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ABSTRACT

Generalizable Face Anti-Spoofing (FAS) approaches have recently gained signifi-
cant attention for their robustness in unseen scenarios. Recent methods incorporate
vision-language models into FAS, capitalizing on their remarkable pre-trained
performance to enhance generalization. These methods predominantly rely on text
prompts to learn the concept of attacks in FAS. However, certain attacks, such as
high-resolution replay attacks, cannot be described linguistically. Relying solely
on text prompts cannot accurately tackle such attacks, resulting in performance
degradation. To tackle these limitations, we introduce a novel framework named
CTV-FAS, designed to exploit visual anchors to compensate for the shortcomings of
semantic prompts. Specifically, we employ a Self-Supervised Consistency Module
(SSCM) to boost the generalization of visual anchors, which utilizes consistency
regularization to facilitate visual feature learning. Subsequently, a Visual Anchors
Updating Module (VAUM) is proposed to incorporate the visual anchors through
an adaptive updating scheme, guiding the feature learning process from a visual
standpoint. Furthermore, we propose an Adaptive Modality Integration Module
(AMIM), designed to merge visual and textual information during inference seam-
lessly. This integration optimizes the synergy between modalities, significantly
boosting the efficacy of Face Anti-Spoofing (FAS) tasks. Our extensive experimen-
tal evaluations and in-depth analysis affirm that our method outperforms current
state-of-the-art counterparts with a notable margin of superiority.

1 INTRODUCTION

Face recognition techniques have gained significant traction in diverse applications, such as smart-
phone login, access control, and electronic payments. Nevertheless, face recognition techniques are
constantly confronted with a range of potential threats posed by various presentation attacks, such
as printed photos Anjos & Marcel (2011), masks Erdogmus & Marcel (2013), and video replays
Smith et al. (2015). To mitigate these attacks, researchers propose various Face Anti-Spoofing (FAS)
methods that rely on either hand-crafted features Yang et al. (2013); Kim et al. (2012); Zhang et al.
(2011); Kim et al. (2013); Singh et al. (2014) or deeply-learned features Zhou et al. (2023); Zhang
et al. (2020a); Yu et al. (2021); Wang et al. (2021a; 2023b) for detection.

Although existing methods have shown promising performance in intra-dataset scenarios, they
encounter difficulties in effectively generalizing to unseen domains due to the inherent domain gap
between the source and target distributions. To address this challenge, domain generalization (DG)
methods have been incorporated into FAS tasks to learn domain-agnostic discriminative features
from multiple source domains, allowing for better generalization to unseen domains. Adversarial
learning-based methods Jia et al. (2020); Liu et al. (2022a); Wang et al. (2022c) and meta-learning-
based methods Du et al.; Kim & Lee (2021); Liu et al. (2021b) are commonly used in DG. Despite
numerous attempts to enhance the generalization ability, uni-modal models have yet to truly overcome
this challenge.

As visual-language methods gain prominence, researchers increasingly explore the use of cross-
modal foundation models to bridge the visual domain gap via language modalities. Based on the
vision-language pretrain model (i.e., CLIP Radford et al. (2021a)), FLIP Srivatsan et al. (2023) aligns
the image representation with an ensemble of coarse-grained class descriptions to improves FAS
generalizability in low-data regimes. VL-FAS Fang et al. employs content-related prompts to guide
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Figure 1: Comparison of previous VL methods and our proposed CTV-FAS.

the model to focus on specific facial regions. Supervised by the text semantic prompts, these methods
indeed achieve remarkable performance in domain generalization settings. However, their limitation
stems from an exclusive dependence on semantic prompts for supervisory guidance during learning,
neglecting the potential advantages of incorporating visual cues. Because FAS tasks involve specific
attack types, such as high-resolution paper and replays, which cannot be described linguistically. This
reliance on purely semantic prompts results in sub-optimal generalization performance, as shown in
Fig. 1(a).

To address this challenge, we propose a novel framework called CTV-FAS, which adopts visual
anchors to compensate for the deficiency of semantic prompts in FAS tasks, as shown in Fig. 1(b).
Specifically, CTV-FAS proposes a semantic-visual adaptive ensemble framework to effectively
perceive discriminative visual features for FAS tasks with three designs, namely Self-Supervised
Consistency Module (SSCM), Visual Anchors Updating Module (VAUM)), and Adaptive Modality
Integration Module (AMIM). What visual cues are robust enough to differentiate between the real
person and paper/replay attack? The proposed Self-Supervised Consistency Module utilizes the
self-supervised methods to mine fine-grained features between the global view and local view, thus
improving the robustness of the visual anchor representation. What visual anchors can compensate
for the deficiency of semantic prompts? VAUM is further used to dynamically optimize the visual
anchors during training. In principle, visual cues that have the lowest cosine similarity with their
corresponding semantic prompts are selected. Moreover, visual features from a momentum teacher
model are used for the superiority of stability. During inference, AMIM is introduced to effectively
combine the predictions from semantic prompts and visual cues. It enhances the reliability of the
fused results by increasing the weights of high-confidence predictions and decreasing the ones of low-
confidence, thus fully exploit the advantages of both text and visual anchors to improve generalization
ability.

• We present the first attempt of unifying semantic prompts and discriminative visual cues
via complementary mechanisms, which is a new insight of CLIP-based model adaption for
FAS tasks.

• We develop a strong semantic-visual framework called CTV-FAS equipped with three
novel designs, i.e., Self-Supervised Consistency Module (SSCM), Visual Anchors Updating
Module (VAUM) and Adaptive Modality Integration Module (AMIM).

• Extensive experiments and analysis demonstrate the superiority of CTV-FAS over state-of-
the-art uni-modal and cross-modal methods by a significant margin on OCIM datasets, e.g.,
+27.07 in I→O setting.

