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ABSTRACT

We consider offline Imitation Learning from corrupted demonstrations where a
constant fraction of data can be noise or even arbitrary outliers. Classical ap-
proaches such as Behavior Cloning assumes that demonstrations are collected by
an presumably optimal expert, hence may fail drastically when learning from cor-
rupted demonstrations. We propose a novel robust algorithm by minimizing a
Median-of-Means (MOM) objective which guarantees the accurate estimation of
policy, even in the presence of constant fraction of outliers. Our theoretical analy-
sis shows that our robust method in the corrupted setting enjoys nearly the same er-
ror scaling and sample complexity guarantees as the classical Behavior Cloning in
the expert demonstration setting. Our experiments on continuous-control bench-
marks validate that existing algorithms are fragile under corrupted demonstration
while our method exhibits the predicted robustness and effectiveness.

1 INTRODUCTION

Recent years have witnessed the success of using autonomous agent to learn and adapt to complex
tasks and environments in a range of applications such as playing games (e.g. Mnih et al., 2015; Sil-
ver et al., 2018; Vinyals et al., 2019), autonomous driving (e.g. Kendall et al., 2019; Bellemare et al.,
2020), robotics (Haarnoja et al., 2017), medical treatment (e.g. Yu et al., 2019) and recommendation
system and advertisement (e.g. Li et al., 2011; Thomas et al., 2017).

Previous success for sequential decision making often requires two key components: (1) a careful
design reward function that can provide the supervision signal during learning and (2) an unlimited
number of online interactions with the real-world environment (or a carefully designed simulator) to
query new unseen region. However, in many scenarios, both components are not allowed. For ex-
ample, it is hard to define the reward signal in uncountable many extreme situations in autonomous
driving; and it is dangerous and risky to directly deploy a learning policy on human to gather infor-
mation in autonomous medical treatment (Yu et al., 2019). Therefore an offline sequential decision
making algorithm without reward signal is in demand.

Offline Imitation Learning (IL) offers an elegant way to train intelligent agents for complex task
without the knowledge of reward functions or using a simulator. Since the offline imitation learning
does not interact with the environment, in order to guide intelligent agents to correct behaviors,
it is crucial to have high quality expert demonstrations. The well-known Behavior Cloning (BC)
algorithm (Pomerleau, 1988) requires that the demonstrations given for training are all presumably
optimal and it aims to learn that mapping from state to action from expert demonstration data set.

However in real world scenario, since the demonstration is often collected from human, we cannot
guarantee that all the demonstrations we collected have high quality. An human expert can make
mistakes by accident or due to the hardness of a complicated scenario (e.g., medical diagnosis). Fur-
thermore, even an expert demonstrates a successful behavior, the recorder or the recording system
can have a chance to contaminate the data by accident or on purpose (e.g. Eykholt et al., 2018; Neff
& Nagy, 2016).
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Figure 1: Reward vs. fraction of corruptions in Lunar Lander environment. Shaded region represents
one standard deviation for 50 trials. We fix the sample sizeN = 4000 for the demonstration data set,
and vary the fraction of corruptions ε up to 30%. Our algorithm Robust Behavior Cloning (RBC) on
corrupted demonstrations has nearly the same performance as BC on expert demonstrations (this is
the case when ε = 0), which achieves expert level. Also, it barely changes when ε grows larger. By
contrast, the performance of vanilla BC on corrupted demos fails drastically.

This leads to the central question of the paper:

Can the optimality assumption on expert demonstrations be weakened or even tolerate arbitrary
outliers under offline imitation learning settings?

More concretely, we consider corrupted demonstrations setting where the majority of the demon-
stration data is collected by an expert policy (presumably optimal), and the remaining data can be
even arbitrary outliers (the formal definition is presented in Definition 2.1). This has great signifi-
cance in many applications, such as automated medical diagnosis for healthcare (Yu et al. (2019))
and autonomous driving (Ma et al., 2018), where the historical data (demonstration) is often com-
plicated and noisy which requires robustness consideration.

However, the classical offline imitation learning approaches such as Behavior Cloning (BC) fails
drastically under this corrupted demonstration settings. We illustrated this phenomenon in Figure 1.
We use BC on a continuous control environment, and the performance of the policy learned by BC
drops drastically as the fraction of corruptions increases in the offline demonstration data set. How-
ever, our proposed algorithm – Robust Behavior Cloning (Algorithm 1) – is resilient to corruptions
in the offline demonstrations. The detailed experimental setup is included in Section 5. We now
summarize our contributions as follows.

