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Abstract

Pretrained machine learning models are known
to perpetuate and even amplify existing biases
in data, which can result in unfair outcomes that
ultimately impact user experience. Therefore, it
is crucial to understand the mechanisms behind
those prejudicial biases to ensure that model
performance does not result in discriminatory
behaviour toward certain groups or populations.
In this work, we define gender bias as our case
study. We quantify bias amplification in pre-
training and after fine-tuning on three families
of vision-and-language models. We investigate
the connection, if any, between the two learn-
ing stages, and evaluate how bias amplification
reflects on model performance. Overall, we
find that bias amplification in pretraining and
after fine-tuning are independent. We then ex-
amine the effect of continued pretraining on
gender-neutral data, finding that this reduces
group disparities, i.e., promotes fairness, on
VQAv2 and retrieval tasks without significantly
compromising task performance.

1 Introduction

As shown by Mitchell (1980) and Montañez et al.
(2019), inductive biases are essential for learning
algorithms to outperform random guessing. These
task-specific biases allow algorithms to generalize
beyond training data but, necessarily, they should
not be conflated with prejudicial or unwanted bi-
ases. Unwanted bias, such as bias against de-
mographic groups, can be found in many appli-
cations, from computer vision systems to natural
language processing (NLP). Vision-and-language
(V&L) models lie at the intersection of these areas,
where one of the key challenges is deploying robust
models to perform high-level reasoning based on
the multimodal context instead of exploiting biases
in data (Zhao et al., 2017).

Multiple studies (Lee et al., 2021; Hirota et al.,
2022b; Zhou et al., 2022) have shown that V&L
models leverage co-occurrences between objects
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Figure 1: A V&L model pretrained on data D (MD)
is further pretrained on gender-neutral multimodal data
DN , resulting in a gender neutral V&L model (MN

D).
Both models can then be used in a two-phase analysis:
1) bias amplification is measured on the intrinsic bias
of pretrained models, and 2) bias amplification, task
performance and fairness are evaluated on the extrinsic
performance of fine-tuned models.

and their context to make predictions, and thus are
susceptible to unwanted biases. However, these
authors do not explore the broad landscape of V&L
models and focus on biases in common visual
datasets (Wang et al., 2022; Hirota et al., 2022a),
only on pretrained models (Zhou et al., 2022) or
only focus on one application, e.g., image caption-
ing (Hendricks et al., 2018; Hirota et al., 2022b) or
semantic segmentation (Lee et al., 2021).

In this work, we investigate to what extent the
unwanted bias in a V&L model is caused by the pre-
training data. To answer this question, we focus on
one important aspect of bias encoded in V&L mod-
els, namely bias amplification. Bias amplification
occurs when a model exacerbates unwanted biases
from the training data and, unlike other forms of
bias, it is not solely attributed to the data, yet it can
vary greatly during training (Hall et al., 2022).

We explore bias amplification in two encoder-
only V&L models: LXMERT (Tan and Bansal,
2019) and ALBEF (Li et al., 2021), and the
encoder-decoder model BLIP (Li et al., 2022).
Specifically, we quantitatively and qualitatively



analyse the relationship between the bias encoded
in pretrained models, and after fine-tuning on down-
stream tasks including visual question answering,
visual reasoning and image–text retrieval.

While bias can be studied with respect to any
protected attribute, the majority of NLP research
has focused on (binary) gender (Sun et al., 2019;
Stanczak and Augenstein, 2021; Shrestha and Das,
2022). We also use gender bias as our case study
but different to previous work, we advocate for
the inclusion of gender-neutral terms (Dev et al.,
2021) and consider three gender categories based
on visual appearance: male, female and gender-
neutral (e.g., PERSON). The use of both visual and
grammatical gender information across V&L tasks
is needed for identifying the target of, for exam-
ple, a question. But the demographics of the sub-
ject should not solely influence the outcome of the
model. Otherwise, the model may reinforce harm-
ful stereotypes resulting in negative consequences
for certain group identities (van Miltenburg, 2016).

Motivated by this argument, we investigate the
effect of shifting the projection of gender-marking
to a gender-neutral space by continued pretraining
on gender-neutral multimodal data–a form of do-
main adaptation (Gururangan et al., 2020)–and how
it reflects on task performance after fine-tuning.
Figure 1 depicts an overview of our full workflow.

Contributions We examine whether bias ampli-
fication measured on pretrained V&L models (in-
trinsic bias) relates to bias amplification measured
on downstream tasks (extrinsic bias). We show
that a biased pretrained model might not translate
into biased performance on a downstream task to a
similar degree. Likewise, we measure model fair-
ness through group disparity and show that it is
not unequivocally related to bias in a model. Fur-
thermore, we empirically present a simple, viable
approach to promote fairness in V&L models: per-
forming an extra epoch of pretraining on unbiased
(gender-neutral) data reduces fine-tuning variance
and group disparity on VQAv2 and retrieval tasks
on the majority of models studied, without signifi-
cantly compromising task performance.

We make our code publicly available to ensure
reproducibility and foster future research.1

1http://github.com/coastalcph/
gender-neutral-vl

2 Related Work

Bias in language In general, bias can be defined
as “undue prejudice” (Crawford, 2017). Studies tar-
geting language models (Kurita et al., 2019; Zhao
et al., 2019) have shown that biases encoded in pre-
trained models (intrinsic bias) can be transferred
to downstream applications (extrinsic bias), but
the relationship between these biases is unclear.2

There are several studies (Goldfarb-Tarrant et al.,
2021; Delobelle et al., 2021; Kaneko et al., 2022;
Cao et al., 2022; Orgad et al., 2022), showing that
intrinsic bias in language models does not consis-
tently correlate with bias measured extrinsically
on a downstream task or, similarly, with empirical
fairness (Shen et al., 2022; Cabello et al., 2023).
Contrarily, Jin et al. (2021) observed that the effects
of intrinsic bias mitigation are indeed transferable
in fine-tuning language models. To the best of our
knowledge, we are the first to investigate if the
same holds for V&L models.