2 RELATED WORK

2.1 FACE ANTI-SPOOFING

Conventional methods mainly utilize various hand-crafted features such as LBP Chingovska et al.
(2012a); Boulkenafet et al. (2015); de Freitas Pereira et al. (2013), HoG Komulainen et al. (2013);
Yin et al. (2016); Schwartz et al. (2011), and SIFT Agarwal et al. (2016); Boulkenafet et al. (2016);
Patel et al. (2015), to differentiate real and fake faces. However, the performance of these methods
is underwhelming due to the shallow structure. With the advent of deep learning, many deep
architectures are employed to extract more discriminative features. This evolution included the
integration of auxiliary signals like depth maps Shao et al. (2019a), r-ppg signals Niu et al. (2020), or
reflection map Yu et al. (2020a) to enhance detection capabilities. Despite advancements in intra-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

dataset settings, substantial performance degradation is observed in target domains due to pronounced
domain shifts. FAS techniques employ domain adaptation (DA) Zhou et al. (2022b); Li et al. (2018);
Wang et al. (2021a); Jia et al. (2021); Panwar et al. (2021) to mitigate the distribution disparities
between source and target domains. However, the acquisition of a sufficient volume of unlabeled
target data often poses significant challenges and incurs high costs. Domain generalization (DG)
methods have been incorporated into FAS tasks to facilitate the learning of domain-agnostic features
via adversarial learning Jia et al. (2020); Liu et al. (2022a); Wang et al. (2022c), meta-learning
Du et al.; Kim & Lee (2021); Liu et al. (2021b); Zhou et al. (2022a) and instance whitening Zhou
et al. (2023), thereby enhancing generalization to unseen domains. Recently, Vision Transformers
(ViT)-based approach Liu et al. (2023); Huang et al. (2022); George & Marcel (2021) posits that ViT
can discern long-range dependencies for superior generalization. However, relying only on image
data can limit its generalization capabilities in unseen domains. The emergence of visual-language
methods offers new potential to address the aforementioned issues.

2.2 VISION-LANGUAGE MODELS

Guided by natural language supervision, vision-language pretraining has recently surfaced as a
promising approach for image Chen et al. (2021a); Radford et al. (2021b); Wang et al. (2022b); Li
et al. (2022); Zeng et al. (2021) and video understanding Wang et al. (2021b); Wu et al. (2023);
Wang et al. (2023a); Cheng et al. (2023); Pramanick et al. (2023). These approaches diverge from the
conventional method of utilizing discrete labels, offering a novel paradigm for recognition based on
the alignment of visual and text features. It is inherently suited for zero-shot transfer across various
downstream tasks Nag et al. (2022); Zheng et al. (2023); Goyal et al. (2023); Shu et al. (2022); Cui
et al. (2022). Several studies have investigated the application of the transferable knowledge from
pre-trained models to address tasks such as visual question answering (VQA) Parelli et al. (2023);
Li et al. (2023b;a), zero-shot object detection Nag et al. (2022); Xie & Zheng (2022); Shu et al.
(2022), and image captioning Hu et al. (2022); Fei et al. (2023); Zhong et al. (2022), etc. Recent
efforts have sought to leverage visual-language methods to bolster the cross-dataset generalization of
FAS tasks Srivatsan et al. (2023); Mu et al. (2023); Fang et al.. These studies posit that text, rich in
domain-invariant information, can enhance model generalization. However, these methods rely solely
on semantic prompts for supervision, ignoring the potential benefits of visual cues, which leads to
unsatisfactory generalization ability. In contrast, we propose a novel framework called CTV-FAS,
which explores visual cues to compensate for the shortcomings of semantic prompts in FAS tasks.

3 METHODOLOGY

3.1 OVERVIEW

An overview of the proposed CTV-FAS method is depicted in Fig. 2, comprising three main
components: SSCM, VAUM, and AMIM. In the training process, SSCM employs varying degrees of
data augmentation for self-supervised learning to enhance the model’s consistency and robustness.
Subsequently, VAUM captures discriminative visual cues to update the visual anchor cache. During
inference, AMIM adaptively ensembles the predictions from both semantic and visual branches.

3.2 SELF-SUPERVISED CONSISTENCY MODULE (SSCM)

To perceive more granular representational details and enhance the model’s consistency and robustness
with respect to visual cues, we integrate a self-supervised mechanism predicated on patch-masked
images (where 75% of the patches are removed from the original images). In practice, both the
teacher and student are initialized with the weights of CLIP, sharing the same configurations. The
patch-masked images are then input into the student model to get the feature FL, and the global
images are sent to the teacher to gain the feature FG. The consistency objective is for the student
model to reconstruct the comprehensive, generalized features learned from the teacher model. This
process is guided by a cosine loss function, which ensures the alignment of the student’s output with
the teacher’s robust features:

Lcos = 1− fL · fG

∥fL∥∥fG∥
. (1)
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Figure 2: The overall semantic-visual framework of our proposed CTV-FAS. CTV-FAS includes
three novel designs, namely SSCM, VAUM and AMIM. Different augmented images are passed to
SSCM to seek robust and generalizable visual features. Subsequently, visual anchors are optimized
to grasp the discriminative visual cues via VAUM, which compensate for semantic prompts. During
inference, AMIM is used to ensemble the predictions of two branches adaptively.

In SSCM, the masking of data propels the learning of nuanced features, while the self-supervised
methodology amplifies the model’s robustness in a teacher-student mutual learning method. The
teacher network T (·) is frozen during training and is updated via an exponential moving average
(EMA Tarvainen & Valpola (2017)) predicated on the current model’s parameters. This process is
articulated as follows:

θ
(t+1)
t = γθ

(t)
t + (1− γ)θ(t)s , (2)

where θt and θs represent the parameters of the teacher and student model, respectively, at training
step t, and γ is the decay rate controlling the update momentum.

3.3 VISUAL ANCHORS UPDATING MODULE

In FAS tasks, there are some specific attack types, such as high-resolution replay attacks, that cannot
be described with semantic class descriptions. Merely using semantic prompts is insufficient to
accurately perceive such attacks, meanwhile destroying the generalization of pre-trained models. To
address this challenge, we introduce visual anchors that are specifically designed to compensate for
the limitation of semantic prompts. The optimization of visual anchors is a key component of our
CTV-FAS. We dynamically update visual anchors during the training process to serve as another
anchor for the model. To ensure the robustness and stability of these visual anchors, we employ
visual features generated by the teacher network T (·), built with a momentum visual encoder, to
update the cache.

