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Deep Positive-Unlabeled Anomaly Detection for Contaminated Unlabeled Data
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Abstract

Semi-supervised anomaly detection, which aims
to improve the anomaly detection performance by
using a small amount of labeled anomaly data in
addition to unlabeled data, has attracted attention.
Existing semi-supervised approaches assume that
most unlabeled data are normal, and train anomaly
detectors by minimizing the anomaly scores for
the unlabeled data while maximizing those for
the labeled anomaly data. However, in practice,
the unlabeled data are often contaminated with
anomalies. This weakens the effect of maximizing
the anomaly scores for anomalies, and prevents
us from improving the detection performance. To
solve this problem, we propose the deep positive-
unlabeled anomaly detection framework, which
integrates positive-unlabeled learning with deep
anomaly detection models such as autoencoders
and deep support vector data descriptions. Our
approach enables the approximation of anomaly
scores for normal data using the unlabeled data
and the labeled anomaly data. Therefore, with-
out labeled normal data, our approach can train
anomaly detectors by minimizing the anomaly
scores for normal data while maximizing those for
the labeled anomaly data. Experiments on various
datasets show that our approach achieves better
detection performance than existing approaches.

1. Introduction
Anomaly detection, which aims to identify unusual data
points, is an important task in machine learning (Ruff et al.,
2021). It has been performed in various fields such as cyber-
security (Kwon et al., 2019), novelty detection (Marchi et al.,
2015), medical diagnosis (Litjens et al., 2017), infrastructure
monitoring (Borghesi et al., 2019), and natural sciences
(Min et al., 2017; Cerri et al., 2019; Pracht et al., 2020).

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

In general, anomaly detection is performed by unsupervised
learning because it does not require expensive and time-
consuming labeling. Unsupervised approaches assume that
most unlabeled data are normal, and try to detect anomalies
by using an anomaly score, which represents the difference
from normal data (Hinton & Salakhutdinov, 2006; Ruff
et al., 2018). Although these approaches are easy to handle,
their detection performance is limited because they cannot
use information about anomalies.

To improve the detection performance, semi-supervised
anomaly detection uses a small amount of labeled anomaly
data in addition to unlabeled data. Existing semi-supervised
approaches train anomaly detectors to minimize the anomaly
scores for the unlabeled data, and to maximize those for the
labeled anomaly data (Hendrycks et al., 2018; Ruff et al.,
2019; Yamanaka et al., 2019). However, in practice, the
unlabeled data are often contaminated with anomalies. This
weakens the effect of maximizing the anomaly scores for
anomalies, and prevents us from improving the anomaly
detection performance. This frequently occurs because it is
difficult to label all anomalies.

Our purpose is to propose a semi-supervised approach that
can improve the anomaly detection performance even if
the unlabeled data are contaminated with anomalies. To
handle such unlabeled data, we propose the deep positive-
unlabeled anomaly detection framework, which integrates
positive-unlabeled (PU) learning (Du Plessis et al., 2014;
2015; Kiryo et al., 2017) with deep anomaly detectors such
as the autoencoder (AE) (Hinton & Salakhutdinov, 2006)
and the deep support vector data description (DeepSVDD)
(Ruff et al., 2018). PU learning assumes that an unlabeled
data distribution is a mixture of normal and anomaly data
distributions1. Accordingly, the normal data distribution
is approximated by using the unlabeled and anomaly data
distributions. With this assumption, we approximate the
anomaly scores for normal data using the unlabeled data
and the labeled anomaly data. Therefore, without labeled
normal data, we can train anomaly detectors to minimize
the anomaly scores for normal data, and to maximize those
for the labeled anomaly data.

1Note that the anomaly data in the training dataset follow the
anomaly data distribution, but new types of anomalies, unseen
during training, may NOT follow this distribution. In general, no
distribution can fully represent all possible anomalies.
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(d) Proposed

Figure 1: The comparison of the PU learning, the unsupervised anomaly detector (DAE), the semi-supervised anomaly
detector (ABC), and the proposed method on the toy dataset. The unlabeled data in this dataset include both normal and
anomaly data points. The yellow and blue in the contour maps represent abnormality and normality, respectively. The purple
stars represent the examples of unseen anomalies, which are new types of anomalies unseen during training.

Figure 1 compares the PU learning (Kiryo et al., 2017), the
unsupervised detector, the semi-supervised detector, and
our approach on the toy dataset. We used the denoising AE
(DAE) (Vincent et al., 2008) for the unsupervised detector,
and the autoencoding binary classifier (ABC) (Yamanaka
et al., 2019) for the semi-supervised detector. Our approach
is based on the DAE. The toy dataset consists of unlabeled
and anomaly data, where the unlabeled data include both
normal and anomaly data points. We first focus on the PU
learning, which aims to train the binary classifier from the
unlabeled data and the labeled anomaly data. This can detect
seen anomalies, which are similar to anomalies included in
the training dataset. However, since its decision boundary
is between normal data points and seen anomalies, it cannot
detect unseen anomalies, which are new types of anomalies
unseen during training, such as novel anomalies and zero-
day attacks (Wang et al., 2013; Pang et al., 2021; Ding
et al., 2022). We next focus on unsupervised and semi-
supervised detectors. They can detect unseen anomalies
to some extent since they try to detect anomalies by using
the difference from normal data. The unsupervised detector
cannot detect seen anomalies since it cannot use information
about anomalies. The semi-supervised detector can detect
seen anomalies to some extent since it can use the labeled
anomaly data. However, the contaminated dataset weakens
the effect of maximizing the anomaly scores for anomalies
in the semi-supervised detector. Finally, we focus on our
approach. our approach can detect seen anomalies according
to the effectiveness of PU learning, and can detect unseen
anomalies to some extent according to the effectiveness of
the deep anomaly detector.

