

AUTOMATED STATEFUL SPECIALIZATION FOR ADAPTIVE AGENT SYSTEMS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Current automated agent design frameworks produce either static workflows that
012 lack adaptability or per-query optimizers that prevent the accumulation of deep,
013 agent-level task expertise. We propose a new direction that reconciles these
014 paradigms: creating stateful teams of specialist agents that accumulate knowl-
015 edge over time and can be reconfigured for novel tasks entirely without human
016 intervention. To this end, we introduce ASPEC, a framework that manages this full
017 agent lifecycle by first autonomously **discovering** specialist archetypes via evolu-
018 tionary search and then **cultivating** their expertise through experience, mirroring
019 how human experts learn through practice and reflection. We further introduce a
020 lightweight hierarchical control policy, "retain-then-escalate," which governs when
021 to leverage the established agent system versus when to adapt its structure. Through
022 comprehensive experiments, we demonstrate that this approach leads to significant
023 performance gains on expert-level scientific benchmarks like GPQA while match-
024 ing the state-of-the-art on broader domain tasks, demonstrating a promising path
025 toward agent systems that are simultaneously expert, adaptive, and efficient.¹
026

1 INTRODUCTION

027
028 **Motivation.** The emergence of sophisticated multi-agent systems capable of tackling complex
029 problems (Wu et al., 2024; Li et al., 2023; Hong et al., 2024) has marked a significant advance for
030 autonomous agents. While effective, these foundational systems were often manually hand-crafted
031 for specific tasks, which limited their scalability. In response, research has shifted towards automating
032 aspects of these systems, starting with prompt optimization (Khattab et al., 2024; Yuksekgonul et al.,
033 2025; Yang et al., 2024) or inter-agent communication via graph-based workflow representations
034 (Zhuge et al., 2024; Liu et al., 2024; Zhang et al., 2025a), and then, to the designs of agent systems
035 themselves. The automation of agent designs has since largely split into two distinct paradigms:
036 task-level optimization and query-level adaptation. In the case of **(I) Task-Level Architecture**
037 **Search**, prior works optimized for a single, static agent workflow for a specific task domain. These
038 approaches, which mirror early approaches in AutoML and Neural Architecture Search (NAS)
039 (Elsken et al., 2019), were pioneered by ADAS (Hu et al., 2025), which uses Meta Agent Search to
040 iteratively program new agents in executable code; AFlow (Zhang et al., 2025b), which similarly
041 adopts code representation but utilizes Monte Carlo Tree Search (MCTS) to efficiently navigate
042 the search space; and AgentSquare (Shang et al., 2025), which employs module evolution and
043 recombination to discover novel configurations in a constrained, modular code-based search space.
044 The primary limitation of these methods is their intrinsic "one-size-fits-all" nature: by searching for a
045 single best design for an entire task domain, they fundamentally lack the adaptability necessary to
046 dynamically allocate inference resources or customize the structure for individual user queries.
047

048 To address the rigidity of task-level systems, a recent paradigm shift has focused on generating a
049 unique workflow for each incoming query, **(II) Query-Level Architecture Adaptation.** MaAS
050 (Zhang et al., 2025c) introduces the concept of an "agentic supernet", optimizing a probabilistic
051 distribution of agent architectures during training and sampling a bespoke architecture from said
052 distribution for each query during inference. This paradigm has been extended by other methods
053 like FlowReasoner (Gao et al., 2025), which uses a reasoning-based meta-agent to generate query-
054 specific agent systems; ScoreFlow (Wang et al., 2025), which introduces Score-DPO, a method

¹We will open-source all code upon release.

054 that fine-tunes its per-query workflow generator using quantitative evaluation scores; MAS-GPT
 055 (Ye et al., 2025), which trains an LLM to treat workflow construction as a generative task; and
 056 MAS-Zero (Ke et al., 2025), which employs a meta-agent at inference time to iteratively generate and
 057 refine agent configurations based on self-generated feedback. While these approaches offer superior
 058 adaptivity, they are challenged by the lack of long-term state. Because the architecture is regenerated
 059 or resampled for every query, the system incurs a significant "rediscovery" cost, and the individual
 060 components or agents are largely prevented from accumulating deep, persistent expertise over time.

061 The prior work demonstrate a critical chasm between monolithic, task-level robustness and adaptive,
 062 per-query regeneration. The former is static at inference, while the latter incurs "rediscovery"
 063 costs by repeatedly invoking meta-agents for architectural search in lieu of leveraging persistent
 064 knowledge, a system-level problem that a modular, agent-level memory addition would fail to
 065 address. Our proposed framework, ASPEC, reconciles these limitations by integrating the specialized
 066 mechanisms of self-evolving agents into a unified lifecycle within agent design automation. This
 067 lifecycle establishes stable, persistent agent archetypes deployed by a "retain-then-escalate" control
 068 policy, allowing the system to default to efficient *and* effective execution by relying on the persistent
 069 knowledge of its specialist agents.

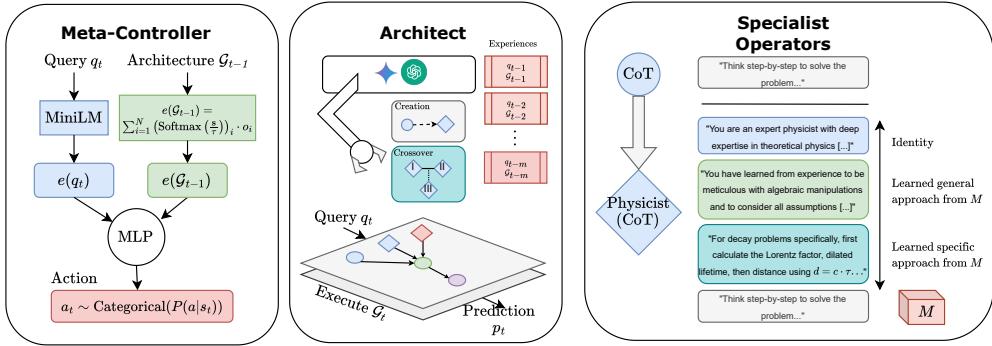
070 **Contributions.** In short, our core contributions are as follows:

- 072 • We propose ASPEC, a framework that manages the full lifecycle of expert specialist agents
 073 via an automated two-stage methodology: **(I) Discovery**, where an LLM autonomously
 074 explores the design space of agent archetypes using evolutionary processes, and **(II) Culti-**
 075 **vation**, where selected agents autonomously cultivate their expertise on a training corpus.
- 076 • We introduce "retain-then-escalate", a control policy that, instead of being either fully static
 077 or fully dynamic, defaults to retaining a stateful agent team across related queries to leverage
 078 expertise and minimize cost, only escalating to architectural resampling when needed.

080 **Related Work.** The mechanisms for autonomous discovery and expertise cultivation as seen in self-
 081 evolving agents have been explored individually across various research efforts. For instance, parallel
 082 to workflow optimization, a distinct stream of research has explored agent specialization via prompt
 083 optimization, starting with role assignment via ExpertPrompting (Xu et al., 2025), PromptBreeder
 084 (Fernando et al., 2023), and PromptAgent (Wang et al., 2024a). Multi-agent frameworks like
 085 EvoAgent (Yuan et al., 2025), which utilizes evolutionary algorithms to automatically generate and
 086 optimize multiple specialized agents with diverse settings and roles; MASS (Zhou et al., 2025), which
 087 optimizes individual role prompts alongside refining inter-agent communication; and AgentVerse
 088 (Chen et al., 2024a) and AutoAgents (Chen et al., 2024b), which dynamically synthesize and
 089 coordinate teams of expert roles, validate a critical insight: the *identity* of the agents is as important
 090 as their interaction topology. However, this specialization is often stateless, and the focus remains
 091 on generating an optimal team for a single task. In contrast, ASPEC's Discovery process generates
 092 persistent specialists whose structures are specifically designed to be retained and cultivated over
 093 time rather than generated for transient collaboration or discarded after a single optimization run.

094 Another stream of research in self-evolving agents is expertise cultivation, focused on endowing agents
 095 with non-parametric state (memory and experience) that persists beyond a single task interaction.
 096 Such mechanisms are embodied by works like Reflexion (Shinn et al., 2023), which allows agents to
 097 record natural-language critiques of their past actions in episodic memory to guide future behavior
 098 and avoid recurring mistakes, and Self-Refine (Madaan et al., 2023), which employs a continuous
 099 iterative refinement loop where the agent critiques and revises its initial outputs. Furthermore,
 100 ExpeL (Zhao et al., 2024) processes past trajectories to generate insights and rules to guide further
 101 interactions, AutoGuide (Fu et al., 2024) automatically generates context-aware guidelines from
 102 offline experiences, facilitating the provision of relevant knowledge for active decision-making
 103 processes, while Agent Workflow Memory (Wang et al., 2024b) records common subtask sequences
 104 that can be retrieved and reused without re-planning from scratch. These prior works illustrate how
 105 experiential knowledge can be accumulated and generalized into long-term competence.

106 While memory systems and reflection mechanisms exist, ASPEC proposes a systematic, two-stage
 107 lifecycle framework where the Cultivation phase is explicitly linked to the output of the Discovery
 108 phase. This linkage ensures that the stateful expertise (memory/reflections) is accumulated within the
 109 designated, persistent specialist archetypes, facilitating the emergence of role-specific expertise.

108
109
110
2 PRELIMINARIES124
125
Figure 1: The three main components of ASPEC.

126
127 ASPEC can be framed as a Hierarchical Reinforcement Learning (HRL) methodology consisting of a
128 low-level generative process for architectural redesign and agentic operator pool evolution, as well as
129 a lightweight, high-level policy that learns *when* to invoke this process efficiently. We formally define
130 these components below, starting with the modular units they operate upon: agentic operators.

