66 ± 0.00 3.76 ± 0.01
Graph WaveNet 2.72 ± 0.01 3.10 ± 0.02 3.54 ± 0.03 3.06 ± 0.02 8.40 ± 0.03 1.31 ± 0.00 1.64 ± 0.01 1.94 ± 0.01 1.58 ± 0.00 3.58 ± 0.02
FC-Gated-GN 2.72 ± 0.01 3.05 ± 0.01 3.44 ± 0.01 3.01 ± 0.00 8.27 ± 0.00 1.32 ± 0.00 1.63 ± 0.01 1.89 ± 0.01 1.56 ± 0.01 3.51 ± 0.03
UG-Gated-GN 2.72 ± 0.00 3.10 ± 0.00 3.54 ± 0.01 3.06 ± 0.00 8.40 ± 0.04 1.33 ± 0.00 1.67 ± 0.01 1.99 ± 0.01 1.61 ± 0.01 3.59 ± 0.03

SGP 2.69 ± 0.00 3.05 ± 0.00 3.45 ± 0.00 3.00 ± 0.00 8.27 ± 0.02 1.30 ± 0.00 1.60 ± 0.00 1.88 ± 0.00 1.54 ± 0.00 3.44 ± 0.01

Ablations
–No-Space-Enc. 2.84 ± 0.00 3.26 ± 0.00 3.74 ± 0.00 3.22 ± 0.00 9.20 ± 0.01 1.34 ± 0.00 1.68 ± 0.00 2.02 ± 0.00 1.62 ± 0.00 3.67 ± 0.01
–FC-Dec. 2.76 ± 0.01 3.13 ± 0.01 3.52 ± 0.02 3.08 ± 0.01 8.63 ± 0.11 1.35 ± 0.01 1.67 ± 0.01 1.96 ± 0.01 1.61 ± 0.01 3.61 ± 0.04
–GC-Dec. 2.77 ± 0.00 3.17 ± 0.00 3.63 ± 0.00 3.12 ± 0.00 8.74 ± 0.01 1.32 ± 0.00 1.65 ± 0.00 1.97 ± 0.00 1.59 ± 0.00 3.60 ± 0.01

Table 2: Results on large-scale datasets (averaged over at least 3 independent runs). We report
MAE over H-step-ahead predictions, H = {30m, 7h30m, 11h}, together with timings and memory
consumption. ∗ indicates that subsampling was needed to comply with the memory constraints. Bold
numbers are within a standard deviation from the best reported average result.

PV-US CER-En

Prediction error (MAE) Resource utilization Prediction error (MAE) Resource utilization

30 mins 7 hours 30 mins 11 hours Batch/s Memory Batch size 30 mins 7 hours 30 mins 11 hours Batch/s Memory Batch size

10
0-

N
N

DCRNN 1.39 ± 0.09 3.34 ± 0.22 3.54 ± 0.48 2.04 ± 0.01 9.63 GB 2 0.22 ± 0.00 0.28 ± 0.00 0.29 ± 0.00 1.43 ± 0.02 11.10 GB 2
Graph WaveNet 1.45 ± 0.13 5.09 ± 0.63 5.26 ± 1.34 2.01 ± 0.02 11.64 GB 2 0.23 ± 0.00 0.36 ± 0.01 0.36 ± 0.01 2.41 ± 0.03 8.39 GB 1
UG-Gated-GN 1.33 ± 0.08 2.94 ± 0.05 3.12 ± 0.14 8.41 ± 0.09 11.46 GB 5 0.22 ± 0.00 0.28 ± 0.00 0.28 ± 0.00 8.21 ± 0.08 11.70 GB 4

SGP 1.09 ± 0.01 3.14 ± 0.21 3.16 ± 0.19 116.58 ± 8.74 2.21 GB 4096 0.21 ± 0.00 0.30 ± 0.00 0.31 ± 0.01 117.32 ± 8.36 2.21 GB 4096

Fu
ll

DCRNN 1.59 ± 0.17 4.10 ± 0.27 4.93 ± 0.60 1.37 ± 0.00 11.59 GB 1∗ 0.23 ± 0.00 0.29 ± 0.00 0.29 ± 0.00 1.13 ± 0.01 11.10 GB 1∗

Graph WaveNet 1.65 ± 0.23 6.93 ± 0.58 7.93 ± 0.17 0.77 ± 0.00 11.35 GB 2 0.25 ± 0.01 0.38 ± 0.03 0.37 ± 0.01 1.26 ± 0.01 8.58 GB 1
UG-Gated-GN 1.61 ± 0.06 3.25 ± 0.04 3.04 ± 0.05 8.83 ± 0.10 11.14 GB 1∗ 0.22 ± 0.00 0.28 ± 0.00 0.29 ± 0.00 8.77 ± 0.10 11.14 GB 1∗