Our framework is applicable to various anomaly detector.
When selecting a detector, we require that its loss function
be non-negative and differentiable. For example, the AE,
the DeepSVDD, and recent self-supervised detectors such
as (Hendrycks et al., 2019; Qiu et al., 2021; Shenkar & Wolf,
2021) satisfy this. In this paper, we apply our framework
to the AE and the DeepSVDD. We refer to the former as

the positive-unlabeled autoencoder (PUAE), and the latter
as the positive-unlabeled support vector data description
(PUSVDD).

Compared to existing semi-supervised approaches designed
to handle contaminated unlabeled data (Zhang et al., 2018;
Ju et al., 2020; Zhang et al., 2021; Pang et al., 2023; Li
et al., 2023; Perini et al., 2023), the proposed method is
theoretically justified from the perspective of unbiased PU
learning (Du Plessis et al., 2014; 2015; Kiryo et al., 2017).
In addition, the proposed method achieved equal to or better
performance than the current state-of-the-art approach (Li
et al., 2023) across eight datasets.

Our contributions can be summarized as follows:

• To handle contaminated unlabeled data, we propose the
deep positive-unlabeled anomaly detection framework,
which integrates unbiased PU learning with the deep
anomaly detectors such as the AE and the DeepSVDD.

• Experiments on various datasets demonstrate that our
approach outperforms existing approaches in anomaly
detection performance.

2. Preliminaries
In this section, we first explain our problem setup. Next, we
review the AE (Hinton & Salakhutdinov, 2006) and the ABC
(Yamanaka et al., 2019). They are typical unsupervised and
semi-supervised anomaly detection approaches, and our
framework can be applied to them.

2.1. Problem Setup

Given unlabeled dataset U = {x1, . . . ,xN} and anomaly
dataset A = {x̃1, . . . , x̃M} for training. U contains not
only normal data points but also seen anomalies that are
similar to A. The test dataset contains normal data points,
seen anomalies, and unseen anomalies that are new types of
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anomalies unseen during training. Our goal is to obtain a
high performance anomaly detector using U and A.

2.2. Autoencoder

For unsupervised anomaly detectors, we train them only
using the unlabeled dataset U . As an example, we focus
on the AE, which has been successfully applied to anomaly
detection (Sakurada & Yairi, 2014). The AE is presented for
representation learning, which learns the representation of
data points through data reconstruction. Let x be a data point
and z be its low-dimensional latent representation. The AE
consists of two neural networks: encoder Eθ(x) and decoder
Dθ(z), where θ is the parameter of these neural networks.
Eθ(x) maps a data point x into a low-dimensional latent
representation z, and Dθ(z) reconstructs the original data
point x from the latent representation z. The reconstruction
error for each data point x in the AE is defined as follows:

ℓ(x; θ) = ∥Dθ(Eθ(x))− x∥ , (1)

where ∥·∥ represents ℓ2 norm.

When the AE is used for anomaly detection, all unlabeled
data points are assumed to be normal. We train the AE by
minimizing the following objective function:

LAE(θ) =
1

N

N∑
n=1

ℓ(xn; θ). (2)

After training, the AE is expected to successfully reconstruct
normal data and fail to reconstruct anomaly data because
the training dataset is assumed to contain only normal data
and no anomaly data. Hence, the reconstruction error can
be used for the anomaly score.

Although unsupervised approaches are widely used in
anomaly detection, their detection performance is limited
because they cannot use information about anomalies.

2.3. Autoencoding Binary Classifier

Semi-supervised anomaly detection aims to improve the
anomaly detection performance using the unlabeled dataset
U and the anomaly dataset A. A number of studies have
been presented such as the ABC (Yamanaka et al., 2019),
the deep semi-supervised anomaly detection (DeepSAD)
(Ruff et al., 2019), and the outlier exposure (Hendrycks
et al., 2018). Here, we focus on the ABC, which is based
on the AE.

Let y = 0 be normal and y = 1 be anomaly. The ABC
models the conditional probability of y given x by using the
reconstruction error ℓ(x; θ) as follows:

pθ(y|x) =

{
exp(−ℓ(x; θ)) (y = 0)

1− exp(−ℓ(x; θ)) (y = 1)
. (3)

A small reconstruction error results in a higher probability
of normality pθ(y = 0|x), while a large reconstruction error
results in a higher probability of abnormality pθ(y = 1|x).

With this conditional probability, the ABC introduces the
binary cross entropy as the loss function for each data point
as follows:

ℓBCE(x, y; θ) = − log pθ(y|x)
= (1− y)ℓ(x; θ)− y log(1− exp(−ℓ(x; θ))). (4)

Like the AE, the ABC assumes all unlabeled data points to
be normal. The ABC is trained by minimizing the following
objective function:

LABC(θ) =
1

N

N∑
n=1

ℓBCE(xn, 0; θ)

+
1

M

M∑
m=1

ℓBCE(x̃m, 1; θ). (5)

This minimizes the reconstruction errors for the unlabeled
data and maximizes those for the anomaly data. Hence, after
training, the AE becomes to reconstruct the unlabeled data
assumed to be normal, and fail to reconstruct anomalies.
Other semi-supervised anomaly detection approaches such
as the DeepSAD (Ruff et al., 2019) and the outlier exposure
(Hendrycks et al., 2018) also minimize the anomaly scores
for the unlabeled data and maximize those for the anomaly
data.

However, the unlabeled dataset U is often contaminated
with anomalies in practice. This contamination weakens the
effect of maximizing the anomaly scores for anomalies, and
prevents us from improving the detection performance. This
frequently occurs because it is difficult to label all anomalies
in the unlabeled dataset.