1.1 MAIN CONTRIBUTIONS

• (Algorithm) We consider robustness in offline imitation learning where we have corrupted demon-
strations. Our definition for corrupted demonstrations significantly weakens the presumably opti-
mal assumption on demonstration data, and can tolerate a constant ε-fraction of state-action pairs
to be arbitrarily corrupted. We refer to Definition 2.1 for a more precise statement.
To deal with this issue, we propose a novel algorithm Robust Behavior Cloning (Algorithm 1)
for robust imitation learning. Our algorithm works in the offline setting, without any further
interaction with the environment. The core ingredient of our robust algorithm is using a novel
median of means objective in policy estimation compared to classical Behavior Cloning. Hence,
it’s simple to implement, and computationally efficient.

• (Theoretical guarantees) We analyze our Robust Behavior Cloning algorithm when there exists a
constant fraction of outliers in the demonstrations under the offline setting. We show that our RBC
achieves nearly the same error scaling and sample complexity compared to vanilla BC with expert
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demonstrations. To this end, our algorithm guarantees robustness to corrupted demonstrations at
no cost of statistical error. This is the content of Section 4.

• (Empirical support) We validate the predicted robustness and show the effectiveness of our al-
gorithm on different high-dimensional continuous control benchmarks – the vanilla BC is fragile
indeed with corrupted demonstrations, and our Robust Behavior Cloning achieves nearly the same
performance compared to vanilla BC with expert demonstrations. This is the content of Section 5.

2 PROBLEM SETUP

2.1 REINFORCEMENT LEARNING AND IMITATION LEARNING

Markov Decision Process and Reinforcement Learning. We start the problem setup by intro-
ducing the Markov decision process (MDP). An MDP M = 〈S,A, r,P, µ0, γ〉 consists of a state
space S, an action space A, an unknown reward function r : S × A → [0,Rmax], an unknown
transition kernel P : S × A → ∆(S), an initial state distribution µ0 ∈ ∆(S), and a discounted
factor γ ∈ (0, 1). We use ∆ to denote the probability distributions on the simplex.

An agent acts in a MDP following a policy π(·|s), which prescribes a distribution over the action
space A given each state s ∈ S. Running the policy starting from the initial distribution s1 ∼ µ0

yields a stochastic trajectory T := {st,at, rt}1≤t≤∞, where st,at, rt represent the state, action, re-
ward at time t respectively, with at ∼ π(·|st) and the next state st+1 follows the unknown transition
kernel st+1 ∼ P(·|st,at). We denote ρπ,t ∈ ∆(S × A) as the marginal joint stationary distribution
for state, action at time step t, and we define ρπ = (1 − γ)

∑∞
i=1 γ

tρπ,t as visitation distribution
for policy π. For simplicity, we reuse the notation ρπ(s) =

∫
a∈A ρπ(s, a)da to denote the marginal

distribution over state.

The goal of reinforcement learning is to find the best policy π to maximize the expected cumulative
return Jπ = ET ∼π [

∑∞
i=1 γ

trt]. Common RL algorithms (e.g., please refer to Szepesvári (2010))
requires online interaction and exploration with the environments. However, this is prohibited in the
offline setting.

Imitation Learning. Imitation learning (IL) aims to obtain a policy to mimic expert’s behavior
with demonstration data set D = {(si,ai)}Ni=1 where N is the sample size of D. Note that we do
not need any reward signal. Tradition imitation learning assumes perfect (or near-optimal) expert
demonstration – for simplification we assume that each state-action pair (si,ai) is drawn from the
joint stationary distribution of an expert policy πE :

(si,ai) ∼ ρπE (1)

Learning from demonstrations with or without online interactions has a long history (e.g., Pomerleau
(1988); Ho & Ermon (2016)). The goal of offline IL is to learn a policy π̂IL = A(D) through an IL
algorithm A, given the demonstration data set D, without further interaction with the unknown true
transition dynamic P.

Behavior Cloning. The Behavior Cloning (BC) is the well known algorithm (Pomerleau, 1988)
for IL which only uses offline demonstration data without any interaction with the environment.
More specifically, BC solves the following Maximum Likelihood Estimation (MLE) problem, which
minimizes the average Negative Log-Likelihood (NLL) for all samples in offline demonstrations D:

π̂BC = arg min
π∈Π

1

N

∑
(s,a)∈D

− log(π(a|s)) (2)

Recent works (Agarwal et al., 2019; Rajaraman et al., 2020; Xu et al., 2021) have shown that BC
is optimal under the offline setting, and can only be improved with the knowledge of transition
dynamic P in the worst case. Also, another line of research considers improving BC with further
online interaction of the environment (Brantley et al., 2019) or actively querying an expert (Ross
et al., 2011; Ross & Bagnell, 2014).
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2.2 LEARNING FROM CORRUPTED DEMONSTRATIONS

However, it is sometimes unrealistic to assume that the demonstration data set is collected through
a presumably optimal expert policy. In this paper, we propose Definition 2.1 for the corrupted
demonstrations, which tolerates gross corruption or model mismatch in offline data set.

