
Under review as a conference paper at ICLR 2024

DEBIAS THE TRAINING OF DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have demonstrated compelling generation quality by optimiz-
ing the variational lower bound through a simple denoising score matching loss.
In this paper, we provide theoretical evidence that the prevailing practice of us-
ing a constant loss weight strategy in diffusion models leads to biased estimation
during the training phase. Simply optimizing the denoising network to predict
Gaussian noise with constant weighting may hinder precise estimations of origi-
nal images. To address the issue, we propose an elegant and effective weighting
strategy grounded in the theoretically unbiased principle. Moreover, we conduct
a comprehensive and systematic exploration to dissect the inherent bias problem
deriving from constant weighting loss from the perspectives of its existence, im-
pact and reasons. These analyses are expected to advance our understanding and
demystify the inner workings of diffusion models. Through empirical evaluation,
we demonstrate that our proposed debiased estimation method significantly en-
hances sample quality without the reliance on complex techniques, and exhibits
improved efficiency compared to the baseline method both in training and sam-
pling processes.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have emerged as powerful generative
models that garner significant attention recently. Their popularity stems from the remarkable abil-
ity to generate diverse and high-quality samples (Dhariwal & Nichol, 2021; Rombach et al., 2022;
Ramesh et al., 2022; Nichol & Dhariwal, 2021) as well as the training-stable loss form, compared
to the adversarial training paradigms used in Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2014). Diffusion models often serve as a fundamental building block and have exhibited
impressive success on a wide rang of tasks (Ruiz et al., 2023; Saharia et al., 2022). While, it is
usually employed as a black-box component in these works. Some methods delve into the method-
ology of diffusion models, particularly focusing on the reverse sampling process. They typically
aim to minimize the number of steps in the sampling process to accelerate generation, achieved
through designing more efficient noise schedule (Song et al., 2020; Liu et al., 2021; Lu et al., 2022)
or progressive distilling (Salimans & Ho, 2022; Meng et al., 2023). These works make commend-
able attempts to enhance fundamental diffusion models and provide insights into the mechanisms
concealed within the black box.

Here we focus on the perspective of training diffusion models, which traditionally retain an elegantly
simple loss function, i.e., the L2 loss with constant weight between the Gaussian noise and the
predicted one as follows:

L =
∑
t

Ex0,ϵ

[
||ϵ− ϵθ(xt, t)||2

]
. (1)

Several works have recognized the issue of using this constant weighting and proposed alternative
weights and objectives (Choi et al., 2022; Salimans & Ho, 2022; Hang et al., 2023). Nonetheless, it
is still an open question: whether such a constant weighting form is not optimal and, if so, why and
how it affects the model’s performance.

In this paper, we theoretically demonstrate the suboptimality of the constant-weighting loss formula-
tion, revealing its potential to introduce biased estimations during training and diminish the model’s
performance. Consequently, we propose an effective and elegant debiased loss weight to address
the issue, adhering to the debiased principle. Apart from the theoretical proof and the debiased
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solution, more importantly, we figure out several key questions crucial for achieving a systemati-
cal understanding of the bias problem in conventional diffusion models, from its existence, impact,
and reasons. First, we show the existence of the biased estimation problem in the training process.
Concretely, the output of denoising network can be very close to the target Gaussian noise at ev-
ery step t, while, the corresponding estimated x̂0 may severely deviates from x0, which grows as t
gets larger. Then, we analyse the impact of the biased estimation problem on the sampling process,
which we call biased generation. Biased generation mainly attributes to the chaos and inconsistency
in the early few sampling steps, which affects the final generation via error propagation effect. And
the final results of biased generation usually come with poor details, color shift and global incon-
sistency. Additionally, we unravel the underlying causes of biased estimation. The importance and
optimization difficulty of the denoising network is vastly different at different step t.

We empirically show that the proposed debiased estimation method is capable of addressing the
above problems and substantially elevates the sample quality. Our method shows enhanced ef-
ficiency in both the training and sampling, achieving superior performance to previous constant
weighting strategy with much less training iterations and sampling steps. All these are achieved by
slightly revising the loss weight strategy with only one additional line of code, which is orthogonal
to existing sampling accelerating methods. We expect the in-depth analysis of dissecting the bias
issue can provide a further understanding for the research of diffusion models.

2 BACKGROUND

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) transform complex data distribution
pdata(x) into simple noise distribution N (0, I) and learn to recover data from noise. It contains two
processes: the forward diffusion process and the reverse denoise process.