3. Proposed Method
We aim to improve the detection performance even if the
unlabeled dataset U contains anomalies. To handle such
unlabeled dataset, we propose the deep positive-unlabeled
anomaly detection framework, which integrates PU learning
(Du Plessis et al., 2014; 2015; Kiryo et al., 2017) with deep
anomaly detection models such as the AE, the DeepSVDD,
and recent self-supervised detectors such as (Hendrycks
et al., 2019; Qiu et al., 2021; Shenkar & Wolf, 2021).

In this section, we apply our framework to the AE and the
DeepSVDD. We refer to the former as the positive-unlabeled
autoencoder (PUAE), and the latter as the positive-unlabeled
support vector data description (PUSVDD).

Hereinafter, we also refer anomalies as positive (+) samples,
and normal data points as negative (-) samples.

3
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3.1. Positive-Unlabeled Autoencoder

At first, we explain the PUAE. Let pN be the normal data
distribution, pA be the seen anomaly distribution, and pU be
the unlabeled data distribution. We assume that the datasets
U and A are drawn from pU and pA, respectively. We also
assume that pU can be rewritten as follows:

pU (x) = αpA(x) + (1− α)pN (x), (6)

where α ∈ [0, 1] is the probability of anomaly occurrence in
the unlabeled data. Hence, pN can be rewritten as follows:

(1− α)pN (x) = pU (x)− αpA(x). (7)

Although α is the hyperparameter and is assumed to be
known throughout this paper, it can be estimated from the
datasets U and A in conventional PU learning approaches
(Menon et al., 2015; Ramaswamy et al., 2016; Jain et al.,
2016; Christoffel et al., 2016).

If we have access to the normal data distribution pN , we can
train the AE by minimizing the following ideal objective
function:

LPN(θ) = αEpA [ℓBCE(x, 1; θ)]

+ (1− α)EpN [ℓBCE(x, 0; θ)], (8)

where E[·] is the expectation. Since we cannot access pN in
practice, we have to approximate the second term in Eq. (8).
According to Eq. (7), this can be rewritten as follows:

(1− α)EpN [ℓBCE(x, 0; θ)]

= EpU [ℓBCE(x, 0; θ)]− αEpA [ℓBCE(x, 0; θ)]. (9)

Hence, by using the seen anomaly distribution pA and the
unlabeled data distribution pU , LPN(θ) can be rewritten as
follows:

LPN(θ) = αEpA [ℓBCE(x, 1; θ)]

+ EpU [ℓBCE(x, 0; θ)]− αEpA [ℓBCE(x, 0; θ)]. (10)

With the datasets U and A, we can approximate LPN(θ) by
the empirical distribution as follows:

LPN(θ) ≃ α
1

M

M∑
m=1

ℓBCE(x̃m, 1; θ)︸ ︷︷ ︸
L+

A(θ)

+
1

N

N∑
n=1

ℓBCE(xn, 0; θ)︸ ︷︷ ︸
L−

U (θ)

−α
1

M

M∑
m=1

ℓBCE(x̃m, 0; θ)︸ ︷︷ ︸
L−

A(θ)

.

(11)

Algorithm 1 Positive-Unlabeled Autoencoder
Input: Unlabeled and anomaly datasets (U ,A), mini-batch
size K, hyperparameter α ∈ [0, 1]
Output: Model parameter θ
Procedure:

1: while not converged do
2: Sample mini-batch B from datasets (U ,A)
3: Compute L+

A(θ), L
−
U (θ), and L−

A(θ) in Eq. (11) with
B

4: Set the gradient ∇θ(αL+
A(θ) +

∣∣L−
U (θ)− αL−

A(θ)
∣∣)

5: Update θ with the gradient
6: end while

In this equation, the sum of the second and third terms is
the approximation of the anomaly scores for normal data:

(1− α)EpN [ℓBCE(x, 0; θ)] ≃ L−
U (θ)− αL−

A(θ). (12)

The left-hand side in Eq. (12) is always greater than or
equal to zero, but the right-hand side can be negative. In
experiments, it often converges towards negative infinity,
resulting in the meaningless solution. To avoid this, based
on (Hammoudeh & Lowd, 2020), our training objective
function to be minimized ensures that L−

U (θ)− αL−
A(θ) is

not negative as follows:

LProposed(θ) = αL+
A(θ) +

∣∣L−
U (θ)− αL−

A(θ)
∣∣ . (13)

We can optimize this training objective function by using the
stochastic gradient descent (SGD) such as Adam (Kingma
& Ba, 2015). We refer to this approach as the PUAE.

Algorithm 1 shows the pseudo code of the PUAE, where K
is the mini-batch size for the SGD. Note that our approach
can be easily extended to positive-negative-unlabeled (PNU)
learning (Sakai et al., 2017), where we can also use a small
amount of labeled normal data.

3.2. Positive-Unlabeled Support Vector Data Description

We next apply our framework to the DeepSVDD. The
DeepSVDD aims to pull the representation of the normal
data towards the pre-defined center, and push those of the
anomaly data away from the center. Let fθ(x) be the feature
extractor, like the encoder in the AE. The loss function for
each data point of the DeepSVDD is defined as follows:

ℓ̃(x; θ) = ∥fθ(x)− c∥2 , (14)

where c ̸= 0 is the pre-defined center vector.