131 **Definition (Agentic Operator).** Following MaAS (Zhang et al., 2025c), we define an agentic
132 operator O as a tuple $O = (\mathcal{M}, \mathcal{P}, \{\mathcal{T}_i\}_{i=1}^n)$ where $\mathcal{M} \in \mathbb{M}$ denotes the LLM backbone, $\mathcal{P} \in \mathbb{P}$
133 denotes the prompt, and $\{\mathcal{T}_i\} \subseteq \mathbb{T}$ denotes the available tools. A multi-agent system is then
134 represented as a directed acyclic graph $\mathcal{G} = \{V, E\}$ where each vertex $v \in V$ represents an instance
135 of an agentic operator and each edge $e \in E$ defines the connection between two operators.

136 To facilitate the evolutionary process at the heart of our methodology, we structure the operator pool
137 \mathbb{O}_t into two functionally distinct sets. First, the base operators (\mathbb{O}_{base}), a static set of foundational,
138 stateless operators consisting of extensible single-/multi-agent systems, for instance Chain-of-Thought
139 (Wei et al., 2022) or LLM-Debate (Du et al., 2024a). Second, the specialist operators (\mathbb{O}_{spec}), a
140 dynamic set of operators derived from base operators.

141 A specialist $O_i^S \in \mathbb{O}_{\text{spec}}$ extends a base operator $O_i \in \mathbb{O}_{\text{base}}$ with a learned identity and a persistent
142 memory while inheriting its foundational reasoning structure (e.g., "think step-by-step"). It is a
143 tuple $O_i^S = (O_i, \mathcal{P}_s, M)$ where \mathcal{P}_s is a specialized prompt and M is a persistent, experience-driven
144 memory module. We decompose \mathcal{P}_s into an **identity**, which is a rich descriptor of who the agent is
145 (Xu et al., 2025), and a set of **directives**, which are methodological principles for the agent's thought
146 process, allowing for a rich and diverse "genetic" space of reasoning approaches (Naik et al., 2024).

147 **Definition (Architect).** The architect is the low-level generative component responsible for evolving
148 the operator pool and redesigning the multi-agent architecture, implemented as an in-context learning
149 LLM that operates via a multi-turn iterative reasoning process. We provide the prompt in Appendix
150 G.1 and give an example of its reasoning in Appendix A.2. Functionally, given a query q_t , the
151 Architect is a process $f_{\mathbb{A}}$ that maps a rich contextual input to a new system configuration

$$f_{\mathbb{A}}(q_t, \mathcal{H}_{t-m:t-1}, \mathbb{O}_{t-1}, \mathcal{G}_{t-1}) \rightarrow (\mathcal{G}_t, \mathbb{O}_t) \quad (1)$$

152 where $\mathcal{H}_{t-m:t-1}$ is a sliding window of the past m experiences including the executed architectures
153 and performance outcomes; \mathbb{O}_{t-1} is the previous operator pool; and \mathcal{G}_{t-1} is the current architecture.
154 Its objective is to find an architecture that maximizes the immediate cost-aware utility while being
155 general enough to be potentially retained for future tasks. We define this value in terms of the utility
156 with respect to the oracle a_t , $U_t = U(\mathcal{G}_t; q_t, a_t)$, and the total costs of all API LLM calls, $C_t(\mathcal{G}_t)$.

$$\mathcal{G}_t^* = \arg \max_{\mathcal{G}_t \in \mathcal{G}} \mathbb{E} [U_t - \lambda C_t(\mathcal{G}_t) + V_{\pi_{\theta}}(s_{t+1})] \quad (2)$$

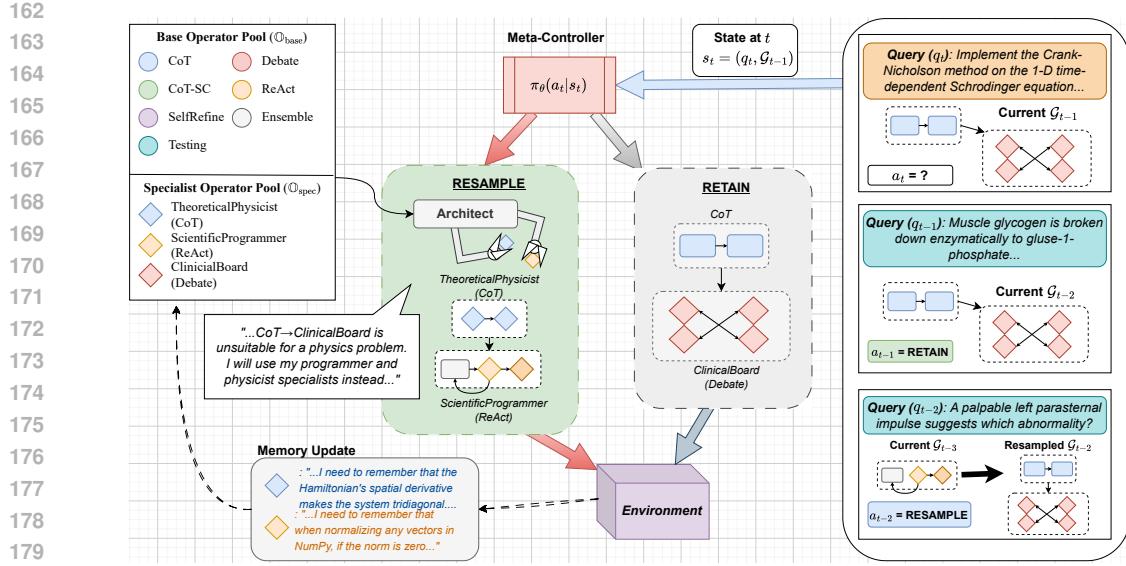


Figure 2: The online adaptation loop of ASPEC.

where $V_{\pi_\theta}(s_{t+1})$ is the expected future value given the next state, formally defined in Equation 3. While this generative process enables adaptation, by continuously rebuilding the architecture, the system potentially forgoes the chance for the active specialists to deepen their expertise on the novel task. Additionally, and perhaps even more importantly, the Architect’s invocation is computationally expensive and poses a practical challenge at scale. To address the trade-off between adaptability, experiential learning, and cost-efficiency, we propose the meta-controller, a lightweight gating module that decides when to escalate to the Architect during deployment.

Definition (Meta-Controller). The meta-controller is a neural policy $\pi_\theta(a_t|s_t)$ that makes a single high-level decision: retain the current agent architecture, or resample a new one for a given query. Its action space is discrete, that is, $\mathcal{A} = \{a_{\text{RETAIN}}, a_{\text{RESAMPLE}}\}$. We formulate the training of the meta-controller as a Markov Decision Process (MDP), where the action taken at step $t-1$ determines the architecture \mathcal{G}_{t-1} available in the subsequent state s_t . The state s_t at timestep t is therefore:

$$s_t = (e_q(q_t), e_g(\mathcal{G}_{t-1})) \quad (3)$$

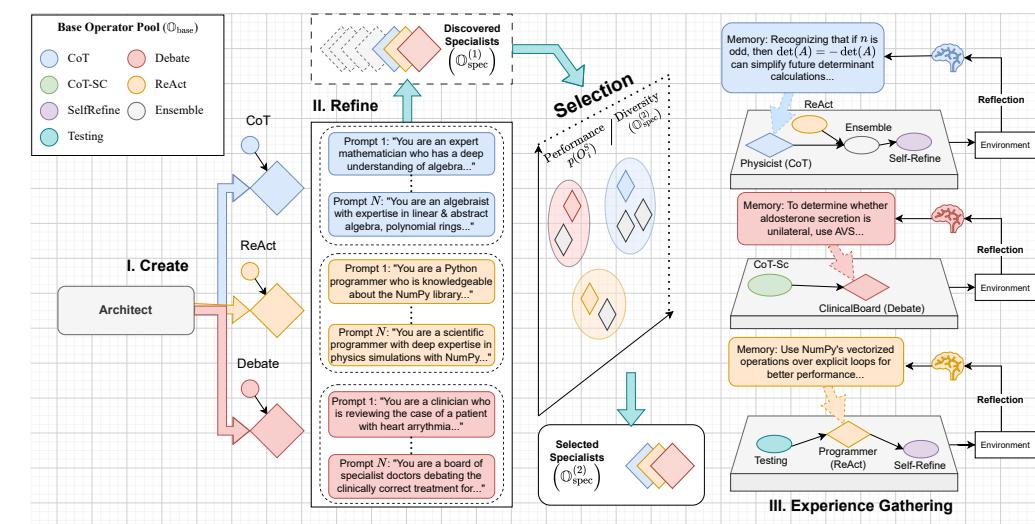
where $e_q(\cdot)$ and $e_g(\cdot)$ are fixed-length query and textual graph embeddings, embedded with MiniLM (Wang et al., 2020). While previous work (Zhang et al., 2025a) has used Graph Neural Networks (GNNs) to encode architectural topology, we opt for a simpler, query-aware semantic representation. Our ‘bag-of-operators’ approach represents an architecture as an attention-weighted average of the embeddings of its constituent operators. The attention weights are computed based on the similarity between each operator and the input query embedding $e_q(q_t)$. This method, inspired by Vaswani et al. (2017), yields a dynamic, query-contextual state representation that captures *what* an architecture can do for a specific query without the significant training overhead of a dedicated GNN.

The explicit objective for the meta-controller is to maximize the expected discounted sum of future rewards over a stream of queries:

$$\pi_\theta^* = \arg \max_{\pi_\theta} \mathbb{E} \left[\sum_{t=0}^{t=T} \gamma^t \cdot R_t(s_t, a_t) \right], \quad \gamma \in [0, 1] \quad (4)$$

216

3 METHODOLOGY

237 Figure 3: The offline automated specialist discovery and cultivation process.
238

239 Our framework’s methodology is twofold. First, an end-to-end offline process discovers stateful
240 specialists and trains the meta-controller (Figure 3 and Algorithm 2). These components are then
241 deployed in an online adaptation loop to handle unseen queries, with the operator pool fixed (Figure 2
242 and Algorithm 1). To explore the space of possible specialists and identify a set of specialist operators
243 \mathbb{O}_{spec} such that the resulting operator pool is (1) high-performing, (2) diverse, and (3) specialized
244 to the problem task domain **without human intervention**, we split the learning objectives into two
245 distinct phases: an initial exploratory specialist discovery phase to address (1) and (2), and a focused,
246 experience-gathering cultivation phase to address (3), mirroring how a human expert might first learn
247 broad concepts and then deepen their knowledge through practice.