The forward diffusion process starts from a clean data sample x0 and repeatedly injects Gaussian
noise according to the transition kernel q(xt|xt−1) as follows:

q(xt|xt−1) = N(xt;
√

1− βtxt−1, βtI), (2)

where βt can be learned or held constant as hyper-parameters, controlling the variance of noise
added at each step. For example, Ho et al. (Ho et al., 2020) employed a linear noise schedule, and
Nichol et al. (Nichol & Dhariwal, 2021) applied a cosine schedule. From the Gaussian diffusion
process, we can derive closed-form expressions for the marginal1 distribution q(xt|x0) as follows:

xt =
√
αtx0 +

√
1− αtϵ, (3)

where ϵ ∼ N (0, I) and αt :=
∏t

s=1(1 − βs). Note that the above-defined forward diffusion
formulation has no learnable parameters, and the reverse diffusion step cannot be applied due to
having no access to x0 in the inference stage. Therefore, we further introduce the learnable reverse
denoise process for estimating x0 from xT .

The reverse denoise process is trained to reverse the forward diffusion process in Eq. 2 by learning
the denoise network, with the current de facto training objective being Eq. 1. Given a randomly
sampled Gaussian noise xT ∼ N (0, I), the sample iteratively gets less noisy as follows:

xt−1 =
1√

1− βt
(xt −

βt√
1− αt

ϵθ(xt, t)) + σtz, (4)

where σ2
t is a variance and z ∼ N (0, I). Ho et al. (Ho et al., 2020) used βt as σ2

t .

Kingma et al. (Kingma et al., 2021) proposed the use of signal-to-noise ratio (SNR) to represent the
noise schedules in diffusion models. The SNR of the intermediate noisy sample xt is calculated as
the ratio of the squared mean and variance, which is expressed as:

SNR(t) = αt/(1− αt). (5)

3 THEORETICAL EXPLORATION OF THE INHERENT BIAS

3.1 TRAINING OBJECTIVES OF CONVENTIONAL DIFFUSION MODELS

Diffusion models are trained by optimizing a variational lower bound (VLB). For each step t, the
denoising score matching loss Lt is the distance between two Gaussian distributions, which can be
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rewritten as:

Lt = DKL(q(xt−1|xt, x0) || pθ(xt−1|xt)), (6)

where the reverse diffusion step q(xt−1|xt, x0) and pθ(xt−1|xt) can be expressed as follows:

q(xt−1|xt, x0) = N(xt−1; µ̃t(xt, x0), β̃tI),

pθ(xt−1|xt) = N(xt−1;µθ(xt, t),
∑

θ(xt, t)),
(7)

where µ̃t(xt, x0) :=
√
αt−1βt

1−αt
x0+

√
1−βt(1−αt−1)

1−αt
xt, β̃t :=

1−αt−1

1−αt
βt, and the variance

∑
θ(xt, t) =

σ2
t I. Ho et al. (Ho et al., 2020) set σ2

t = βt. Thus, we can rewrite Lt as follows:

Lt = Ex0,ϵ

[
1

2σ2
t

∥∥∥∥√αt−1βt

1− αt
x0 +

√
1− βt(1− αt−1)

1− αt
xt − µθ (xt, t)

∥∥∥∥2
]
+ C

= Ex0,ϵ

[
β2
t

(1− βt)(1− αt)
||ϵ− ϵθ(xt, t)||2

]
+ C.

(8)

The denoising network is indeed optimized to approach x0, and ϵ can also be employed as training
target with a deterministic relationship to x0. Ho et al. (Ho et al., 2020) demonstrated that using
ϵ as the training target empirically outperforms training directly to predict x0. Additionally, they
empirically observed that the simplified objective (Eq. 1) with constant-weighting form yields better
sample quality, which subsequently becomes the default training objective of diffusion models.

3.2 CONSTANT WEIGHTING INTRODUCES BIAS IN TRAINING

We treat ϵ as the explicit and direct target, and x0 as the implicit but intrinsic target. Given the
predicted noise ϵθ(xt, t) of the denoising network, we can derive x̂0 from Eq. 3 as follows:

x̂0 =
1

√
αt

xt −
√
1− αt√
αt

ϵθ(xt, t)

=
1

√
αt

(
√
αtx0 +

√
1− αtϵ)−

√
1− αt√
αt

ϵθ(xt, t)

= x0 +

√
1− αt√
αt

(ϵ− ϵθ(xt, t))

= x0 +
1√

SNR(t)
(ϵ− ϵθ(xt, t)).