The DeepSAD (Ruff et al., 2019) is a semi-supervised
extension of the DeepSVDD. The DeepSAD trains the
DeepSVDD model to minimize Eq. (14) for the unlabeled
data, and to maximize it for the anomaly data. The loss
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function for each data point of the DeepSAD is defined as
follows:

ℓ̃SAD(x, y; θ) = (1− y)ℓ̃(x; θ) +
y

ℓ̃(x; θ)
. (15)

We can apply our framework to the DeepSVDD by replacing
Eq. (4) in the PUAE with Eq. (15), while keeping all other
components identical to the PUAE. We refer to this approach
as the PUSVDD.

3.3. Application to Other Anomaly Detectors

Our framework is applicable to anomaly detection models
whose loss functions are non-negative and differentiable.
As described above, the AE and the DeepSVDD satisfy
this requirement. In addition, a lot of models satisfy this
requirement, such as the DAE (Vincent et al., 2008) and
recent self-supervised detectors (Hendrycks et al., 2019; Qiu
et al., 2021; Shenkar & Wolf, 2021). For example, we focus
on the DAE. The DAE is a variant of the AE, and has also
been successfully applied to anomaly detection (Sakurada
& Yairi, 2014). The DAE aims to reconstruct original data
points from noisy input data points. Its loss function for
each data point is defined as follows:

ℓ(x; θ) = ∥Dθ(Eθ(x+ ϵ))− x∥ , (16)

where ϵ is a noise from an isotropic Gaussian distribution.
Our framework can be applied to the DAE by substituting
this into Eq. (1). In this way, our framework can be applied
by substituting the loss function of the desired model into
Eq. (1) in the PUAE or Eq. (14) in the PUSVDD.

4. Related Work
4.1. Unsupervised Anomaly Detection

Numerous unsupervised approaches have been presented,
ranging from shallow approaches such as the one-class sup-
port vector machine (OCSVM) (Tax & Duin, 2004) and the
isolation forest (IF) (Liu et al., 2008) to deep approaches
such as the AE (Hinton & Salakhutdinov, 2006) and the
DeepSVDD (Ruff et al., 2018). In addition, generative mod-
els such as the variational autoencoder (Kingma & Welling,
2014; Kingma et al., 2015) and the generative adversarial
nets (Goodfellow et al., 2014) are also used for anomaly
detection (Choi et al., 2018; Serrà et al., 2019; Ren et al.,
2019; Perera et al., 2019; Xiao et al., 2020; Havtorn et al.,
2021; Yoon et al., 2021). Although they are often used in
anomaly detection, their detection performance is limited
because they cannot use information about anomalies. For
example, generative models may fail to detect anomalies
that are obvious to the human eye (Nalisnick et al., 2018).

Furthermore, these approaches assume that unlabeled data
are mostly normal. However, they are contaminated with

anomalies in practice, degrading the detection performance.
Several unsupervised approaches have been presented to
handle such contaminated unlabeled data (Zhou & Paffen-
roth, 2017; Qiu et al., 2022; Shang et al., 2023). Among
them, the latent outlier exposure (LOE) (Qiu et al., 2022) is
a representative approach. The LOE introduces the label for
each data point as the latent variable, and alternates between
inferring the latent label and optimizing the parameter of
the base anomaly detector. Compared to these approaches,
our approach can achieve better detection performance by
using the unlabeled data and the labeled anomaly data, even
if the unlabeled data are contaminated with anomalies. As
the base detector for our approach, the AE, the DeepSVDD,
and recent self-supervised detectors (Hendrycks et al., 2019;
Qiu et al., 2021; Shenkar & Wolf, 2021) can be used as
described in Section 3. In addition, our approach can also
be applied to the LOE by substituting its objective function
into L−

U (θ) in Eq. (11).

4.2. Semi-supervised Anomaly Detection

Several semi-supervised approaches have been presented,
aiming to improve the detection performance using labeled
anomaly data in addition to unlabeled data (Hendrycks et al.,
2018; Yamanaka et al., 2019; Ruff et al., 2019). Compared
to these approaches, our approach can effectively handle
the unlabeled data that are contaminated with anomalies, as
described in Section 3.1.

To handle contaminated unlabeled data, a number of semi-
supervised approaches have been presented, including PU
learning approaches (Zhang et al., 2018; Ju et al., 2020;
Zhang et al., 2021; Pang et al., 2023; Li et al., 2023; Perini
et al., 2023). Among them, the semi-supervised outlier
exposure with a limited labeling budget (SOEL) (Li et al.,
2023) is the current state-of-the-art approach. The SOEL is
a semi-supervised extension of the LOE (Qiu et al., 2022),
and presents the query strategy for the LOE, deciding which
data should be labeled. Compared to these approaches, our
approach is theoretically justified from the perspective of
unbiased PU learning (Du Plessis et al., 2014; 2015; Kiryo
et al., 2017). In addition, our approach achieved equal to or
better performance than the SOEL across eight datasets, as
described in Section 5.

4.3. Positive-Unlabeled Learning

A lot of PU learning approaches have been presented for
binary classification (Elkan & Noto, 2008; Du Plessis et al.,
2014; 2015; Kiryo et al., 2017; Bekker & Davis, 2020;
Nakajima & Sugiyama, 2023). Among them, our approach
is based on the unbiased PU learning (Du Plessis et al., 2014;
2015; Kiryo et al., 2017). The empirical risk estimators
in Eq. (11) is unbiased and consistent with respect to all
popular loss function. This means for fixed θ, Eq. (11),
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which is the approximation of Eq. (8), converges to Eq. (8)
as the dataset sizes N,M → ∞. It is known that if the
model is linear with respect to θ, a particular loss function
will result in convex optimization, and the globally optimal
solution can be obtained (Natarajan et al., 2013; Patrini et al.,
2016; Niu et al., 2016). Despite this ideal property, when
the model is complex such as neural networks, Eq. (11)
can become negative, potentially leading to the meaningless
solution. To address this issue, following (Hammoudeh &
Lowd, 2020), we take its absolute value, as described in
Section 3.1.