Bias in vision & language Prior research ob-
served the presence of gender disparities in visual
datasets like COCO (Bhargava and Forsyth, 2019;
Zhao et al., 2021; Tang et al., 2021) and Flickr30k
(van Miltenburg, 2016). Recent studies also re-
vealed the presence of unwanted correlations in
V&L models. Prejudicial biases found in V&L
models are not only attributed to one domain, i.e.,
vision or language, but they are compound (Wang
et al., 2019), and this should be studied together.
Srinivasan and Bisk (2021); Hirota et al. (2022b)
and Zhou et al. (2022) show that different model
architectures exhibit gender biases, often preferring
to reinforce a stereotype over faithfully describing
the visual scene. Bianchi et al. (2023) show the
presence of stereotypes in image generation mod-
els and discuss the challenges of the compounding
nature of language–vision biases. Another line of
work addresses visual contextual bias (Choi et al.,
2012; Zhu et al., 2018; Singh et al., 2020) and study
a common failure of recognition models: an object
fails to be recognized without its co-occurring con-
text. So far, little work has investigated bias ampli-
fication in pretrained V&L models. Our study is
among the first to cast some light on the gender bias
encoded in pretrained V&L models and evaluate

2As first suggested by Goldfarb-Tarrant et al. (2021), we
can broadly categorize bias into intrinsic and extrinsic. There-
fore, intrinsic metrics are applied directly to word representa-
tions and relate bias to the geometry of the embedding space,
whereas extrinsic metrics evaluate bias in downstream tasks.

http://github.com/coastalcph/gender-neutral-vl
http://github.com/coastalcph/gender-neutral-vl


how it translates to downstream performance.

Gender-neutral language Zhao et al. (2019) ex-
amine the effect of learning gender-neutral embed-
dings during training of static word embeddings
like GloVe (Pennington et al., 2014). Sun et al.
(2021) and Vanmassenhove et al. (2021) present
rule-based and neural rewriting approaches to gen-
erate gender-neutral alternatives in English texts.
Brandl et al. (2022) find that upstream perplexity
substantially increases and downstream task perfor-
mance severely drops for some tasks when gender-
neutral language is used in English, Danish and
Swedish. Amend et al. (2021) show that the sub-
stitution of gendered for gender-neutral terms on
image captioning models poses a viable approach
for reducing gender bias. In our work, we go one
step beyond and investigate the effect of contin-
ued pretraining V&L models on in-domain data
where gendered terms have been replaced by their
gender-neutral counterparts (e.g., sister → sibling).

3 Problem Formulation

We characterize the gender bias encoded in V&L
models in a two-phase analysis:

i) Intrinsic bias: First, we investigate the bias
encoded after the V&L pretraining phase.

ii) Extrinsic bias and task performance: Second,
we fine-tune the models on common down-
stream tasks to further investigate how bias
affects model performance.

These investigations will be performed using a
set of original, pretrained models MD, and models
that have been further pretrained on gender-neutral
data MN

D in order to mitigate any biases learned
during pretraining (§4.4). We hypothesize that this
bias mitigation technique will decrease both intrin-
sic and extrinsic biases encoded in the models.

Data Our analysis relies on data where the gen-
der of the main actor of the image is known. This
is, to some degree, annotated in the crowdsourced
text, e.g., image captions or questions.3 Following
Zhao et al. (2017) and Hendricks et al. (2018), im-
ages are labelled as ‘Male’ if the majority of its

3Zhao et al. (2021) annotated samples from the COCO
dataset (Lin et al., 2014) with the perceived attributes (gen-
der and skin-tone) of the people in the images. However,
their gender labels agree on 66.3% of the images compared
to caption-derived annotations. To be consistent across all
datasets used in our project, we will not use their human-
collected annotations for analysing gender bias on COCO.

captions include a word from a set of male-related
tokens (e.g., BOY), and no caption includes a word
from the set of female-related tokens (e.g., GIRL);
and vice-versa for ‘Female’. Images are labelled
as ‘Neutral’ if most of the subjects are listed as
gender-neutral (e.g., PERSON), or if there is no ma-
jority gender mention in the texts. Finally, images
are discarded from the analysis when the text men-
tions both male and female entities, or there are
no people mentioned. This process can be applied
to both pretraining data and downstream task data.
See Appendix A for the complete word list.

4 Measuring Bias in V&L Models

4.1 Intrinsic Bias
When we measure the intrinsic bias of a model, we
are interested in whether there are systematic dif-
ferences in how phrases referring to demographic
groups are encoded (Beukeboom et al., 2014). We
can measure the intrinsic bias using the model’s
language modelling task, where the tokens related
to grammatical gender are masked.4

Let MD be a V&L model pretrained on cor-
pora D. The masked words related to grammat-
ical gender are categorised on N = 3 disjoint de-
mographic groups A = {Male,Female,Neutral}
based on reported visual appearance in the image.
The gender associated with an image is consid-
ered as the ground truth (see previous section for
more details). Let gi for i ∈ [1, N ] be the cate-
gorical random variable corresponding to the pres-
ence of the group i. We investigate the gender–
context distribution: the co-occurrence between
attributes Ai = {a1, . . . , a|Ai|}, e.g., gender terms,
for a demographic group gi, and contextual words
T = {t1, . . . , tT }, e.g., objects that appear in a
given text. This results in a co-occurrence ma-
trix Cgi

a,t that captures how often pairs of attribute–
context words occur in a defined context S, e.g., an
image caption in a corpus C. Formally, for every
demographic group gi, over the Ai attributes and
T objects, and all possible contexts in corpus C

Cgi
a,t =

∑
S∈C

|Ai|∑
j=1

|T |∑
k=1

S(aj , tk) with i ∈ [1, N ],

(1)
where S(aj , tk) = 1 if the attribute and object

co-occur, zero otherwise. Based on Cgi
a,t, standard

4We define gender correlations as our case study of rep-
resentational bias, but note that our methodology can be ex-
tended to analyse bias with regard to any protected attribute(s).



statistical metrics like precision, recall and F1 can
be computed. In addition, we will quantify the
bias amplification in a given model MD to better
understand the degree of bias exacerbated by the
model. We use the metric presented by Wang and
Russakovsky (2021), which is described in more
detail in the next section.

4.2 Bias Amplification

We use the BiasAmp metric introduced by Wang
and Russakovsky (2021), as it accounts for varying
base rates of group membership and naturally de-
couples the direction of bias amplification: While
BiasAmpT→A measures the bias amplification due
to the task influencing the protected attribute pre-
diction,5 BiasAmpA→T measures the bias ampli-
fication due to the protected attribute influencing
the task prediction. We give a concise treatise of
BiasAmpA→T here, and refer to Wang and Rus-
sakovsky (2021) for further details.

In our setup, the set of attributes a ∈ A is given
by A = {Male,Female,Neutral}, and the set of
tasks (or objects) t ∈ T are the most frequent
nouns co-occurring with gendered terms in the
training sets (see Appendix A for details). De-
note by P (Tt = 1) the probability that an example
in the dataset belongs to class t. And, similarly,
P (T̂t = 1) the probability that an example in the
dataset is labelled as class t by the model. Wang
and Russakovsky (2021) introduce two terms to dis-
ambiguate the direction of bias amplification. The
first term, ∆at, quantifies the difference between
the bias in the training data and the bias in model
predictions.