(9)

Further, we can rewrite Eq. 9 to express x0 in terms of two components: the estimated x̂0 part and
the amplified error part.

x0 = x̂0︸︷︷︸
estimated x̂0

+
1√

SNR(t)
(ϵθ(xt, t)− ϵ)︸ ︷︷ ︸

amplified error

. (10)

Although the difference between the predicted ϵθ(xt, t) and the target Gaussian noise ϵ may be
very small at every step, the amplification coefficient 1√

SNR(t) is expected to be significantly larger
as the step t increases (as shown in Fig. 1), which would result in a substantial deviation of the
estimated x̂0 from the target x0. We also visualize the estimated x̂0 and the amplified error at
different timesteps via feeding xt =

√
αtx0 +

√
1− αtϵ into the denoising network once. The

estimated x̂0 increasingly deviates from the ground-truth x0 when t grows larger, meanwhile the
amplified error becomes larger and even gradually approaches x0. In this regard, we can find that
the constant training weight strategy is indeed biased, and optimizing the explicit target ϵ uniformly
across different timesteps cannot guarantee approaching the implicit target x0 in an optimal manner.
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Figure 1: Left: The visualization of SNR(t) and amplification coefficient 1√
SNR(t) at different

timesteps. Right: The upper row is the input xt at different timesteps. We employ the diffusion
model (Dhariwal & Nichol, 2021) pretrained on ImageNet dataset to obtain the estimated x̂0 part
and amplified error part of each input xt. The second row is the estimated x̂0 . The bottom row is
the corresponding amplified error part. Apparently, as step t gets larger, the estimated x̂0 severely
deviates from x0 and the amplified error part gradually approaches x0.

3.3 DEBIASED TRAINING STRATEGY

The above theoretical analysis provides a principled guidance to eliminate the biased estimation
problem. Concretely, we not only expect the loss function to reach the explicit target ϵ but also
encourage the estimated x̂0 to approach the implicit target x0. Therefore, it is essential to take into
account the varying impact of noise prediction at different steps t when designing the loss function.
In this regard, we propose a debiased loss formulation which is simple but effective by taking the
amplified coefficient into account:

L =
∑
t

Ex0,ϵ

[
1√

SNR(t)
||ϵ− ϵθ(xt, t)||2

]
. (11)

In other word, we assign higher weight as the step t increases (i.e., when adding more noise to x0),
thereby compelling the noise error (ϵθ(xt, t)−ϵ) to decrease more significantly at larger step t. Note
that we use the above form instead of the seemingly more reasonable weighting 1

SNR as it would
hinder the optimization of the explicit target ϵ. We explain it in detail in Appendix A.

4 COMPREHENSIVE UNDERSTANDING THE BIAS PROBLEM

In this section, We aim to address several key questions crucial for achieving a systematical under-
standing of the bias problem in conventional diffusion models: Why is the bias problem important?
What are its effects? And what is the underlying cause ? We believe answering these questions is
essential for unraveling and dissecting the black box of diffusion models.

4.1 BIASED ESTIMATION IN THE TRAINING PROCESS

First, we illustrate the one-step estimation x̂0 in Fig. 2 to compare the results obtained using the
original constant weighting and our variant. There is a general tendency for the estimated x̂0 of
both weighting strategies to gradually deviate from the original x0 as the step t increases, which is
inevitable due to the increasing noise in the input xt. However, when utilizing the constant weighting
loss for training, noticeable color shifts and inferior arrangement of human faces can be observed
in the early steps (t = 999 and t = 950), severely deviating from the target x0. In contrast, our
strategy effectively reduces the bias, achieving greater consistency with the targets across various
timesteps, even under relatively high noise levels (e.g., at t = 999 and t = 900). These findings
indicate that the proposed debiased formulation facilitates training in a more appropriate direction.
More analyses are available in Appendix B.
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Figure 2: We present the one-step estimation results of x̂0 using different input samples xt, where
the diffusion models are pretrained on the FFHQ dataset (Karras et al., 2019) with different loss
weighting strategies. One-step estimation: start from a clean image and add noise to get xt according
to Eq. 3. Then put xt into the denoising network once to get the estimated noise, and finally get
the estimated x̂0 by reversing Eq. 3. The top row displays the results obtained using a well-trained
constant weighting model, while the bottom row showcases the results achieved with our well-
trained debiased weighting model.