Definition 2.1 (Corrupted Demonstrations). Let the state-action pair (si,ai)
N
i=1 drawn from the

joint stationary distribution of a presumably optimal expert policy πE . The corrupted demonstration
data D are generated by the following process: an adversary can choose an arbitrary ε-fraction
(ε < 0.5) of the samples in [N ] and modifies them with arbitrary values. We note that ε is a constant
independent of the dimensions of the problem. After the corruption, we useD to denote the corrupted
demonstration data set.

This corruption process can represent gross corruptions or model mismatch in the demonstration data
set. To the best of our knowledge, Definition 2.1 is the first definition for corrupted demonstrations
in imitation learning which tolerates arbitrary corruptions.

In the supervised learning, the well-known Huber’s contamination model (Huber (1964)) considers
(x, y)

iid∼ (1−ε)P+εZ,where x ∈ Rd is the explanatory variable (feature) and y ∈ R is the response
variable. Here, P denotes the authentic statistical distribution such as Normal mean estimation or
linear regression model, and Z denotes the outliers.

Dealing with corrupted x and y in high dimensions has a long history in the robust statistics com-
munity (e.g. Rousseeuw, 1984; Chen et al., 2013; 2017; Yin et al., 2018). However, it’s only until
recently that robust statistical methods can handle constant ε-fraction (independent of dimensional-
ity Rd) of outliers in x and y (Klivans et al., 2018; Prasad et al., 2020; Diakonikolas et al., 2019; Liu
et al., 2019; 2020; Shen & Sanghavi, 2019; Lugosi & Mendelson, 2019; Lecué & Lerasle, 2020; Jalal
et al., 2020). We note that in Imitation Learning, the data collecting process for the demonstrations
does not obey i.i.d. assumption in traditional supervised learning due to the temporal dependency.

Notations. Throughout this paper, we use {ci}i=1,2,3 to denote the universal positive constant.
We utilize the big-O notation f(n) = O(g(n)) to denote that there exists a positive constant c1 and
a natural number n0 such that, for all n ≥ n0, we have f(n) ≤ c1g(n).

3 OUR ALGORITHMS

It is well known that the Median-of-Means (MOM) estimator achieves sub-Gaussian concentration
bound for one-dimensional mean estimation even though the underlying distribution only has sec-
ond moment bound (heavy tailed distribution) (interested readers are referred to textbooks such as
Nemirovsky & Yudin (1983); Jerrum et al. (1986); Alon et al. (1999)).

The vanilla MOM estimator for one-dimensional mean estimation works like following: (1) ran-
domly partition N samples into M batches; (2) calculates the mean for each batch; (3) outputs the
median of these batch mean. Very recently, MOM estimators are used for high dimensional robust
regression (Brownlees et al., 2015; Hsu & Sabato, 2016) by applying MOM estimator on the loss
function of empirical risk minimization process.

3.1 ROBUST BEHAVIOR CLONING

Motivated by using MOM estimators on the loss function, we propose Definition 3.1 which uses a
MOM objective to handle arbitrary outliers in demonstration data set (s,a) ∈ D.

Definition 3.1 (Robust Behavior Cloning). We split the corrupted demonstrationsD intoM batches
randomly1: {Bj}Mj=1, with the batch size b ≤ 1

3ε . The Robust Behavior Cloning solves the following
optimization

π̂RBC = arg min
π∈Π

max
π′∈Π

median
1≤j≤M

(`j(π)− `j(π′)) , (3)

1Without loss of generality, we assume that M exactly divides the sample size N , and b = N
M

is the batch
size.
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Algorithm 1 Robust Behavior Cloning.
1: Input: Corrupted demonstrations D
2: Output: Robust policy π̂RBC

3: Initialize π and π′.
4: for t = 0 to T − 1, do
5: Randomly partition D to M batches with the batch size b ≤ 1

3ε .
6: For each batch j ∈ [M ], calculate the loss `j(π)− `j(π′) by eq. (4).
7: Pick the batch with median loss within M batches

median
1≤j≤M

(`j(π)− `j(π′)) ,

and evaluate the gradient for π and π′ using back-propagation on that batch
(i) perform gradient descent on π.
(ii) perform gradient ascent on π′.

