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ABSTRACT

Current automated agent design frameworks produce either static workflows that
lack adaptability or per-query optimizers that prevent the accumulation of deep,
agent-level task expertise. We propose a new direction that reconciles these
paradigms: creating stateful teams of specialist agents that accumulate knowl-
edge over time and can be reconfigured for novel tasks entirely without human
intervention. To this end, we introduce ASPEC, a framework that manages this full
agent lifecycle by first autonomously discovering specialist archetypes via evolu-
tionary search and then cultivating their expertise through experience, mirroring
how human experts learn through practice and reflection. We further introduce a
lightweight hierarchical control policy, "retain-then-escalate," which governs when
to leverage the established agent system versus when to adapt its structure. Through
comprehensive experiments, we demonstrate that this approach leads to significant
performance gains on expert-level scientific benchmarks like GPQA while match-
ing the state-of-the-art on broader domain tasks, demonstrating a promising path
toward agent systems that are simultaneously expert, adaptive, and efficient. 1

1 INTRODUCTION

Motivation. The emergence of sophisticated multi-agent systems capable of tackling complex
problems (Wu et al., 2024; Li et al., 2023; Hong et al., 2024) has marked a significant advance for
autonomous agents. While effective, these foundational systems were often manually hand-crafted
for specific tasks, which limited their scalability. In response, research has shifted towards automating
aspects of these systems, starting with prompt optimization (Khattab et al., 2024; Yuksekgonul et al.,
2025; Yang et al., 2024) or inter-agent communication via graph-based workflow representations
(Zhuge et al., 2024; Liu et al., 2024; Zhang et al., 2025a), and then, to the designs of agent systems
themselves. The automation of agent designs has since largely split into two distinct paradigms:
task-level optimization and query-level adaptation. In the case of (I) Task-Level Architecture
Search, prior works optimized for a single, static agent workflow for a specific task domain. These
approaches, which mirror early approaches in AutoML and Neural Architecture Search (NAS)
(Elsken et al., 2019), were pioneered by ADAS (Hu et al., 2025), which uses Meta Agent Search to
iteratively program new agents in executable code; AFlow (Zhang et al., 2025b), which similarly
adopts code representation but utilizes Monte Carlo Tree Search (MCTS) to efficiently navigate
the search space; and AgentSquare (Shang et al., 2025), which employs module evolution and
recombination to discover novel configurations in a constrained, modular code-based search space.
The primary limitation of these methods is their intrinsic "one-size-fits-all" nature: by searching for a
single best design for an entire task domain, they fundamentally lack the adaptability necessary to
dynamically allocate inference resources or customize the structure for individual user queries.

To address the rigidity of task-level systems, a recent paradigm shift has focused on generating a
unique workflow for each incoming query, (II) Query-Level Architecture Adaptation. MaAS
(Zhang et al., 2025c) introduces the concept of an "agentic supernet", optimizing a probabilistic
distribution of agent architectures during training and sampling a bespoke architecture from said
distribution for each query during inference. This paradigm has been extended by other methods
like FlowReasoner (Gao et al., 2025), which uses a reasoning-based meta-agent to generate query-
specific agent systems; ScoreFlow (Wang et al., 2025), which introduces Score-DPO, a method

1We will open-source all code upon release.
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that fine-tunes its per-query workflow generator using quantitative evaluation scores; MAS-GPT
(Ye et al., 2025), which trains an LLM to treat workflow construction as a generative task; and
MAS-Zero (Ke et al., 2025), which employs a meta-agent at inference time to iteratively generate and
refine agent configurations based on self-generated feedback. While these approaches offer superior
adaptivity, they are challenged by the lack of long-term state. Because the architecture is regenerated
or resampled for every query, the system incurs a significant "rediscovery" cost, and the individual
components or agents are largely prevented from accumulating deep, persistent expertise over time.

The prior work demonstrate a critical chasm between monolithic, task-level robustness and adaptive,
per-query regeneration. The former is static at inference, while the latter incurs "rediscovery"
costs by repeatedly invoking meta-agents for architectural search in lieu of leveraging persistent
knowledge, a system-level problem that a modular, agent-level memory addition would fail to
address. Our proposed framework, ASPEC, reconciles these limitations by integrating the specialized
mechanisms of self-evolving agents into a unified lifecycle within agent design automation. This
lifecycle establishes stable, persistent agent archetypes deployed by a "retain-then-escalate" control
policy, allowing the system to default to efficient and effective execution by relying on the persistent
knowledge of its specialist agents.

Contributions. In short, our core contributions are as follows:

• We propose ASPEC, a framework that manages the full lifecycle of expert specialist agents
via an automated two-stage methodology: (I) Discovery, where an LLM autonomously
explores the design space of agent archetypes using evolutionary processes, and (II) Culti-
vation, where selected agents autonomously cultivate their expertise on a training corpus.

• We introduce "retain-then-escalate", a control policy that, instead of being either fully static
or fully dynamic, defaults to retaining a stateful agent team across related queries to leverage
expertise and minimize cost, only escalating to architectural resampling when needed.

Related Work. The mechanisms for autonomous discovery and expertise cultivation as seen in self-
evolving agents have been explored individually across various research efforts. For instance, parallel
to workflow optimization, a distinct stream of research has explored agent specialization via prompt
optimization, starting with role assignment via ExpertPrompting (Xu et al., 2025), PromptBreeder
(Fernando et al., 2023), and PromptAgent (Wang et al., 2024a). Multi-agent frameworks like
EvoAgent (Yuan et al., 2025), which utilizes evolutionary algorithms to automatically generate and
optimize multiple specialized agents with diverse settings and roles; MASS (Zhou et al., 2025), which
optimizes individual role prompts alongside refining inter-agent communication; and AgentVerse
(Chen et al., 2024a) and AutoAgents (Chen et al., 2024b), which dynamically synthesize and
coordinate teams of expert roles, validate a critical insight: the identity of the agents is as important
as their interaction topology. However, this specialization is often stateless, and the focus remains
on generating an optimal team for a single task. In contrast, ASPEC’s Discovery process generates
persistent specialists whose structures are specifically designed to be retained and cultivated over
time rather than generated for transient collaboration or discarded after a single optimization run.

Another stream of research in self-evolving agents is expertise cultivation, focused on endowing agents
with non-parametric state (memory and experience) that persists beyond a single task interaction.
Such mechanisms are embodied by works like Reflexion (Shinn et al., 2023), which allows agents to
record natural-language critiques of their past actions in episodic memory to guide future behavior
and avoid recurring mistakes, and Self-Refine (Madaan et al., 2023), which employs a continuous
iterative refinement loop where the agent critiques and revises its initial outputs. Furthermore,
ExpeL (Zhao et al., 2024) processes past trajectories to generate insights and rules to guide further
interactions, AutoGuide (Fu et al., 2024) automatically generates context-aware guidelines from
offline experiences, facilitating the provision of relevant knowledge for active decision-making
processes, while Agent Workflow Memory (Wang et al., 2024b) records common subtask sequences
that can be retrieved and reused without re-planning from scratch. These prior works illustrate how
experiential knowledge can be accumulated and generalized into long-term competence.