4.2 BIASED GENERATION ON THE SAMPLING PROCESS

We further analyse the detrimental effects of the biased estimation problem introduced by the con-
stant weighting loss for model inference, i.e., biased generation on the sampling process. As seen
in the first two rows in Fig. 3, biased generation primarily attributes to the chaos and inconsistency
in the early few sampling steps, which substantially affects the final generation through error prop-
agation. We particularly observe pronounced color shifting in biased generation when employing a
small number of sampling steps (e.g., T = 2), which remains challenging to correct even with an
extended sampling process (e.g., T = 1000). In contrast, training with our strategy can essentially
prevent the issue (e.g., the shown images with T = 2), eliminating the need for a lengthy cor-
rection process. Moreover, generated images using our strategy show enhanced details and global
consistency compared to the baseline method. More analyses are available in Appendix C.

100050020010050201052 3 4

Constant

Ours

Figure 3: Sampling results with different total steps T . The upper two rows are the generated sam-
ples of constant weight. The bottom two rows are the generated samples of our improved version.

4.3 UNRAVELING THE UNDERLYING CAUSES OF BIASED ESTIMATION

Finally, we take one step further to unravel the underlying causes of biased estimation. Specifically,
the optimization difficulty and importance of the denoising network is vastly different across step t.

Different optimization difficulty Intuitively, the input xt is closer to the target as step t becomes
larger. Consequently, the network encounters varying levels of fitting difficulty across different val-
ues of t, with larger values of t being relatively easier. To verify this, we plot the Mean squared error
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(MSE)-step curve under several settings in Fig. 4. In the “Initial” setting, the MSE value is directly
computed between the network input xt and the target Gaussian noise. The remaining two settings
compute the MSE value between the network output and the target Gaussian noise, with “Constant”
representing the constant weighting method and “Ours” representing the debiased weighting strat-
egy. The distribution of MSE value under “Initial” mode is extremely unbalanced, in which the
MSE value is negligible when t > 600. Consequently, this imbalance endows different optimization
difficulty across step t and renders the constant weighting strategy suboptimal. Specifically, when
t is sufficiently large, the MSE value between the network input and the target becomes extremely
small, allowing the network to “do nothing” while still maintaining a low MSE loss.

The above analysis is verified in Fig. 4. For t > 950, the MSE value in constant weight mode
surpasses that of the “Initial” mode, indicating the output deviates even further from the target than
the input. This observation illustrates that the denoising network in constant weight setting fails to
identify the noise pattern in the input and, therefore, cannot effectively handle the denoising task. In
contrast, our weight strategy consistently yields MSE values lower than those of the “Initial” mode,
demonstrating its exceptional denoising capability, particularly for highly noisy inputs.

Figure 4: MSE-step curve under several settings. “Initial” mode is calculated between input and
target. Obviously, the optimization difficulty is vastly different across step t. “Constant” and “Ours”
modes are calculated between network output and target. “Constant” denotes constant weight strat-
egy and “Ours” stands for our debiased weight strategy. Note that “Constant” and “Ours” visually
overlap in the left figure due to large scale .

Different importance The importance of the denoising network varies across step t. Intuitively,
initial steps are important for both training and sampling process. For training, the initial steps pose
greater difficulty due to the presence of high noise levels in the input. For sampling, the initial steps
serve as the foundation for subsequent steps, contributing to error propagation. Theoretically, we
have verified that initial steps should be emphasized to reach the implicit target x0 in section 3.
Additionally, we also find evidence supporting the crucial role of initial steps in diffusion models
(Nichol & Dhariwal, 2021; Wang et al., 2023). For example, Nichol et al. (Nichol & Dhariwal, 2021)
demonstrated that the first few steps of the diffusion process contribute the most to the variational
lower bound. Wang et al. (Wang et al., 2023) found that reusing update directions from initial
steps with adaptive momentum sampler can generate images with enhanced low-level details. The
constant weighting strategy assumes equal importance across all steps. While, our method assigns
higher weights to the initial steps, which is consistent with both intuition and theory.

5 EXPERIMENTS

5.1 SETUP

Datasets. We perform experiments on unconditional image generation using the FFHQ (Karras
et al., 2019), AFHQ-dog (Choi et al., 2020), and MetFaces (Karras et al., 2020a) datasets. These
datasets contain approximately 70k, 50k, and 1k images respectively. We resize and center-crop
data to 256×256, following the pre-processing performed by ADM (Dhariwal & Nichol, 2021).
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Training Details. We set T = 1000 for all experiments. We implement the proposed approach
on top of ADM (Dhariwal & Nichol, 2021), which offers well-designed architecture and efficient
sampling. We train our model for 500K iterations with a batch size of 8.