8: end for
9: Return: Robust policy π̂RBC = π.

where the loss function `j(π) is the average Negative Log-Likelihood in the batch Bj:

`j(π) =
1

b

∑
(s,a)∈Bj

− log(π(a|s)). (4)

The workhorse of Definition 3.1 is eq. (3), which uses a novel variant of Median-of-Means (MOM)
tournament procedure (Le Cam (2012); Lugosi & Mendelson (2019); Lecué & Lerasle (2020); Jalal
et al. (2020)). In eq. (4), we calculate the average Negative Log-Likelihood (NLL) for a single
batch, and π̂RBC is the solution of a min-max formulation based on the batch loss `j(π). Though
our algorithm minimizes the robust version of NLL, we do not utilize the traditional iid assumption
in the supervised learning.

To gain some intuition of the formulation eq. (3), if we replace the median operator by the mean
operator, then RBC is equivalent to BC which just minimizes the empirical average of Negative
Log-Likelihood. This is due to the linearity of using the mean operator. However, this is not robust
to corrupted demonstration. Hence, we use the median operator on the loss function.

The intuition behind solving this min-max formulation is that the inner variable π′ needs to get
close to πE to maximize the difference of loss function, and the outer variable π also need to get
close to πE. Hence we can guarantee that π̂RBC will be close to πE. In Section 4, we show that
under corrupted demonstrations, π̂RBC in eq. (3) has the same error scaling and sample complexity
compared to πE.

In Section 4, we provide rigorous statistical guarantees for Definition 3.1. However, the objective
function eq. (3) in Definition 3.1 is not convex (in general), hence we use Algorithm 1 as a compu-
tational heuristic to solve it.

In each iteration of Algorithm 1, we randomly partition the demonstration data setD intoM batches,
and calculate the loss `j(π)− `j(π′) by eq. (4). We then pick the batch BMed with the median loss,
and evaluate the gradient on that batch. We use gradient descent on π for the arg min part and
gradient ascent on π′ for the arg max part. In Section 5, we empirically show that this gradient-
based heuristic Algorithm 1 is able to minimize this objective and has good convergence properties.
As for the time complexity, when using back-propagation on one batch of samples, our RBC incurs
overhead costs compared to vanilla BC, in order to evaluate the loss function for all samples via
forward propagation.
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4 THEORETICAL ANALYSIS

In this section, we provide theoretical guarantees for our RBC algorithm. Since our method (Defi-
nition 3.1) directly estimates the conditional probability π(a|s) over the offline demonstrations, our
theoretical analysis provides guarantees on Es∼ρπE

∥∥π̂RBC(·|s)− πE(·|s)
∥∥2

TV
, which upper bounds

the total variation norm compared to πE under the expectation of s ∼ ρπE
. The ultimate goal of the

learned policy is to maximize the expected cumulative return, thus we then provide an upper bound
for the sub-optimality JπE

− Jπ̂RBC .

We begin the theoretical analysis by Assumption 4.1, which simplifies our analysis and is common
in literature (Agarwal et al., 2019; 2020). By assuming that the policy class Π is discrete, our upper
bounds depend on the quantity log(|Π|)/N , which matches the error rates and sample complexity
for using BC with expert demonstrations (Agarwal et al., 2019; 2020).
Assumption 4.1. We assume that the policy class Π is discrete, and realizable, i.e., πE ∈ Π.

We first present Theorem 4.1, which shows that minimizing the MOM objective via eq. (3) guaran-
tees the closeness of robust policy to optimal policy in total variation distance.
Theorem 4.1. Suppose we have corrupted demonstration data set D with sample size N from
Definition 2.1, and there exists a constant corruption ratio ε < 0.5. Under Assumption 4.1, let τ to
be the output objective value with π̂RBC in the optimization eq. (3) with the batch size b ≤ 1

3ε , then
with probability at least 1− c1δ, we have

Es∼ρπE
∥∥π̂RBC(·|s)− πE(·|s)

∥∥2

TV
= O

(
log(|Π|/δ)

N
+ τ

)
. (5)

The proof is collected in Appendix A. We note that the data collection process does not follow the
iid assumption, hence we use martingale analysis similar to (Agarwal et al., 2019; 2020). The first
part of eq. (5) is the statistical error log(|Π|/δ)

N . The second part is the final objective value in the
optimization eq. (3) τ which includes two parts – the first part scales with O( 1

b ), which is equivalent
to the fraction of corruption O(ε). The second part is the sub-optimality gap due to the solving the
non-convex optimization.

Our main theorem – Theorem 4.1 – guarantees that a small value of the final objective implies an
accurate estimation of policy and hence we can certify estimation quality using the obtained final
value of the objective.

Next, we present Theorem 4.2, which guarantees the reward performance of the learned robust
policy π̂RBC.
Theorem 4.2. Under the same setting as Theorem 4.1, we have

JπE
− Jπ̂RBC ≤ O

(
1

(1− γ)2

√
log(|Π|/δ)

N
+ τ

)
, (6)

with probability at least 1− c1δ.