The second term, yat, identifies the direction of
correlation of Aa with Tt; that is, yat alters the sign
of the ∆at to correct for the fact that the bias can
have two directions. Thereby,

BiasAmpA→T =
1

|A||T |
∑
a∈A
t∈T

yat∆at − (1− yat)∆at (2)

BiasAmpA→T will be positive if the model pre-
dictions amplify the prevalence of a class label
t ∈ T between groups a ∈ A in the dataset. For
instance, bias is amplified if Aa = MALE im-
ages are more likely to appear in the presence of a

5We do not consider gender prediction as a task per se, as
gender –or any other sensitive attribute– prediction entangles
a complex categorization and a moral debate (Keyes, 2018;
Larson, 2017). Instead, we use a MLM task as proxy and ask
the model to predict the subject of a sentence given its context.

Tt = SKATEBOARD in the model predictions, com-
pared to the prior distribution from the dataset. In
contrast, a negative value indicates that model pre-
dictions diminish the bias present in the dataset. A
value of 0 implies that the model does not amplify
the bias present in the dataset. Note that this does
not imply that the model predictions are unbiased.

4.3 Extrinsic Bias & Fairness
The second phase of our analysis measures extrin-
sic bias amplification: downstream performance
and fairness (group disparity). A given model is
fine-tuned on downstream tasks that require dif-
ferent reasoning skills based on the image context.
We evaluate model performance with respect to the
three demographic groups defined in A and com-
pare results in search of the more equitable system.

4.4 Gender-neutral Domain Adaptation
Motivated by the fact that models are known to
acquire unwanted biases during pretraining (Hall
et al., 2022), we also investigate what happens if a
model MD is further pretrained for one additional
epoch on gender-neutral data, with the goal of creat-
ing a more gender-neutral model MN

D. We hypothe-
size that this may be sufficient to reduce the biases
encoded in the original model. Given a dataset
D, a new dataset DN is created by substituting
gender-related tokens in the text for gender-neutral
tokens. The substitution is based on a hand-crafted
lexicon,6 e.g., woman or man may be substituted to
person.7 The new model MN

D is used for both the
intrinsic and extrinsic bias evaluations.

5 Experimental setup

5.1 Models
We take the LXMERT architecture (Tan and Bansal,
2019) as a popular representative of V&L mod-
els, and build our controlled analysis on VOLTA
(Bugliarello et al., 2021). VOLTA is an implementa-
tion framework that provides a fair setup for com-
paring V&L models pretrained under the same con-
ditions, which enables us to compare the influence
of diverse training data on representational bias.
In this case, LXMERT180K refers to the original
checkpoint and LXMERT3M to the model trained
on CC3M (Bugliarello et al., 2021). We also study

6See Appendix A
7Note that when the pretraining data D is composed of

multiple corpora, we argue that domain adaptation to a non-
biased space should be performed only on clean data, and,
therefore, |DN | ≤ |D|.



ALBEF in two sizes and BLIP. Table 1 lists the
models included in our analysis.

5.2 Gender-neutral Data

As a natural extension to study representational
gender bias, we want to evaluate to what extent
gender-neutral data helps to mitigate gender bias.
Amend et al. (2021) showed that gender-neutral
training might be a viable approach for reducing
gender bias in image captioning models. We study
its effect in more generic pretrained V&L models.

The gender-neutral pretraining data is the result
of substituting terms with grammatical gender for
gender-neutral equivalents, e.g., “A woman walk-
ing her dog” translates into “A person walking their
dog.” To this end, we create a list of gender enti-
ties8 by merging previous hand-curated lexicons
used in a similar context to ours, provided by An-
toniak and Mimno (2021).9

Starting from a pretrained checkpoint, we per-
form an extra epoch of pretraining. The training
is done based on a linear function that increases
the probability for a model to learn from gender-
neutral captions. The starting rate is p=0.15 and, as
the training progresses, the probability of getting
a gender-neutral caption increases to p=1.0 at the
last step. Note that as the probability of getting a
gender-neutral caption increases, the learning rate
decreases. This methodology supports our intuition
that starting with a gender-neutral corpus would be
too drastic for the model to adapt to, and instead
cause catastrophic forgetting.

Finally, we continue pretraining the original
model checkpoints for an extra epoch without the
gender-neutral alternative (i.e., p=0.0). The evalu-
ation on this new checkpoint will help us to draw
conclusions on longer training, as well as ensure
the correct implementation of our setup.

5.3 Evaluation Tasks

For evaluation of downstream tasks, we report task
performance and analyse group disparities. Bias
amplification is reported on the validation splits.

MLM We follow standard practice for assessing
gender bias in V&L models (Zhao et al., 2017; Hen-
dricks et al., 2018; Wang et al., 2019; Tang et al.,

8See Appendix A for the complete list.
9We deliberately omit tokens like ‘actor’ from the list if

the female (or male) equivalent is not always used (people do
not always use the word ‘actress’ when referring to a female
character). We also discard ‘male’ and ‘female’ as we suspect
that they are more often used on non-human entities.

Model (MD) Gender-neutral model (MN
D)

LXMERT180K LXMERTN
180K

LXMERT3M LXMERTN
3M

ALBEF4M ALBEFN-COCO
4M , ALBEFN-CC3M

4M
ALBEF14M ALBEFN-COCO

14M , ALBEFN-CC3M
14M

BLIP129M BLIPN
129M

Table 1: Summary of the models. The subscript in
the model name indicates the number of images in the
pretraining set. All gender-neutral models are pretrained
with in-domain data (LXMERTN

180K and BLIPN
129M

on COCO; LXMERTN
3M on CC3M). For models with

more than one gender-neutral version, the superscript
indicates the dataset used for gender-neutral pretraining.

2021; Srinivasan and Bisk, 2021; Agarwal et al.,
2021; Cho et al., 2022) and expose representational
bias in a masked language modelling (MLM) task.
The words masked are gendered terms given by the
same lexicon used in §5.2. Personal pronouns (if
any) are also masked to avoid leaking gender infor-
mation into the model representation. For example,
“A woman walking her dog” would be masked as “A
[MASK] walking [MASK] dog”. The image asso-
ciated with each sentence is also input to the model,
in a setup that reflects the pretraining conditions.

We investigate the intrinsic bias of the models
as detailed in §3, i.e., we look at the co-occurrence
of context words (e.g., car, ball) with particular
word choices from the model (e.g., gender words
like woman, child). Previous work (Sedoc and Un-
gar, 2019; Antoniak and Mimno, 2021; Delobelle
et al., 2021) showcases how the measure of bias
can be heavily influenced by the choice of target
seed words. To avoid misleading results from low
frequency words, we define the set of target words
to be the 100 most frequent common nouns that
co-occur with the gender entities in the correspond-
ing training data. Table 2 provides a summary of
gender distribution.