To address the limitations of semantic prompts, we prioritize enhancing visual anchors by incorporat-
ing visual cues that are hard for semantic prompts to detect. Therefore, visual cues that exhibit low
cosine similarity to their associated semantic prompts are identified as samples that are difficult for
semantic prompts to perceive. The cosine similarity between two vectors a and b is defined as:

cos(a,b) =
a · b

∥a∥∥b∥
, (3)

where · denotes the dot product and ∥ · ∥ denotes the vector norm. The update mechanism for the
visual anchor embedding is then given by:

P(t+1)
v = βP(t)

v + (1− β)T (I)t. (4)

where P
(t)
v represents the visual anchor embedding at updating step t, β ∈ [0, 1] is the momentum

coefficient, I is the selected hard images. To enhance training stability, we update the visual anchor
once per epoch by scanning the entire dataset. This selective updating strategy ensures that the visual
anchors are refined with features that are poorly represented by semantic prompts.

4
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3.4 ADAPTIVE MODALITY INTEGRATION MODULE

During inference, AMIM is adopted to ensemble the predictions of semantic and visual anchors. In
theory, when the entropy of the model’s predictions is high, the model is in a state of uncertainty
regarding the data, which increases the likelihood of misclassification. Semantic prompts may not
respond effectively to attack categories that cannot be well-described semantically, often resulting
in predictions with higher entropy. The design of visual anchors compensates for this deficiency in
semantic prompts. Furthermore, we introduce an adaptive ensemble method where the entropy of the
model’s probability distribution dictates the ensemble weights for the predictions, ensuring a more
reliable and accurate decision-making process. The entropy of the semantic and visual predictions
are H(qs) and H(qv), which are calculated as:

H(qs) = −
∑
i

qs,i log(qs,i); H(qv) = −
∑
i

qv,i log(qv,i). (5)

where qs,i and qv,i are the predicted probability of class i by the semantic and visual branch re-
spectively. The fusion weight for the semantic branch and visual branch is ws and wv respectively,
which are inversely related to its entropy and are scaled by a power function to further emphasize
lower-entropy predictions:

ws =

(
1− H(qs)

Hmax

)α

; wv =

(
1− H(qv)

Hmax

)α

. (6)

where Hmax is the maximum possible entropy, indicating complete uncertainty, and α > 1 is a scaling
exponent that increases the weight of lower-entropy predictions. The final fused prediction, qf, is
computed by combining the weighted predictions from both the semantic and visual branches:

qf =
ws

ws + wv
qs +

wv

ws + wv
qv. (7)

AMIM ensures that the ensemble metric leverages the strengths of both semantic prompts and visual
anchors, dynamically adjusting their contributions based on the certainty of their predictions.

3.5 OVERALL TRAINING AND OPTIMIZATION

The framework of this paper is built upon the CLIP. The training objective of CLIP is to maximize the
cosine similarity sim(·, ·) of the paired image and semantic prompt embedding Ps while minimizing
the cosine similarity of the unpaired ones. The image embedding V is extracted by an image encoder
Ev(·) and semantic prompt embedding Ps is gained by a text encoder Et(·).

Ps = Et(Tk); V = Ev(I). (8)

where TK is the sentence describing the K categories. We employ cross-entropy loss to bring
matching pairs closer and separate non-matching pairs in feature space, and thus the loss for the
anchor is defined as:

Lce(x, y, P ) = − 1

N

N∑
i=1

yi log(sim(Vxi , Pyi)),

with sim(Vxi , Pyi) = V T
xi
Pyi/∥Vxi∥∥Pyi∥.

(9)

The proposed framework has an additional visual branch compared to the CLIP, thus necessitating
the calculation of the cross-entropy for the visual branch. The overall cross-entropy loss is:

Lce(x, y) = Lse(x, y, Ps) + Lvis(x, y, Pv)

= Lce(x, y, Ps) + Lce(x, y, Pv).
(10)

To further enhance the model’s robustness against data variations, we fellow FLIP to employ a
SimCLR loss for auxiliary training. This approach generates two views (Iv1 and Iv2 ) of a given image
I through distinct transformations. The features of the two transformed images are extracted by the
image encoder Ev and subsequently projected via a non-linear projection network H. A contrastive
loss is then applied to the projected features. fv1 = Ev(Iv1), fv2 = Ev(Iv2). h1 = H(fv1), h2 =
H(fv2), h1, h2 ∈ Rdh .

LsimCLR = simCLR(h1, h2)

. Overall, we formulate the joint optimization objective as:
L = Lce + λ1Lcos + λ2LsimCLR (11)

where λ1 and λ2 is hyper-parameters.

5
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Table 1: Evaluation of cross-domain performance in Protocol 1, between MSU-MFSD (M), CASIA-
MFSD (C), Replay Attack (I) and OULU-NPU (O) with the assessment metrics being HTER and
AUC. The * indicates using the CelebA-Spoof [83] as the supplementary source dataset.

Method OCI → M OMI → C OCM → I ICM → O Avg.