248

3.1 SPECIALIST DISCOVERY

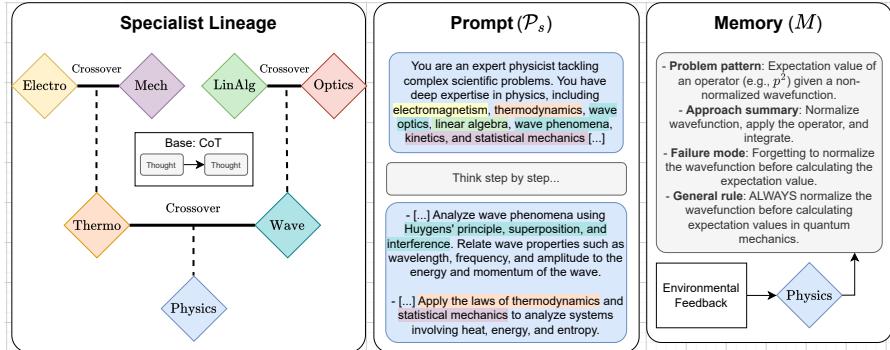
249 Depicted as stages **I** and **II** in Figure 3, during the specialist discovery phase, the Architect iteratively
250 evolves a pool of specialists using its full action space (detailed in Appendix G.1). We formalize the
251 action space using the notions of creation and crossover.

252 **Creation.** Let $\mathbb{O}_{\text{spec}}^{(1)}$ be the pool of specialist operators during the specialist discovery phase and
253 $\mathbb{O}_{\text{spec}}^{(2)}$ be the pool of specialist operators during the cultivation phase. For a query q_t , the Architect
254 can propose a specialist $O_i^S \in \mathbb{O}_{\text{spec}}^{(1)}$ derived from a base operator O_i by instantiating its prompt
255 with a structured identity-directive pair. The creation process employs multi-variant synthesis with
256 LLM adjudication. In practice, we overgenerate $S = 3$ candidate identity-directive variants with
257 diverse pairs, then judge variants via LLM-guided evaluation process that considers the reasoning
258 methodology and domain coverage. We provide the prompts for the Judge in Appendix G.3.

259 To prevent early fragmentation, we enforce a dynamic pool size limit of $2 \times k$, where k is the
260 maximum size of the final specialist selection pool. If the pool exceeds this limit, the Architect
261 is restricted from creating new specialists and must combine or prune existing agents, forcing the
262 consolidation of narrow capabilities.

263 **Crossover.** Given parent specialist operators O_1^S and O_2^S , the Architect can synthesize a child
264 specialist O_c^S , similarly by using variant generation. This similarly triggers a multi-variant synthesis
265 process with LLM adjudication that combines both parents’ specialist identities and directives,
266 preserving their expertise. We provide the prompts used to perform this synthesis in G.2.

270 **Selection.** At the end of the specialist discovery phase, we select the top- k specialists for cultivation
 271 by solving a multi-objective optimization problem that balances performance and diversity:
 272



287 Figure 4: Case study of a physics specialist discovered on GPQA. The crossover action allows us to
 288 trace back the agent’s “lineage” and identify aspects of its prompt that have been inherited from its
 289 ancestors. The full final prompt and more examples of its memory entries are in Appendix A.3.

$$\begin{aligned} \mathbb{O}_{\text{spec}}^{(2)} &= \arg \max_{|\mathbb{O}_{\text{spec}}| \leq k} \left\{ \sum_{O_i^S \in \mathbb{O}_{\text{spec}}^{(1)}} p(O_i^S) + \text{Diversity}(\mathbb{O}_{\text{spec}}) \right\} \\ \text{Diversity}(\mathbb{O}_{\text{spec}}^{(2)}) &= \sum_{j=1}^k \max_{O_i^S \in C_j \cap \mathbb{O}_{\text{spec}}} p(O_i^S) \end{aligned} \quad (5)$$

297 where $p(O_i^S)$ represents the average performance of specialist O_i^S and C_j is the j -th cluster in
 298 embedding space obtained via K-means clustering on specialist operator embeddings.
 299

300 3.2 SPECIALIST CULTIVATION

302 Depicted as stage **III** of Figure 3, during the specialist cultivation phase, the selected top- k discovered
 303 specialists deepen their domain expertise through post-execution reflection on a training corpus.
 304 The cultivation process is applied independently to each specialist, resulting in distinct, specialized
 305 memories, as can be seen in Figure 4. For each specialist O_i^S with accumulated memory M_i , we
 306 implement a semantic retrieval mechanism (Lewis et al., 2020) to inject relevant experience during
 307 tasks. Given a query q_t , we partition the memory into structured chunks, then inject the most relevant
 308 chunks for injection as contextual knowledge during specialist execution.

310 4 RESULTS

312 **Benchmarks & Baselines.** We evaluate ASPEC on five public benchmarks across three domains:
 313 **math reasoning** with MATH (Hendrycks et al., 2021), **question answering** with MMLU (Hendrycks
 314 et al., 2021) and GPQA (Rein et al., 2024), **code generation** with HumanEval (Du et al., 2024b)
 315 and SciCode (Tian et al., 2024). In particular, GPQA and SciCode are expert-level QA and coding
 316 benchmarks respectively. Further details on the dataset statistics are in Appendix F.

317 We select 13 representative baselines across **(1) hand-designed single agents**, in particular Chain-
 318 of-Thought (Wei et al., 2022), Self-Refine (Madaan et al., 2023), Self-Consistency (Wang et al.,
 319 2023), Reflexion (Shinn et al., 2023); **(2) hand-designed multi-agents**, in particular LLM-Debate
 320 (Du et al., 2024a), DyLAN (Liu et al., 2024); **(3) automated agent specialisation methods** with
 321 Role Assignment (Xu et al., 2025), AutoAgents (Chen et al., 2024b), EvoAgent (Yuan et al., 2025);
 322 and **(4) autonomous agent design frameworks**, including query-level MaAS (Zhang et al., 2025c),
 323 and task-level AFlow (Zhang et al., 2025b) and ADAS (Hu et al., 2025). Details for the baseline
 324 setups are in Appendix C.

324 **Implementation.** We select Gemini 2.0 Flash to be the standard execution model across all methods,
 325 alongside GPT-4o-mini and Llama 3.3 70B Instruct in Figure 4. We set the size of the sliding window
 326 in Equation 1 to be $m = 10$ and the maximum number of specialists in Equation 5 to be $k = 5$.
 327

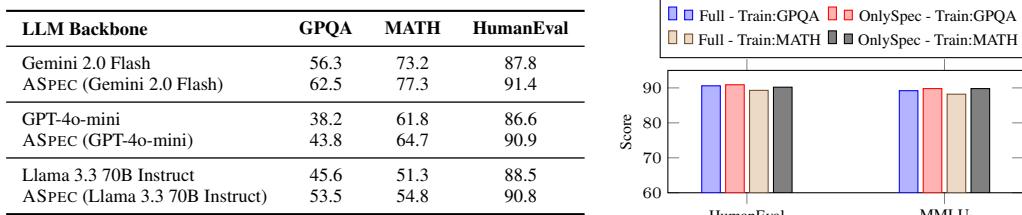
328
 329 Table 1: Performance comparison across methods. We use Gemini 2.0 Flash with a temperature of
 330 $T = 0.3$ consistently across all methods. Best results are in **bold**, second-best are underlined

Method	MATH	HumanEval	MMLU	GPQA	SciCode (SP)	Average
Vanilla	73.2	87.8	86.0	56.3	24.0	65.3
CoT (Wei et al., 2022)	74.5	90.4	88.2	58.2	24.3	65.5
CoT-SC (Wang et al., 2023)	75.1	91.2	88.8	57.1	25.2	67.5
Self-Refine (Madaan et al., 2023)	74.8	91.3	88.5	57.4	24.6	67.3
Reflexion (Shinn et al., 2023)	73.5	86.8	88.5	57.1	25.1	66.2
LLM-Debate (Du et al., 2024a)	74.4	85.5	87.1	59.7	24.0	66.1
DyLAN (Liu et al., 2024)	75.4	89.3	88.9	61.3	25.2	68.0
Role Assignment (Xu et al., 2025)	72.4	91.2	89.5	57.4	23.5	67.6
AutoAgents (Chen et al., 2024b)	73.4	88.0	85.3	56.8	24.8	65.7
EvoAgent (Yuan et al., 2025)	75.9	90.2	88.3	<u>61.5</u>	24.8	68.1
ADAS (Hu et al., 2025)	74.5	82.9	<u>90.0</u>	58.2	24.8	66.2
AFlow (Zhang et al., 2025b)	<u>76.5</u>	89.3	90.5	61.3	24.3	<u>68.4</u>
MaAS (Zhang et al., 2025c)	74.4	91.6	87.3	57.8	25.6	67.4
ASPEC	77.3	<u>91.4</u>	<u>90.0</u>	62.8	26.6	69.6

344
 345 **Performance Analysis.** The results from Table 1 demonstrate that ASPEC can consistently match
 346 or outperform existing hand-crafted or automated agentic systems across mathematical reasoning,
 347 question answering, and coding. Its benefits are most pronounced on GPQA, where it achieves a score
 348 of 62.8%. This represents a substantial 6.5% improvement over the vanilla Gemini 2.0 Flash model.
 349 Furthermore, ASPEC surpasses the leading hand-designed agent (LLM-Debate) by 3.1%, the top
 350 autonomous agent framework (AFlow) by 1.5%, and the best automated agent specialisation method
 351 (EvoAgent) by 1.3%. ASPEC also leads on SciCode, a benchmark composed of realistic scientific
 352 research problems that are decomposed into sequential subproblems. We note that the "retain-then-
 353 escalate" structure allows retained specialists to build upon context and learned knowledge from
 354 previous steps, which is crucial for success in multi-part scientific coding.