To evaluate intrinsic bias, we do not look at the
exact word prediction but instead consider two op-
tions to annotate the gender of the predicted word.
First, we can extract and sum the probabilities of
all male, female and gender-neutral tokens within
our set to select the most probable gender entity.
However, given that the distributions of tokens fol-
lows Zipf’s Law, the probability mass computed
for each gender group is nearly equal, yielding in-
conclusive results. Therefore, we use the gender
category of the most probable token. Then, the bias



COCO CC3M VQAv2 GQA NLVR2 F30K

Image Image Question Question Sentence Image

Male 725 901 20000 8265 91 345
Female 363 945 9498 4860 99 207
Neutral 1187 1095 18549 4442 377 336

Total 2275 2941 48047 17567 567 889

Table 2: Gender distribution across validation splits
in each dataset. Note that for COCO, this refers to
the minival split in (Tan and Bansal, 2019). COCO
and F30K have five captions per image. Gender was
inferred from image captions for COCO, CC3M and
F30K. Gender was inferred from questions in VQAv2,
GQA and from the sentence given in NLVR2.

present in model predictions is measured with the
statistical and bias amplification metrics presented
in §4.2.

Visual Question Answering VQA (Antol et al.,
2015) requires the model to predict an answer given
an image and a question. LXMERT formulates
VQA as a multi-answer classification task, and AL-
BEF and BLIP treat it as a language generation task.
We evaluate models on the VQAv2 (Goyal et al.,
2017) and GQA datasets (Hudson and Manning,
2019), and report performance as VQA-Score and
accuracy, respectively.

Bias amplification is measured on the subset of
question–answer pairs targeting people. Gender
is inferred from the question, considering all the
gender entities presented in Appendix A. We filter
any answer category whose answer does not occur
with gender entities at least 50 times in the training
set. Finally, numerical and yes/no question-answer
pairs are also removed leaving a total of 165 answer
categories in VQAv2 and 214 in GQA.

Natural Language for Visual Reasoning
NLVR2 (Suhr et al., 2019) requires the model to
predict whether a text describes a pair of images.
The notion of bias amplification considered in this
project would require us to manually annotate the
gender from all the images to be able to extract
gender-context patterns from the training data. For
this reason, we only evaluate the group disparity
in NLVR2 through differences in performance,
reported as accuracy.

Image–Text Retrieval This retrieval task con-
tains two subtasks: text-to-image retrieval (IR),
where we query the model with a caption to retrieve
an image, and image-to-text retrieval (TR), where
we use an image to retrieve a suitable caption. We

report Recall@1 on the Flickr30K (Plummer et al.,
2015) benchmark. Bias amplification is measured
on the subset of data targeting people. In IR, we
query the model with captions that include a word
from the set of male-related or female-related to-
kens and compare to the gender annotated in the
image retrieved. In TR, we query the model with
images annotated as ‘Male’ or ‘Female’ and com-
pare to the gendered terms in the caption retrieved.
Captions with gender-neutral terms are treated as
a separate case to assess how often the models
retrieve images from each group, yet the image
retrieved could be potentially valid for any gender
case. In both subtasks, we consider that the model
does not amplify gender bias when the image or
caption retrieved has a gender-neutral subject.

6 Results

6.1 Intrinsic Bias

We evaluate intrinsic bias in encoder-only models.
Considering that bias varies as a function of the bias
in a dataset, amongst other variables (Hall et al.,
2022), we define our experiments with LXMERT
variants as our control setup: the same model archi-
tecture is trained with the same hyperparameters on
disjoint corpora yielding two versions of the model,
LXMERT180K and LXMERT3M.

Gender-neutral pretraining mitigates gen-
dered outputs Figure 2 shows results for
LXMERT180K models; complete results are in Ap-
pendix C. A model is penalised when it predicts a
token from the opposite gender, but we consider a
gender-neutral term as a valid output.10 The mod-
els pretrained with gender-neutral data, have near
perfect F1 performance as they learnt to predict
gender-neutral tokens when their standard counter-
parts, LXMERT180K and LXMERT3M, had low
confidence on the most probable token.11 We pre-
sume these are images where the visual appearance
of the main subject is unclear. Interestingly, the
trade-off between precision and recall has opposite
directions for Female and Male groups vs Neutral
in LXMERT180K and LXMERT3M: the models
tend to output female- and male- tokens more often
than neutral-related, even when the subject in the

10Predicting a gender-neutral term shows that the model
understands the depicted visual concept at the generic level.

11The models do not forget to predict gender-related to-
kens. LXMERTN

180K predicts ∼37% of the time a word
from the set of neutral-related tokens (compared to ∼20%
in LXMERT180K).



Figure 2: Statistical analysis of gender bias in MLM
with gendered terms masked. Predicting a token from
the gender-neutral set is always considered correct (Pre-
cision=1). Models report higher recall scores for Male
(M) and Female (F) groups, showcasing the complete-
ness of positive predictions; it is the opposite for Neutral
(N) tokens.

image was annotated as gender neutral (low recall).

Pretrained models reflect training data biases
Table 3 shows the aggregated bias amplification
measured in encoder-only model variants. Our
bias mitigation strategy has the same consistent
behaviour across LXMERT models and evalua-
tion data (COCO or CC3M): models tend to re-
flect the same degree of bias present in the data
(BiasAmpT→A closer to zero). ALBEFN-COCO

14M
and ALBEFN-CC3M

14M models benefit from pretrain-
ing on gender-neutral data differently, as both de-
crease the overall bias amplification. Wang and
Russakovsky (2021) caution against solely report-
ing the aggregated bias amplification value, as
it could obscure attribute-task pairs that exhibit
strong bias amplification. We report it here as a
relative metric to compare the overall amplified
bias between the models, and should not be consid-
ered in its own. See Appendix C for results broken
down by gender.

We also investigated the equivalent to
LXMERTN

3M, but pretrained on gender-neutral
data for a reduced number of steps to match
those in LXMERTN

180K. We verified that more
pretraining steps on gender-neutral data equates to
a reduced bias amplification in absolute terms.