HTER AUC HTER AUC HTER AUC HTER AUC HTER

MADDG (CVPR’ 19) Shao et al. (2019b) 17.69 88.06 24.50 84.51 22.19 84.99 27.98 80.02 23.09
MDDR (CVPR’ 20) Wang et al. (2020a) 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47 20.64
NAS-FAS (TPAMI’ 20) Yu et al. (2020b) 16.85 90.42 15.21 92.64 11.63 96.98 13.16 94.18 14.21
RFMeta (AAAI’ 20) Shao et al. (2020) 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16 16.97
D2AM (AAAI’ 21) Chen et al. (2021b) 12.70 95.66 20.98 85.58 15.43 91.22 15.27 90.87 16.09
DRDG (IJCAI’ 21) Liu et al. (2021c) 12.43 95.81 19.05 88.79 15.56 91.79 15.63 91.75 15.66
Self-DA (AAAI’ 21) Wang et al. (2021a) 15.40 91.80 24.50 84.40 15.60 90.10 23.10 84.30 19.65
ANRL (ACM MM’ 21) Liu et al. (2021b) 10.83 96.75 17.85 89.26 16.03 91.04 15.67 91.90 15.09
FGHV (AAAI’ 21) Liu et al. (2022b) 9.17 96.92 12.47 93.47 16.29 90.11 13.58 93.55 12.87
SSDG-R (CVPR’ 20) Jia et al. (2020) 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54 11.28
SSAN-R (CVPR’ 22) Wang et al. (2022c) 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63 9.80
PatchNet (CVPR’ 22) Wang et al. (2022a) 7.10 98.46 11.33 94.58 13.40 95.67 11.82 95.07 10.90
GDA (ECCV’ 22) Zhou et al. (2022b) 9.20 98.00 12.20 93.00 10.00 96.00 14.40 92.60 11.45
AMEL (ACM MM’ 22) Zhou et al. (2022a) 10.23 96.62 11.88 94.39 18.60 88.79 11.31 93.96 13.00
IADG (CVPR’ 23) Zhou et al. (2023) 5.41 98.19 8.70 96.44 10.62 94.50 8.86 97.14 8.40
GAC-FAS (CVPR’ 24) Le & Woo (2024) 5.00 97.56 8.20 95.16 4.29 98.87 8.60 97.16 6.52
DiVT-M (WACV’ 23) Liao et al. (2023) 2.86 99.14 8.67 96.62 3.71 99.29 13.06 94.04 7.07
VL-FAS (ICASSP’ 24) Fang et al. 3.13 99.31 4.00 98.64 5.00 98.90 7.92 97.05 5.01
CTV-FAS (Ours) 0.92 99.96 1.8 99.45 2.65 99.6 2.11 99.66 1.87

ViT* (ECCV’ 22) Huang et al. (2022) 1.58 99.68 5.70 98.91 9.25 97.15 7.47 98.42 6.00
FLIP-MCL* (ICCV’ 23) Srivatsan et al. (2023) 4.95 98.11 0.54 99.98 4.25 99.07 2.31 99.63 3.01
CTV-FAS* (Ours) 0.13 99.98 0.76 99.96 1.94 99.72 0.77 99.97 0.90

Table 2: Evaluation of cross-domain performance in Protocol 2, between CASIA-SURF (S), CASIA-
CeFA (C), and WMCA (W) with the assessment metrics being HTER and AUC.

Method CS → W SW → C CW → S Avg.
HTER AUC HTER AUC HTER AUC HTER

ViT (ECCV’ 22) Huang et al. (2022) 7.98 97.97 11.13 95.46 13.35 94.13 10.82
FLIP-MCL (ICCV’ 23) Srivatsan et al. (2023) 4.46 99.16 9.66 96.69 11.71 95.21 8.61
CTV-FAS 6.7 97.39 0.95 99.93 10.37 96.24 6.12

Table 3: Evaluation of cross-domain performance in Protocol 3, for all the 12 different combinations
between MSU-MFSD (M), CASIA-MFSD (C), Replay Attack (I) and OULU-NPU (O) with the
assessment metrics being HTER. The * indicates using the CelebA-Spoof [83] as the supplementary
source dataset.

Method C → I C → M C → O I → C I → M I → O M → C M → I M → O O → C O → I O → M Avg.
ADDA (CVPR’ 17) Tzeng et al. (2017) 41.8 36.6 - 49.8 35.1 - 39.0 35.2 - - - - 39.6
DRCN (ECCV’ 16) Ghifary et al. (2016) 44.4 27.6 - 48.9 42.0 - 28.9 36.8 - - - - 38.1
DupGAN (CVPR’ 18) Hu et al. (2018) 42.4 33.4 - 46.5 36.2 - 27.1 35.4 - - - - 36.8
KSA (TIFS’ 18) Li et al. (2018) 39.3 15.1 - 12.3 33.3 - 9.1 34.9 - - - - 24.0
DR-UDA (TIFS’ 20) Wang et al. (2020b) 15.6 9.0 28.7 34.2 29.0 38.5 16.8 3.0 30.2 19.5 25.4 27.4 23.1
MDDR (CVPR’ 20) Wang et al. (2020a) 26.1 20.2 24.7 39.2 23.2 33.6 34.3 8.7 31.7 21.8 27.6 22.0 26.1
ADA (ICB’ 19) Wang et al. (2019) 17.5 9.3 29.1 41.5 30.5 39.6 17.7 5.1 31.2 19.8 26.8 31.5 25.0
USDAN-Un (PR’ 21) Jia et al. (2021) 16.0 9.2 - 30.2 25.8 - 13.3 3.4 - - - - 16.3
GDA (ECCV’ 22) Zhou et al. (2022b) 15.10 5.8 - 29.7 20.8 - 12.2 2.5 - - - - 14.4
CDFTN-L (AAAI’ 23) Yue et al. (2022) 1.7 8.1 29.9 11.9 9.6 29.9 8.8 1.3 25.6 19.1 5.8 6.3 13.2
CTV-FAS 11.64 1.72 2.57 2.79 1.72 2.83 1.34 2.31 3.21 0.99 5.71 1.72 3.21
FLIP-MCL* (ICCV’ 23) Srivatsan et al. (2023) 10.57 7.15 3.91 0.68 7.22 4.22 0.19 5.88 3.95 0.19 5.69 8.40 4.84
CTV-FAS* 4.85 1.04 1.02 0.69 0.67 1.55 0.35 1.53 1.76 0.06 4.1 0.8 1.54

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Ablation studies on each proposed component

Baseline VAUM SSCM AMIM C → I C → M C → O Avg.