SGP 1.09 ± 0.00 3.06 ± 0.11 3.13 ± 0.13 118.64 ± 8.35 2.21 GB 4096 0.21 ± 0.00 0.30 ± 0.00 0.31 ± 0.01 115.85 ± 10.60 2.21 GB 4096

To assess the performance in terms of scalability, we fix a maximum GPU memory budget of 12
GB and select the batch size accordingly; if a batch size of 1 does not fit in 12 GB, we uniformly
subsample edges of the graph to reduce the memory consumption. Differently from the other
baselines, in SGP we first preprocess the data to obtain spatiotemporal embeddings and then train
the decoder by uniformly sampling the node representations. We train each model for 1 hour, then
restore the weights corresponding to the minimum training error and evaluate the forecasts on the
test set. The choice of not running validation at each epoch was dictated by the fact that for some of
the baselines running a validation epoch would take a large portion of the 1 hour budget. The time
required to encode the datasets with SGP’s encoder ranges from tens of seconds to ≈ 4 minutes on an
AMD EPYC 7513 processor with 32 parallel processes. To ensure reproducibility, the time constraint
is not imposed as a hard time out; conversely, we measure the time required for the update step of
each model on an NVIDIA RTX A5000 GPU and fix the maximum number of updates accordingly.
For SGP, the time required to compute node embeddings was considered as part of the training
time and the number of updates was appropriately reduced to make the comparison fair. For all the
baselines, we keep the same architecture used in the traffic experiment. For SGP we use the same
hyperparameters for the decoder, but we reduce the dimension of the embedding (the value of K) so
that a preprocessed dataset can fit in a maximum of ≈ 80 GB of storage. To account for the different
temporal scales, we increase the window size for all baselines and increase the number of layers in
the ESN (while keeping the final size of Ht similar). Additional details and the exact values of the
hyperparameters are provided in the supplementary material.

5.1 Results

Results for the traffic benchmarks are reported in Tab. 1; while the outcomes of the scalability
experiments are shown in Tab. 2. We consider mean absolute error (MAE), and mean absolute
percentage error (MAPE) as evaluation metrics.
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Traffic experiment The purpose of the first experiment is to demonstrate that the proposed method
achieves performance comparable to that of the state of the art. In this regard, results in Tab. 1
show that in all the considered scenarios SGP is always among the best performing forecasting
architectures. The full-attention baseline is the strongest competitor which, however, has time and
memory complexities that scale quadratically with the number of nodes. Regarding the other baselines,
DCRNN underperforms compared to the other spatiotemporal GNN architectures. DynGESN, the
fully randomized architecture, despite being very fast to train, obtains reasonable performance in
short-range predictions but falls short over longer forecasting horizons in the considered scenarios.
In light of these results, it is worth commenting on the efficiency of SGP compared to the baselines.
Approaches like DCRNN and Graph Wavenet, perform graph convolutions whose time and space
of complexity is O(LTE), being E the number of edges, L the number of layers (8 in Graph
Wavenet), and T the time steps. Such complexity is completely amortized by the preprocessing
step in our architecture. Similarly, Gated-GN, while being architecturally much simpler, propagates
spatial information by relying on the attention mechanism that is known to scale poorly with the
dimensionality of the problem. The bottom of Tab. 1 reports results for the ablation of key elements
of the proposed architecture: No-Space-Enc. indicates that the embeddings are built without the
spatial propagation step; FC-Dec. considers the case where the structure of the embedding is ignored
in the readout and the sparse weight matrix in Eq. 3 is replaced by a fully-connected one; GC-Dec.
indicates that the spatial propagation is limited to the neighbors of order K = 1 and, thus, the decoder
behaves similarly to a single-layer graph convolutional network. Results clearly show the optimality
of the proposed architectural design.
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Figure 3: Training curves on PV-US. The plot
shows the average ± the standard deviation of 3
independent runs. The plotted curves are smoothed
with a running average of 8 steps.

Large-scale experiment Tab. 2 reports the
results of the scalability experiment where
we considered only the spatiotemporal GNNs
trained by gradient descent. We excluded the
full-attention baseline (FC-Gated-GN) as its
O(N2) complexity prevented scaling to the
larger datasets; however, we considered the UG
version where attention is restrained to each
node’s neighborhood. There are several com-
ments that need to be made here. First of all,
batch size has a different meaning for our model
and the other baselines. In our case, each sam-
ple corresponds to a single spatiotemporal (pre-
processed) observation; for the other methods, a
sample corresponds to a window of observations
Gt−W :t where edges of the graph are eventually
subsampled if the memory constraints could not be met otherwise. In both cases, the loss is computed
w.r.t. all the observations in the batch. The results clearly show that SGP can be trained efficiently
also in resource-constrained settings, with contained GPU memory usage. In particular, the update
frequency (batch/s) is up to 2 order of magnitude higher. Notably, resource utilization at training time
remains constant (by construction) in the two considered scenarios, while almost all the baselines
require edge subsampling in order to meet the resource constraints. Fig. 3 shows learning curves for
the PV-US dataset, further highlighting the vastly superior efficiency, scalability, and learning stability
of SGP. Finally, results concerning the forecasting accuracy show that performance is competitive
with the state of the art in all the considered scenarios.