6.2 Extrinsic Bias & Fairness

Trade-offs in task performance Downstream
performance on the test sets is shown in Table 4.
LXMERT180K may require more pretraining steps
to converge, as we verify that the performance im-

provement observed in LXMERTN
180K is mainly

due to the extra pretraining steps regardless of
gender-neutral data. Our strategy for mitigating
gender bias on pretrained models generally leads
to lower task performance on NLVR2 and image
retrieval, revealing a trade-off between bias miti-
gation and task performance. The same trade-off
has been observed in language models (He et al.,
2022; Chen et al., 2023). However, gender-neutral
models report similar or even superior performance
on question answering and text retrieval tasks com-
pared to their original versions.

Gender-neutral models consistently reduce
group disparity Group performance is depicted
in Figure 3 for a subset of models and tasks. Table 7
in Appendix D shows the complete results. We ob-
serve that group disparity is consistently reduced
on VQAv2 and retrieval tasks. An exception are
LXMERT models, which show a minor, undesir-
able increase in group disparity on VQAv2, GQA
and text retrieval tasks. For instance, in question-
answering tasks with LXMERT, we observe a re-
duction in the min-max gap of 4.5 (LXMERTN

180K)
points in VQAv2, while the min-max gap increase
in GQA is only of 0.4 points. Note that Tan and
Bansal (2019) pretrained LXMERT180K on GQA
train and validation data, which results in a very
high performance (∼85.0 for all groups) on the
GQA validation set. We speculate that the gains in
performance equality across groups could be due
to a shift of the final word representations to a more
equidistant vector space between gendered terms
and their context. That is, the conditional probabil-
ity distribution of a gendered term given its context
is smoother across different demographic groups.
We leave exploration of this for future work. In re-
cent work, Feng et al. (2023) continued pretraining
language models on partisan corpora and observed
that these models do acquire (political) bias from
said corpora. In our case, the continued pretraining
could make the MN

D models more robust regarding
gendered terms.

Gender-neutral training reduces fine-tuning
variance Dodge et al. (2020) and Bugliarello
et al. (2021) analysed the impact of random seeds
in fine-tuning. We do this analysis on our con-
trol setup and observe that gender-neutral variants
of LXMERT consistently report lower variance
in performance on all tasks, except for NLVR2.
We, however, observe a strong variance in the
fine-tuning process for NLVR2 due to the random



LXMERT180K LXMERTN
180K LXMERT3M LXMERTN

3M ALBEF14M ALBEFN-COCO
14M ALBEFN-CC3M

14M

COCO -.0359 -.0008 -.0617 -.0014 -.0742 -.0517 -.0792
CC3M -.0346 -.0062 -.0007 -.0002 -.0182 -.0367 -.0570

Table 3: BiasAmpT→A averaged over attributes (gender entities) and tasks (top-100 nouns) for LXMERT and
ALBEF14M models. Light and dark backgrounds indicate bias amplification measured in-domain and out-of-domain
data respectively. Negative values indicate an overall decrease of the bias in model’s predictions.
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Figure 3: Validation-set results of selected models (◦: LXMERT180K, ALBEF14M and BLIP129M) and their gender-
neutral version (2: LXMERTN

180K, ALBEFN-COCO
14M and BLIPN

129M, 3: ALBEFN-CC3M
14M ). We report VQA-accuracy

in VQAv2, accuracy in GQA, and Recall@1 in F30K by gender group: male (M), female (F), and neutral (N).

VQAv2 GQA NLVR2 F30K

test-dev test-dev test-P test IR test TR

LXMERT180K 70.3 59.4 74.5 53.0 61.1
LXMERTN

180K 71.6 59.3 74.5 53.9 66.2

LXMERT3M 67.2 55.4 71.5 54.4 59.5
LXMERTN

3M 68.1 56.0 70.0 50.2 57.4

ALBEF4M 72.9 56.6 79.3 82.6 93.3
ALBEFN-COCO

4M 72.9 56.3 77.1 82.5 94.0
ALBEFN-CC3M

4M 72.9 56.6 78.4 82.4 94.2

ALBEF14M 74.4 58.4 82.4 85.9 95.1
ALBEFN-COCO

14M 74.1 57.3 52.312 85.5 95.4
ALBEFN-CC3M

14M 74.1 58.1 81.0 85.1 95.2

BLIP129M 75.3 58.1 79.7 87.5 96.7
BLIPN

129M 75.2 58.3 79.3 86.9 96.2

Table 4: Test results for a model MD and its gender-
neutral version MN

D. We report VQA-accuracy in
VQAv2, accuracy in GQA and NLVR2, and Recall@1
in F30K. Results for original models computed by us.

weight initialisation of the classification layer. See
Appendix E for specific results across 6 runs.

Intrinsic & extrinsic bias are independent We
estimate bias amplification in VQA tasks by evalu-
ating the fluctuations in models’ predictions when
they differ from the correct answer. Otherwise,
the models are said to not amplify the bias from
the data. We find that all model variants – MD

and MN
D – reduce the gender bias across tasks.

12This result is inexplicably low, despite fifteen attempts
at fine-tuning with different random seeds. We saw similar
instabilities when fine-tuning the released LXMERT models,
but we found seeds that gave above-chance accuracy.

However, contrary to what we observed in pre-
trained models (Table 3), there is no evidence
that the gender-neutral pretraining influenced pos-
itively (nor negatively) the extrinsic bias of the
models: it depends on the model, downstream
task and gender group (see Appendix E for results
on BiasAmpA→T fine-tuning variance). Figure 4
displays BiasAmpA→T broken-down by gender
category measured on GQA for a subset of mod-
els. Whereas the degree of bias amplification is
fairly consistent between a model MD and MN

D in
VQAv2 (see Appendix D), there is higher variance
in GQA: ALBEFN-COCO

14M reduces the bias ampli-
fication compared to ALBEF14M, but we observe
the opposite effect on BLIPN-COCO.

In retrieval tasks, we look into models’ behavior
when querying them with neutral instances. Re-
gardless of the degree of intrinsic bias in the model,
models exhibit the same trend: in IR, all models
mostly retrieve images labeled as ‘Neutral’, but
twice as much ‘Male’ images as ‘Female’. We find
similar results for TR, i.e., query images whose
main actor is defined as Neutral, but, in this sce-
nario, only half of the captions retrieved relate to
people. See Appendix D for detailed results.