Evaluation Settings. Following the common practice (Song & Ermon, 2020), we utilize an Ex-
ponential Moving Average (EMA) model with a rate of 0.9999 for all experiments. Besides, we
generate 50K samples for each trained model and use the full training set to compute the reference
distribution statistics, following (Ho et al., 2020; Choi et al., 2022). During inference, we obtain
results with fewer sampling steps than T by employing the respacing technique. For quantitative
evaluations, we employ the Fréchet Inception Distance (FID) (Heusel et al., 2017).

5.2 COMPARISON TO EXISTING WEIGHTING STRATEGIES

10001001052 3

Constant

P2

Min-SNR

Ours

Figure 5: Left: Visualization of various weighting strategies. P2 and Min-SNR starts from the basis
of constant weight and lower the weight down for small t. Right: Sampling results with different
total sampling steps T . From top to bottom, they are constant, P2, Min-SNR, and our method.
Evidently, P2 and Min-SNR still suffer from bias and artifacts during the initial generation stage.

Unified perspective on existing weighting strategies The majority of existing methods (Ho et al.,
2020; Dhariwal & Nichol, 2021; Rombach et al., 2022) adhere to the prevailing training objective
of predicting Gaussian noise using a constant weight. Several prior methods (Choi et al., 2022;
Kingma et al., 2021; Salimans & Ho, 2022; Hang et al., 2023) investigate alternative training targets
and weighting strategies. For example, P2 (Choi et al., 2022) proposes a weighting scheme to
prioritize higher noise levels that recover content information. Min-SNR (Hang et al., 2023) treats
the diffusion training as a multi-task learning problem and designs a weighting strategy to avoid the
model focusing too much on small noise levels. Salimans et al. (Salimans & Ho, 2022) proposed
some more weighting strategies. We present a visualization of these distinct weighting strategies in
Fig. 5 and refer to them as SNR-aware weighting strategies.

Our method differs from these existing methods in several key aspects. (1) Most importantly, they
struggle to uncover the core: existing constant weighting strategy is biased and sub-optimal. Thus,
they lack the ability to provide insights and future directions to the followers.(2) They intuitively
modified the weight on the basis of the sub-optimal constant weighting. For instance, compared
with constant weight, they only lower the weight for small t, keeping the weight unchanged for the
remaining substantial portion of the steps. Consequently, they encounter difficulties in establishing
general principles for guiding the design of the weighting strategy.

A unified perspective can be adopted on these existing SNR-aware weighting strategies within the
framework of the debiased principle. Our theoretically unbiased principle elucidates that the weight
should monotonically increase and assign higher weights to large t, similar to the red curve depicted
in Figure 5. And prior methods tend to assign lower weights to small t values, adhering to the prin-
ciple overall. This also elucidates the underlying nature and rationale for their superior performance
compared to constant weight. However, without identifying the inherent biased problems, these in-
tuitively designed weighting methods still cannot achieve optimal performance. We also compare
different training targets in Appendix D.
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Quantitative comparison. Tab. 1 presents a quantitative performance comparison of various
weighting strategies across different sampling steps T . Our method achieves the highest perfor-
mance across multiple datasets and sampling steps. It is worth noting that the performance gain is
particularly pronounced with smaller datasets and shorter sampling steps. This observation indicates
the generalization and robustness of our method.

Table 1: Quantitative comparison. The experimental results are reported in terms of FID under a fair
setting, with the only distinction being the loss weighting strategy. * denotes the results reported in
the original paper. However, as certain essential training details of P2* (e.g., training iterations) are
unknown, its reported values are used for reference only.

Dataset Step T Constant P2 P2* Min-SNR Ours

FFHQ

1000 10.8636 6.5173 6.92 6.5012 6.3537
500 11.0266 6.7919 6.97 6.8733 6.7055
250 11.7802 7.4777 - 7.7219 7.3854
100 15.6705 10.8546 - 11.3910 10.8154

50 22.3752 16.5376 - 17.3284 15.3447
20 41.2703 34.3992 - 34.6515 29.3796

AFHQ-dog
1000 18.2999 17.0680 11.55 17.3418 14.9284

500 18.6062 17.4743 - 17.6393 14.9461
250 19.1036 17.7591 11.66 17.9216 15.0327
100 20.4464 18.3439 - 18.4205 15.8210