HTER AUC HTER AUC HTER AUC HTER

✓ 16.94 89.91 5.97 97.95 8.32 96.80 10.41
✓ ✓ 14.22 90.15 4.11 98.78 5.44 98.72 7.92
✓ ✓ ✓ 13.43 91.33 3.32 99.35 3.87 99.34 6.87
✓ ✓ ✓ 13.46 91.58 3.19 99.57 3.76 99.12 6.80
✓ ✓ ✓ ✓ 11.64 92.03 1.72 99.27 2.57 99.73 5.31

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

Datasets and DG Protocols. Our evaluation encompasses two protocols. Strictly following the
Huang et al. (2022), we adopt a leave-one-domain-out approach for the two protocols, treating each
dataset as a distinct domain to gauge cross-domain capabilities on the remaining domain. Protocol 1
tests our method on established cross-domain FAS benchmarks: MSU-MFSD (M) Wen et al. (2015),
CASIA-MFSD (C) Zhang et al. (2012), Idiap Replay Attack (I) Chingovska et al. (2012b), and
OULU-NPU (O) Boulkenafet et al. (2017), with scenarios like OCI → M indicating O, C, and I as
sources and M as the target. Protocols 2 evaluates large-scale Face Anti-Spoofing (FAS) datasets:
CASIA-SURF (S) Zhang et al. (2020b), CASIA-CeFA (C) Liu et al. (2021a), and WMCA (W)
George et al. (2020), where CS → W means C and S are sources, and W is the target. Protocol 3,
strictly following Yue et al. (2022), is a single-source-to-single-target setup using M, C, I, and O
datasets, yielding 12 scenarios. To fairly compare with FLIP, we also conduct the above experiments
with the auxiliary dataset the CelebA-Spoof. In addition, to better simulate the real-world scenarios
without large pre-trained datasets, we also conduct the experiments without CelebA-Spoof.

Implementation Details. The image encoder and the text encoder are the dual-stream CLIP where
the image encoder adopts the ViT-B/16 structure. Face images are preprocessed to a resolution of
224× 224× 3 and segmented into patches measuring 16× 16. The maximum length of the textual
token sequence L is set to 77. Our method is implemented with PyTorch and trained with Adam
optimizer, with both the learning rate and weight decay initialized at 10−6. During training, batch
sizes are set to 3. For testing, the batch size is set to 10 across all protocols. Each variant of our
model undergoes training for a total of 6000 iterations. λ1 and λ2 are set to 1. The text encoder is
frozen and only the image encoder and the parameters of the category prompt are trained.

Evaluation Metrics. Following Huang et al. (2022), we assess our model’s performance using two
metrics: the Half Total Error Rate (HTER) and the Area Under the Receiver Operating Characteristic
Curve (AUC). HTER is the average of the False Acceptance and False Rejection Rates, indicating
the model’s error balance. A lower HTER signifies better performance. AUC measures the model’s
discrimination capacity, with higher values closer to 1 indicating superior performance and a value of
0.5 suggesting no discriminative ability beyond random chance. These metrics together provide a
nuanced picture of the model’s effectiveness.

4.2 CROSS-DOMAIN FAS PERFORMANCE

The MCIO dataset, being smaller compared to CelebA-Spoof, benefits significantly from the addition
of it in bridging the domain gap between different domains. To comprehensively investigate the
impact of the proposed method on domain generalization, all protocols were conducted both with and
without CelebA-Spoof. Tab. 1, Tab. 2 and Tab. 3 detail the zero-shot cross-domain performance
under Protocols 1-3, respectively. The results and analyses are as follows.

Cross-domain performance in Protocol 1. The proposed framework attained optimal performance,
compared to the current state-of-the-art (SOTA) methods, in all settings without CelebA-Spoof (M
=+1.94, C=+2.2, I=+1.06, O=+5.81), with an average performance increase of +3.14. With the inclu-
sion of celeb, optimal performance was achieved in three-quarters of the settings (M=+1.45, I=+2.31,
O=+1.54), yielding an average enhancement of +2.11. This demonstrates that the supplementation

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Ablation studies on SSCM

SW Aug TS Learning EMA C → I C → M C → O Avg.

HTER AUC HTER AUC HTER AUC HTER

13.46 91.58 3.19 99.57 3.76 99.12 6.80
✓ 12.24 91.47 1.60 99.86 3.36 99.41 5.73
✓ ✓ 11.9 91.87 1.90 99.25 3.81 99.24 5.87
✓ ✓ 16.94 87 4.49 98.82 8.13 97.16 9.85
✓ ✓ ✓ 11.64 92.03 1.72 99.27 2.57 99.73 5.31

Table 6: Effects of the function for self-supervised learning.

Function C → I C → M C → O Avg.

HTER AUC HTER AUC HTER AUC HTER

MSE 14.18 90.23 3.20 99.43 4.02 99.15 7.13
KL 12.05 95.22 2.52 98.99 3.84 99.36 6.14

COS 11.64 92.03 1.72 99.27 2.57 99.73 5.31

and proper integration of visual anchors can effectively improve the generalization performance of
spoofing detection.

Cross-domain performance in Protocol 2. We strictly follow FLIP to further evaluate CTV-FAS
on Protocols 2, across large-scale Face Anti-Spoofing (FAS) datasets. The experimental results are
shown in Tab. 2. We find that our proposed method surpassed the state-of-the-art (SOTA) performance
in SW → C and CW → S settings by +8.71 and +1.34 in terms of Half Total Error Rate (HTER),
respectively. This result further validates the effectiveness of the proposed method on large datasets.

Cross-domain performance in Protocol 3. In single-source to single-target settings, the proposed
CTV-FAS framework surpasses current SOTA methods by a considerable margin of +9.99 and +3.3
in terms of average HTER without and with the inclusion of CelebA-Spoof, respectively. Specifically,
for the target domain O, there are substantial improvements of +22.13, +27.07, and +22.39 when
selecting C, I, and M as the source domains, respectively, without CelebA-Spoof. When including
CelebA-Spoof, in comparison to FLIP-MCL, the proposed method achieves a maximum increase
of +7.6 O → M. These results confirm that CTV-FAS is capable of learning robust generalizable
features and adapting to navigating challenges posed by limited data and domain gaps.

4.3 ABLATION STUDIES

Due to the significant domain gap between dataset C and other datasets, transferring knowledge
learned from source domain C to other domains results in a considerable performance drop. Further-
more, incorporating CelebA-Spoof as supplementary data for the source domain helps to bridge the
gap between the source and target domains. Therefore, to convincingly demonstrate the feasibility of
the proposed method for domain generalization, all ablation experiments are conducted in the settings
of C→I, C→M, and C→O without using CelebA-Spoof as additional source domain data.