7 Conclusion

This paper presented a comprehensive analysis of
gender bias amplification and fairness of encoder-
only and encoder-decoder V&L models. The in-
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Figure 4: Bias amplification measured on question-
answering (GQA) broken down by gender group. MN

are gender-neutral pretrained on COCO.

trinsic bias analysis shows consistent results – in
terms of bias mitigation – in models trained on
gender-neutral data, even if these models reflect
biases present in data instead of diminishing them
(as we observed with LXMERT). In line with previ-
ous findings in language models (Goldfarb-Tarrant
et al., 2021; Kaneko et al., 2022; Orgad et al., 2022),
intrinsic bias in V&L models does not necessarily
transfer to extrinsic bias on downstream tasks. Sim-
ilarly, we find that the bias in a model and its empir-
ical fairness –group disparity on task performance–
are in fact independent matters, which is in line
with the NLP literature (Shen et al., 2022; Cabello
et al., 2023). Intrinsic bias can potentially rein-
force harmful biases, but these may not impact the
treatment of groups (or individuals) on downstream
tasks. We believe that bias and fairness should al-
ways be carefully evaluated as separate matters.
One of they key findings of our work is that the
extra pretraining steps on gender-neutral data are
beneficial to reduce the group disparity in every
model architecture tested on VQAv2, and in the ma-
jority of models for both retrieval tasks. Crucially,
there is no penalty to pay for this fair outcome: the
overall task performance of gender-neutral models
is similar or better than their original versions.

Limitations

The framework to characterize gender bias in V&L
presented in this study is general and extensible to
analyse other forms of bias in multimodal models.
We consider three base architectures to settle on
the implementation. However, our work would
benefit from analyzing a wider range of models.

Studying the effects of gender-neutral pretraining
on V&L models with a frozen language model,
such as ClipCap (Mokady et al., 2021) and BLIP-
2 (Li et al., 2023), is left as future work.

Due to computational limitations, we restricted
most of our analysis to single runs. We perform
a first analysis across multiple random seeds for
LXMERT models in Appendix E. There, we no-
tice that gender-neutral models seem to have lower
variance after fine-tuning. Yet, the cross-seed per-
formance of a given model can fluctuate consider-
ably for some tasks (e.g., NLVR2), corroborating
previous findings from Bugliarello et al. (2021).
Likewise, bias amplification, along with other fair-
ness metrics like group disparity, often fluctuates
across runs. We report bias amplification variance
in fine-tuning of LXMERT models, but the absence
of confidence intervals for all models and tasks –
due to the same reason stated above– should be
considered. We hope to motivate future work to
address this issue.

Moreover, despite the existence of multilingual
multimodal datasets (Elliott et al., 2016; Liu et al.,
2021; Bugliarello et al., 2022, inter-alia), our ex-
perimental setup is limited to English datasets and
models. Studies of (gender) bias using only English
data are not complete and might yield inaccurate
conclusions, albeit overcoming the structural per-
vasiveness of gender specifications in grammatical
gender languages such us German or Spanish is not
trivial (Gabriel et al., 2018). Likewise, our work
considers a single dimension of social bias (gen-
der). Further research on analyzing social biases on
V&L models should account for intersectionality:
how different social dimensions, e.g., gender and
race, can intersect and compound in ways that can
potentially impact model performance on most dis-
favoured groups, e.g., Black Women as discussed
in Crenshaw (1989).

Ethics Statement

The models and datasets used in this study are pub-
licly available, and we strictly follow the ethical
implications of previous research related to the data
sources. Our work is based on sensitive informa-
tion such as gender, based on reported visual ap-
pearance in the image captions. We would like to
emphasize that we are not categorizing biological
sex or gender identity, but rather using the given
image captions as proxies to the outward gender
appearance.



Acknowledgments

We are grateful to Benjamin Rotendahl and Rita
Ramos for initial discussions about data and eval-
uation. We also thank members of CoAStaL and
LAMP groups for their valuable feedback. Laura
Cabello is funded by the Novo Nordisk Founda-
tion (grant NNF 20SA0066568). ⋆

⋆
⋆⋆⋆

⋆

⋆

⋆
⋆ ⋆ ⋆

⋆ Emanuele
Bugliarello is supported by the funding from the
European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-
Curie grant agreement No 801199. Stephanie
Brandl is funded by the European Union under
the Grant Agreement no. 10106555, FairER. Views
and opinions expressed are those of the author(s)
only and do not necessarily reflect those of the
European Union or European Research Executive
Agency (REA). Neither the European Union nor
REA can be held responsible for them. This work
was supported by a research grant (VIL53122) from
VILLUM FONDEN.

References
Sandhini Agarwal, Gretchen Krueger, Jack Clark, Alec

Radford, Jong Wook Kim, and Miles Brundage. 2021.
Evaluating clip: Towards characterization of broader
capabilities and downstream implications.

Jack J Amend, Albatool Wazzan, and Richard Souvenir.
2021. Evaluating gender-neutral training data for
automated image captioning. In 2021 IEEE Inter-
national Conference on Big Data (Big Data), pages
1226–1235.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. VQA: Visual question an-
swering. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages
2425 – 2433.

Maria Antoniak and David Mimno. 2021. Bad seeds:
Evaluating lexical methods for bias measurement.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1889–1904, Online. Association for Computational
Linguistics.

Camiel J. Beukeboom, Vũ, and Faculteit der So-
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A Seed words

Gender terms

• Female: aunt, bride, businesswoman, daugh-
ter, daughters, fiancee, fiancée, gal, gals,
girl, girlfriend, girls, grandmother, her, her-
self, lady, landlady, mama, mom, mother,
queen, she, sister, sisters, spokeswoman, wife,
woman, women, womens.

• Male: boy, boyfriend, boys, brother, brothers,
businessman, dad, dude, dudes, father, fiance,
fiancé, gentleman, grandfather, groom, guy,
he, him, himself, his, husband, king, landlord,
man, men, mens, papa, son, sons, spokesman,
uncle.

• Neutral: businessperson, child, childs, grand-
parent, kid, kids, landlord, monarch, new-
lywed, parent, partner, pbling, people, per-
son, sibling, siblings, someone, spokesperson,
spouse, their, them, themself, they.

Gender-neutral mappings Using the gender
terms listed above, we generate mappings from
male and female to neutral terms: see Table 5 for
details. These mappings are used to continue pre-
training on gender-neutral (debiased) data as ex-
plained in §5.2.

Objects List of top-100 most frequent nouns co-
occurring with gender terms in the training split in
COCO (Lin et al., 2014) and Conceptual Captions
(CC3M) (Sharma et al., 2018).

• COCO: tennis, group, street, baseball, table,
dog, front, ball, player, field, snow, game,
beach, horse, skateboard, umbrella, water,
phone, kite, hand, top, board, ski, couple,
motorcycle, food, elephant, People, picture,
pizza, surfboard, room, shirt, bench, wave,
frisbee, court, park, air, cake, bed, laptop,
train, cell, racket, bat, bus, kitchen, plate,
glass, ocean, side, grass, giraffe, building, city,
skier, road, car, suit, trick, cat, tie, tree, bike,
photo, boat, hat, slope, baby, area, sign, chair,
sidewalk, computer, hill, head, surfer, moun-
tain, video, skateboarder, soccer, truck, ba-
nana, couch, camera, skate, crowd, lot, snow-
board, background, wine, bear, day, back, lug-
gage, cow, living, fence, ramp.