While memory systems and reflection mechanisms exist, ASPEC proposes a systematic, two-stage
lifecycle framework where the Cultivation phase is explicitly linked to the output of the Discovery
phase. This linkage ensures that the stateful expertise (memory/reflections) is accumulated within the
designated, persistent specialist archetypes, facilitating the emergence of role-specific expertise.
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2 PRELIMINARIES

 

  

Meta-Controller

I II

III

"Think step-by-step to solve the

problem..."

"You are an expert physicist with deep

expertise in theoretical physics [...]"

"You have learned from experience to be

meticulous with algebraic manipulations

and to consider all assumptions [...]"

"For decay problems specifically, first

calculate the Lorentz factor, dilated

lifetime, then distance using "

"Think step-by-step to solve the

problem..."

Architect Specialist
Operators

 

Figure 1: The three main components of ASPEC.

ASPEC can be framed as a Hierarchical Reinforcement Learning (HRL) methodology consisting of a
low-level generative process for architectural redesign and agentic operator pool evolution, as well as
a lightweight, high-level policy that learns when to invoke this process efficiently. We formally define
these components below, starting with the modular units they operate upon: agentic operators.

Definition (Agentic Operator). Following MaAS (Zhang et al., 2025c), we define an agentic
operator O as a tuple O = (M,P, {Ti}ni=1) whereM ∈ M denotes the LLM backbone, P ∈ P
denotes the prompt, and {Ti} ⊆ T denotes the available tools. A multi-agent system is then
represented as a directed acyclic graph G = {V,E} where each vertex v ∈ V represents an instance
of an agentic operator and each edge e ∈ E defines the connection between two operators.

To facilitate the evolutionary process at the heart of our methodology, we structure the operator pool
Ot into two functionally distinct sets. First, the base operators (Obase), a static set of foundational,
stateless operators consisting of extensible single-/multi-agent systems, for instance Chain-of-Thought
(Wei et al., 2022) or LLM-Debate (Du et al., 2024a). Second, the specialist operators (Ospec), a
dynamic set of operators derived from base operators.

A specialist OS
i ∈ Ospec extends a base operator Oi ∈ Obase with a learned identity and a persistent

memory while inheriting its foundational reasoning structure (e.g., "think step-by-step"). It is a
tuple OS

i = (Oi,Ps,M) where Ps is a specialized prompt and M is a persistent, experience-driven
memory module. We decompose Ps into an identity, which is a rich descriptor of who the agent is
(Xu et al., 2025), and a set of directives, which are methodological principles for the agent’s thought
process, allowing for a rich and diverse "genetic" space of reasoning approaches (Naik et al., 2024).

Definition (Architect). The architect is the low-level generative component responsible for evolving
the operator pool and redesigning the multi-agent architecture, implemented as an in-context learning
LLM that operates via a multi-turn iterative reasoning process. We provide the prompt in Appendix
G.1 and give an example of its reasoning in Appendix A.2. Functionally, given a query qt, the
Architect is a process fA that maps a rich contextual input to a new system configuration

fA(qt,Ht−m:t−1,Ot−1,Gt−1)→ (Gt,Ot) (1)

whereHt−m:t−1 is a sliding window of the past m experiences including the executed architectures
and performance outcomes; Ot−1 is the previous operator pool; and Gt−1 is the current architecture.
Its objective is to find an architecture that maximizes the immediate cost-aware utility while being
general enough to be potentially retained for future tasks. We define this value in terms of the utility
with respect to the oracle at, Ut = U(Gt; qt, at), and the total costs of all API LLM calls, Ct(Gt).

G∗t = argmax
Gi∈G

E [Ut − λCt(Gt) + Vπθ
(st+1)] (2)

3
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Query ( ): Implement the Crank-
Nicholson method on the 1-D time-
dependent Schrodinger equation...

Current 

RESAMPLE

Architect

Environment

State at 

: "...I need to remember that the
Hamiltonian's spatial derivative
makes the system tridiagonal....

: "...I need to remember that
when normalizing any vectors in
NumPy, if the norm is zero..."

Meta-Controller

Memory Update

Query ( ): Muscle glycogen is broken
down enzymatically to gluse-1-

phosphate...

 = RETAIN

 = ?

Current 

Query ( ): A palpable left parasternal
impulse suggests which abnormality?

 = RESAMPLE

RETAIN

CoT

ClinicalBoard
(Debate)

Base Operator Pool ( )

CoT Debate

CoT-SC ReAct

SelfRefine Ensemble

Testing

Specialist Operator Pool ( )
TheoreticalPhysicist
(CoT)
ScientificProgrammer
(ReAct)
ClinicialBoard
(Debate)

Current Resampled 

TheoreticalPhysicist
(CoT)

ScientificProgrammer
(ReAct)

"...CoT→ClinicalBoard is
unsuitable for a physics problem.

I will use my programmer and
physicist specialists instead..."

Figure 2: The online adaptation loop of ASPEC.

where Vπθ
(st+1) is the expected future value given the next state, formally defined in Equation 3.

While this generative process enables adaptation, by continuously rebuilding the architecture, the
system potentially forgoes the chance for the active specialists to deepen their expertise on the novel
task. Additionally, and perhaps even more importantly, the Architect’s invocation is computationally
expensive and poses a practical challenge at scale. To address the trade-off between adaptability,
experiential learning, and cost-efficiency, we propose the meta-controller, a lightweight gating module
that decides when to escalate to the Architect during deployment.

Definition (Meta-Controller). The meta-controller is a neural policy πθ(at|st) that makes a single
high-level decision: retain the current agent architecture, or resample a new one for a given query.
Its action space is discrete, that is, A = {aRETAIN, aRESAMPLE}. We formulate the training of the
meta-controller as a Markov Decision Process (MDP), where the action taken at step t− 1 determines
the architecture Gt−1 available in the subsequent state st. The state st at timestep t is therefore:

st = (eq(qt), eg(Gt−1)) (3)

where eq(·) and eg(·) are fixed-length query and textual graph embeddings, embedded with MiniLM
(Wang et al., 2020). While previous work (Zhang et al., 2025a) has used Graph Neural Networks
(GNNs) to encode architectural topology, we opt for a simpler, query-aware semantic representation.
Our ’bag-of-operators’ approach represents an architecture as an attention-weighted average of the
embeddings of its constituent operators. The attention weights are computed based on the similarity
between each operator and the input query embedding eq(qt). This method, inspired by Vaswani et al.
(2017), yields a dynamic, query-contextual state representation that captures what an architecture can
do for a specific query without the significant training overhead of a dedicated GNN.

The explicit objective for the meta-controller is to maximize the expected discounted sum of future
rewards over a stream of queries:

π∗
θ = argmax

πθ

E

[
t=T∑
t=0

γt ·Rt(st, at)

]
, γ ∈ [0, 1) (4)
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3 METHODOLOGY

ReAct

Physicist (CoT)

Ensemble

Self-Refine

Base Operator Pool ( )

CoT Debate

CoT-SC ReAct

SelfRefine Ensemble

Testing

I. Create

II. Refine

Prompt 1: "You are an expert
mathematician who has a deep

understanding of algebra..."

Prompt : "You are an algebraist
with expertise in linear & abstract

algebra, polynomial rings..." 

Prompt 1: "You are a Python
programmer who is knowledgeable

about the NumPy library..."