355 This naturally leads to the question of whether specialists trained on specific domains can be trans-
 356 ferred to other domains. To this end, Figure 4 confirms that the performance gains from the
 357 ASPEC methodology are robustly transferable across different models and benchmarks. In the
 358 cross-benchmark analysis (Figure 4, right), we compare the standard configuration against an ablation
 359 labeled ONLYSPEC, where the operator pool is restricted *exclusively* to specialists trained on a
 360 different source domain (e.g., utilizing MATH-trained specialists for HumanEval), and find that the
 361 ONLYSPEC configuration matches or even slightly exceeds the performance of the full system. We
 362 attribute this to the cultivation of "T-shaped" reasoning strategies for specialists (Appendix G.3);
 363 furthermore, restricting the pool prevents the Architect from defaulting to "safe" but less capable
 364 generalist base operators, effectively forcing the utilization of these expert reasoning archetypes.

365
 366 Figure 5: Cross-model (left) and cross-benchmark (right) transferability results. We evaluate both the
 367 full ASPEC and ASPEC with *only* specialists trained on a different benchmark.



375
 376 **Efficiency Analysis.** Table 2 demonstrates that ASPEC is cost-efficient across both training and
 377 inference. In particular, running the offline training process on GPQA incurred only a total cost of

378 1.38 USD. We find that once a strong specialist pool has been found, the Architect often prefers lean
 379 architectures utilizing those specialists. As shown in Table 6, removing specialists causes costs to
 380 increase significantly – the Architect becomes under-confident in its generalist pool and samples
 381 highly complex, but redundant multi-agent architectures in an attempt to compensate.
 382

383 **Table 2: Efficiency comparison across methods on the GPQA benchmark.**

385 386 387 Method	388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 559 560 561 562 563 564 565 566 567 568 569 569 570 571 572 573 574 575 576 577 578 579 579 580 581 582 583 584 585 586 587 588 589 589 590 591 592 593 594 595 596 597 598 599 599 600 601 602 603 604 605 606 607 608 609 609 610 611 612 613 614 615 616 617 618 619 619 620 621 622 623 624 625 626 627 628 629 629 630 631 632 633 634 635 636 637 638 639 639 640 641 642 643 644 645 646 647 648 649 649 650 651 652 653 654 655 656 657 658 659 659 660 661 662 663 664 665 666 667 668 669 669 670 671 672 673 674 675 676 677 678 679 679 680 681 682 683 684 685 686 687 688 689 689 690 691 692 693 694 695 696 697 698 699 699 700 701 702 703 704 705 706 707 708 709 709 710 711 712 713 714 715 716 717 718 719 719 720 721 722 723 724 725 726 727 728 729 729 730 731 732 733 734 735 736 737 738 739 739 740 741 742 743 744 745 746 747 748 749 749 750 751 752 753 754 755 756 757 758 759 759 760 761 762 763 764 765 766 767 768 769 769 770 771 772 773 774 775 776 777 778 779 779 780 781 782 783 784 785 786 787 788 789 789 790 791 792 793 794 795 796 797 798 799 799 800 801 802 803 804 805 806 807 808 809 809 810 811 812 813 814 815 816 817 818 819 819 820 821 822 823 824 825 826 827 828 829 829 830 831 832 833 834 835 836 837 838 839 839 840 841 842 843 844 845 846 847 848 849 849 850 851 852 853 854 855 856 857 858 859 859 860 861 862 863 864 865 866 867 868 869 869 870 871 872 873 874 875 876 877 878 879 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 909 910 911 912 913 914 915 916 917 918 919 919 920 921 922 923 924 925 926 927 928 929 929 930 931 932 933 934 935 936 937 938 938 939 940 941 942 943 944 945 946 947 948 949 949 950 951 952 953 954 955 956 957 958 959 959 960 961 962 963 964 965 966 967 968 969 969 970 971 972 973 974 975 976 977 978 979 979 980 981 982 983 984 985 986 987 988 989 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2179 2180 2181 2182 2183 2184		

6 further reveals that the alternative control policies yield significantly lower accuracy at 58.3% compared to the meta-controller's 62.5%, and while the LLM-as-gate policy achieves a comparatively high accuracy 62.5%, it does so at a substantially higher cost, ~ 4.25 times that of the meta-controller.

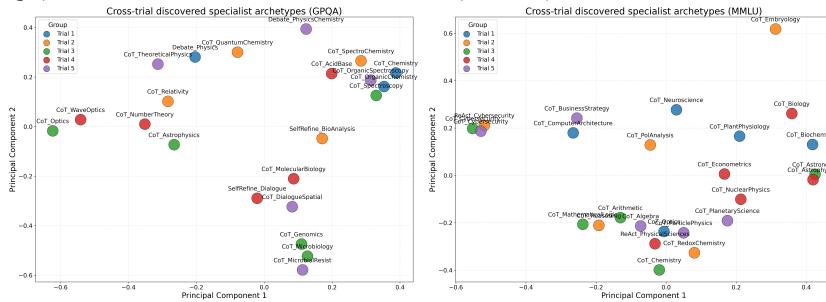
5.2 SENSITIVITY ANALYSES

We analyze the sensitivity of ASPEC to two main parameters: the maximum size of the specialist pool, k , from Equation 5, and the length of the sliding window from Equation 1, m . As shown in Figure 6, setting k at both extremities reduced performance, suggesting a light Goldilocks-like effect on GPQA. At $k = 1$, the system achieves 58.8%, performing similarly to the "ASPEC w/o specialist operators" ablation as seen in Table 6, indicating that a single specialist lacks the domain coverage to outperform generalist operators. Conversely, at $k = 10$, performance drops to 60.9%, which aligns closely with the "ASPEC w/o specialist memory" ablation in Table 6. We attribute this to experience fragmentation: with a larger pool size, individual specialists are selected less frequently by the Architect during the Cultivation phase. Since memory is only acquired upon execution, these "sparse" specialists fail to accumulate the dense history required to form deep expertise.

We hypothesize that this is not a fundamental limitation but rather reflects a trade-off between specialist diversity and expertise. Future work could explore how the optimal specialist pool size, k , changes with the breadth of the target domain and the accumulated experience of each specialist.

5.3 CONVERGENCE OF THE SPECIALIST DISCOVERY PROCESS

Figure 7: Visualization of discovered specialist operator embeddings on a "narrow" domain benchmark (GPQA) and on a "broad" domain benchmark (MMLU).



To determine whether ASPEC's discovery process reliably finds similar expert archetypes, we embedded the prompts of discovered specialists across 5 independent trials and plotted them in Figure 7. We find that there is strong convergence on GPQA (Figure 7, left), with different runs independently discovering the same key roles (chemistry, biology, physics), demonstrating the robustness of the process for specialized domains. Conversely, on the broad-domain MMLU benchmark (Figure 7, right), the process shows some divergence, exploring different but viable team compositions to cover the vast topic space. Even so, we find pockets of convergence in well-defined sub-domains like the physical sciences.

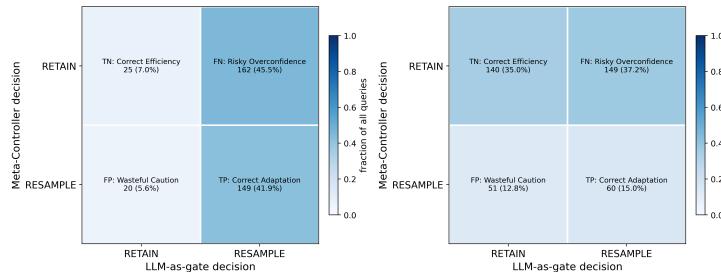
Taken together, these results show that the ASPEC discovery process adapts its convergence/divergence behavior based on the specificity of the target domain.

5.4 RATIONALITY OF THE META-CONTROLLER

We compare a learned meta-controller's decisions against the LLM-as-gate "oracle proxy" in Table 6. On GPQA, the controller learns a pragmatic economic policy, where its high rate of "overconfident" disagreements with the perfectionist oracle reflects a deliberate trade-off for cost efficiency. On MMLU, this behavior persists, but instances of "wasteful caution" reveal the limitations of its lightweight state representation, leading to unnecessary resampling.

486
487
488
489
490
491
492
493
494
495
496
497

Figure 8: Side-by-side comparison of confusion matrices for GPQA (left) and MMLU (right).



6 LIMITATIONS & FUTURE WORKS

A key future direction is the development of a rigorous theoretical framework to model the convergence properties of the specialist discovery process with respect to factors like domain breadth, potentially leading to principles for self-tuning the discovery process. Future work should also validate ASPEC’s applicability in more diverse environments, particularly on complex, real-world software engineering tasks such as those in SWE-bench (Jimenez et al., 2024). Intuitively, specialists discovered and cultivated on a specific repository could autonomously internalize its unique conventions and APIs, a promising avenue for automating repository-specific expertise without manually engineered rules. Finally, the risk of specialists amplifying training biases through memory cultivation, a risk that warrants further investigation and the development of mitigation strategies.

While our lightweight meta-controller is crucial for efficiency, we identify its alignment with an "oracle proxy" LLM-as-gate policy as another critical area for improvement. The results of our ablations study on GPQA in Table 6 might be masking an underlying limitation: the meta-controller’s decision-making process diverges from the oracle proxy’s, as explored in Section 5.4. This divergence can become a significant weakness when its lightweight state representation leads to errors such as unnecessary resampling or over-cautious retaining. The central challenge is to design a gating mechanism that achieves the decision-making fidelity of the LLM-as-gate oracle proxy while retaining the low computational overhead of a small, specialized policy.