Compared to conventional PU learning that is based on the
binary classifier, our approach is based on deep anomaly
detection models such as the AE and the DeepSVDD.
Although conventional PU learning cannot detect unseen
anomalies since its decision boundary is between normal
data points and seen anomalies, our approach can detect
both seen and unseen anomalies.

5. Experiments
5.1. Data

We used following eight image datasets: MNIST (Salakhut-
dinov & Murray, 2008), FashionMNIST (Xiao et al., 2017),
SVHN (Netzer et al., 2011), CIFAR10 (Krizhevsky et al.,
2009), CIFAR100 (Krizhevsky et al., 2009), PathMNIST,
OCTMNIST, and TissueMNIST (Yang et al., 2021; 2023).

First, we explain the first four datasets. MNIST is the hand-
written digits, FashionMNIST is the fashion product images,
SVHN is the house number digits, and CIFAR10 is the ani-
mal and vehicle images. We resized all datasets to 32× 32
resolution. These datasets consist of 10 class images. For
MNIST and SVHN, we used the digits as class indices.
For FashionMNIST, we indexed labels as: {T-shirt/top: 0,
Trouser: 1, Pullover: 2, Dress: 3, Coat: 4, Sandal: 5, Shirt:
6, Sneaker: 7, Bag: 8, and Ankle boot: 9}. For CIFAR10,
we indexed labels as: {airplane: 0, automobile: 1, bird:
2, cat: 3, deer: 4, dog: 5, frog: 6, horse: 7, ship: 8, and
truck: 9}. We extend the experiments in (Ruff et al., 2018)
to semi-supervised anomaly detection with contaminated
unlabeled data. Of the 10 classes, we used one class as
normal, another class as unseen anomaly, and the remain-
ing classes as seen anomaly. For example with MNIST,
if we use the digit 1 as normal and the digit 0 as unseen
anomaly, seen anomaly corresponds to the digits 2, 3, 4, 5,
6, 7, 8, and 9. For all datasets, we used class 0 as unseen
anomaly, and select one normal class from the remaining 9
classes. The training dataset consists of 5,000 samples, of
which 4,500 samples are unlabeled normal data points, 250
samples are labeled seen anomalies, and 250 samples are
unlabeled seen anomalies. That is, the unlabeled data points
in this dataset are contaminated with seen anomalies. We

used 10% of the training dataset as the validation dataset.
The test dataset consists of 2,000 samples, about half of
which are normal and the rest are anomalies, including both
seen and unseen anomalies. More specifically, normal data
points are sampled from the normal class in the test dataset,
with a maximum of 1,000 samples, while both seen and
unseen anomalies are sampled from their respective classes,
with a maximum of 500 samples each. The example of the
MNIST dataset is provided in Appendix A.

Next, we explain the last four datasets. CIFAR100 is just
like CIFAR10 but consists of 100 classes. These classes
are grouped into 20 superclasses, from which we used
nature-related classes as normal and human-related classes
as anomalies. We used the people class as unseen anomaly.
PathMNIST, OCTMNIST, and TissueMNIST are medical
image datasets. PathMNIST is colorectal cancer histology
dataset with 9 tissue types. OCTMNIST is retinal optical
coherence tomography dataset with 4 diagnostic categories.
TissueMNIST kidney cortex cell dataset with 8 categories.
For PathMNIST and TissueMNIST, we used the first class
as unseen anomaly, selected one class from the remaining
ones as normal, and treated the rest as seen anomaly. For
OCTMNIST, since a pre-defined normal class exists, we
used it as normal, used the first class as unseen anomaly,
and treated the remaining classes as seen anomaly.

5.2. Methods

We compared our PUAE and PUSVDD with the following
unsupervised and semi-supervised approaches.

Unsupervised approaches: We used the IF (Liu et al.,
2008) as the shallow approach, and used the AE (Hinton &
Salakhutdinov, 2006) and the DeepSVDD (Ruff et al., 2018)
as the deep approaches. We also used the LOE (Qiu et al.,
2022), which is robust to the anomalies in the unlabeled
data. We chose the DeepSVDD as the base detector for the
LOE.

Semi-supervised approaches: We used the ABC (Ya-
manaka et al., 2019), the DeepSAD (Ruff et al., 2019),
and the SOEL (Li et al., 2023) that is a semi-supervised
extension of the LOE. We chose the DeepSVDD as the base
detector for the SOEL. We also used the PU learning binary
classifier (PU) (Kiryo et al., 2017) for reference.

5.3. Setup

First, we outline the setups for all approaches except the
IF. We used convolutional neural networks for the encoder
and the decoder in the AE, the feature extractor in the
DeepSVDD, and the binary classifier in the PU. The network
architecture follows (Ruff et al., 2018). For the AE-based
and DeepSVDD-based approaches, we set the dimension
of the latent variable to 128. For the DeepSVDD-based
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Table 1: Comparison of anomaly detection performance on the first four datasets.