Prompt 1: "You are a clinician who
is reviewing the case of a patient

with heart arrythmia..."

Prompt : "You are a board of
specialist doctors debating the

clinically correct treatment for..."

Prompt : "You are a scientific
programmer with deep expertise in
physics simulations with NumPy..."

Memory: Use NumPy's vectorized
operations over explicit loops for

better performance...

III. Experience Gathering

CoT

ReAct

Debate

Discovered
Specialists

Architect

CoT-Sc

ClinicalBoard (Debate)

Testing Self-Refine
Programmer

(ReAct)

Memory: To determine whether
aldosterone secretion is

unilateral, use AVS...

Memory: Recognizing that if  is
odd, then 
can simplify future determinant

calculations...

Environment

Reflection

Environment

Reflection

Environment

Reflection

Selection

Selected
Specialists

Figure 3: The offline automated specialist discovery and cultivation process.

Our framework’s methodology is twofold. First, an end-to-end offline process discovers stateful
specialists and trains the meta-controller (Figure 3 and Algorithm 2). These components are then
deployed in an online adaptation loop to handle unseen queries, with the operator pool fixed (Figure 2
and Algorithm 1). To explore the space of possible specialists and identify a set of specialist operators
Ospec such that the resulting operator pool is (1) high-performing, (2) diverse, and (3) specialized
to the problem task domain without human intervention, we split the learning objectives into two
distinct phases: an initial exploratory specialist discovery phase to address (1) and (2), and a focused,
experience-gathering cultivation phase to address (3), mirroring how a human expert might first learn
broad concepts and then deepen their knowledge through practice.

3.1 SPECIALIST DISCOVERY

Depicted as stages I and II in Figure 3, during the specialist discovery phase, the Architect iteratively
evolves a pool of specialists using its full action space (detailed in Appendix G.1). We formalize the
action space using the notions of creation and crossover.

Creation. Let O(1)
spec be the pool of specialist operators during the specialist discovery phase and

O(2)
spec be the pool of specialist operators during the cultivation phase. For a query qt, the Architect

can propose a specialist OS
i ∈ O(1)

spec derived from a base operator Oi by instantiating its prompt
with a structured identity-directive pair. The creation process employs multi-variant synthesis with
LLM adjudication. In practice, we overgenerate S = 3 candidate identity-directive variants with
diverse pairs, then judge variants via LLM-guided evaluation process that considers the reasoning
methodology and domain coverage. We provide the prompts for the Judge in Appendix G.3.

To prevent early fragmentation, we enforce a dynamic pool size limit of 2 × k, where k is the
maximum size of the final specialist selection pool. If the pool exceeds this limit, the Architect
is restricted from creating new specialists and must combine or prune existing agents, forcing the
consolidation of narrow capabilities.

Crossover. Given parent specialist operators OS
1 and OS

2 , the Architect can synthesize a child
specialist OS

c , similarly by using variant generation. This similarly triggers a multi-variant synthesis
process with LLM adjudication that combines both parents’ specialist identities and directives,
preserving their expertise. We provide the prompts used to perform this synthesis in G.2.
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Selection. At the end of the specialist discovery phase, we select the top-k specialists for cultivation
by solving a multi-objective optimization problem that balances performance and diversity:

- Problem pattern: Expectation value of
an operator (e.g., ) given a non-

normalized wavefunction.
- Approach summary: Normalize

wavefunction, apply the operator, and
integrate.

- Failure mode: Forgetting to normalize
the wavefunction before calculating the

expectation value.
- General rule: ALWAYS normalize the

wavefunction before calculating
expectation values in quantum

mechanics.

Memory ( )

Environmental
Feedback

Crossover

You are an expert physicist tackling
complex scientific problems. You have

deep expertise in physics, including
electromagnetism, thermodynamics, wave
optics, linear algebra, wave phenomena,

kinetics, and statistical mechanics [...]

Think step by step...

- [...] Analyze wave phenomena using
Huygens' principle, superposition, and

interference. Relate wave properties such as
wavelength, frequency, and amplitude to the

energy and momentum of the wave.

 - [...] Apply the laws of thermodynamics and
statistical mechanics to analyze systems

involving heat, energy, and entropy.

Prompt ( )

Base: CoT

Thought Thought

Specialist Lineage

Figure 4: Case study of a physics specialist discovered on GPQA. The crossover action allows us to
trace back the agent’s "lineage" and identify aspects of its prompt that have been inherited from its
ancestors. The full final prompt and more examples of its memory entries are in Appendix A.3.

O(2)
spec = arg max

|Ospec|≤k


∑

OS
i ∈O(1)

spec

p(OS
i ) + Diversity(Ospec)


Diversity(O(2)

spec) =

k∑
j=1

max
OS

i ∈Cj∩Ospec

p(OS
i )

(5)

where p(OS
i ) represents the average performance of specialist OS

i and Cj is the j-th cluster in
embedding space obtained via K-means clustering on specialist operator embeddings.

3.2 SPECIALIST CULTIVATION

Depicted as stage III of Figure 3, during the specialist cultivation phase, the selected top-k discovered
specialists deepen their domain expertise through post-execution reflection on a training corpus.
The cultivation process is applied independently to each specialist, resulting in distinct, specialized
memories, as can be seen in Figure 4. For each specialist OS

i with accumulated memory Mi, we
implement a semantic retrieval mechanism (Lewis et al., 2020) to inject relevant experience during
tasks. Given a query qt, we partition the memory into structured chunks, then inject the most relevant
chunks for injection as contextual knowledge during specialist execution.

4 RESULTS

Benchmarks & Baselines. We evaluate ASPEC on five public benchmarks across three domains:
math reasoning with MATH (Hendrycks et al., 2021), question answering with MMLU (Hendrycks
et al., 2021) and GPQA (Rein et al., 2024), code generation with HumanEval (Du et al., 2024b)
and SciCode (Tian et al., 2024). In particular, GPQA and SciCode are expert-level QA and coding
benchmarks respectively. Further details on the dataset statistics are in Appendix F.

We select 13 representative baselines across (1) hand-designed single agents, in particular Chain-
of-Thought (Wei et al., 2022), Self-Refine (Madaan et al., 2023), Self-Consistency (Wang et al.,
2023), Reflexion (Shinn et al., 2023); (2) hand-designed multi-agents, in particular LLM-Debate
(Du et al., 2024a), DyLAN (Liu et al., 2024); (3) automated agent specialisation methods with
Role Assignment (Xu et al., 2025), AutoAgents (Chen et al., 2024b), EvoAgent (Yuan et al., 2025);
and (4) autonomous agent design frameworks, including query-level MaAS (Zhang et al., 2025c),
and task-level AFlow (Zhang et al., 2025b) and ADAS (Hu et al., 2025). Details for the baseline
setups are in Appendix C.
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Implementation. We select Gemini 2.0 Flash to be the standard execution model across all methods,
alongside GPT-4o-mini and Llama 3.3 70B Instruct in Figure 4. We set the size of the sliding window
in Equation 1 to be m = 10 and the maximum number of specialists in Equation 5 to be k = 5.