The proof is also collected in Appendix A. We note that the error scaling and sample complexity of
Theorem 4.1 and Theorem 4.2 matches the vanilla BC with expert demonstrations (Agarwal et al.,
2019; 2020).
Remark 4.1. The quadratic dependency on the effective horizon ( 1

(1−γ)2 in the discounted setting
or H2 in the episodic setting) is widely known as the compounding error or distribution shift in
literature, which is due to the essential limitation of offline imitation learning setting. Recent work
(Rajaraman et al., 2020; Xu et al., 2021) shows that this quadratic dependency cannot be improved
without any further interaction with the environment or the knowledge of transition dynamic P.
Hence BC is actually optimal under no-interaction setting. Also, a line of research considers im-
proving BC by further online interaction with the environment or even active query of the experts
(Ross et al., 2011; Brantley et al., 2019; Ross & Bagnell, 2014). Since our work, as a robust coun-
terpart of BC, focuses on the robustness to the corruptions in the offline demonstrations setting, it
can be naturally used in online the online setting such as DAGGER (Ross et al., 2011) and Brantley
et al. (2019).
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5 EXPERIMENTS

In this section, we study the empirical performance of our Robust Behavior Cloning. We eval-
uate the robustness of Robust Behavior Cloning on several continuous control benchmarks simu-
lated by PyBullet Coumans & Bai (2016) simulator: HopperBulletEnv-v0, Walker2DBulletEnv-v0,
HalfCheetahBulletEnv-v0 and AntBulletEnv-v0. Actually, these tasks have true reward function al-
ready in the simulator. We will use only state observation and action for the imitation algorithm, and
we then use the reward to evaluate the obtained policy when running in the simulator.

For each task, we collect the presumably optimal expert trajectories using pre-trained agents from
Standard Baselines32. In the experiment, we use Soft Actor-Critic (Haarnoja et al. (2018)) in the
Standard Baselines3 pre-trained agents, and we consider it to be an expert.

For the continuous control environments, the action space are bounded. Hence we generate cor-
rupted demonstration data set D as follows: we first randomly choose ε fraction of samples, and
corrupt the action to the boundary (normally−1 or +1). We note that Definition 2.1 allows for arbi-
trary corruptions, and we choose these outliers’ action since it has the maximum effect, and cannot
be easily detected.

We compare our RBC algorithm (Algorithm 1) to a number of natural baselines: the first baseline
is directly using BC on the corrupted demonstration D without any robustness consideration. The
second one is using BC on the expert demonstrations with the same sample size. In different settings,
we fix the policy network as 2 hidden layer feed-forward Neural Network of size {500, 500} with
ReLU activation, which is standard in the baselines.

5.1 CONVERGENCE OF OUR ALGORITHM

We illustrate the convergence and the performance of our algorithm to support our theoretical analy-
sis. We track the performance metric of different algorithms vs. epoch number in the whole training
process. More specifically, we then evaluate current policy in the simulator for 20 trials, and obtain
the mean and standard deviation of cumulative reward for each epoch. This metric corresponds to
theoretical bounds in Theorem 4.2.

We focus on four continuous control environments, where the observation space has dimensions
around 30, and the action space has boundary [−1, 1]. We fix the sample size as 60000, and vary
the corruption fraction ε to be 10%, 20%. Figure 2 validates our theory that our Robust Behavior
Cloning nearly matches the performance of BC on expert demonstrations for different environments
and corruption ratio.

5.2 PERFORMANCE UNDER DIFFERENT SETUPS

This is the experiment we have shown in Section 1. In the Lunar Lander control environment, we fix
the sample size N = 4000, and then vary the fraction of corruptions ε. As expected, Figure 1 shows
that our RBC is resilient to a constant-fraction of outliers in the demonstrations ranging from 0 to
30%, and it achieves nearly the same performance as the BC on expert demonstrations. In contrast,
directly using BC on corrupted demonstrations obtains worse reward performance as the fraction of
outliers grows.

6 DISCUSSIONS

6.1 RELATED WORK

Imitation Learning. Behavior Cloning (BC) is the most widely-used imitation learning algorithm
(Pomerleau, 1988; Osa et al., 2018) due to its simplicity, effectiveness and scalability, and has been
widely used in practice. From a theoretical viewpoint, it has been showed that BC achieves infor-
mational optimality in the offline setting (Rajaraman et al., 2020) with no further online interactions
or the knowledge of the transition dynamic P.