MNIST FashionMNIST SVHN CIFAR10

IF (Liu et al., 2008) 0.885 ± 0.062 0.916 ± 0.077 0.501 ± 0.014 0.610 ± 0.095
AE (Hinton & Salakhutdinov, 2006) 0.912 ± 0.042 0.841 ± 0.102 0.562 ± 0.040 0.535 ± 0.120
DeepSVDD (Ruff et al., 2018) 0.937 ± 0.045 0.921 ± 0.088 0.582 ± 0.035 0.709 ± 0.054
LOE (Qiu et al., 2022) 0.945 ± 0.033 0.916 ± 0.094 0.624 ± 0.054 0.718 ± 0.062

ABC (Yamanaka et al., 2019) 0.916 ± 0.042 0.841 ± 0.104 0.562 ± 0.041 0.535 ± 0.119
DeepSAD (Ruff et al., 2019) 0.942 ± 0.041 0.928 ± 0.089 0.652 ± 0.034 0.726 ± 0.051
SOEL (Li et al., 2023) 0.965 ± 0.026 0.936 ± 0.079 0.727 ± 0.043 0.775 ± 0.057
PU (Kiryo et al., 2017) 0.962 ± 0.034 0.922 ± 0.092 0.681 ± 0.096 0.693 ± 0.120

PUAE 0.983 ± 0.015 0.918 ± 0.085 0.689 ± 0.060 0.667 ± 0.066
PUSVDD 0.989 ± 0.012 0.948 ± 0.079 0.747 ± 0.080 0.803 ± 0.046

Table 2: Comparison of anomaly detection performance on the last four datasets.

CIFAR100 PathMNIST OCTMNIST TissueMNIST

IF (Liu et al., 2008) 0.604 ± 0.004 0.809 ± 0.118 0.714 ± 0.004 0.472 ± 0.187
AE (Hinton & Salakhutdinov, 2006) 0.589 ± 0.010 0.605 ± 0.240 0.860 ± 0.005 0.468 ± 0.178
DeepSVDD (Ruff et al., 2018) 0.587 ± 0.026 0.759 ± 0.148 0.726 ± 0.052 0.661 ± 0.055
LOE (Qiu et al., 2022) 0.576 ± 0.035 0.721 ± 0.160 0.783 ± 0.030 0.635 ± 0.086

ABC (Yamanaka et al., 2019) 0.590 ± 0.010 0.604 ± 0.241 0.857 ± 0.001 0.472 ± 0.177
DeepSAD (Ruff et al., 2019) 0.594 ± 0.012 0.763 ± 0.187 0.823 ± 0.038 0.683 ± 0.053
SOEL (Li et al., 2023) 0.633 ± 0.013 0.791 ± 0.145 0.856 ± 0.016 0.703 ± 0.062
PU (Kiryo et al., 2017) 0.541 ± 0.025 0.807 ± 0.132 0.614 ± 0.109 0.633 ± 0.082

PUAE 0.623 ± 0.014 0.776 ± 0.168 0.847 ± 0.011 0.594 ± 0.104
PUSVDD 0.637 ± 0.017 0.831 ± 0.152 0.857 ± 0.017 0.731 ± 0.077

approaches, we used no bias terms in each layer, pre-trained
these feature extractors as the AE, and set the center c in
Eq. (14) to the mean of the outputs of the encoder. We
trained all methods by using Adam (Kingma & Ba, 2015)
with a mini-batch size of 128. We set the learning rate to
10−4 and the maximum number of epochs to 200. We also
used the weight decay (Goodfellow et al., 2016) with 10−3

and used early-stopping (Goodfellow et al., 2016) based on
the validation dataset. We set the hyperparameter α = 0.1
for the PUAE, the PUSVDD, the PU, the LOE, and the
SOEL, which is the probability of anomaly occurrence.

Next, we outline the setup for the IF. We used the scikit-
learn implementation (Pedregosa et al., 2011) and kept all
hyperparameters at their default values in our experiments.

We trained unsupervised approaches using the unlabeled
data2, while we trained semi-supervised approaches using
the unlabeled data and the labeled anomaly data.

2Note that we did NOT use the labeled anomaly data since
unsupervised approaches cannot effectively use them.

To measure the detection performance, we calculated the
AUROC scores for all datasets. We ran all experiments five
times while changing the random seeds.

The machine specifications used in the experiments are as
follows: the CPU is AMD EPYC 9124 16-Core Processor,
the memory size is 512GB, and the GPU is NVIDIA RTX
6000 Ada.

5.4. Results

Tables 1 and 2 compare the anomaly detection performance
on each dataset. We showed the average of the AUROC
scores for all normal classes. We used bold to highlight the
best results and statistically non-different results according
to a pair-wise t-test. We used 5% as the p-value.

First, we focus on unsupervised approaches. The IF and the
AE show significant performance variations across different
datasets. Although the IF performed well on PathMNIST
and the AE performed well on OCTMNIST, their perfor-
mance became poor on other datasets. The DeepSVDD
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Figure 2: Relationship between the anomaly detection performance and the hyperparameter α of the PUSVDD and the
SOEL on each dataset. We used class 0 as unseen anomaly, class 1 as normal, and the remaining classes as seen anomalies.
The semi-transparent area represents standard deviations.

generally outperformed the IF and the AE, and the LOE,
which is based on the DeepSVDD, often performed better
than the DeepSVDD. However, since the LOE estimates
anomalies within the unlabeled data in an unsupervised man-
ner, incorrect estimations can lead to degraded performance.

Next, we focus on semi-supervised approaches. The ABC
and the DeepSAD performed equal to or slightly better than
the AE and the DeepSVDD, respectively. The reason for
this is that ABC and DeepSAD assume that the unlabeled
data are not contaminated with anomalies, which weakens
the effect of maximizing anomaly scores for the labeled
anomaly data. On the other hand, the SOEL outperformed
DeepSAD in all cases. This is because the SOEL is capable
of handling anomalies present in the unlabeled data.

Finally, we focus on the proposed methods. In most cases,
the PUAE and the PUSVDD performed better than the AE
and the ABC, the DeepSVDD and the DeepSAD, respec-
tively. Especially, the PUSVDD achieved the best perfor-
mance across all datasets. These results strongly indicate
the effectiveness of our framework, which integrates PU
learning with deep anomaly detection models.