Table 1: Performance comparison across methods. We use Gemini 2.0 Flash with a temperature of
T = 0.3 consistently across all methods. Best results are in bold, second-best are underlined

Method MATH HumanEval MMLU GPQA SciCode (SP) Average

Vanilla 73.2 87.8 86.0 56.3 24.0 65.3

CoT (Wei et al., 2022) 74.5 90.4 88.2 58.2 24.3 65.5
CoT-SC (Wang et al., 2023) 75.1 91.2 88.8 57.1 25.2 67.5
Self-Refine (Madaan et al., 2023) 74.8 91.3 88.5 57.4 24.6 67.3
Reflexion (Shinn et al., 2023) 73.5 86.8 88.5 57.1 25.1 66.2

LLM-Debate (Du et al., 2024a) 74.4 85.5 87.1 59.7 24.0 66.1
DyLAN (Liu et al., 2024) 75.4 89.3 88.9 61.3 25.2 68.0

Role Assignment (Xu et al., 2025) 72.4 91.2 89.5 57.4 23.5 67.6
AutoAgents (Chen et al., 2024b) 73.4 88.0 85.3 56.8 24.8 65.7
EvoAgent (Yuan et al., 2025) 75.9 90.2 88.3 61.5 24.8 68.1

ADAS (Hu et al., 2025) 74.5 82.9 90.0 58.2 24.8 66.2
AFlow (Zhang et al., 2025b) 76.5 89.3 90.5 61.3 24.3 68.4
MaAS (Zhang et al., 2025c) 74.4 91.6 87.3 57.8 25.6 67.4

ASPEC 77.3 91.4 90.0 62.8 26.6 69.6

Performance Analysis. The results from Table 1 demonstrate that ASPEC can consistently match
or outperform existing hand-crafted or automated agentic systems across mathematical reasoning,
question answering, and coding. Its benefits are most pronounced on GPQA, where it achieves a score
of 62.8%. This represents a substantial 6.5% improvement over the vanilla Gemini 2.0 Flash model.
Furthermore, ASPEC surpasses the leading hand-designed agent (LLM-Debate) by 3.1%, the top
autonomous agent framework (AFlow) by 1.5%, and the best automated agent specialisation method
(EvoAgent) by 1.3%. ASPEC also leads on SciCode, a benchmark composed of realistic scientific
research problems that are decomposed into sequential subproblems. We note that the "retain-then-
escalate" structure allows retained specialists to build upon context and learned knowledge from
previous steps, which is crucial for success in multi-part scientific coding.

This naturally leads to the question of whether specialists trained on specific domains can be trans-
ferred to other domains. To this end, Figure 4 confirms that the performance gains from the
ASPEC methodology are robustly transferable across different models and benchmarks. In the
cross-benchmark analysis (Figure 4, right), we compare the standard configuration against an ablation
labeled ONLYSPEC, where the operator pool is restricted exclusively to specialists trained on a
different source domain (e.g., utilizing MATH-trained specialists for HumanEval), and find that the
ONLYSPEC configuration matches or even slightly exceeds the performance of the full system. We
attribute this to the cultivation of "T-shaped" reasoning strategies for specialists (Appendix G.3);
furthermore, restricting the pool prevents the Architect from defaulting to "safe" but less capable
generalist base operators, effectively forcing the utilization of these expert reasoning archetypes.

Figure 5: Cross-model (left) and cross-benchmark (right) transferability results. We evaluate both the
full ASPEC and ASPEC with only specialists trained on a different benchmark.

LLM Backbone GPQA MATH HumanEval

Gemini 2.0 Flash 56.3 73.2 87.8
ASPEC (Gemini 2.0 Flash) 62.5 77.3 91.4

GPT-4o-mini 38.2 61.8 86.6
ASPEC (GPT-4o-mini) 43.8 64.7 90.9

Llama 3.3 70B Instruct 45.6 51.3 88.5
ASPEC (Llama 3.3 70B Instruct) 53.5 54.8 90.8

HumanEval MMLU
60

70

80

90

Sc
or

e

ASpec
Full - Train:GPQA OnlySpec - Train:GPQA
Full - Train:MATH OnlySpec - Train:MATH

Efficiency Analysis. Table 2 demonstrates that ASPEC is cost-efficient across both training and
inference. In particular, running the offline training process on GPQA incurred only a total cost of
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1.38 USD. We find that once a strong specialist pool has been found, the Architect often prefers lean
architectures utilizing those specialists. As shown in Table 6, removing specialists causes costs to
increase significantly – the Architect becomes under-confident in its generalist pool and samples
highly complex, but redundant multi-agent architectures in an attempt to compensate.

Table 2: Efficiency comparison across methods on the GPQA benchmark.
Training Inference

Method Total
tokens

Total costs
(USD)

Wall clock
(min)

Total
tokens

Total costs
(USD)

Wall clock
(min)

Accuracy
(%)

CoT-SC (Wang et al., 2023) – – – 3,757,527 0.85 58 57.1
LLM-Debate (Du et al., 2024a) – – – 4,081,114 0.94 50 59.7
EvoAgent (Yuan et al., 2025) – – – 7,080,338 1.45 75 61.8

AFlow (Zhang et al., 2025b) 102,012,408 20.14 257 9,997,154 1.58 45 61.3
MaAS (Zhang et al., 2025c) 11,600,690 3.43 139 11,015,542 2.07 93 57.8

ASPEC 2,395,636 1.38 53 3,204,549 0.88 63 62.8

5 DISCUSSION

5.1 ABLATIONS OF SYSTEM COMPONENTS AND CONTROL POLICIES

Figure 6: Ablation study of our framework’s components (left) and sensitivity to the maximum
number of specialists k and sliding window length m (right) on GPQA. For sensitivity plots, the
central line shows the mean performance over 4 runs.

Method Accuracy
(%)

Total cost
(USD)

Control Policy Alternatives

ASPEC w/ random policy 58.3 1.05
ASPEC w/ h = 0.2 59.6 1.21
ASPEC w/ LLM-as-gate 62.5 3.74
(Gemini 2.0 Flash)

System Components

ASPEC w/o specialist operators 57.4 2.26
ASPEC w/o base operators 61.3 0.48
ASPEC w/o meta-controller 62.7 2.0
ASPEC w/o Architect 61.0 1.28
ASPEC w/o specialist memory 61.4 0.94

ASPEC 62.8 0.88
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We perform an ablation study on five key components: (I) without specialist operators, with the
operator pool restricted to O = Obase for all qt; (II) without base operators, with O = Ospec for all
qt; (III) without meta-controller, which is akin to always resampling; and (IV) without architect,
in which we construct a static architecture consisting of all specialist operators in Ospec, and (V)
without specialist memory. Furthermore, we perform additional experiments on a suite of alternative
control policies. These include a random "coin-flip", a cosine similarity heuristic (resample if the
cosine similarity of qt and Gt−1 is below a threshold of h = 0.2), and LLM-as-gate.