Finally, we observe that the interplay between the meta-controller’s policy, the Architect’s choices, and the specialists’ memory accumulation creates a complex, co-evolutionary dynamic. A conservative "Retain" policy concentrates experience into a smaller set of active architectures, potentially guiding those agents to develop broader, more resilient memories to cope with slightly mismatched queries. Conversely, a highly dynamic policy distributes experience more sparsely across the specialist pool. Furthermore, because the Architect conditions its decisions on recent history (sliding window), it may develop path-dependent preferences for certain teams that "suffice" even if they are not optimal, further influencing the distribution of experience. Future work could explicitly model this joint optimization to ensure the control policy and specialist cultivation are perfectly aligned.

7 CONCLUSION

This paper introduced ASPEC, a framework designed to bridge the gap between static, efficient agent workflows and adaptive, per-query optimizers. Our central contribution is a methodology for creating and managing stateful specialist agents that accumulate expertise over time, mirroring human learning. This is achieved through an automated lifecycle of evolutionary discovery and experiential cultivation, governed by a "retain-then-escalate" policy that ensures cost-effective adaptation. Our results on challenging scientific benchmarks such as GPQA suggest that this agent-centric approach can lead to substantial performance improvements without sacrificing efficiency. We believe this work presents a promising direction for autonomously creating agent systems that can develop deep expertise while retaining the flexibility to adapt to new challenges.²

537
538
539

²Large Language Models (LLMs) were used to assist in writing this paper.

540 REFERENCES
541

542 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
543 Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
544 Chi Wang. Autogen: Enabling next-gen LLM applications via multi-agent conversations. In *First*
545 *Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=BAakY1hNKS>.

546

547 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. Camel: Com-
548 municative agents for mind exploration of large language model society. *Advances in Neural*
549 *Information Processing Systems*, 36:51991–52008, 2023.

550

551 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
552 Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
553 Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
554 collaborative framework. In *The Twelfth International Conference on Learning Representations*,
555 2024. URL <https://openreview.net/forum?id=VtmBAGCN7o>.

556

557 Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
558 hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
559 Matei Zaharia, and Christopher Potts. DSPy: Compiling declarative language model calls into
560 state-of-the-art pipelines. In *The Twelfth International Conference on Learning Representations*,
2024. URL <https://openreview.net/forum?id=sY5N0zY50d>.

561

562 Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
563 James Zou. Textgrad: Automatic "differentiation" via text. *Nature*, 639(7985):609–616, March
2025. doi: 10.1038/s41586-025-08661-4.

564

565 Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
566 Chen. Large language models as optimizers. In *The Twelfth International Conference on Learning*
567 *Representations*, 2024. URL <https://openreview.net/forum?id=Bb4VGOWELI>.

568

569 Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbulin, and Jürgen
570 Schmidhuber. GPTSwarm: Language agents as optimizable graphs. In *Forty-first International*
571 *Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=uTC9AFXIhg>.

572

573 Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An llm-
574 agent collaboration framework with agent team optimization. *Conference on Language Modeling*,
2024.

575

576 Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
577 Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies
578 via graph neural networks. In *Forty-second International Conference on Machine Learning*, 2025a.
579 URL <https://openreview.net/forum?id=LpE54NUmO>.

580

581 Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. *Journal*
582 *of Machine Learning Research*, 20(55):1–21, 2019.

583

584 Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. In *The Thirteenth*
585 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=t9U3LW7JvX>.

586

587 Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiaqi Chen, Mingchen
588 Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
589 Wu. AFlow: Automating agentic workflow generation. In *The Thirteenth International Conference*
590 *on Learning Representations*, 2025b. URL <https://openreview.net/forum?id=z5uVAKwmjf>.

591

592 Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
593 LLM agent search in modular design space. In *The Thirteenth International Conference on Learning*
594 *Representations*, 2025. URL <https://openreview.net/forum?id=mPdmDYIQ7f>.

594 Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, LEI BAI, and Xiang Wang. Multi-agent
 595 architecture search via agentic supernet. In *Forty-second International Conference on Machine*
 596 *Learning*, 2025c. URL <https://openreview.net/forum?id=imcyVlzpXh>.

597

598 Hongcheng Gao, Yue Liu, Yufei He, Longxu Dou, Chao Du, Zhijie Deng, Bryan Hooi, Min Lin,
 599 and Tianyu Pang. Flowreasoner: Reinforcing query-level meta-agents, 2025. URL <https://arxiv.org/abs/2504.15257>.

600

601 Yinjie Wang, Ling Yang, Guohao Li, Mengdi Wang, and Bryon Aragam. Scoreflow: Mastering llm
 602 agent workflows via score-based preference optimization. *arXiv preprint arXiv:2502.04306*, 2025.

603

604 Rui Ye, Shuo Tang, Rui Ge, Yixin Du, Zhenfei Yin, Siheng Chen, and Jing Shao. MAS-GPT: Training
 605 LLMs to build LLM-based multi-agent systems. In *Forty-second International Conference on*
 606 *Machine Learning*, 2025. URL <https://openreview.net/forum?id=3CiSpY3QdZ>.

607

608 Zixuan Ke, Austin Xu, Yifei Ming, Xuan-Phi Nguyen, Caiming Xiong, and Shafiq Joty. Mas-zero:
 609 Designing multi-agent systems with zero supervision, 2025. URL <https://arxiv.org/abs/2505.14996>.

610

611 Benfeng Xu, An Yang, Junyang Lin, Quan Wang, Chang Zhou, Yongdong Zhang, and Zhendong
 612 Mao. Expertprompting: Instructing large language models to be distinguished experts, 2025. URL
 613 <https://arxiv.org/abs/2305.14688>.

614

615 Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
 616 Promptbreeder: Self-referential self-improvement via prompt evolution, 2023. URL <https://arxiv.org/abs/2309.16797>.

617

618 Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric
 619 Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-level
 620 prompt optimization. In *The Twelfth International Conference on Learning Representations*, 2024a.
 621 URL <https://openreview.net/forum?id=22pyNMuIoa>.

622

623 Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. EvoAgent:
 624 Towards automatic multi-agent generation via evolutionary algorithms. In Luis Chiruzzo, Alan
 625 Ritter, and Lu Wang, editors, *Proceedings of the 2025 Conference of the Nations of the Americas*
626 Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
627 1: Long Papers), pages 6192–6217, Albuquerque, New Mexico, April 2025. Association for
 628 Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.nacl-long.315.
 629 URL <https://aclanthology.org/2025.nacl-long.315/>.

630

631 Han Zhou, Xingchen Wan, Ruoxi Sun, Hamid Palangi, Shariq Iqbal, Ivan Vulić, Anna Korhonen, and
 632 Sercan Ö. Arik. Multi-agent design: Optimizing agents with better prompts and topologies, 2025.
 URL <https://arxiv.org/abs/2502.02533>.

633

634 Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
 635 Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
 636 Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
 637 behaviors. In *The Twelfth International Conference on Learning Representations*, 2024a. URL
 638 <https://openreview.net/forum?id=EHg5GDnyq1>.

639

640 Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin
 641 Shi. Autoagents: A framework for automatic agent generation. *International Joint Conference on*
642 Artificial Intelligence, 2024b.

643

644 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 645 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing*
646 Systems, 36:8634–8652, 2023.

647

648 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 649 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 650 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

648 Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Ex-
 649 pel: Llm agents are experiential learners. In *Proceedings of the Thirty-Eighth AAAI Con-*
 650 *ference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of*
 651 *Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial In-*
 652 *telligence, AAAI'24/IAAI'24/EAAI'24*. AAAI Press, 2024. ISBN 978-1-57735-887-9. doi:
 653 10.1609/aaai.v38i17.29936. URL <https://doi.org/10.1609/aaai.v38i17.29936>.

654 Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae, and
 655 Honglak Lee. Autoguide: Automated generation and selection of context-aware guidelines for large
 656 language model agents. *Advances in Neural Information Processing Systems*, 37:119919–119948,
 657 2024.

658 Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory, 2024b.
 659 URL <https://arxiv.org/abs/2409.07429>.

660 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 661 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 662 *neural information processing systems*, 35:24824–24837, 2022.

663 Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
 664 factuality and reasoning in language models through multiagent debate. In *Proceedings of the 41st*
 665 *International Conference on Machine Learning*, ICML'24. JMLR.org, 2024a.

666 Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi. Diver-
 667 sity of thought improves reasoning abilities of llms, 2024. URL <https://arxiv.org/abs/2310.07088>.

668 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
 669 attention distillation for task-agnostic compression of pre-trained transformers. *Advances in neural*
 670 *information processing systems*, 33:5776–5788, 2020.

671 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 672 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 673 *systems*, 30, 2017.

674 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 675 Heinrich Kütter, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 676 tion for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 677 9459–9474, 2020.

678 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 679 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *Advances*
 680 *in Neural Information Processing Systems*, 2021.

681 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 682 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
 683 *First Conference on Language Modeling*, 2024.

684 Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
 685 Chaofeng Sha, Xin Peng, and Yiling Lou. Evaluating large language models in class-level
 686 code generation. In *Proceedings of the IEEE/ACM 46th International Conference on Software*
 687 *Engineering, ICSE '24*, New York, NY, USA, 2024b. Association for Computing Machinery.
 688 ISBN 9798400702174. doi: 10.1145/3597503.3639219. URL <https://doi.org/10.1145/3597503.3639219>.

689 Minyang Tian, Luyu Gao, Shizhuo Zhang, Xianan Chen, Cunwei Fan, Xuefei Guo, Roland Haas, Pan
 690 Ji, Kittithat Krongchon, Yao Li, et al. Scicode: A research coding benchmark curated by scientists.
 691 *Advances in Neural Information Processing Systems*, 37:30624–30650, 2024.

692 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
 693 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 694 models. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 695 <https://openreview.net/forum?id=1PL1NIMMrw>.

702 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
703 Narasimhan. SWE-bench: Can language models resolve real-world github issues? In *The Twelfth*
704 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=VTF8yNQM66>.