2The pre-trained agents were cloned from the following repositories: https://github.com/
DLR-RM/stable-baselines3, https://github.com/DLR-RM/rl-baselines3-zoo.
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With online interaction, there’s a line of research focusing on improving BC in different scenarios –
for example, Ross et al. (2011) proposed DAgger (Data Aggregation) by querying the expert policy
in the online setting. Brantley et al. (2019) proposed using an ensemble of BC as uncertainty measure
and interacts with the environment to improve BC by taking the uncertainty into account, without
the need to query the expert. Very recently, (Xu et al., 2021; Rajaraman et al., 2021) leveraged the
knowledge of the transition dynamic P to eliminate compounding error/distribution shift issue in
BC.

Besides BC, there are other imitation learning algorithms: Ho & Ermon (2016) used generative ad-
versarial networks for distribution matching to learn a reward function; Reddy et al. (2019) provided
a reinforcement learning framework to deal with imitation learning by artificially setting the re-
ward; Ghasemipour et al. (2020) unified several existing imitation learning algorithm as minimizing
distribution divergence between learned policy and expert demonstration, just to name a few.

Offline RL. Reinforcement learning leverages the signal from reward function to train the policy.
Different from IL, offline RL often does not require the demonstration to be expert demonstration
(e.g. Fujimoto et al., 2019; Fujimoto & Gu, 2021; Kumar et al., 2020) (interested readers are referred
to (Levine et al., 2020)), and even expects the offline data with higher coverage for different sub-
optimal policies (Buckman et al., 2020; Jin et al., 2021; Rashidinejad et al., 2021). Behavior-agnostic
setting (Nachum et al., 2019; Mousavi et al., 2020) even does not require the collected data from a
single policy.

The closest relation between offline RL and IL is the learning of stationary visitation distribution,
where learning such visitation distribution does not involve with reward signal, similar to IL. A
line of recent research especially for off-policy evaluation tries to learn the stationary visitation
distribution of a given target policy (e.g. Liu et al., 2018; Nachum et al., 2019; Tang et al., 2020;
Mousavi et al., 2020; Dai et al., 2020). Especially Kostrikov et al. (2020) leverages the off-policy
evaluation idea to IL area.

Robustness in IL and RL. There are several recent papers consider corruption-robust in either RL
or IL. In RL, Zhang et al. (2021b) considers that the adversarial corruption may corrupt the whole
episode in the online RL setting while a more recent one (Zhang et al., 2021a) considers offline RL
where ε-fraction of the whole data set can be replaced by the outliers. However, the ε dependency
scales with the dimension in Zhang et al. (2021a), yet ε can be a constant in this paper for robust
offline IL. Many other papers consider perturbations, heavy tails, or corruptions in either reward
function (Bubeck et al., 2013) or in transition dynamic (Xu & Mannor, 2012; Tamar et al., 2014;
Roy et al., 2017).

The most related papers follow a similar setting of robust IL are (Wu et al., 2019; Tangkaratt et al.,
2020; 2021; Brown et al., 2019; Sasaki & Yamashina, 2020), where they consider imperfect or noisy
observations in imitation learning. However, their algorithms cannot handle outliers in the demon-
strations, and (Wu et al., 2019; Tangkaratt et al., 2020; 2021) require additional online interactions
with the environment. Our algorithm achieves robustness guarantee from purely offline demonstra-
tion, without the potentially costly or risky interaction with the real world environment.

6.2 SUMMARY AND FUTURE WORKS

In this paper, we considered the corrupted demonstrations issues in imitation learning, and pro-
posed a novel robust algorithm, Robust Behavior Cloning, to deal with the corruptions in offline
demonstration data set. The core technique is replacing the vanilla Maximum Likelihood Estima-
tion with a Median-of-Means (MOM) objective which guarantees the policy estimation and reward
performance in the presence of constant fraction of outliers. Our algorithm has strong robustness
guarantees and works well in practice.

There are several avenues for future work: since our work focuses on the corruption in offline data
set, any improvement in online imitation learning which utilizes Behavior Cloning would benefit
from the corruption-robustness guarantees by our offline Robust Behavior Cloning. Also, it would
also be of interest to apply our algorithm for real-world environment, such as automated medical
diagnosis and autonomous driving.
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(a) Hopper environment with ε = 0.1.

0 25 50 75 100 125 150 175 200
Epochs

0

500

1000

1500

2000

2500

3000

Re
wa

rd

Expert
RBC on corrupted data
BC on corrupted data
BC on expert data

(b) Hopper environment with ε = 0.2.
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(c) HalfCheetah environment with ε = 0.1.
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(d) HalfCheetah environment with ε = 0.2.