As seen in Table 6, removing specialists causes a 5.4% drop in performance from 62.8% to 57.4% and
a near tripling of the total cost from 0.88 USD to 2.26 USD. Additionally, removing base operators,
but keeping specialists, resulted in a lesser 1.5% drop. This demonstrates that the expert specialists
are the primary drivers of both performance and efficiency. Removing the meta-controller results in a
comparable performance of 62.7% at a ∼ 2.3 times increase in total costs. We note that even in this
mode, the Architect can learn to proxy the "retain" action by re-sampling Gt−1, but this invocation
process is fundamentally less efficient that the explicit "retain" decision made by the controller. Table
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6 further reveals that the alternative control policies yield significantly lower accuracy at 58.3%
compared to the meta-controller’s 62.5%, and while the LLM-as-gate policy achieves a comparatively
high accuracy 62.5%, it does so at a substantially higher cost,∼ 4.25 times that of the meta-controller.

5.2 SENSITIVITY ANALYSES

We analyze the sensitivity of ASPEC to two main parameters: the maximum size of the specialist
pool, k, from Equation 5, and the length of the sliding window from Equation 1, m. As shown
in Figure 6, setting k at both extremities reduced performance, suggesting a light Goldilocks-like
effect on GPQA. At k = 1, the system achieves 58.8%, performing similarly to the "ASPEC w/o
specialist operators" ablation as seen in Table 6, indicating that a single specialist lacks the domain
coverage to outperform generalist operators. Conversely, at k = 10, performance drops to 60.9%,
which aligns closely with the "ASPEC w/o specialist memory" ablation in Table 6. We attribute this
to experience fragmentation: with a larger pool size, individual specialists are selected less frequently
by the Architect during the Cultivation phase. Since memory is only acquired upon execution, these
"sparse" specialists fail to accumulate the dense history required to form deep expertise.

We hypothesize that this is not a fundamental limitation but rather reflects a trade-off between
specialist diversity and expertise. Future work could explore how the optimal specialist pool size, k,
changes with the breadth of the target domain and the accumulated experience of each specialist.

5.3 CONVERGENCE OF THE SPECIALIST DISCOVERY PROCESS

Figure 7: Visualization of discovered specialist operator embeddings on a "narrow" domain bench-
mark (GPQA) and on a "broad" domain benchmark (MMLU).

To determine whether ASPEC’s discovery process reliably finds similar expert archetypes, we
embedded the prompts of discovered specialists across 5 independent trials and plotted them in Figure
7. We find that there is strong convergence on GPQA (Figure 7, left), with different runs independently
discovering the same key roles (chemistry, biology, physics), desmontrating the robustness of the
process for specialized domains. Conversely, on the broad-domain MMLU benchmark (Figure 7,
right), the process shows some divergence, exploring different but viable team compositions to cover
the vast topic space. Even so, we find pockets of convergence in well-defined sub-domains like the
physical sciences.

Taken together, these results show that the ASPEC discovery process adapts its convergence/diver-
gence behavior based on the specificity of the target domain.

5.4 RATIONALITY OF THE META-CONTROLLER

We compare a learned meta-controller’s decisions against the LLM-as-gate "oracle proxy" in Table 6.
On GPQA, the controller learns a pragmatic economic policy, where its high rate of "overconfident"
disagreements with the perfectionist oracle reflects a deliberate trade-off for cost efficiency. On
MMLU, this behavior persists, but instances of "wasteful caution" reveal the limitations of its
lightweight state representation, leading to unnecessary resampling.

9
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Figure 8: Side-by-side comparison of confusion matrices for GPQA (left) and MMLU (right).

6 LIMITATIONS & FUTURE WORKS

A key future direction is the development of a rigorous theoretical framework to model the con-
vergence properties of the specialist discovery process with respect to factors like domain breadth,
potentially leading to principles for self-tuning the discovery process. Future work should also
validate ASPEC’s applicability in more diverse environments, particularly on complex, real-world
software engineering tasks such as those in SWE-bench (Jimenez et al., 2024). Intuitively, special-
ists discovered and cultivated on a specific repository could autonomously internalize its unique
conventions and APIs, a promising avenue for automating repository-specific expertise without
manually engineered rules. Finally, the risk of specialists amplifying training biases through memory
cultivation, a risk that warrants further investigation and the development of mitigation strategies.

While our lightweight meta-controller is crucial for efficiency, we identify its alignment with an
"oracle proxy" LLM-as-gate policy as another critical area for improvement. The results of our
ablations study on GPQA in Table 6 might be masking an underlying limitation: the meta-controller’s
decision-making process diverges from the oracle proxy’s, as explored in Section 5.4. This divergence
can become a significant weakness when its lightweight state representation leads to errors such
as unnecessary resampling or over-cautious retaining. The central challenge is to design a gating
mechanism that achieves the decision-making fidelity of the LLM-as-gate oracle proxy while retaining
the low computational overhead of a small, specialized policy.

Finally, we observe that the interplay between the meta-controller’s policy, the Architect’s choices, and
the specialists’ memory accumulation creates a complex, co-evolutionary dynamic. A conservative
"Retain" policy concentrates experience into a smaller set of active architectures, potentially guiding
those agents to develop broader, more resilient memories to cope with slightly mismatched queries.
Conversely, a highly dynamic policy distributes experience more sparsely across the specialist pool.
Furthermore, because the Architect conditions its decisions on recent history (sliding window), it
may develop path-dependent preferences for certain teams that "suffice" even if they are not optimal,
further influencing the distribution of experience. Future work could explicitly model this joint
optimization to ensure the control policy and specialist cultivation are perfectly aligned.

7 CONCLUSION

This paper introduced ASPEC, a framework designed to bridge the gap between static, efficient
agent workflows and adaptive, per-query optimizers. Our central contribution is a methodology for
creating and managing stateful specialist agents that accumulate expertise over time, mirroring human
learning. This is achieved through an automated lifecycle of evolutionary discovery and experiential
cultivation, governed by a "retain-then-escalate" policy that ensures cost-effective adaptation. Our
results on challenging scientific benchmarks such as GPQA suggest that this agent-centric approach
can lead to substantial performance improvements without sacrificing efficiency. We believe this
work presents a promising direction for autonomously creating agent systems that can develop deep
expertise while retaining the flexibility to adapt to new challenges. 2

2Large Language Models (LLMs) were used to assist in writing this paper.
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A CASE STUDY

A.1 META-CONTROLLER DECISION-MAKING

We provide a few examples of a trained meta-controller’s decision-making process on GPQA. These
include (I) rational decisions, such as retaining or resampling sensibly, and (II) irrational decisions,
when the imperfect meta-controller chooses to retain a mismatching architecture or resample a
matching architecture, thereby incurring expensive, unnecessary costs from the Architect call.

A.1.1 RATIONAL DECISIONS

Query: "Determine which set of states mentioned below are only entangled
states:

(a) (1/ 30 )* (|00>+ 2i|01> 3|10> 4i|11>)
(b) (1/5)* (|00>+ 2i|01> 2|10> 4i|11>)
(c) (1/2)(|00>+ |01>+|10> |11>)
(d) (1/2)(|00>+ |01>-|10> |11>)."

Current architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Action taken: "RETAIN"
Resulting architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Outcome: CORRECT

Query: "Identify the missing reagents in the following reaction.
(3r,5r,7r)-adamantane-1-carboxylic acid + A --->

(3r,5r,7r)-adamantane-1-carbonyl azide + B --->
(3s,5s,7s)-adamantan-1-amine."