In addition, we focus on the difference between the proposed
methods and PU. The proposed methods performed equal to
or better than the PU in all datasets. The reason is as follows.
Since the PU is for binary classification, it sets the decision
boundary between normal data points and seen anomalies.
This prevents us from detecting unseen anomalies. On the
other hand, our approach can detect unseen anomalies since
it can model normal data points by the anomaly detector.
The detection performance for seen and unseen anomalies
are in Appendix C.

5.5. Hyperparameter Sensitivity

Our approach and the SOEL have the hyperparameter α,
which represents the probability of anomaly occurrence. In
the above experiments, we set it to α = 0.1 since the 10%
of the training dataset is anomalies. Finally, we evaluate the

sensitivity of α. Figure 2 shows the relationship between
the anomaly detection performance and the hyperparameter
α of the PUSVDD and the SOEL on each dataset.

In most datasets, the PUSVDD and the SOEL achieve the
best performance around α = 0.1. This indicates that,
as with conventional PU learning, it is important to set α
accurately. Note that α can be estimated from the unlabeled
and anomaly training data using conventional PU learning
approaches (Menon et al., 2015; Ramaswamy et al., 2016;
Jain et al., 2016; Christoffel et al., 2016).

Compared to the SOEL, the PUSVDD is more robust to
variations in α. In other words, even if α deviates from
the true value, the PUSVDD maintains relatively stable
performance. This is because α in the SOEL is closely
related to the number of anomalies within the unlabeled
data. If α deviates from the true value, normal data may be
incorrectly treated as anomalies, or vice versa.

On the other hand, since α in the PUSVDD only adjusts the
weight of the loss function, it is expected to be relatively
robust to deviations in α.

6. Conclusion
Although most unlabeled data are assumed to be normal
in semi-supervised anomaly detection, they are often con-
taminated with anomalies in practice, which prevents us
from improving the detection performance. To solve this,
we propose the deep positive-unlabeled anomaly detection
framework, which integrates PU learning with deep anomaly
detection models such as the AE and the DeepSVDD. Our
approach enables us to approximate the anomaly scores for
normal data with the unlabeled data and labeled anomaly
data. Therefore, without the labeled normal data, we can
train the anomaly detector to minimize the anomaly scores
for normal data, and to maximize those for the anomaly data.
Our approach achieves better detection performance than
existing approaches on various image datasets. In the future,
we will extend our approach to time-series data.
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Serrà, J., Álvarez, D., Gómez, V., Slizovskaia, O., Núñez,
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A. Dataset Example

(a) Training (unlabeled) (b) Training (anomaly) (c) Test (normal) (d) Test (anomaly)

Figure 3: The example of the dataset in the case of MNIST.

Figure 3 shows the example of the dataset in the case of MNIST. In this example, the digit 1 is normal, the digit 0 is unseen
anomaly, and the digits 2, 3, 4, 5, 6, 7, 8, and 9 are seen anomalies. (a) The unlabeled data points in the training dataset
are contaminated with seen anomalies. (b) The anomaly data points in the training dataset contain seen anomalies but not
unseen anomalies. (c) The normal data points in the test dataset are not contaminated with anomalies. (d) The anomaly data
points in the test dataset contain both seen and unseen anomalies.

B. Anomaly Detection Performance with Various Numbers of Unlabeled Anomalies
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(b) FashionMNIST
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(c) SVHN
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(d) CIFAR10

Figure 4: Comparison of anomaly detection performance between the PUSVDD and the SOEL with various numbers of
unlabeled anomalies on each dataset. We used class 0 as unseen anomaly, class 1 as normal, and the remaining classes as
seen anomalies. The semi-transparent area represents standard deviations.

Figure 4 shows the anomaly detection performance with various numbers of unlabeled anomalies. The hyperparameter α
was set to its true value for each case. Our PUSVDD achieved equal to or better performance than the SOEL.

C. Anomaly Detection Performance for Seen and Unseen Anomalies
Tables 3, 4, 5 and 6 show the anomaly detection performance for seen and unseen anomalies, respectively. We showed the
average of the AUROC scores for all normal classes. We used bold to highlight the best results and statistically non-different
results according to a pair-wise t-test. We used 5% as the p-value. For seen anomalies, the PUSVDD achieved the best
performance among all approaches. This shows the effectiveness of our approach, which is robust to the contaminated
unlabeled data according to PU learning. For unseen anomalies, although the performance is highly dataset-dependent, the
PUSVDD generally performs well. This indicates that we may be able to improve the detection performance for unseen
anomalies by using seen anomalies. These results also show the difference between the conventional PU learning and our
approach. The PU achieved the poor detection performance for unseen anomalies. This is because that it sets the decision
boundary between normal data points and seen anomalies. On the other hand, our approach can detect unseen anomalies
since it is based on the anomaly detector.
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Table 3: Comparison of anomaly detection performance for seen anomalies on image datasets.