Effects of the proposed modules. To explore the impact of each proposed module on the general-
ization of FAS, we conducted ablation experiments on the proposed modules, using a dual-stream
CLIP structure as the baseline. As demonstrated in Tab. 4, incorporating the VAUM module led to
+2.49 enhancement in the average HTER, suggesting that visual anchors can effectively compensate
for the deficiencies of text prompts in perceiving attack categories that are indescribable through
language. The addition of the SSCM module led to +1.05 increase in average HTER, suggesting that
SSCM, through self-supervision with patch-masked data augmentation, compels the model to focus
on fine-grained features, enhancing generalizability. In this AMIM module, fusion of predictions
from two modalities is achieved using the entropy principle, further enhancing their complementarity
and leading to a +1.07 improvement in average HTER. Compared to the baseline, the proposed
module shows a significant improvement, achieving a +5.1 increase in average HTER.
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Table 7: Performance of text and visual branches of CTV-FAS.

Function C → I C → M C → O Avg.

HTER AUC HTER AUC HTER AUC HTER

CTV-FAS-T 13.54 90.88 2.75 99.07 3.89 99.15 6.73
CTV-FAS-V 12.37 91.25 3.43 99.16 2.71 99.45 6.17

CTV-FAS 11.64 92.03 1.72 99.27 2.57 99.73 5.31

Table 8: Comparison of AMIM and common weighting methods.

Function C → I C → M C → O Avg.

HTER AUC HTER AUC HTER AUC HTER

Mean weighting 13.43 91.33 3.32 99.35 3.87 99.34 6.87
Confidence weighting 12.05 91.56 1.98 99.26 2.72 99.39 5.58

AMIM 11.64 92.03 1.72 99.27 2.57 99.73 5.31

Ablation studies on SSCM. The ablation results for SSCM in Tab. 5 emphasize the contribution of
each design. Strong-weak data augmentations (SW Aug), with the special patch-masked strategy, can
improve the robustness of visual features, improving average HTER by +1.07. The teacher-student
training (TS Learning) helps provide stable, optimal features and mitigates error accumulation, with
a +0.42 improvement compared to applying strong-weak augmentations to a single visual encoder.
Additionally, we compared different teacher model update methods. Freezing the teacher model (w.o.
EMA) prevented effective guidance, leading to a performance drop of 3.98. In contrast, updating
only the student via EMA resulted in a smaller 0.56 decrease. These results confirm the importance
of updating the teacher model for optimal performance.

Effects of different function for self-supervised learning. Tab. 6 presents the different functions
for self-supervised learning. The results show that the cosine loss (COS) function performs the best
(+1.82 increase in average HTER compared to MSE loss), while the mean squared error (MSE)
loss function performs the worst, with the Kullback-Leibler (KL) divergence in the middle. This
indicates that the cosine loss function is the most suitable for self-supervised feature regularization.
We observed that after feature normalization, the loss value using the MSE loss function is almost
zero, rendering it ineffective. Although the KL divergence can shape the predicted distribution, its
performance in feature regularization for anti-spoofing tasks is not as good as that of the cosine loss
function.

Performance of text and visual branches of CTV-FAS. The performance comparison of text and
visual branches in CTV-FAS shown in Tab. 7 that the individual branches, CTV-FAS-T and CTV-FAS-
V, exhibit similar performance levels. However, when combined (CTV-FAS), the system achieves
enhanced results, such as an improvement of 0.86 in the average HTER compared to CTV-FAS-V
alone. This demonstrates the complementary nature of the two branches, leading to a more robust
and accurate model.

Comparison of AMIM and common weighting methods. The comparison in Tab. 8 demon-
strates that the proposed AMIM method outperforms both mean-weighted Ming & Li (2024) and
confidence-weighted Sun et al. (2023) ensemble approaches. With the lowest average HTER (5.31)
and consistently strong performance across all metrics, AMIM proves its superiority, offering more
reliable results compared to commonly used ensemble methods.

Analysis of ensemble results examples. Fig. 3(a) showcases several instances of ensemble outcomes,
illustrating how the adoption of an adaptive ensemble strategy can successfully leverage visual anchors
to rectify inaccuracies in text semantic prompts. This visualization further supports the notion that
intelligent weight scaling within an ensemble framework can lead to more accurate and reliable
model performance.

T-SNE visualization of image feature distributions. In order to clearly understand how CTV-
FAS models live data and learn common knowledge across different datasets, we utilize t-SNE
to visualize the feature distributions of each domain. Fig. 3(b-c) shows the visualization result,
and we can observe that, compared to the FLIP model, our proposed method is able to learn clear
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Figure 3: Visualization of the results. (a) is the example of the ensemble results where the first row is
for print attack, second row is for replay attack. (b) and (c) are the t-SNE Visualization of FLIP and
CTV-FAS respectively.

Figure 4: Visualization of the visual anchors of different classes in different training steps.

segmentation boundaries on the source dataset, indicating the effectiveness of SSCM in modeling
image distributions. Furthermore, on the target dataset that has not been trained on, our method is
also capable of learning clear decision boundaries, and the distributions of the source and target
datasets are similar. This demonstrates that through learning with the SSCM module, our model
acquires features that exhibit enhanced robustness across domains.

Visualization of the visual anchors. Figure 4 illustrates the progression of visual anchors across
different training iterations. As training progresses, the selected anchors become increasingly
challenging to classify. This evolving complexity helps address the limitations of text prompts,
enhancing the overall robustness of the model.

5 CONCLUSION

In this paper, we present the first attempt at unifying semantic prompts and discriminative visual cues
via complementary mechanisms, which is a new insight of CLIP-based model adaptation for FAS
tasks. We address the challenge of generalizable face anti-spoofing (FAS) by introducing a novel
framework, namely CTV-FAS, that enhances robustness against sophisticated attacks, such as high-
resolution replay attacks, that are difficult to describe linguistically. In the training process, visual cues
are generated from the Self-Supervised Consistency Module (SSCM) to improve the generalization
capabilities of the visual anchor cache. Subsequently, visual anchors are dynamically optimized by
the Visual Anchors Updating Module (VAUM), which selects hard language-insensitive samples.
During inference, to effectively combine visual and textual cues, we introduce an Adaptive Modality
Integration Module (AMIM), which ensures seamless fusion of both modalities, optimizing their
synergy. The proposed method has been rigorously tested, demonstrating a significant improvement
over existing state-of-the-art solutions in FAS tasks, as evidenced by our comprehensive experimental
results and analyses.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Akshay Agarwal, Richa Singh, and Mayank Vatsa. Face anti-spoofing using haralick features. In
2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS),
pp. 1–6. IEEE, 2016.
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of moiré patterns to detect replay video attacks. In 2015 International Conference on Biometrics
(ICB), pp. 98–105. IEEE, 2015.