0 25 50 75 100 125 150 175 200
Epochs

0

500

1000

1500

2000

2500

Re
wa

rd

(e) Walker2D environment with ε = 0.1.
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(f) Walker2D environment with ε = 0.2.
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(g) Ant environment with ε = 0.1.
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(h) Ant environment with ε = 0.2.

Figure 2: Offline Imitation Learning on four different continuous control tasks with demonstration
data of size 60000. We vary the corruption ration ε = 10%, 20%. For every 5 epochs, we evaluate
the current policy in the environment for 20 trials, and the shaded region represents the standard
deviation. Vanilla BC on corrupted demonstrations fails to converge to expert policy. Using the
robust counterpart Algorithm 1 on corrupted demonstrations has good convergence properties. Sur-
prisingly, our RBC on corrupted demonstrations has nearly the same reward performance of using
BC on expert demonstrations.
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A PROOFS

The analysis of maximum likelihood estimation is standard in i.i.d. setting for the supervised learn-
ing setting (van de Geer, 2000). In our proofs of the robust offline imitation learning algorithm,
the analysis for the sequential decision making leverages the martingale analysis technique from
(Zhang, 2006; Agarwal et al., 2020).

Our Robust Behavior Cloning (Definition 3.1) solves the following optimization

π̂RBC = arg min
π∈Π

max
π′∈Π

median
1≤j≤M

(`j(π)− `j(π′)) , (7)

where the loss function `j(π) is the average Negative Log-Likelihood in the batch Bj :

`j(π) =
1

b

∑
(s,a)∈Bj

− log(π(a|s)). (8)

This can be understood as a robust counterpart for the maximum likelihood estimation in sequential
decision process.

With a slight abuse of notation, we use xi and yi to denote the observation and action, and the
underlying unknown expert distribution is yi ∼ p(·|xi) and p(y|x) = f∗(x, y). Following Assump-
tion 4.1, we have the realizable f∗ ∈ F , and the discrete function class satisfies |F| <∞.

Let D denote the data set and let D′ denote a tangent sequence {x′i, y′i}
|D|
i=1. The tangent sequence is

defined as x′i ∼ Di(x1:i−1, y1:i−1) and y′i ∼ p(·|x′i). Note here that x′i follows from the distribution
Di, and depends on the original sequence, hence the tangent sequence is independent conditional on
D.

For this martingale process, we first introduce a decoupling Lemma from Agarwal et al. (2020).

Lemma A.1. [Lemma 24 in Agarwal et al. (2020)] Let D be a dataset, and let D′ be a tangent se-
quence. Let Γ(f,D) =

∑
(x,y)∈D φ(f, (x, y)) be any function which can be decomposed additively

across samples inD. Here, φ is any function of f and sample (x, y). Let f̂ = f̂(D) be any estimator
taking the dataset D as input and with range F . Then we have

ED
[
exp

(
Γ(f̂ ,D)− logED′ exp(Γ(f̂ ,D′))− log |F|

)]
≤ 1.

Then we present a Lemma which upper bounds the TV distance via a loss function closely related
to KL divergence. Such bounds for probabilistic distributions are discussed extensively in literature
such as Tsybakov (2009).

Lemma A.2. [Lemma 25 in Agarwal et al. (2020)] For any two conditional probability densities
f1, f2 and any state distribution D ∈ ∆(X ) we have

Ex∼D‖f1(x, ·)− f2(x, ·)‖2TV ≤ −2 logEx∼D,y∼f2(·|x) exp

(
−1

2
log

f2(x, y)

f1(x, y)

)
.

A.1 PROOF OF THEOREM 4.1

With these Lemmas in hand, we are now equipped to prove our main theorem (Theorem 4.1), which
guarantees the solution π̂RBC of eq. (3) is close to the optimal policy πE in TV distance.

Theorem A.1 (Theorem 4.1). Suppose we have corrupted demonstration data set D with sample
size N from Definition 2.1, and there exists a constant corruption ratio ε < 0.5. Under Assump-
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tion 4.1, let τ to be the output objective value with π̂RBC in the optimization eq. (3) with the batch
size b ≤ 1

3ε , then with probability at least 1− c1δ, we have

Es∼ρπE
∥∥π̂RBC(·|s)− πE(·|s)

∥∥2

TV
= O

(
log(|Π|/δ)

N
+ τ

)
.

Proof of Theorem 4.1. En route to the proof of Theorem 4.1, we keep using the notations in
Lemma A.1 and Lemma A.2, where the state observation is x, the action is y, and the discrete
function class is F .

Similar to Agarwal et al. (2020), we first note that Lemma A.1 can be combined with a simple
Chernoff bound to obtain an exponential tail bound. With probability at least 1− c1δ, we have

− logED′ exp(Γ(f̂ ,D′)) ≤ −Γ(f̂ ,D) + log |F|+ log(1/δ). (9)

Our proof technique relies on lower bounding the LHS of eq. (9), and upper bounding the RHS
eq. (9).