705

706 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
707 React: Synergizing reasoning and acting in language models, 2023. URL <https://arxiv.org/abs/2210.03629>.

708

709 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-blender: Ensembling large language mod-
710 els with pairwise ranking and generative fusion. In Anna Rogers, Jordan Boyd-Graber, and
711 Naoaki Okazaki, editors, *Proceedings of the 61st Annual Meeting of the Association for Com-
712 putational Linguistics (Volume 1: Long Papers)*, pages 14165–14178, Toronto, Canada, July
713 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.792. URL
714 <https://aclanthology.org/2023.acl-long.792/>.

715

716 Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agentcoder:
717 Multi-agent-based code generation with iterative testing and optimisation, 2024. URL <https://arxiv.org/abs/2312.13010>.

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A CASE STUDY**
757758 **A.1 META-CONTROLLER DECISION-MAKING**
759760 We provide a few examples of a trained meta-controller's decision-making process on GPQA. These
761 include **(I) rational decisions**, such as retaining or resampling sensibly, and **(II) irrational decisions**,
762 when the imperfect meta-controller chooses to retain a mismatching architecture or resample a
763 matching architecture, thereby incurring expensive, unnecessary costs from the Architect call.764 **A.1.1 RATIONAL DECISIONS**
765766 Query: "Determine which set of states mentioned below are only entangled
767 states:
768 (a) $(1/30) * (|00\rangle + 2i|01\rangle - 3|10\rangle - 4i|11\rangle)$
769 (b) $(1/5) * (|00\rangle + 2i|01\rangle + 2|10\rangle - 4i|11\rangle)$
770 (c) $(1/2) (|00\rangle + |01\rangle + |10\rangle - |11\rangle)$
771 (d) $(1/2) (|00\rangle + |01\rangle - |10\rangle + |11\rangle).$ "772 Current architecture: `["CoT", "CoT_TheoreticalPhysics"]`

773 Action taken: "RETAIN"

774 Resulting architecture: `["CoT", "CoT_TheoreticalPhysics"]`

775 Outcome: CORRECT

776 Query: "Identify the missing reagents in the following reaction.

777 $(3r,5r,7r)$ -adamantane-1-carboxylic acid + A \rightarrow
778 $(3r,5r,7r)$ -adamantane-1-carbonyl azide + B \rightarrow
779 $(3s,5s,7s)$ -adamantan-1-amine."780 Current architecture: `["CoT", "CoT_TheoreticalPhysics"]`

781 Action taken: "RESAMPLE"

782 Resulting architecture: `["CoT_OrganicSpectroscopy"]`

783 Outcome: CORRECT

784 **A.1.2 IRRATIONAL DECISIONS**
785786 Query: "The Cope rearrangement is a chemical reaction where a 1,5-diene
787 molecule undergoes rearrangement, resulting in a change in the
788 positions of its carbon-carbon double bonds. This rearrangement can
789 be initiated by heat or light and is valuable for creating complex
790 organic compounds with changed structures. Select the major products
791 from the following rearrangements [...]"792 Current architecture: `["CoT", "CoT_TheoreticalPhysics"]`

793 Action taken: "RETAIN"

794 Resulting architecture: `["CoT", "CoT_TheoreticalPhysics"]`

795 Outcome: INCORRECT

796 Problem index: 2

797 Query: "Astronomers are searching for exoplanets around two stars with
798 exactly the same masses. Using the RV method, they detected one
799 planet around each star, both with masses similar to that of Neptune
800 [...]"801 The question is: How many times is the orbital period of planet #2
802 longer than that of planet #1?"803 Current architecture: `["CoT_TheoreticalPhysics"]`

804 Action taken: "RESAMPLE"

805 Resulting architecture: `["CoT_TheoreticalPhysics"]`

806 Outcome: CORRECT

810 A.2 ARCHITECT REASONING PROCESS
811812 **Figure 9: A three-turn reasoning process of the Architect.**
813814 **Initial State** During the discovery phase, the system receives a query that asks it to solve
815 a complex quantum mechanics problem involving both wave function normalization and
816 energy eigenvalue calculations. The current architecture is [[CoT]]. The operator pool con-
817 tains basic operators and a CoT_Astrophysics specialist, but lacks quantum mechanics
818 expertise.
819820 **Turn 1: Specialist Creation** The Architect analyzes the query and identifies the need for
821 domain-specific expertise in quantum mechanics.
822

```

<action>CREATE_OPERATOR</action>
<reasoning>
The query requires deep expertise in quantum mechanics,
specifically wave function normalization and energy eigenvalue
calculations. I will create a specialized operator that can
handle the mathematical rigor required for quantum mechanical
problems.
</reasoning>
<new_operator_name>CoT_QuantumMechanics</new_operator_name>
<base_template>CoT</base_template>
<identity>You are an expert quantum physicist specializing in wave
function analysis and energy eigenvalue problems. You have deep
expertise in Schrodinger equations, Hilbert spaces, and
operator theory, with broad knowledge across theoretical
physics and mathematical methods.</identity>
<directives>
  - Always verify wave function normalization conditions
  - Apply systematic eigenvalue analysis using appropriate
    boundary conditions [...]
</directives>

```

841 **Turn 2: Operator Combination** After creating the quantum specialist, the Architect
842 decides to combine it with an existing physics specialist.
843

```

<action>COMBINE_OPERATORS</action>
<reasoning>
Analyzing the recent sliding window of past experiences reveals a
pattern of diverse physics problems including both quantum
mechanics and astrophysics queries. Rather than maintaining
narrow specialists that may underperform on this broader
distribution, I will combine CoT_QuantumMechanics and
CoT_Astrophysics into a unified CoT_TheoreticalPhysics
specialist.
</reasoning>
<target_operator_1>CoT_QuantumMechanics</target_operator_1>
<target_operator_2>CoT_Astrophysics</target_operator_2>
<new_operator_name>CoT_TheoreticalPhysics</new_operator_name>
<identity>You are an expert theoretical physicist with deep
expertise in quantum mechanics and astrophysics. You combine
rigorous mathematical analysis with physical intuition to solve
complex problems in quantum theory, astrophysics, and
mathematical physics.</identity>
<directives>
  - For quantum mechanics problems, always verify wave function
    normalization conditions and apply systematic eigenvalue
    analysis [...]
  - For astrophysics problems, apply scaling analysis and use
    dimensional arguments to constrain solutions [...]

```

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

```
</directives>
```

Turn 3: Architecture Finalization With the enhanced specialist available, the Architect designs the optimal processing pipeline.

```
<action>FINALIZE_ARCHITECTURE</action>
<reasoning>
I will create a two-layer architecture:
  ['CoT_TheoreticalPhysics', 'SelfRefine']]. The theoretical
  physics specialist will provide the initial detailed analysis,
  and SelfRefine will critically evaluate and improve the
  solution.
</reasoning>
<architecture>[["CoT_TheoreticalPhysics"],
  ["SelfRefine"]]</architecture>
```

A.3 ANATOMY OF A SPECIALIST

We provide an example of a physicist that has been autonomously discovered and cultivated on GPQA. This specialist was the result of a crossover between two parent specialists, **CoT_THERMODYNAMICS** and **CoT_WAVEOPTICS**, who themselves descended from **CoT_ELECTROMAGNETISM**, **CoT_LINEARALGEBRA**, **CoT_OPTICS**, and **CoT_MECHANICS**.

Specialist Prompt: CoT_PHYSICS

You are an expert physicist tackling complex scientific problems. You have deep expertise in physics, including **electromagnetism**, **thermodynamics**, **wave optics**, **linear algebra**, **wave phenomena**, **kinetics**, and **statistical mechanics**. When faced with a complex problem, you always start by identifying the fundamental physical principles at play, breaking down the problem into its core components before attempting to solve it. You visualize physical phenomena as interconnected networks of **energy** and **momentum**, allowing you to intuitively understand their behavior.

Think step by step and derive a concise final answer.

899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

- Focus on identifying the fundamental physical principles underlying the problem.
- Apply knowledge from various areas of physics, including **electromagnetism**, **thermodynamics**, **kinetics**, **wave optics**, **linear algebra**. Consider the interplay between physics, chemistry, and biology when relevant.
- Prioritize dimensional analysis and order-of-magnitude estimates to quickly assess the plausibility of different solutions. Likewise, **simplify complex problems** by identifying dominant terms and making appropriate approximations.
- Analyze wave phenomena using **Huygens' principle**, **superposition**, and **interference**. Relate wave properties such as wavelength, frequency, and amplitude to the energy and momentum of the wave. **Apply the laws of thermodynamics** and **statistical mechanics** to analyze systems involving heat, energy, and entropy.

Learned from experience:

- Prioritize accurate identification of fundamental transformations (e.g., electron flow) before making broader predictions.

918
919
920
921
922
923
924
925
926

- When comparing results from different methodologies, explicitly consider the limitations and biases inherent in each technique. Focus on underlying mechanisms and principles rather than superficial alignment of results.
- Consider frequency and averaging effects when integrating data from population-level and single-entity measurements.

Specialist Memory: COT_PHYSICS

Structured memory entry:

927
928
929
930
931
932
933
934
935
936
937
938

- Problem pattern: EM wave attenuation; inconsistent parameters lead to physically impossible results (e.g., amplification instead of attenuation).
- Approach summary: Verify problem consistency by calculating attenuation from given parameters. Identify and state inconsistencies explicitly.
- Failure mode: Blindly applying formulas without checking physical plausibility; incorrect assumptions about attenuation contributions.
- General rule: Before solving, check if given parameters yield physically plausible results. If not, state the flaw and assumptions made for a solution.

Structured memory entry:

939
940
941
942
943
944
945
946
947
948

- Problem pattern: Expectation value of an operator (e.g., p^2) given a non-normalized wavefunction.
- Approach summary: Normalize wavefunction, apply the operator, and integrate.
- Failure mode: Forgetting to normalize the wavefunction before calculating the expectation value.
- General rule: ALWAYS normalize the wavefunction before calculating expectation values in quantum mechanics.