Shraman Pramanick, Yale Song, Sayan Nag, Kevin Qinghong Lin, Hardik Shah, Mike Zheng Shou,
Rama Chellappa, and Pengchuan Zhang. Egovlpv2: Egocentric video-language pre-training with
fusion in the backbone. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5285–5297, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021a.

Alec Radford, JongWook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Askell Amanda, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. Cornell University -
arXiv,Cornell University - arXiv, Feb 2021b.

William Robson Schwartz, Anderson Rocha, and Helio Pedrini. Face spoofing detection through par-
tial least squares and low-level descriptors. In 2011 International Joint Conference on Biometrics
(IJCB), pp. 1–8. IEEE, 2011.

Rui Shao, Xiangyuan Lan, Jiawei Li, and Pong C. Yuen. Multi-adversarial discriminative deep
domain generalization for face presentation attack detection. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Jun 2019a. doi: 10.1109/cvpr.2019.01026.
URL http://dx.doi.org/10.1109/cvpr.2019.01026.

Rui Shao, Xiangyuan Lan, Jiawei Li, and Pong C Yuen. Multi-adversarial discriminative deep domain
generalization for face presentation attack detection. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 10023–10031, 2019b.

Rui Shao, Xiangyuan Lan, and Pong C Yuen. Regularized fine-grained meta face anti-spoofing. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 11974–11981, 2020.

Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei
Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models. Advances
in Neural Information Processing Systems, 35:14274–14289, 2022.

Avinash Kumar Singh, Piyush Joshi, and Gora Chand Nandi. Face liveness detection through face
structure analysis. International Journal of Applied Pattern Recognition, 1(4):338–360, 2014.

Daniel F Smith, Arnold Wiliem, and Brian C Lovell. Face recognition on consumer devices:
Reflections on replay attacks. IEEE Transactions on Information Forensics and Security, 10(4):
736–745, 2015.

Koushik Srivatsan, Muzammal Naseer, and Karthik Nandakumar. Flip: Cross-domain face anti-
spoofing with language guidance. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 19685–19696, 2023.

Jiamu Sun, Gen Luo, Yiyi Zhou, Xiaoshuai Sun, Guannan Jiang, Zhiyu Wang, and Rongrong
Ji. Refteacher: A strong baseline for semi-supervised referring expression comprehension. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 19144–
19154, 2023.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. Advances in neural information processing
systems, 30, 2017.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
7167–7176, 2017.

14

http://dx.doi.org/10.1109/cvpr.2019.01026


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Chien-Yi Wang, Yu-Ding Lu, Shang-Ta Yang, and Shang-Hong Lai. Patchnet: A simple face
anti-spoofing framework via fine-grained patch recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 20281–20290, 2022a.

Guoqing Wang, Hu Han, Shiguang Shan, and Xilin Chen. Improving cross-database face presentation
attack detection via adversarial domain adaptation. In 2019 International Conference on Biometrics
(ICB), pp. 1–8. IEEE, 2019.

Guoqing Wang, Hu Han, Shiguang Shan, and Xilin Chen. Cross-domain face presentation attack
detection via multi-domain disentangled representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6678–6687, 2020a.

Guoqing Wang, Hu Han, Shiguang Shan, and Xilin Chen. Unsupervised adversarial domain adaptation
for cross-domain face presentation attack detection. IEEE Transactions on Information Forensics
and Security, 16:56–69, 2020b.

Jingjing Wang, Jingyi Zhang, Ying Bian, Youyi Cai, Chunmao Wang, and Shiliang Pu. Self-domain
adaptation for face anti-spoofing. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 2746–2754, 2021a.

Jinpeng Wang, Yixiao Ge, Rui Yan, Yuying Ge, Kevin Qinghong Lin, Satoshi Tsutsui, Xudong Lin,
Guanyu Cai, Jianping Wu, Ying Shan, et al. All in one: Exploring unified video-language pre-
training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6598–6608, 2023a.

Mengmeng Wang, Jiazheng Xing, and Yong Liu. Actionclip: A new paradigm for video action
recognition. Cornell University - arXiv,Cornell University - arXiv, Sep 2021b.

Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subhojit Som, et al. Image as a foreign language:
Beit pretraining for all vision and vision-language tasks. arXiv preprint arXiv:2208.10442, 2022b.

Zhuming Wang, Yaowen Xu, Lifang Wu, Hu Han, Yukun Ma, and Zun Li. Improving face anti-
spoofing via advanced multi-perspective feature learning. ACM Transactions on Multimedia
Computing, Communications and Applications, 19(6):1–18, 2023b.

Zhuo Wang, Zezheng Wang, Zitong Yu, Weihong Deng, Jiahong Li, Tingting Gao, and Zhongyuan
Wang. Domain generalization via shuffled style assembly for face anti-spoofing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4123–4133, 2022c.

Di Wen, Hu Han, and Anil K. Jain. Face spoof detection with image distortion analysis. IEEE
Transactions on Information Forensics and Security, 10(4):746–761, 2015. doi: 10.1109/TIFS.
2015.2400395.

Wenhao Wu, Zhun Sun, and Wanli Ouyang. Revisiting classifier: Transferring vision-language
models for video recognition. In Proceedings of the AAAI conference on artificial intelligence,
volume 37, pp. 2847–2855, 2023.

Johnathan Xie and Shuai Zheng. Zero-shot object detection through vision-language embedding
alignment. In 2022 IEEE International Conference on Data Mining Workshops (ICDMW), pp.
1–15. IEEE, 2022.

Jianwei Yang, Zhen Lei, Shengcai Liao, and Stan Z Li. Face liveness detection with component
dependent descriptor. In 2013 International Conference on Biometrics (ICB), pp. 1–6. IEEE, 2013.