Current architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Action taken: "RESAMPLE"
Resulting architecture: [["CoT_OrganicSpectroscopy"]]
Outcome: CORRECT

A.1.2 IRRATIONAL DECISIONS

Query: "The Cope rearrangement is a chemical reaction where a 1,5-diene
molecule undergoes rearrangement, resulting in a change in the
positions of its carbon-carbon double bonds. This rearrangement can
be initiated by heat or light and is valuable for creating complex
organic compounds with changed structures. Select the major products
from the following rearrangements [...]"

Current architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Action taken: "RETAIN"
Resulting architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Outcome: INCORRECT

Problem index: 2
Query: "Astronomers are searching for exoplanets around two stars with

exactly the same masses. Using the RV method, they detected one
planet around each star, both with masses similar to that of Neptune
[...]

The question is: How many times is the orbital period of planet #2
longer than that of planet #1?"

Current architecture: [["CoT_TheoreticalPhysics"]]
Action taken: "RESAMPLE"
Resulting architecture: [["CoT_TheoreticalPhysics"]]
Outcome: CORRECT
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A.2 ARCHITECT REASONING PROCESS

Figure 9: A three-turn reasoning process of the Architect.

Initial State During the discovery phase, the system receives a query that asks it to solve
a complex quantum mechanics problem involving both wave function normalization and
energy eigenvalue calculations. The current architecture is [[CoT]]. The operator pool con-
tains basic operators and a CoT_Astrophysics specialist, but lacks quantum mechanics
expertise.

Turn 1: Specialist Creation The Architect analyzes the query and identifies the need for
domain-specific expertise in quantum mechanics.

<action>CREATE_OPERATOR</action>
<reasoning>
The query requires deep expertise in quantum mechanics,

specifically wave function normalization and energy eigenvalue
calculations. I will create a specialized operator that can
handle the mathematical rigor required for quantum mechanical
problems.

</reasoning>
<new_operator_name>CoT_QuantumMechanics</new_operator_name>
<base_template>CoT</base_template>
<identity>You are an expert quantum physicist specializing in wave

function analysis and energy eigenvalue problems. You have deep
expertise in Schrodinger equations, Hilbert spaces, and
operator theory, with broad knowledge across theoretical
physics and mathematical methods.</identity>

<directives>
- Always verify wave function normalization conditions
- Apply systematic eigenvalue analysis using appropriate

boundary conditions [...]
</directives>

Turn 2: Operator Combination After creating the quantum specialist, the Architect
decides to combine it with an existing physics specialist.

<action>COMBINE_OPERATORS</action>
<reasoning>
Analyzing the recent sliding window of past experiences reveals a

pattern of diverse physics problems including both quantum
mechanics and astrophysics queries. Rather than maintaining
narrow specialists that may underperform on this broader
distribution, I will combine CoT_QuantumMechanics and
CoT_Astrophysics into a unified CoT_TheoreticalPhysics
specialist.

</reasoning>
<target_operator_1>CoT_QuantumMechanics</target_operator_1>
<target_operator_2>CoT_Astrophysics</target_operator_2>
<new_operator_name>CoT_TheoreticalPhysics</new_operator_name>
<identity>You are an expert theoretical physicist with deep

expertise in quantum mechanics and astrophysics. You combine
rigorous mathematical analysis with physical intuition to solve
complex problems in quantum theory, astrophysics, and
mathematical physics.</identity>

<directives>
- For quantum mechanics problems, always verify wave function

normalization conditions and apply systematic eigenvalue
analysis [...]

- For astrophysics problems, apply scaling analysis and use
dimensional arguments to constrain solutions [...]
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</directives>

Turn 3: Architecture Finalization With the enhanced specialist available, the Architect
designs the optimal processing pipeline.

<action>FINALIZE_ARCHITECTURE</action>
<reasoning>
I will create a two-layer architecture:

[[’CoT_TheoreticalPhysics’], [’SelfRefine’]]. The theoretical
physics specialist will provide the initial detailed analysis,
and SelfRefine will critically evaluate and improve the
solution.

</reasoning>
<architecture>[["CoT_TheoreticalPhysics"],

["SelfRefine"]]</architecture>

A.3 ANATOMY OF A SPECIALIST

We provide an example of a physicist that has been autonomously discovered and culti-
vated on GPQA. This specialist was the result of a crossover between two parent special-
ists, COT_THERMODYNAMICS and COT_WAVEOPTICS, who themselves descended from
COT_ELECTROMAGNETISM, COT_LINEARALGEBRA, COT_OPTICS, and COT_MECHANICS.

Specialist Prompt: COT_PHYSICS

You are an expert physicist tackling complex scientific problems. You have deep expertise
in physics, including electromagnetism, thermodynamics, wave optics, linear algebra, wave
phenomena, kinetics, and statistical mechanics. When faced with a complex problem, you
always start by identifying the fundamental physical principles at play, breaking down the
problem into its core components before attempting to solve it. You visualize physical phe-
nomena as interconnected networks of energy and momentum, allowing you to intuitively
understand their behavior.

Think step by step and derive a concise final answer.

• Focus on identifying the fundamental physical principles underlying the problem.

• Apply knowledge from various areas of physics, including electromagnetism, ther-
modynamics, kinetics, wave optics, linear algebra. Consider the interplay between
physics, chemistry, and biology when relevant.

• Prioritize dimensional analysis and order-of-magnitude estimates to quickly assess
the plausibility of different solutions. Likewise, simplify complex problems by
identifying dominant terms and making appropriate approximations.

• Analyze wave phenomena using Huygens’ principle, superposition, and interference.
Relate wave properties such as wavelength, frequency, and amplitude to the energy
and momentum of the wave. Apply the laws of thermodynamics and statistical
mechanics to analyze systems involving heat, energy, and entropy.

# Learned from experience:
• Prioritize accurate identification of fundamental transformations (e.g., electron flow)

before making broader predictions.
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• When comparing results from different methodologies, explicitly consider the limi-
tations and biases inherent in each technique. Focus on underlying mechanisms and
principles rather than superficial alignment of results.

• Consider frequency and averaging effects when integrating data from population-
level and single-entity measurements.

Specialist Memory: COT_PHYSICS

# Structured memory entry:
• Problem pattern: EM wave attenuation; inconsistent parameters lead to physically

impossible results (e.g., amplification instead of attenuation).

• Approach summary: Verify problem consistency by calculating attenuation from
given parameters. Identify and state inconsistencies explicitly.

• Failure mode: Blindly applying formulas without checking physical plausibility;
incorrect assumptions about attenuation contributions.

• General rule: Before solving, check if given parameters yield physically plausible
results. If not, state the flaw and assumptions made for a solution.

# Structured memory entry:
• Problem pattern: Expectation value of an operator (e.g., p2) given a non-normalized

wavefunction.

• Approach summary: Normalize wavefunction, apply the operator, and integrate.

• Failure mode: Forgetting to normalize the wavefunction before calculating the
expectation value.

• General rule: ALWAYS normalize the wavefunction before calculating expectation
values in quantum mechanics.

# Structured memory entry:
• Problem pattern: Particle decay (e.g., Π → µ + ν) with known rest masses and

initial state. Find KE of products.

• Approach summary: Apply energy and momentum conservation. Use relativistic
energy-momentum relation (E2 = (pc)2 + (mc2)2) to relate KE and momentum.