6 Conclusion

We proposed SGP, a scalable architecture for graph-based spatiotemporal time series forecasting.
Our approach can compete with the state of the art in popular medium-sized benchmark datasets,
while greatly improving the scalability in large sensor networks. We believe that SGP constitutes
an important stepping stone for future research on scalable spatiotemporal forecasting and has the
potential of being widely adopted by practitioners in both academia and industry.
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Appendix

A Detailed experimental settings

In this appendix, we provide additional details on the experimental settings for the results presented
in the paper.

A.1 Software platform

The Python [34] code used to run all the computational experiments will be open-sourced in a future
release. We relied on the following open-source libraries:

• PyTorch [35];

• PyTorch Geometric [36];

• Torch Spatiotemporal [37];

• PyTorch Lightning [38];

• numpy [39].

We relied on the Neptune4 [40] DevOps infrastructure for the logging of the experiments. For all the
baselines, we run all the experiments by relying on their open-source implementations.

A.2 Hardware platform

Experiments were run on a server equipped with two AMD EPYC 7513 processors and four NVIDIA
RTX A5000. Reproducibility of the scalability experiments was ensured by taking timings for the up-
date step of each model and setting the number of updates performed by each model accordingly (more
details in Sec. A.5).
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Table 3: Additional information on the considered datasets.
Dataset # steps # nodes # edges sparsity

METR-LA 34272 207 1515 3.54%
PEMS-BAY 52116 325 2369 2.24%

PV-US (100nn) 8868 5016 417,199 1.66%
CER-En (100nn) 8868 6435 639,369 1.54%

PV-US 8868 5016 3,710,008 14.75%
CER-En 8868 6435 3,186,369 7.69%

A.3 Datasets

All datasets used in our study are open-source or freely available for research purposes. The input
graphs are extracted by at first computing a weighted, dense adjacency matrix W from (side) spatial
information, e.g., the geographic position of the sensors, or by computing a (dis)similarity metric
among the time series. The adjacency is then sparsified to obtain A by zeroing out values under a
certain threshold and, optionally, capping the maximum number of neighbors for each node. For all
datasets, the only exogenous variable we consider is the encoding of the time of the day with two
sinusoidal functions. Tab/ 3 shows additional details of the considered datasets.

Traffic datasets Both METR-LA and PEMS-BAY are widely popular benchmarks. We use the
same setup of previous works [18] for all the preprocessing steps. As mentioned in Sec. 5, PEMS-BAY
contains 6 months of data from 325 traffic sensors in the San Francisco Bay Area, while METR-LA
contains 4 months of analogous readings acquired from 207 detectors in the Los Angeles County
Highway [41]. In both datasets, observations are aggregated at a 5 minutes time scale.

CER-En The data from the Irish Commission for Energy Regulation Smart Metering Project [29]
contains measurements of the energy consumption aggregated at a 30 minutes scale in households and
small/medium enterprises. The full dataset consists of observations from 6435 smart meters measuring
energy consumption every 30 minutes. As mentioned in the paper, we use the same preprocessing
of [30], and, in particular, an analogous strategy to extract a graph from the correntropy [32] among
time series. Note that, differently from [30], we consider the full sensor network. For all the
spatiotemporal GNN baselines, we set the window size to 36 steps. Access to the dataset can
be obtained free of charge by following the information provided at https://www.ucd.ie/
issda/data/commissionforenergyregulationcer.

PV-US The PV-US5 dataset [31] instead consists in a collection of simulated energy production
by 5016 PV farms for the year 2006. In the raw datasets, samples are generated every 5 minute, we
aggregate observations at 30 minutes intervals by taking their mean. A (small) subset of this dataset
(often referred to as “Solar Energy"6) with only the 137 PV plants in Alabama state has been used as
a multivariate time series forecasting benchmark [42]. To obtain an adjacency matrix, we consider
the virtual position of the farms in terms of geographic coordinates, and we apply a Gaussian kernel
over the pairwise Haversine distances, as described at the beginning of this section. Similarly to the
CER-En dataset, we set the window size of the baselines to 36 steps. In the supplementary material,
we provide the code to download and preprocess the data.