MetFaces
1000 41.4184 14.2044 - 30.8761 9.1683

500 42.1150 14.4476 - 31.1675 9.4289
250 42.3241 14.7384 36.80 31.3396 9.8486
100 42.6236 14.9937 - 31.6259 10.3884

Qualitative comparison. Fig. 6 presents the qualitative results. As anticipated, the biased con-
stant weighting strategy produces images with inferior global structure and color alignment. P2 and
Min-SNR enhance the sample quality by building upon the constant weight foundation. However,
they still produce images with inferior global structure. This is due to their significant bias and
chaotic behavior during the initial sampling steps, as depicted in Fig. 5.

Constant P2 OursMin-SNR

Figure 6: Visual results of different weighting strategies on different datasets. We randomly choose
the first nine generated images without cherry-pick. The first row is trained on FFHQ dataset and
the second row is on AFHQ-dog dataset.

High efficiency. Fig. 7 illustrates the FID-training iterations curve and the FID-sampling steps
curve for the FFHQ dataset. The training curve clearly demonstrates the superior efficiency and
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potential of our method. For instance, our weighting strategy matches the performance of 1000k
iterations of constant weight training with only 400k iterations. In terms of sampling, our method
surpasses all existing weight strategies across all sampling steps. Moreover, consistent with the
analysis in section 4.2, the performance gains are more pronounced with fewer sampling steps.

Figure 7: Left: FID-training iterations curve. Right: FID-sampling steps curve. These two curves
are obtained on FFHQ dataset. Our method is more efficient and high-performing. Note that, we
use DDPM to denote the constant weighting strategy.

5.3 COMPARISON TO THE PRIOR LITERATURE

Generative models have enabled unprecedented and photorealistic synthesis (Brock et al., 2018;
Karras et al., 2019; Sauer et al., 2021; Esser et al., 2021; Rombach et al., 2022; Ho et al., 2022;
Bao et al., 2023). These methods achieve high performance through meticulously crafted architec-
tures and designs. Our method offers a general strategy for diffusion models, achieving competitive
performance without relying on intricate techniques. Additionally, our contribution complements
these methods and can further extend their performance potential. For example, we achieve sub-
stantial improvements by only changing the loss weight on top of ADM. We provide a quantitative
comparison and discussion in Appendix E.

5.4 BROADER IMPACT AND FUTURE WORK

Given that diffusion models usually serve as fundamental building blocks for various application-
oriented works, our method provides valuable inspiration and insights for these endeavors. Addi-
tionally, we identify several potential avenues for future research within the community. (1) The
elucidated mechanism behind the biased problem offers valuable insights for downstream tasks,
such as editing and restoration, facilitating the integration of the bias issue into specific tasks. (2)
The biased problem can be investigated from other perspectives, such as noise schedule (Ning et al.,
2023; Chen, 2023). It is encouraging to discuss the defects of diffusion models from a unified per-
spective. For example, one can explore the characteristics and shortcomings from the design space
of diffusion models (Karras et al., 2022), and elucidate their relationships and correlations.

6 CONCLUSION

This paper provides theoretical analyses and comprehensive studies to demonstrate that the tradi-
tional uniform weighting loss function is prone to causing biased estimations during the training of
diffusion models, by examining the existence, impact, and underlying reasons behind this issue. To
mitigate this problem, we employ a simple yet highly effective weighting strategy that adheres to the
theoretically unbiased principle. Empirical studies conducted on multiple datasets, along with com-
parisons with existing weight methods, further validate the effectiveness of our proposed approach.
We also believe these analyses contribute to a deeper understanding of the underlying mechanism of
diffusion models.
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Reproducibility Statement We are highly confident of the reproducibility of this work. We
strictly follow the baseline setting P2 (Choi et al., 2022), with detailed setting description in sec-
tion 5.1. We employ the official code of P2 and only modify the loss weight with one additional line
of code as follows:

# original constant weight
mse_loss = (target - model_output) ** 2

# ours
weight = 1/torch.sqrt(SNR)
mse_loss = weight * (target - model_output) ** 2
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Appendix

A DISCUSSION ON THE THEORETICALLY OPTIMAL WEIGHT: 1
SNR

As we have mentioned, we didn’t employ the seemingly more reasonable loss weight 1
SNR . We

use “SNR” to denote the weight of 1
SNR . We demonstrate the reason from two aspects. (1) SNR

weight damages the explicit target without further boosting the implicit target as shown in Fig. 8.
Concretely, the MSE of the SNR mode completely overlaps with our 1√