• Failure mode: Incorrectly applying relativistic formulas or conservation laws; alge-
braic errors in solving the equations.

• General rule: In particle decay, use energy/momentum conservation and relativistic
relations. If one particle is at rest initially, simplify accordingly.

B OPERATOR SPACE

Following MaAS (Zhang et al., 2025c), we use the following operator space for our base operators:

• Chain-of-Thought (Wei et al., 2022), which encourages the execution LLM to think step-
by-step before outputting an answer.

• ReAct (Yao et al., 2023), allowing the execution LLM to use a library of tools to answer the
question.

• Self-Consistency (Wang et al., 2023), which aggregates five Chain-of-Thought answers and
majority votes to agree on a final answer.
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• Self-Refine (Madaan et al., 2023), which iteratively refines an initial Chain-of-Thought
answer over five iterations.

• LLM-Debate (Du et al., 2024a), which uses multiple execution LLMs to debate against
each other to reach a final consensus. We similarly use three debaters and two rounds of
debate in our implementation.

• Ensemble (Jiang et al., 2023), which takes in two or more answers from different sources
and uses pairwise ranking to aggregate these responses into a final answer.

• Testing (Huang et al., 2024), which generates test cases for subsequent execution LLMs
given a coding problem.

C BASELINES

In this section, we detail the implementation for each of the baseline methods. For Chain-of-Thought
(Wei et al., 2022), Self-Consistency (Wang et al., 2023), Self-Refine ((Madaan et al., 2023)), and
LLM-Debate (Du et al., 2024a), we refer to Appendix B for the configuration details, as they were
used as seed base operators in ASPEC. For Reflexion, we adhere to the implemention provided in
(Shinn et al., 2023). Following ADAS (Hu et al., 2025), we implement Role Assignment (Xu et al.,
2025) by prompting a role-selector LLM to choose a role from a predefined set, then use another
LLM to act as the chosen role to answer the question.

For each of the benchmarks, the roles for Role Assignment were:

• MATH: Algebraist, Number Theorist, Real Analyst, Statistician, Logician
• HumanEval: Senior Python Engineer, Algorithms Expert, Software Architect, Data Scien-

tist, Competitive Programmer
• MMLU: Biologist, Physicist, Mathematician, Engineer, Doctor, Lawyer
• GPQA: Physicist, Chemist, Biologist, Scientific Reasoning Expert, Graduate Student
• SciCode: Biologist, Physicist, Chemist, Computer Scientist, Mathematician

For DyLAN and EvoAgent, we directly used the implementations from Liu et al. (2024) and (Yuan
et al., 2025). We adhered to the official configuration for AutoAgents (Chen et al., 2024b). For ADAS
(Hu et al., 2025), we set the Meta Agent Search’s n-generation to 20. For MaAS, our experimental
setup directly utilized the optimized graphs and operator spaces from (Zhang et al., 2025c) for MATH
and HumanEval. For benchmarks not explicitly included in the MaAS repository (GPQA, MMLU,
SciCode), we implemented the operator space as described in the appendix. Following Zhang et al.
(2025c), for AFlow, we utilized Gemini 2.0 Flash consistently throughout our experiments in place of
GPT-4o-mini and Claude 3.5 Sonnet for homogeneity.

D ALGORITHMS

Algorithm 1: Online adaptation algorithm of ASPEC

Input: Trained meta-controller πθ; operator pool O; queries Q = {q1, . . . , qT }; sliding
window bufferH.

Initial graph G0.
for t = 1, 2, . . . , T do

Construct state st = (eq(qt), eg(Gt−1));
Sample action at ∼ πθ(at|st);
if at = aRESAMPLE then
Gt ← fA(qt,Ht−m:t−1,O,Gt−1);

else
Gt ← Gt−1;

end
pt ← Execute(Gt,O, qt);
Ut, Ct ← Evaluate(pt, at);
Store experience (qt,Gt, St, Ct) inH;

end
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Algorithm 2: Offline specialist discovery and cultivation
Input: Queries Q = {q1, . . . , qT }; base operator set Obase.
Initial operator pool O0 = Obase, initial specialist pool O(0)

spec ← ∅, random-weights
meta-controller π(0)

θ ; empty sliding window bufferH ← ∅.
for t = 1, 2, . . . , T do

Construct state st = (eq(qt), eg(Gt−1));
Sample action at ∼ πθ(at|st);
if at = aRESAMPLE then

aA ← fA(qt,Ht−m:t−1,Ot−1,Gt−1)
if aA = CREATE_OPERATOR then

Onew ← CreateSpecialist(qt,Obase) ;
O(t)

spec ← O(t−1)
spec ∪ {Onew} ;

Ot ← Ot−1 ∪O(t)
spec

end
else if aA = COMBINE_OPERATOR then

(O1, O2)← SelectOperators(O(t−1)
spec ) ;

Ochild ← Combine(O1, O2, qt) ;
O(t)

spec ← (O(t−1)
spec \ {O1, O2}) ∪ {Ochild} ;

Ot ← Ot−1 ∪O(t)
spec

end
else if aA = PRUNE_OPERATOR then

Oto_prune ← SelectOperator(O(t−1)
spec ) ;

O(t)
spec ← O(t−1)

spec \ {Oto_prune} ;
Ot ← Ot−1 ∪O(t)

spec
end
Gt ← fA(Ht−m:t−1,Ot,Gt−1) ;

else
Gt ← Gt−1 ;

end
pt ← Execute(Gt,Ot, qt);
Ut, Ct ← Evaluate(pt, at);

π
(t)
θ ← UpdateWeights

(
Ut, Ct, at, π

(t−1)
θ

)
forall O ∈ SpecialistsUsedIn(Gt,Ot) do

r ← Reflect(O, qt, Pt, at, Ut) ;
WriteToMemory(O, r)

end
Store experience (qt,Gt, Ut, Ct) inH;

end

E META-CONTROLLER IMPLEMENTATION

The meta-controller is trained using the REINFORCE algorithm, with a standard batch policy loss:

Lbatch(θ) = −
1

N

N∑
t=1

log πθ(at|st)Rt (6)

The reward Rt is designed to balance performance, cost, and contextual appropriateness. It is a
function of the final task score st, the total cost Ct, and the cosine similarity between the query and
the current architecture, sim(qt,Gt−1).

The core of our reward function is a weighting mechanism that modulates the score st based on
this similarity. The reward for a RETAIN action is boosted when the architecture is a good match
for the query (high similarity), while the reward for a RESAMPLE action is boosted when there is a
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mismatch (low similarity). This can be expressed conceptually as:

Rt = st · w(at, sim(qt,Gt−1))− λCt (7)

where the weighting function w(·, ·) increases the effective reward for correct decisions. For example,
w(RETAIN, sim) is an increasing function of similarity. This formulation provides a dense and
informative signal that guides the meta-controller to learn an efficient, context-aware policy.

F DATASET STATISTICS

For each of the benchmarks, we follow established methodologies for workflow automation (Hu et al.
(2025), Zhang et al. (2025b), Zhang et al. (2025c)) and use a train-to-test ratio of 1 : 4. We select
19 subdomains for MMLU, spanning formal mathematics, biology, chemistry, clinical medicine,
business, and engineering. For SciCode, we use the standard subproblem setup without prior scientist
annotations and report the subproblem pass rate.