• CC3M: player, team, actor, football, game,
artist, hand, day, match, background, dress,

Male Female Neutral
boy girl child
boyfriend girlfriend partner
boys girls kids
brother sister sibling
brothers sisters siblings
businessman businesswoman businessperson
dad mom parent
dude gal person
dudes gals people
father mother parent
fiance fiancee partner
fiancé fiancée partner
gentleman lady person
grandfather grandmother grandparent
groom bride newlywed
guy gal person
he she they
him her them
himself herself themself
his her their
husband wife spouse
king queen monarch
landlord landlady landlord
man woman person
men women someone
mens womens people
papa mama parent
son daughter kid
sons daughters childs
spokesman spokeswoman spokesperson
uncle aunt pbling

Table 5: Gender-neutral mappings used for continual
pre-training in gender-neutral data as described in §5.2.

beach, car, photo, dog, event, street, home,
ball, wedding, family, city, film, time, tree,
award, goal, hair, front, night, water, baby,
business, illustration, politician, sport, show,
way, portrait, face, book, premiere, fan, room,
head, friend, year, athlete, park, house, fash-
ion, soccer, character, flower, country, style,
field, side, party, festival, picture, stage, rock,
eye, couple, world, shirt, vector, camera, pop,
tv, ceremony, hat, glass, snow, horse, school,
road, phone, arm, art, window, crowd, sea, ta-
ble, part, boat, suit, basketball, model, top,
birthday, star, student, view, tennis, smile,
wall, celebrity, baseball.



B Models

In this section, we provide an overview on the mod-
els we use in our evaluation. We refer to their
original work for more details.

LXMERT (Tan and Bansal, 2019) is a cross-
modal architecture pretrained to learn vision-and-
language representations. It consists of three Trans-
former (Vaswani et al., 2017) encoders, where vi-
sual and language inputs are encoded separately in
two independent stacks of Transformer layers be-
fore feeding them into the cross-modality encoder.
The cross-modality encoder uses bi-directional
cross attention to exchange information and align
the entities across the two modalities. LXMERT is
trained with four objectives: masked language mod-
elling (MLM), masked object prediction, image–
text matching (ITM) and image question answer-
ing.

Similar to LXMERT, ALBEF (Li et al., 2021) is
a dual-stream encoder (Bugliarello et al., 2021) that
first learns separate visual and textual embeddings
using Transformer-based image and text encoders;
and then fuses them in a cross-modal Transformer
using image–text contrastive loss (ITC), which en-
ables a more grounded vision and language repre-
sentation learning. The model is pretrained with
two other objectives: masked language modelling
(MLM) and image–text matching (ITM) on the
multimodal encoder. Unlike LXMERT, ALBEF
does not rely on image features extracted from an
off-the-shelf object detector, but directly feeds the
raw image into a Vision Transformer (Dosovitskiy
et al., 2021)

BLIP (Li et al., 2022) is a versatile model based
on a multimodal mixture of encoder–decoder net-
work, that can be applied to a wide range of down-
stream tasks. The authors introduce a novel boost-
rapping method to generate synthetic captions and
remove noisy pairs from large-scale web data. Un-
like LXMERT and ALBEF, BLIP is trained with an
autoregressive language modelling objective that
allows the generation of coherent captions given
an image. The model is also pretrained using the
unimodal image–text contrastive loss (ITC) and the
cross-modal image–text matching (ITM) loss used
by ALBEF.

C Bias in Pretrained Models

Intrinsic bias Figure 5 complements Figure 2
from the main paper showing statistical results mea-
sured on the intrinsic bias analysis in our control

Figure 5: Statistical analysis of gender bias found
through masked language modelling with gendered
terms masked. Prediction of a token from the gender-
neutral set is always considered correct (Precision=1).
Models report higher recall scores for Male (M) and
Female (F) groups, showcasing the completeness of pos-
itive predictions, whereas it is the opposite for Neutral-
related (N) tokens.

setup.

MLM experiment broken down by gender Ta-
ble 6 provides a more granular look at which gender
groups are actually amplifying/decreasing the bias
in the pretrained models.

D Bias & Fairness in Downstream Tasks

Extrinsic Bias The following graphs comple-
ment results shown in § 6.2 for bias amplification
measured on downstream tasks: Figure 6 shows
results on GQA; Figure 7 shows results on VQAv2;
Figure 8 and Figure 9 show the bias revealed on
image–text retrieval tasks when querying the mod-
els with a gender-neutral caption (or image), re-
spectively.

Task performance & Fairness We present gran-
ular results on task performance in validation in
Table 7 and group disparity, defined as the min-
max difference between group performance (∆).



COCO

Male Female Neutral

LXMERT180K -.0295 -.0048 -.0733
LXMERTN

180K -.0004 -.0008 -.0014
LXMERT3M -.0577 -.0230 -.1062
LXMERTN

3M -.0014 +.0001 -.0028
LXMERTN-SC

180K -.0082 -.0009 -.0109
ALBEF4M -.1006 -.0517 -.1083
ALBEFN-COCO

4M -.0748 -.1293 -.1529
ALBEFN-CC3M

4M -.0754 -.0337 -.1073
ALBEF14M -.0418 -.1146 -.0663
ALBEFN-COCO

14M -.0559 -.0169 -.0824
ALBEFN-CC3M

14M -.0556 -.0983 -.0837

CC3M

Male Female Neutral

LXMERT180K -.0281 -.0276 -.0482
LXMERTN

180K +.0008 -.0081 -.0113
LXMERT3M -.0043 -.0030 +.0055
LXMERTN

3M +.0002 +.0004 -.0011
LXMERTN-SC

180K -.0011 +.0003 -.0012
ALBEF4M -.0473 -.0569 -.0422
ALBEFN-COCO

4M -.0329 -.0514 -.0152
ALBEFN-CC3M

4M -.0295 -.0497 -.0313
ALBEF14M +.0159 -.0642 -.0062
ALBEFN-COCO

14M -.0290 -.0250 -.0561
ALBEFN-CC3M

14M -.0535 -.0641 -.0534

Table 6: BiasAmpT→A (BA.) per gender group, aver-
aged over tasks (top-100 nouns) for LXMERT and AL-
BEF models, evaluated on validation splits on COCO
(top) and CC3M (bottom). Light and dark backgrounds
indicate bias amplification measured within in-domain
and out-of-domain data respectively. A model amplifies
the bias in the dataset if the value is positive. A negative
value indicates an overall decrease of the bias in model’s
predictions.
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Figure 6: Bias amplification measured on question-
answering (GQA) broken down by gender group. MN

are gender-neutral pretrained on CC3M.