A.4 Additional details on SGP architecture

We implemented the DeepESN encoder following the design principles assessed in previous works [13,
43]. In particular, we decrease the discount factor λ progressively at each layer by subtracting 0.1
from its initial value. We also randomly set 30% of the weights of the networks to 0 to obtain a sparse
reservoir. We use tanh as nonlinear activation function. The recurrent weights are normalized so that
the spectral radius of the corresponding matrix is lower than one [7].

4https://neptune.ai/
5https://www.nrel.gov/grid/solar-power-data.html
6https://github.com/laiguokun/multivariate-time-series-data
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For the spatial encoding, we compute the embeddings at the different spatial scales iteratively.
Additionally, we also concatenate to the spatiotemporal embedding St the graph-wise average of the
temporal embedding Ht to act as a sort of global attribute [44].

The MLP decoder is implemented as standard feed-forward network with parametrized residual con-
nections between layers [45], SiLU activation function [46] and optional Dropout [47] regularization.

A.5 Training and evaluation procedure

A.5.1 Traffic

As previously mentioned, for the traffic datasets we used the same training settings of previous works.
For all the baselines we kept the same parameters of previous works whenever possible. For SGP we
selected the hyperparameters by performing an initial random search and then manually adjusting the
hyperparameters of the reservoir and selecting the best-performing configuration on the validation
set. In particular, for METR-LA we used a DeepESN with 3 layers of 32 units each, an initial decay
factor of 0.9, and a spectral radius of 0.9. For PEMS-BAY, instead, we used an encoder with a single
layer of 128 units, a decay rate of 0.8, and a spectral radius of 0.9. For both datasets, we set K = 4
and used the bidirectional encoding scheme. In the decoder, for the first layer we used 32 units for
each group in METR-LA and 96 PEMS-BAY, followed by 2 fully connected layers of 256 units each
with a dropout rate of 0.3. The model is trained with early stopping for a maximum of 200 epochs of
300 batch each with the Adam optimizer and a multi-step learning rate scheduler.

A.5.2 Large-scale

In Tab. 2 of the paper, we report the time required for a single model update (in terms of batches
per second) and GPU memory usage for every considered method. To ensure a fair assessment, we
record the time interval between the beginning of the inference step and the end weights’ update for
150 batches and exclude the first 5 and last 5 measurements (that may have overheads). We exclude
from the computation the overhead introduced – for every batch – by the edge subsampling strategy
adopted for the scalability of the baselines. GPU memory and time constraints were selected to show
scalability in resource-constrained scenarios.

To measure the GPU memory required, we exploit NVIDIA System Management Interface7, which
provides near real-time GPU usage monitoring.

All the experiments designed to measure time and memory requirements have been run on the
same machine on a dedicated reserved GPU. We kept the models mostly unchanged w.r.t. the
traffic experiment. However, we increased the window size to 36 for the baselines and updated the
configuration of the reservoir for SGP to account for the different time scales. In particular, we
increased the number of reservoir layers to 8 and 6 in PV-US and to in CER-En, respectively, and
reduced the number of units accordingly. The difference in the number of layers between the two
datasets is motivated by the choice of keeping the size of the preprocessed sequences similar. For
this reason, we also set K = 2 and use the unidirectional encoding to limit the amount of required
storage to a maximum ≈ 80 GB for each dataset.

A.5.3 Baselines

For LSTM and FC-LSTM we consider a single-layer LSTM with 128 units for the temporal
embedding and an MLP with one hidden layer with 256 units and dropout rate of 0.1. For DCRNN,
as reported in [14], we set the number of units in the hidden state to 64 and the order of the
diffusion convolution to K = 2; compared to the original mode, we use a feed-forward readout
instead of a recurrent one to enable scalability on the larger benchmarks. For Graph WaveNet and
Gated-GN we use the same hyperparameters and learning rate schedulers reported in the relative
papers. We implemented all the baselines in PyTorch and PyTorch Geometric (for graph-based
methods) following the open-source implementations provided by the authors. To improve memory
and computation efficiency in message-passing layers, we use sparse matrix-matrix multiplications
instead of scatter-gather operations whenever possible. We fix the maximum number of training
epochs to 300 to allow all the models to reach convergence, and stop the training if the MAE computed

7https://developer.nvidia.com/nvidia-system-management-interface
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on the validation set does not decrease for 50 epochs. We evaluate the models using the weights
corresponding to the minimum validation MAE.

For DynGESN we set the hyperparameters of the reservoir to the same ones used for SGP and increase
the number of units to approximately match the dimensions of the final embeddings extracted by our
method. We trained the readout with Ridge regression by selecting the weight of the L2-regularization
term on the validation set.
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