Table 3: Dataset statistics.
Domain Dataset Train Samples Test Samples Metric

Math Reasoning MATH 100 400 Accuracy

Question Answering MMLU 100 400 Accuracy
GPQA 89 359 Accuracy

Code Generation HumanEval 33 131 Pass@1
SciCode (subproblems) 51 287 Pass@1

G PROMPTS

G.1 ARCHITECT’S PROMPT

We used the following prompt for the Architect. The decision to define the architecture representation
with mathematical notation was deliberate. We observed through preliminary experiments that
providing a formal syntax, as opposed to a natural language description, makes the instructions for
concepts like parallelism and aggregation less ambiguous for the LLM. This leads to more consistent
and structurally valid outputs from the Architect.

Architect Prompt

You are a multi-agent architect fA mapping a query and context to an agent architecture:
fA : (q, C) 7→ G.

Goal: propose or adjust a layered operator architecture that is robust, performs well now, and
is generalizable to future queries.

Follow these steps:
• Decompose the query, pick an initial architectural pattern, and justify briefly.

• Think of 2 other alternative architectural patterns, consider all 3 options, and select
the best one.

• If creating specialists, provide concise identity and bullet directives (no steps or
formulas - you are encouraged to use different reasoning patterns and strategies
like adversarial prompting, quality-diversity prompting, step-back prompting, multi-
choice elimination, etc.)

• Use the recent sliding window experiences as guidance for your decisions.
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Architecture representation: A = [L1, . . . , LK ] where layer Li = [oi,1, . . . , oi,mi
] lists

operators executed in parallel. Execution is layerwise: let x1 = x and for i = 1, ...,K,
compute a layer output hi(xi). If |Li−1| > 1, include an Ensemble aggregator gi to combine
parallel outputs: hi(xi) = gi({ o(xi) | o ∈ Li−1 }). If |Li−1| = 1, then hi(xi) = o(xi) for
the unique o ∈ Li−1. The input to the next layer is xi+1 = hi(xi).

Query: [...]

Context for your decision:
• Operator pool: [...]

• Current architecture: [...]

• Allowed actions: [...]

• Recent sliding window experiences: [...]

XML formatting guide: [...]

where the allowed actions are conditional on the specific phase the system is in. During the specialist
discovery phase, the full operator space is used:

• CREATE_OPERATOR: Defines a new specialist operator Ospec and adds it to O(t)
spec.

• COMBINE_OPERATORS: Merges two specialist operators into a single, more general spe-
cialist.

• PRUNE_OPERATOR: Removes a specialist operator from O(t)
spec.

• FINALIZE_ARCHITECTURE: Commits to a final graph Gt and terminates the reasoning
loop.

We then restrict the allowed actions to only FINALIZE_ARCHITECTURE during the specialist
cultivation and evaluation phases.

G.2 SPECIALIST SYNTHESIS PROMPTS

G.2.1 CREATION

Creation: Identity Synthesis Prompt

You will propose diversified identity variants for a new specialist, operator_name, which
is based on base_template.

Specialist description: [...]

Each identity should be a detailed second-person identity including their professional role
(i.e., ’a particle physicist’, do not include names), their fields of expertise (deep + broad), and
a non-domain-specific reasoning heuristic that distinguishes them from other specialists.

Examples of reasoning heuristics:
• Works backwards from contradictory answers to identify wrong assumptions or equations.
• Never assumes anything not explicitly stated; always returns to first principles when

confused.
• Builds multiple competing hypotheses simultaneously and tests them against evidence.
• Visualizes problems as interconnected networks of constraints and relationships.

Output the identity text starting with ’You are...’
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Creation: Directive Synthesis Prompt

You will propose diversified directive variants for a new specialist, operator_name, which
is based on base_template.

Specialist description: [...]

Create a bulleted list of methodological principles and reasoning approaches that this new
specialist will follow. Do not provide specific formulas, step-by-step procedures, formatting
instructions, or direct solutions. Focus on how the specialist should think and approach
problems, not what specific steps to take.

Include strategic reasoning approaches like self-criticism, assumption questioning, hypothesis
building, pattern recognition, systematic analysis, etc. It is very important that the directives
should guide analytical thinking without restricting the specialist’s reasoning search space.

G.2.2 CROSSOVER

Crossover: Identity Synthesis Prompt

You will propose diversified identity variants for a combined specialist that synthesizes the
expertise of two parent specialists. The specialist is operator_name, which is based on
base_template.

Specialist description: [...]
Parent 1’s identity: [...]
Parent 2’s identity: [...]

Each identity should be a detailed second-person identity including their professional role
(i.e., ’a particle physicist’), their fields of expertise (deep + broad), and a non-domain-specific
reasoning heuristic. The combined identity should integrate the best aspects of both parent
specialists while creating a coherent, unified specialist persona.

Examples of reasoning heuristics:
• Works backwards from contradictory answers to identify wrong assumptions or equations.
• Never assumes anything not explicitly stated; always returns to first principles when

confused.
• Builds multiple competing hypotheses simultaneously and tests them against evidence.
• Visualizes problems as interconnected networks of constraints and relationships.

Output the identity text starting with ’You are...’

Crossover: Directive Synthesis Prompt

You will propose diversified directive variants for a combined specialist that synthesizes the
expertise of two parent specialists. The specialist is operator_name, which is based on
base_template.

Specialist description: [...]
Parent 1’s identity: [...]
Parent 2’s identity: [...]

Create a bulleted list of methodological principles and reasoning approaches that this new
specialist will follow. Do not provide specific formulas, step-by-step procedures, formatting
instructions, or direct solutions. Focus on how the specialist should think and approach
problems, not what specific steps to take. The combined directives should integrate the best
aspects of both parent specialists’ directives, including any existing reasoning approaches.

Include strategic reasoning approaches like self-criticism, assumption questioning, hypothesis
building, pattern recognition, systematic analysis, etc. It is very important that the directives
should guide analytical thinking without restricting the specialist’s reasoning search space.
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G.3 JUDGE PROMPTS

Judge Prompt: Evaluating Identities

You are judging specialist identities for: operator_name, which is based on
base_template.

Specialist description: [...]
Identity candidates: [...]

Pick the best identity based on the following criteria:
1. Non-domain-specific reasoning heuristics for a rich reasoning ’gene’ pool (quality-

diversity, step-back analysis, assumption-challenging, etc.)
2. Avoids making assumptions not explicitly stated in the problem
3. The resulting specialist is a T-shaped specialist. In other words, it has both a deep

specialization and broader domain coverage. Avoid hyperspecific specialists that are too
narrow in their domain coverage.

4. Combines domain expertise with general problem-solving approaches

Judge Prompt: Evaluating Directives

You are judging specialist directives for: operator_name, which is based on
base_template.

Specialist description: [...]
Directive candidates: [...]

Pick the best directives based on the following criteria:
1. Focus on how to think, not what specific steps to take. Mimic domain-specific human

experts to guide analytical thinking without constraining solution paths
2. Prefer methodological principles over rigid instructions. Avoid specific formulas, proce-

dures, or direct solutions
3. Has a specific methodology for handling contradictions or confusion
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