SNR
weigh strategy for

large t, indicating that SNR weight can’t further boost the implicit target. However, the MSE of
the SNR mode is substantially larger than all other weighting strategies for small t, indicating that
the explicit target is seriously violated. The reason behind this is the excessive range field of SNR
weight ranging from 10−4 to 104, which causes the denoising network excessively focusing on few
early steps. (2) Empirically, the SNR mode performs terribly, as shown in Fig. 9. Min-SNR (Hang
et al., 2023) also explores predicting Gaussian noise with the weight of 1

SNR , and they find that this
setting leads to divergence. Thus, our experimental result is also consistent with the conclusion of
Min-SNR.

Figure 8: MSE analysis of different weighting strategies. We use “SNR” to denote the weight of
1

SNR . SNR weight can’t further lower the MSE for large t. On the contrary, it’s denoising ability is
worsen for small t with large MSE. The reason behind this is the excessive range field of SNR weight
ranging from 10−4 to 104, which causes the denoising network excessively focusing on few early
steps. For example, for batchsize=8, if one t is large and the remaining seven t are small, the network
will pay excessive attention to the large t with high weight, while at the cost of sacrificing the seven
small ts. In contrast, our method achieves the lowest MSE across these weighting strategies at
different step t, only slightly larger than the constant weight for t < 50.SNR sample

Figure 9: First ten generated sample of ”SNR” weight. This weight strategy leads to divergence and
poor sample quality.
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B MORE ANALYSES OF THE BIASED ESTIMATION IN THE TRAINING PROCESS

In the main manuscript, we show the existence of biased estimation in the training process with
the one-step estimated x̂0. In this section, we further illustrate the bias problem exploiting the
intermediate feature maps at different step t in Fig. 10. Fig. 10 is achieved in the same way as Fig.
2 via visualizing the feature maps of the one-step estimation process at various step t.

The intermediate feature maps can reflect the structures underlying the noisy samples (Hertz et al.,
2022; Tumanyan et al., 2023). Consistent with the conclusion in Fig. 2, the constant weight mode
struggles to generate facial structures for large step t (t >900). In contrast, our method can generate
clear facial layout even with the most noisy x999 as input.

990 950 900 750 500

Constant

Ours

Existence in the training

999

Figure 10: The intermediate feature maps at different steps t. Constant strategy struggles to generate
clear facial architecture with noisy xt as input (t >900). In contrast, our method can generate clear
facial layout even with the most noisy x999 as input.

C MORE ANALYSES OF THE BIASED GENERATION

In the main manuscript, we indicate the biased generation with generated samples of different total
sampling steps T . In this section, we show more analyses and visualization of the biased generation.
As shown in Fig. 11 and Fig. 12, we respectively show the estimated x̂0 and intermediate feature
maps of different weighting strategies at different step t. The feature visualization method is similar
to prompt-to-prompt (Hertz et al., 2022).

From Fig. 11, we observe that constant weight exhibits artifacts and color shift in the first generation
step, resulting in the final generated images with color and structure distortion. P2 and Min-SNR
also show global artifacts and inconsistency in the first generation step. Thus, their generated images
suffer from poor structures. On the contrary, our method is free of artifacts and color distortion in
the whole generation process.

From Fig. 12, we observe that constant, P2, and Min-SNR weight strategies struggle to generate
clear facial architecture in the early generation steps. Besides, their intermediate feature maps of
the final step also demonstrate poor global consistency. In contrast, our method demonstrates clear
facial architecture even at very early steps, and the final feature maps are also more visually pleasing.

D DIFFERENT TRAINING TARGETS

In this section, we delve into the difference between x0 prediction, ϵ prediction and v prediction.
Most previous works (Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Nichol et al., 2021;
Rombach et al., 2022) follow DDPM (Ho et al., 2020) to predict the noise ϵ. Some works (Salimans
& Ho, 2022; Gu et al., 2022) use reparameterization to predict x0. And some other works (Salimans
& Ho, 2022) employ the network to predict v ≡ αtϵ− σtx0.

Predicting different targets is mathematically equivalent. However, different prediction targets in-
herently correspond to different optimizing difficulty. ϵ prediction is theoretically easiest as the
distribution of the optimizing target is simple and fixed. This also explains why predicting Gaussian
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999 990 950 900 750 500 250 0

P2

Min-SNR

Ours

Constant

Figure 11: Biased generation: the estimated x̂0 of different weighting strategies at different step t.
Constant weight exhibits artifacts and color shift in the first generation step, resulting in the final
generated images with color and structure distortion. P2 and Min-SNR also show global artifact and
inconsistency in the first generation step. Thus, their generated images suffer from poor structures.