Structured memory entry:

949
950
951
952
953
954
955
956
957
958
959
960
961

- Problem pattern: Particle decay (e.g., $\Pi \rightarrow \mu + \nu$) with known rest masses and initial state. Find KE of products.
- Approach summary: Apply energy and momentum conservation. Use relativistic energy-momentum relation ($E^2 = (pc)^2 + (mc^2)^2$) to relate KE and momentum.
- Failure mode: Incorrectly applying relativistic formulas or conservation laws; algebraic errors in solving the equations.
- General rule: In particle decay, use energy/momentum conservation and relativistic relations. If one particle is at rest initially, simplify accordingly.

B OPERATOR SPACE

963

Following MaAS (Zhang et al., 2025c), we use the following operator space for our base operators:

964
965
966
967
968
969
970
971

- **Chain-of-Thought** (Wei et al., 2022), which encourages the execution LLM to think step-by-step before outputting an answer.
- **ReAct** (Yao et al., 2023), allowing the execution LLM to use a library of tools to answer the question.
- **Self-Consistency** (Wang et al., 2023), which aggregates five Chain-of-Thought answers and majority votes to agree on a final answer.

- 972 • **Self-Refine** (Madaan et al., 2023), which iteratively refines an initial Chain-of-Thought
973 answer over five iterations.
- 974 • **LLM-Debate** (Du et al., 2024a), which uses multiple execution LLMs to debate against
975 each other to reach a final consensus. We similarly use three debaters and two rounds of
976 debate in our implementation.
- 977 • **Ensemble** (Jiang et al., 2023), which takes in two or more answers from different sources
978 and uses pairwise ranking to aggregate these responses into a final answer.
- 979 • **Testing** (Huang et al., 2024), which generates test cases for subsequent execution LLMs
980 given a coding problem.

982 C BASELINES

983 In this section, we detail the implementation for each of the baseline methods. For Chain-of-Thought
984 (Wei et al., 2022), Self-Consistency (Wang et al., 2023), Self-Refine ((Madaan et al., 2023)), and
985 LLM-Debate (Du et al., 2024a), we refer to Appendix B for the configuration details, as they were
986 used as seed base operators in ASPEC. For Reflexion, we adhere to the implementation provided in
987 (Shinn et al., 2023). Following ADAS (Hu et al., 2025), we implement Role Assignment (Xu et al.,
988 2025) by prompting a role-selector LLM to choose a role from a predefined set, then use another
989 LLM to act as the chosen role to answer the question.

990 For each of the benchmarks, the roles for Role Assignment were:

- 991 • **MATH**: Algebraist, Number Theorist, Real Analyst, Statistician, Logician
- 992 • **HumanEval**: Senior Python Engineer, Algorithms Expert, Software Architect, Data Scien-
993 tist, Competitive Programmer
- 994 • **MMLU**: Biologist, Physicist, Mathematician, Engineer, Doctor, Lawyer
- 995 • **GPQA**: Physicist, Chemist, Biologist, Scientific Reasoning Expert, Graduate Student
- 996 • **SciCode**: Biologist, Physicist, Chemist, Computer Scientist, Mathematician

1000 For DyLAN and EvoAgent, we directly used the implementations from Liu et al. (2024) and (Yuan
1001 et al., 2025). We adhered to the official configuration for AutoAgents (Chen et al., 2024b). For ADAS
1002 (Hu et al., 2025), we set the Meta Agent Search’s n -generation to 20. For MaAS, our experimental
1003 setup directly utilized the optimized graphs and operator spaces from (Zhang et al., 2025c) for MATH
1004 and HumanEval. For benchmarks not explicitly included in the MaAS repository (GPQA, MMLU,
1005 SciCode), we implemented the operator space as described in the appendix. Following Zhang et al.
1006 (2025c), for AFlow, we utilized Gemini 2.0 Flash consistently throughout our experiments in place of
1007 GPT-4o-mini and Claude 3.5 Sonnet for homogeneity.

1008 D ALGORITHMS

1011 Algorithm 1: Online adaptation algorithm of ASPEC

1012 **Input:** Trained meta-controller π_θ ; operator pool \mathbb{O} ; queries $Q = \{q_1, \dots, q_T\}$; sliding
1013 window buffer \mathcal{H} .
1014 Initial graph \mathcal{G}_0 .
1015 **for** $t = 1, 2, \dots, T$ **do**
1016 Construct state $s_t = (e_q(q_t), e_g(\mathcal{G}_{t-1}))$;
1017 Sample action $a_t \sim \pi_\theta(a_t | s_t)$;
1018 **if** $a_t = a_{\text{RESAMPLE}}$ **then**
1019 $\mathcal{G}_t \leftarrow f_{\mathbb{A}}(q_t, \mathcal{H}_{t-m:t-1}, \mathbb{O}, \mathcal{G}_{t-1})$;
1020 **else**
1021 $\mathcal{G}_t \leftarrow \mathcal{G}_{t-1}$;
1022 **end**
1023 $p_t \leftarrow \text{Execute}(\mathcal{G}_t, \mathbb{O}, q_t)$;
1024 $U_t, C_t \leftarrow \text{Evaluate}(p_t, a_t)$;
1025 Store experience $(q_t, \mathcal{G}_t, S_t, C_t)$ in \mathcal{H} ;
1026 **end**

1026
1027 **Algorithm 2:** Offline specialist discovery and cultivation
1028 **Input:** Queries $Q = \{q_1, \dots, q_T\}$; base operator set \mathbb{O}_{base} .
1029 Initial operator pool $\mathbb{O}_0 = \mathbb{O}_{\text{base}}$, initial specialist pool $\mathbb{O}_{\text{spec}}^{(0)} \leftarrow \emptyset$, random-weights
1030 meta-controller $\pi_\theta^{(0)}$; empty sliding window buffer $\mathcal{H} \leftarrow \emptyset$.
1031 **for** $t = 1, 2, \dots, T$ **do**
1032 Construct state $s_t = (e_q(q_t), e_g(\mathcal{G}_{t-1}))$;
1033 Sample action $a_t \sim \pi_\theta(a_t | s_t)$;
1034 **if** $a_t = a_{\text{RESAMPLE}}$ **then**
1035 $a_{\mathbb{A}} \leftarrow f_{\mathbb{A}}(q_t, \mathcal{H}_{t-m:t-1}, \mathbb{O}_{t-1}, \mathcal{G}_{t-1})$
1036 **if** $a_{\mathbb{A}} = \text{CREATE_OPERATOR}$ **then**
1037 $O_{\text{new}} \leftarrow \text{CreateSpecialist}(q_t, \mathbb{O}_{\text{base}})$;
1038 $\mathbb{O}_{\text{spec}}^{(t)} \leftarrow \mathbb{O}_{\text{spec}}^{(t-1)} \cup \{O_{\text{new}}\}$;
1039 $\mathbb{O}_t \leftarrow \mathbb{O}_{t-1} \cup \mathbb{O}_{\text{spec}}^{(t)}$
1040 **end**
1041 **else if** $a_{\mathbb{A}} = \text{COMBINE_OPERATOR}$ **then**
1042 $(O_1, O_2) \leftarrow \text{SelectOperators}(\mathbb{O}_{\text{spec}}^{(t-1)})$;
1043 $O_{\text{child}} \leftarrow \text{Combine}(O_1, O_2, q_t)$;
1044 $\mathbb{O}_{\text{spec}}^{(t)} \leftarrow (\mathbb{O}_{\text{spec}}^{(t-1)} \setminus \{O_1, O_2\}) \cup \{O_{\text{child}}\}$;
1045 $\mathbb{O}_t \leftarrow \mathbb{O}_{t-1} \cup \mathbb{O}_{\text{spec}}^{(t)}$
1046 **end**
1047 **else if** $a_{\mathbb{A}} = \text{PRUNE_OPERATOR}$ **then**
1048 $O_{\text{to_prune}} \leftarrow \text{SelectOperator}(\mathbb{O}_{\text{spec}}^{(t-1)})$;
1049 $\mathbb{O}_{\text{spec}}^{(t)} \leftarrow \mathbb{O}_{\text{spec}}^{(t-1)} \setminus \{O_{\text{to_prune}}\}$;
1050 $\mathbb{O}_t \leftarrow \mathbb{O}_{t-1} \cup \mathbb{O}_{\text{spec}}^{(t)}$
1051 **end**
1052 $\mathcal{G}_t \leftarrow f_{\mathbb{A}}(\mathcal{H}_{t-m:t-1}, \mathbb{O}_t, \mathcal{G}_{t-1})$;
1053 **else**
1054 $\mathcal{G}_t \leftarrow \mathcal{G}_{t-1}$;
1055 **end**
1056 $p_t \leftarrow \text{Execute}(\mathcal{G}_t, \mathbb{O}_t, q_t)$;
1057 $U_t, C_t \leftarrow \text{Evaluate}(p_t, a_t)$;
1058 $\pi_\theta^{(t)} \leftarrow \text{UpdateWeights}(U_t, C_t, a_t, \pi_\theta^{(t-1)})$
1059 **forall** $O \in \text{SpecialistsUsedIn}(\mathcal{G}_t, \mathbb{O}_t)$ **do**
1060 $r \leftarrow \text{Reflect}(O, q_t, P_t, a_t, U_t)$;
1061 $\text{WriteToMemory}(O, r)$
1062 **end**
1063 Store experience $(q_t, \mathcal{G}_t, U_t, C_t)$ in \mathcal{H} ;
1064 **end**
1065

1066
1067 E **META-CONTROLLER IMPLEMENTATION**
1068
1069 The meta-controller is trained using the REINFORCE algorithm, with a standard batch policy loss:
1070
1071
$$\mathcal{L}_{\text{batch}}(\theta) = -\frac{1}{N} \sum_{t=1}^N \log \pi_\theta(a_t | s_t) R_t \quad (6)$$