MNIST FashionMNIST SVHN CIFAR10

IF (Liu et al., 2008) 0.814 ± 0.096 0.915 ± 0.053 0.510 ± 0.016 0.585 ± 0.106
AE (Hinton & Salakhutdinov, 2006) 0.843 ± 0.073 0.840 ± 0.092 0.563 ± 0.039 0.573 ± 0.131
DeepSVDD (Ruff et al., 2018) 0.925 ± 0.056 0.942 ± 0.040 0.600 ± 0.033 0.694 ± 0.069
LOE (Qiu et al., 2022) 0.942 ± 0.038 0.940 ± 0.042 0.645 ± 0.055 0.713 ± 0.077

ABC (Yamanaka et al., 2019) 0.852 ± 0.072 0.841 ± 0.092 0.564 ± 0.039 0.572 ± 0.131
DeepSAD (Ruff et al., 2019) 0.930 ± 0.052 0.956 ± 0.032 0.674 ± 0.031 0.716 ± 0.074
SOEL (Li et al., 2023) 0.967 ± 0.024 0.963 ± 0.028 0.751 ± 0.035 0.773 ± 0.073
PU (Kiryo et al., 2017) 0.959 ± 0.036 0.943 ± 0.057 0.678 ± 0.099 0.703 ± 0.154

PUAE 0.980 ± 0.017 0.942 ± 0.041 0.716 ± 0.053 0.695 ± 0.083
PUSVDD 0.994 ± 0.004 0.972 ± 0.029 0.787 ± 0.069 0.796 ± 0.059

Table 4: Comparison of anomaly detection performance for unseen anomalies on image datasets.

MNIST FashionMNIST SVHN CIFAR10

IF (Liu et al., 2008) 0.955 ± 0.031 0.917 ± 0.111 0.492 ± 0.018 0.635 ± 0.095
AE (Hinton & Salakhutdinov, 2006) 0.981 ± 0.013 0.842 ± 0.130 0.560 ± 0.045 0.497 ± 0.111
DeepSVDD (Ruff et al., 2018) 0.950 ± 0.044 0.900 ± 0.143 0.564 ± 0.043 0.724 ± 0.087
LOE (Qiu et al., 2022) 0.949 ± 0.034 0.892 ± 0.152 0.602 ± 0.058 0.724 ± 0.099

ABC (Yamanaka et al., 2019) 0.980 ± 0.014 0.840 ± 0.133 0.559 ± 0.046 0.497 ± 0.109
DeepSAD (Ruff et al., 2019) 0.954 ± 0.040 0.900 ± 0.153 0.631 ± 0.044 0.735 ± 0.078
SOEL (Li et al., 2023) 0.963 ± 0.033 0.908 ± 0.135 0.702 ± 0.061 0.778 ± 0.087
PU (Kiryo et al., 2017) 0.965 ± 0.038 0.901 ± 0.134 0.684 ± 0.102 0.683 ± 0.133

PUAE 0.985 ± 0.017 0.894 ± 0.140 0.662 ± 0.078 0.639 ± 0.090
PUSVDD 0.983 ± 0.024 0.924 ± 0.134 0.708 ± 0.103 0.811 ± 0.101
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Table 5: Comparison of anomaly detection performance for seen anomalies on real datasets.

CIFAR100 PathMNIST OCTMNIST TissueMNIST

IF (Liu et al., 2008) 0.577 ± 0.005 0.657 ± 0.211 0.679 ± 0.005 0.443 ± 0.189
AE (Hinton & Salakhutdinov, 2006) 0.514 ± 0.013 0.562 ± 0.253 0.808 ± 0.005 0.443 ± 0.188
DeepSVDD (Ruff et al., 2018) 0.623 ± 0.036 0.769 ± 0.139 0.702 ± 0.043 0.692 ± 0.047
LOE (Qiu et al., 2022) 0.624 ± 0.035 0.746 ± 0.167 0.750 ± 0.031 0.657 ± 0.084

ABC (Yamanaka et al., 2019) 0.516 ± 0.014 0.564 ± 0.252 0.805 ± 0.002 0.448 ± 0.187
DeepSAD (Ruff et al., 2019) 0.628 ± 0.042 0.772 ± 0.165 0.798 ± 0.032 0.715 ± 0.040
SOEL (Li et al., 2023) 0.696 ± 0.020 0.806 ± 0.142 0.825 ± 0.017 0.739 ± 0.044
PU (Kiryo et al., 2017) 0.630 ± 0.023 0.847 ± 0.097 0.565 ± 0.089 0.628 ± 0.080

PUAE 0.576 ± 0.025 0.745 ± 0.171 0.800 ± 0.011 0.613 ± 0.094
PUSVDD 0.700 ± 0.021 0.826 ± 0.137 0.822 ± 0.016 0.764 ± 0.044

Table 6: Comparison of anomaly detection performance for unseen anomalies on real datasets.

CIFAR100 PathMNIST OCTMNIST TissueMNIST

IF (Liu et al., 2008) 0.632 ± 0.005 0.961 ± 0.055 0.785 ± 0.004 0.500 ± 0.187
AE (Hinton & Salakhutdinov, 2006) 0.665 ± 0.009 0.647 ± 0.239 0.965 ± 0.005 0.493 ± 0.170
DeepSVDD (Ruff et al., 2018) 0.552 ± 0.033 0.749 ± 0.200 0.774 ± 0.072 0.629 ± 0.069
LOE (Qiu et al., 2022) 0.528 ± 0.047 0.696 ± 0.205 0.851 ± 0.030 0.613 ± 0.093

ABC (Yamanaka et al., 2019) 0.665 ± 0.009 0.644 ± 0.241 0.961 ± 0.002 0.496 ± 0.168
DeepSAD (Ruff et al., 2019) 0.561 ± 0.024 0.755 ± 0.242 0.874 ± 0.049 0.651 ± 0.075
SOEL (Li et al., 2023) 0.570 ± 0.034 0.776 ± 0.190 0.918 ± 0.021 0.666 ± 0.093
PU (Kiryo et al., 2017) 0.452 ± 0.039 0.767 ± 0.215 0.712 ± 0.154 0.638 ± 0.098

PUAE 0.671 ± 0.011 0.806 ± 0.204 0.941 ± 0.011 0.574 ± 0.116
PUSVDD 0.573 ± 0.027 0.835 ± 0.215 0.925 ± 0.022 0.697 ± 0.114

14