Let the batch size b ≤ 1
3ε , which is a constant in Definition 3.1, then the number of batches M ≥

3εN such that there exists at least 66% batches without corruptions.

In the definition of RBC (Definition 3.1), we solve

π̂RBC = arg min
π∈Π

max
π′∈Π

median
1≤j≤M

(`j(π)− `j(π′)) . (10)

Notice that since πE is one feasible solution of the inner maximization step eq. (10), we can
choose π′ = πE. Now we consider the objective function which is the difference of Negative
Log-Likelihood between f and f∗, i.e., `j(f)− `j(f∗), defined in eq. (4) where

`j(π) =
1

b

∑
(s,a)∈Bj

− log(π(a|s)).

Hence, we choose Γ(f,D) in Lemma A.1 as

Γj(f,D) =
N

b

∑
i∈Bj

−1

2
log

f∗(xi, yi)

f(xi, yi)

=
N

2b

∑
i∈Bj

(log f(xi, yi)− log f∗(xi, yi)) ,

which is the difference of Negative Log-LikelihoodN(`j(f
∗)−`j(f))/2 evaluated on a single batch

Bj , j ∈ [M ]. This is actually the objective function on a single batch appeared in eq. (3).

Lower bound for the LHS of eq. (9). We apply the concentration bound eq. (9) for such uncor-
rupted batches, hence the majority of all batches satisfies eq. (9). For those batches, the LHS of
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eq. (9) can be lower bounded by the TV distance according to Lemma A.2.

− logED′

exp

N
b

∑
i∈Bj

−1

2
log

(
f?(x′i, y

′
i)

f̂(x′i, y
′
i)

)∣∣D


(i)
= −N

b

∑
i∈Bj

logEx,y∼Di exp

(
−1

2
log

f?(x, y)

f̂(x, y)

)
(ii)

≥ N

2b

∑
i∈Bj

Ex∼Di

∥∥∥f̂(x, ·)− f?(x, ·)
∥∥∥2

TV
, (11)

where (i) follows from the independence between f̂ andD′ due to the decoupling technique, and (ii)
follows from Lemma A.2, which is an upper bound of the Total Variation distance.

Upper bound for the RHS of eq. (9). Note that the objective is the median of means of each
batches and f∗ is one feasible solution of the inner maximization step eq. (10). Since τ is the output
objective value with π̂RBC in the optimization eq. (3), this implies that `Med(π)− `Med(π′) ≤ τ for
the median batch BMed, which is equivalent to −ΓMed(f,D) ≤ Nτ/2.

Hence for the median batch BMed, the RHS of eq. (9) can be upper bounded by

−ΓMed(f̂ ,D) + log |F|+ log(1/δ) ≤ log |F|+ log(1/δ) +Nτ/2. (12)

Putting together the pieces eq. (11) and eq. (12) for BMed, we have

Es∼ρπE
∥∥π̂RBC(·|s)− πE(·|s)

∥∥2

TV
= O

(
log(|F|/δ)

N
+ τ

)
,

with probability at least 1− c1δ.

A.2 PROOF OF THEOREM 4.2

With the supervised learning guarantees Theorem 4.1 in hand, which provides an upper bound for
Es∼ρπE

∥∥π̂RBC(·|s)− πE(·|s)
∥∥2

TV
, we are now able to present the suboptimality guarantee of the

reward for π̂RBC. This bound directly corresponds to the reward performance of a policy.

Theorem A.2 (Theorem 4.2). Under the same setting as Theorem 4.1, we have

JπE − Jπ̂RBC ≤ O

(
1

(1− γ)2

√
log(|F|/δ)

N
+ τ

)
,

with probability at least 1− c1δ.

Proof of Theorem 4.2. This part is similar to Agarwal et al. (2019), and we have

(1− γ)(JπE − Jπ̂RBC) = Es∼ρπE Ea∼πE(·|s)A
π̂RBC

(s,a)

≤ 1

1− γ

√
Es∼ρπE ‖π̂

RBC(·|s)− πE(·|s)‖21

=
2

1− γ

√
Es∼ρπE ‖π̂

RBC(·|s)− πE(·|s)‖2TV,
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where we use the fact that sups,a,π|Aπ(s,a)| ≤ 1
1−γ for the advantage function and the reward is

always bounded between 0 and 1.

Combining Theorem 4.1, we have

JπE − Jπ̂RBC ≤ O

(
1

(1− γ)2

√
log(|F|/δ)

N
+ τ

)
,

with probability at least 1− c1δ.
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