1072
1073
1074 The reward R_t is designed to balance performance, cost, and contextual appropriateness. It is a
1075 function of the final task score s_t , the total cost C_t , and the cosine similarity between the query and
1076 the current architecture, $\text{sim}(q_t, \mathcal{G}_{t-1})$.
1077
1078 The core of our reward function is a weighting mechanism that modulates the score s_t based on
1079 this similarity. The reward for a RETAIN action is boosted when the architecture is a good match
 for the query (high similarity), while the reward for a RESAMPLE action is boosted when there is a

1080 mismatch (low similarity). This can be expressed conceptually as:
 1081

$$R_t = s_t \cdot w(a_t, \text{sim}(q_t, \mathcal{G}_{t-1})) - \lambda C_t \quad (7)$$

1084 where the weighting function $w(\cdot, \cdot)$ increases the effective reward for correct decisions. For example,
 1085 $w(\text{RETAIN}, \text{sim})$ is an increasing function of similarity. This formulation provides a dense and
 1086 informative signal that guides the meta-controller to learn an efficient, context-aware policy.
 1087

1088 F DATASET STATISTICS

1090 For each of the benchmarks, we follow established methodologies for workflow automation (Hu et al.
 1091 (2025), Zhang et al. (2025b), Zhang et al. (2025c)) and use a train-to-test ratio of 1 : 4. We select
 1092 19 subdomains for MMLU, spanning formal mathematics, biology, chemistry, clinical medicine,
 1093 business, and engineering. For SciCode, we use the standard subproblem setup without prior scientist
 1094 annotations and report the subproblem pass rate.
 1095

1096 **Table 3: Dataset statistics.**

1097 Domain	1098 Dataset	1099 Train Samples	1100 Test Samples	1101 Metric
1099 Math Reasoning	1100 MATH	100	400	1101 Accuracy
1100 Question Answering	MMLU	100	400	1101 Accuracy
	GPQA	89	359	1101 Accuracy
1103 Code Generation	HumanEval	33	131	1101 Pass@1
	SciCode (subproblems)	51	287	1101 Pass@1

1106 G PROMPTS

1109 G.1 ARCHITECT'S PROMPT

1110 We used the following prompt for the Architect. The decision to define the architecture representation
 1111 with mathematical notation was deliberate. We observed through preliminary experiments that
 1112 providing a formal syntax, as opposed to a natural language description, makes the instructions for
 1113 concepts like parallelism and aggregation less ambiguous for the LLM. This leads to more consistent
 1114 and structurally valid outputs from the Architect.
 1115

1116 Architect Prompt

1117 You are a multi-agent architect $f_{\mathbb{A}}$ mapping a query and context to an agent architecture:
 1118 $f_{\mathbb{A}} : (q, C) \mapsto G$.

1119 Goal: propose or adjust a layered operator architecture that is robust, performs well now, and
 1120 is generalizable to future queries.
 1121

1122 Follow these steps:

- 1123 • Decompose the query, pick an initial architectural pattern, and justify briefly.
 1124
- 1125 • Think of 2 other alternative architectural patterns, consider all 3 options, and select
 1126 the best one.
 1127
- 1128 • If creating specialists, provide concise identity and bullet directives (no steps or
 1129 formulas - you are encouraged to use different reasoning patterns and strategies
 1130 like adversarial prompting, quality-diversity prompting, step-back prompting, multi-
 1131 choice elimination, etc.)
 1132
- 1133 • Use the recent sliding window experiences as guidance for your decisions.

1134
1135
1136
1137
1138
1139

Architecture representation: $A = [L_1, \dots, L_K]$ where layer $L_i = [o_{i,1}, \dots, o_{i,m_i}]$ lists operators executed in parallel. Execution is layerwise: let $x_1 = x$ and for $i = 1, \dots, K$, compute a layer output $h_i(x_i)$. If $|L_{i-1}| > 1$, include an Ensemble aggregator g_i to combine parallel outputs: $h_i(x_i) = g_i(\{o(x_i) \mid o \in L_{i-1}\})$. If $|L_{i-1}| = 1$, then $h_i(x_i) = o(x_i)$ for the unique $o \in L_{i-1}$. The input to the next layer is $x_{i+1} = h_i(x_i)$.

1140
1141

Query: [...]

1142

Context for your decision:

1143

- Operator pool: [...]
- Current architecture: [...]
- Allowed actions: [...]
- Recent sliding window experiences: [...]

1144

1145

1146

1147

1148

1149

1150

1151

XML formatting guide: [...]

1152

where the allowed actions are conditional on the specific phase the system is in. During the specialist discovery phase, the full operator space is used:

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

We then restrict the allowed actions to only FINALIZE_ARCHITECTURE during the specialist cultivation and evaluation phases.

1168

1169

G.2 SPECIALIST SYNTHESIS PROMPTS

1170

G.2.1 CREATION

1171

Creation: Identity Synthesis Prompt

1172

1173

You will propose diversified identity variants for a new specialist, `operator_name`, which is based on `base_template`.

1174

1175

Specialist description: [...]

1176

1177

1178

Each identity should be a detailed second-person identity including their professional role (i.e., 'a particle physicist', do not include names), their fields of expertise (deep + broad), and a non-domain-specific reasoning heuristic that distinguishes them from other specialists.

1179

Examples of reasoning heuristics:

1180

1181

1182

- Works backwards from contradictory answers to identify wrong assumptions or equations.
- Never assumes anything not explicitly stated; always returns to first principles when confused.
- Builds multiple competing hypotheses simultaneously and tests them against evidence.
- Visualizes problems as interconnected networks of constraints and relationships.

1183

1184

1185

Output the identity text starting with 'You are...'

1186

1187

1188
1189**Creation: Directive Synthesis Prompt**1190
1191

You will propose diversified directive variants for a new specialist, `operator_name`, which is based on `base_template`.

1192
1193

Specialist description: [. . .]

1194
1195
1196
1197

Create a bulleted list of methodological principles and reasoning approaches that this new specialist will follow. Do not provide specific formulas, step-by-step procedures, formatting instructions, or direct solutions. Focus on **how** the specialist should think and approach problems, not what specific steps to take.

1198
1199
1200
1201

Include strategic reasoning approaches like self-criticism, assumption questioning, hypothesis building, pattern recognition, systematic analysis, etc. It is very important that the directives should guide analytical thinking without restricting the specialist's reasoning search space.

1202
1203**G.2.2 CROSSOVER**1204
1205**Crossover: Identity Synthesis Prompt**1206
1207
1208
1209

You will propose diversified identity variants for a combined specialist that synthesizes the expertise of two parent specialists. The specialist is `operator_name`, which is based on `base_template`.

1210
1211
1212

Specialist description: [. . .]

Parent 1's identity: [. . .]

Parent 2's identity: [. . .]

Each identity should be a detailed second-person identity including their professional role (i.e., 'a particle physicist'), their fields of expertise (deep + broad), and a non-domain-specific reasoning heuristic. The combined identity should integrate the best aspects of both parent specialists while creating a coherent, unified specialist persona.

Examples of reasoning heuristics:

- Works backwards from contradictory answers to identify wrong assumptions or equations.
- Never assumes anything not explicitly stated; always returns to first principles when confused.
- Builds multiple competing hypotheses simultaneously and tests them against evidence.
- Visualizes problems as interconnected networks of constraints and relationships.

Output the identity text starting with 'You are...'

1224
1225**Crossover: Directive Synthesis Prompt**1226
1227
1228
1229
1230

You will propose diversified directive variants for a combined specialist that synthesizes the expertise of two parent specialists. The specialist is `operator_name`, which is based on `base_template`.

1231
1232
1233

Specialist description: [. . .]

Parent 1's identity: [. . .]

Parent 2's identity: [. . .]

Create a bulleted list of methodological principles and reasoning approaches that this new specialist will follow. Do not provide specific formulas, step-by-step procedures, formatting instructions, or direct solutions. Focus on how the specialist should think and approach problems, not what specific steps to take. The combined directives should integrate the best aspects of both parent specialists' directives, including any existing reasoning approaches.

1234
1235
1236
1237
1238
1239
1240
1241

Include strategic reasoning approaches like self-criticism, assumption questioning, hypothesis building, pattern recognition, systematic analysis, etc. It is very important that the directives should guide analytical thinking without restricting the specialist's reasoning search space.

1242
1243

G.3 JUDGE PROMPTS

1244
1245**Judge Prompt: Evaluating Identities**1246
1247

You are judging specialist identities for: `operator_name`, which is based on `base_template`.

1248
1249
1250

Specialist description: [. . .]

Identity candidates: [. . .]

1251
1252
1253

Pick the best identity based on the following criteria:

1254
1255
1256

1. Non-domain-specific reasoning heuristics for a rich reasoning 'gene' pool (quality-diversity, step-back analysis, assumption-challenging, etc.)
2. Avoids making assumptions not explicitly stated in the problem
3. The resulting specialist is a T-shaped specialist. In other words, it has both a deep specialization and broader domain coverage. Avoid hyperspecific specialists that are too narrow in their domain coverage.
4. Combines domain expertise with general problem-solving approaches

1257
1258
1259**Judge Prompt: Evaluating Directives**1260
1261
1262

You are judging specialist directives for: `operator_name`, which is based on `base_template`.

1263
1264
1265

Specialist description: [. . .]

Directive candidates: [. . .]

1266
1267
1268

Pick the best directives based on the following criteria:

1269
1270
1271

1. Focus on how to think, not what specific steps to take. Mimic domain-specific human experts to guide analytical thinking without constraining solution paths
2. Prefer methodological principles over rigid instructions. Avoid specific formulas, procedures, or direct solutions
3. Has a specific methodology for handling contradictions or confusion

1272
1273
12741275
12761277
12781279
12801281
12821283
12841285
12861287
12881289
12901291
12921293
1294

1295