950 900 750 500 250 0

Constant

P2

Min-SNR

Ours

Figure 12: Biased generation: the intermediate feature maps of different weighting strategies at
different steps t. Constant, P2, and Min-SNR weight strategies struggle to generate clear facial
architecture in the early generation steps. Our method shows clear facial architecture even at very
early steps.

noise ϵ with constant weight is most widely employed and becomes the de facto component of diffu-
sion models. Significantly, this further validates the importance and meaning of our work unlocking
the biased problem in ϵ prediction mode.

We also show the performance comparison of different training targets in Tab. 2. Obviously, ϵ
prediction is superior to x0 prediction and v prediction. This is also consistent with the conclusion
of (Hang et al., 2023), which finds that predicting ϵ yields higher quality.
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Table 2: Quantitative comparison of different training targets.

x0 prediction v prediction ϵ prediction Ours (ϵ prediction with debiased weight)

FID 17.8148 19.1426 10.8636 6.3537

E COMPARISON TO THE PRIOR LITERATURE

We conducted a comparative analysis between diffusion models trained using our approach and ex-
isting models on the FFHQ dataset (Karras et al., 2019), as presented in Tab. 3. Previous generative
models(Brock et al., 2018; Karras et al., 2019; Sauer et al., 2021; Esser et al., 2021; Rombach et al.,
2022; Ho et al., 2022; Bao et al., 2023) have achieved exceptional results in photorealistic synthesis
by employing meticulously designed architectures and methodologies.

In contrast, our method achieves competitive performance with a simple loss weight strategyinstead
of relying on intricate techniques. Besides, our method is a general strategy of diffusion models
and has the potential to enhance their performance limits. For instance, we achieved substantial im-
provements by solely adjusting the loss weight on top of ADM (Dhariwal & Nichol, 2021), reducing
the FID score from 10.86 to 6.35. Moreover, our method offers the capability to achieve even higher
performance. Firstly, we can extend the training duration. For instance, with 500k iterations, our
method achieves a FID of 6.35, while with 1000k iterations, it achieves a FID of 4.97. Additionally,
we have the flexibility to replace the codebase ADM with a stronger model, such as stable diffusion.

Table 3: Quantitative comparison to prior generative models on FFHQ dataset. Our method is on
top of ADM with only one additional line of code, yet achieving substantial performance lift.

Dataset Method Type FID

FFHQ

BigGAN (Brock et al., 2018) GAN 12.4
UNet GAN (Schonfeld et al., 2020) GAN 10.9
StyleGAN (Karras et al., 2019) GAN 4.16
StyleGAN2 (Karras et al., 2020b) GAN 3.73
VQGAN (Esser et al., 2021) GAN+AR 9.6
LDM (Rombach et al., 2022) Diffusion model 4.98
ADM (Baseline) (Dhariwal & Nichol, 2021) Diffusion model 10.86
Ours (500k iterations) Diffusion model 6.35
Ours (1000k iterations) Diffusion model 4.97

F DIFFERENT SAMPLERS

Our weighting strategy is orthogonal to samplers. In this part, we analyse the effect of DDIM
sampler (Song et al., 2020) on the sample quality. As shown in Fig. 13, we visualize the generated
samples of DDIM sampler under four different weighting strategies. Similar to the conclusion in
Fig. 6 of the main manuscript, our method achieves the highest performance with DDIM sampler
among these four weighting strategies.

Constant P2 OursMin-SNR

Figure 13: The generated samples of DDIM sampler under four different weighting strategies.
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G MORE VISUAL RESULTS

In this part, we show more visual results of different weighting strategies on various datasets to
further validate the effectiveness and robustness of our method. Fig. 14, 15 , and 16 show the visual
results on FFHQ (Karras et al., 2019), AFHQ-dog (Choi et al., 2020), and MetFaces (Karras et al.,
2020a) datasets, respectively.

Constant P2 OursMin-SNR

Figure 14: More visual results on FFHQ dataset.

Constant P2 OursMin-SNR

Figure 15: More visual results on AFHQ-dog dataset.
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Constant P2 OursMin-SNR

Figure 16: More visual results on MetFaces dataset.
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