LXMERT180K ALBEF4M ALBEF14M BLIP129M

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

B
ia

sA
m

p A
→

T

male
female
neutral
M
MN

(a) MN are gender-neutral models pretrained on COCO.
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(b) MN are gender-neutral models pretrained on COCO.

Figure 7: Bias amplification measured on question-
answering (VQAv2) broken down by gender group.



VQAv2 GQA NLVR2 F30K

Acc. ∆(↓) Acc. ∆(↓) Acc. ∆(↓) r@1 IR ∆(↓) r@1 TR ∆(↓)

LXMERT180K

M 77.5
4.8

83.8
1.1

81.9
6.9

55.8
10.1

61.6
7.5F 76.3 84.9 75.0 58.5 62.8

N 72.7 84.8 81.1 48.4 55.3

LXMERTN
180K

M 79.6
1.5

83.9
1.5

79.3
6.0

56.1
8.8

66.4
8.4F 78.1 85.4 74.2 58.1 67.6

N 79.3 85.3 80.2 49.3 59.2

LXMERT3M

M 68.4
6.0

63.7
1.9

72.3
14.8

56.0
8.2

63.0
8.7F 66.5 65.6 64.0 59.4 63.7

N 62.4 64.5 78.8 51.2 55.0

LXMERTN
3M

M 70.3
2.4

64.6
2.3

79.3
11.6

51.4
5.0

56.2
9.0F 67.9 66.8 67.7 52.3 61.4

N 70.1 64.5 78.8 47.3 52.4

ALBEF4M

M 75.1
1.4

60.0
2.5

87.9
11.1

83.1
10.1

94.5
7.0F 73.7 61.5 76.8 87.9 98.1

N 74.3 62.5 79.6 77.8 91.1

ALBEFN-COCO
4M

M 75.0
1.4

60.5
1.6

85.7
9.9

83.7
10.1

94.2
5.2F 73.6 60.7 75.8 87.2 96.6

N 74.0 62.1 79.8 77.1 91.4

ALBEFN-CC3M
4M

M 75.0
1.3

61.0
2.0

84.6
9.8

82.2
9.2

94.8
7.7F 73.7 60.7 74.8 87.1 97.6

N 74.5 62.7 79.3 77.9 89.9

ALBEF14M

M 76.0
1.0

59.7
2.8

86.8
7.0

87.5
7.3

95.9
6.0F 75.0 59.6 79.8 89.1 100.0

N 75.6 62.4 81.2 81.8 94.0

ALBEFN-COCO
14M

M 76.0
1.1

60.6
2.4

60.4
7.9

86.6
5.9

95.4
5.0F 74.9 60.3 52.5 87.8 99.0

N 75.5 62.7 57.6 81.9 94.0

ALBEFN-CC3M
14M

M 75.8
0.8

60.7
2.3

87.9
10.1

86.6
7.8

95.9
4.6F 75.0 61.9 77.8 89.8 98.1

N 75.5 63.0 81.7 82.0 93.5

BLIP129M

M 76.5
1.4

60.3
2.0

82.4
6.0

88.7
6.2

97.1
3.8F 75.1 60.3 77.8 90.6 99.0

N 75.6 62.3 83.8 84.4 95.2

BLIPN
129M

M 76.4
1.2

60.1
2.6

84.6
10.9

88.1
5.8

98.3
4.1F 75.2 59.7 73.7 89.6 99.0

N 75.8 62.3 80.9 83.8 94.9

Table 7: Validation results per group: male (M), female (F), and neutral (N). We report VQA-accuracy in VQAv2,
accuracy in GQA and NLVR2, recall@1 in F30k and group disparity (∆) across tasks. Lower ∆ is better.
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(a) IR - MN are gender-neutral models pretrained on COCO.
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(b) IR - MN are gender-neutral models pretrained on CC3M.

Figure 8: Extrinsic bias measured on text-to-image
retrieval (IR) on Flickr30K. Bias is measured as the
percentage of images retrieved from each group when
querying the models with a gender-neutral caption.
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(a) TR - MN are gender-neutral models pretrained on COCO.
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(b) TR - MN are gender-neutral models pretrained on CC3M.

Figure 9: Extrinsic bias measured on image-to-text re-
trieval (TR) (c)-(d) on Flickr30K. Bias is measured as
the percentage of captions retrieved from each group
when querying the models with a gender-neutral image.



E Variance in fine-tuning

Table 8 shows the mean and standard deviation
in bias amplification when fine-tuning LXMERT
models with different random seeds. The variance
is due to random initialization. In line with what
we observed in §6.2, there is no clear trend when
comparing a model M with it’s gender-neutral pre-
training counterpart, MN

D.

VQAv2 GQA
mean± std mean ± std

LXMERT180K

male -.0311±.0057 -.0192±.0071
female -.0497±.0053 -.0477±.0088
neutral +.0020±.0030 -.0252±.0089

LXMERTN
180K

male -.0301±.0031 -.0227±.0036
female -.0538±.0034 -.0528±.0106
neutral +.0007±.0014 -.0245±.0042

LXMERT3M

male -.0169±.0054 -.0254±.0135
female -.0667±.0041 -.0935±.0110
neutral -.0157±.0056 -.0269±.0069

LXMERTN
3M

male -.0164±.0038 -.0188±.0060
female -.0634±.0046 -.0971±.0131
neutral -.0183±.0035 -.0194±.0109

Table 8: BiasAmpA→T fine-tuning variance of
LXMERT models across question answering tasks.
Each model is fine-tuned 6 times on each task. We
report average VQA-accuracy in VQAv2 and average
accuracy in GQA, together with its standard deviation.

Figure 10 shows violin plots of the distribution
of results when fine-tuning LXMERT models with
different random seeds. The variance is due to
random initialization. Gender-neutral models re-
veal lower standard deviation across tasks. This
finding reveals one of the benefits to perform ex-
tra steps of pretraining on gender-neutral data: to
reduce variance in downstream performance. This
observation aligns with the NLP literature showing
that biases in a model are independent from model
performance (Cabello et al., 2023).
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Figure 10: Fine-tuning variance of LXMERT models
across tasks. On the left with white background, origi-
nal models (MD). On the right with darker background,
models after gender-neutral pretraining (MN

D). Each
model is fine-tuned 6 times on each task. The dots
represent the experimental observations. We report av-
erage VQA-accuracy in VQAv2, accuracy in GQA and
NLVR2, and recall@1 in F30k.