Wenze Yin, Yue Ming, and Lei Tian. A face anti-spoofing method based on optical flow field. In
2016 IEEE 13th International Conference on Signal Processing (ICSP), pp. 1333–1337. IEEE,
2016.

Zitong Yu, Xiaobai Li, Xuesong Niu, Jingang Shi, and Guoying Zhao. Face Anti-Spoofing with
Human Material Perception, pp. 557–575. Jan 2020a. doi: 10.1007/978-3-030-58571-6 33. URL
http://dx.doi.org/10.1007/978-3-030-58571-6_33.

15

http://dx.doi.org/10.1007/978-3-030-58571-6_33


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Zitong Yu, Jun Wan, Yunxiao Qin, Xiaobai Li, Stan Z Li, and Guoying Zhao. Nas-fas: Static-dynamic
central difference network search for face anti-spoofing. IEEE transactions on pattern analysis
and machine intelligence, 43(9):3005–3023, 2020b.

Zitong Yu, Xiaobai Li, Jingang Shi, Zhaoqiang Xia, and Guoying Zhao. Revisiting pixel-wise
supervision for face anti-spoofing. IEEE Transactions on Biometrics, Behavior, and Identity
Science, 3(3):285–295, 2021.

Haixiao Yue, Keyao Wang, Guosheng Zhang, Haocheng Feng, Junyu Han, Errui Ding, and Jing-
dong Wang. Cyclically disentangled feature translation for face anti-spoofing. arXiv preprint
arXiv:2212.03651, 2022.

Yan Zeng, Xinsong Zhang, and Hang Li. Multi-grained vision language pre-training: Aligning texts
with visual concepts. arXiv preprint arXiv:2111.08276, 2021.

Ke-Yue Zhang, Taiping Yao, Jian Zhang, Ying Tai, Shouhong Ding, Jilin Li, Feiyue Huang, Haichuan
Song, and Lizhuang Ma. Face anti-spoofing via disentangled representation learning. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XIX 16, pp. 641–657. Springer, 2020a.

Shifeng Zhang, Ajian Liu, Jun Wan, Yanyan Liang, Guodong Guo, Sergio Escalera, Hugo Jair
Escalante, and Stan Z. Li. Casia-surf: A large-scale multi-modal benchmark for face anti-spoofing.
IEEE Transactions on Biometrics, Behavior, and Identity Science, 2(2):182–193, 2020b. doi:
10.1109/TBIOM.2020.2973001.

Zhiwei Zhang, Dong Yi, Zhen Lei, and Stan Z Li. Face liveness detection by learning multispectral
reflectance distributions. In 2011 IEEE International Conference on Automatic Face & Gesture
Recognition (FG), pp. 436–441. IEEE, 2011.

Zhiwei Zhang, Junjie Yan, Sifei Liu, Zhen Lei, Dong Yi, and Stan Z. Li. A face antispoofing database
with diverse attacks. In 2012 5th IAPR International Conference on Biometrics (ICB), pp. 26–31,
2012. doi: 10.1109/ICB.2012.6199754.

Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing
zero-shot transfer degradation in continual learning of vision-language models. arXiv preprint
arXiv:2303.06628, 2023.

Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li,
Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-based language-image pre-
training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 16793–16803, 2022.

Qianyu Zhou, Ke-Yue Zhang, Taiping Yao, Ran Yi, Shouhong Ding, and Lizhuang Ma. Adaptive
mixture of experts learning for generalizable face anti-spoofing. In Proceedings of the 30th ACM
International Conference on Multimedia, pp. 6009–6018, 2022a.

Qianyu Zhou, Ke-Yue Zhang, Taiping Yao, Ran Yi, Kekai Sheng, Shouhong Ding, and Lizhuang
Ma. Generative domain adaptation for face anti-spoofing. In European Conference on Computer
Vision, pp. 335–356. Springer, 2022b.

Qianyu Zhou, Ke-Yue Zhang, Taiping Yao, Xuequan Lu, Ran Yi, Shouhong Ding, and Lizhuang Ma.
Instance-aware domain generalization for face anti-spoofing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 20453–20463, 2023.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 SUPPLEMENTARY ABLATION STUDY

Table 9: Effects of the number n of the hard visual feature to update visual prompt.

Num C → I C → M C → O Avg.

HTER AUC HTER AUC HTER AUC HTER

10 11.64 92.03 1.72 99.27 2.57 99.73 5.31
30 12.31 92.48 2.52 98.65 2.36 99.56 5.73
50 12.27 91.83 1.73 98.91 3.48 99.31 5.82

ALL 14.75 91.08 3.59 98.81 4.57 98.94 7.64

Table 10: Effects of weight scaling degree α.

Num C → I C → M C → O Avg.

HTER AUC HTER AUC HTER AUC HTER

0 14.22 90.15 4.11 98.78 5.44 98.72 7.92
1 13.54 90.87 2.27 99.46 3.39 99.48 6.4
3 11.64 92.03 1.72 99.27 2.57 99.73 5.31
5 12.31 92.49 2.64 99.11 2.33 99.73 5.76

Effects of weight scaling degree α: Tab. 10 demonstrates the influence of the weight scaling factor
on the outcomes of ensemble methods. When the scaling factor α is set to 0, the method is tantamount
to a simple average ensemble. As the value of α exceeds 1, the scaling mechanism adjusts the fusion
weights, amplifying the influence of components with lower entropy and diminishing the impact of
those with higher entropy. The empirical results suggest that the optimal generalization performance
of the model is achieved with a scaling factor of 3. Conversely, the approach yields the least effective
results when α is 0, highlighting the limitations of average aggregation. These findings underscore
the efficacy of adjusting fusion weights in enhancing the generalization capabilities of the model.

Effects of the number n of the hard feature to update visual anchor: To thoroughly understand
the impact of hard visual anchor updates on generalization performance, we explore the number of
visual anchor features integrated per epoch as shown in Tab. 9. Experimental results indicate that
optimal generalization performance is achieved when the top 10 +2.33 increase in average HTER)
challenging samples are integrated per epoch. Conversely, incorporating all visual features results
in the poorest generalization performance. This suggests that blending an appropriate amount of
difficult samples into visual anchors complements semantic text prompts effectively, thus enhancing
generalization performance.
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