
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOMATED STATEFUL SPECIALIZATION FOR
ADAPTIVE AGENT SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Current automated agent design frameworks produce either static workflows that
lack adaptability or per-query optimizers that prevent the accumulation of deep,
agent-level task expertise. We propose a new direction that reconciles these
paradigms: creating stateful teams of specialist agents that accumulate knowl-
edge over time and can be reconfigured for novel tasks entirely without human
intervention. To this end, we introduce ASPEC, a framework that manages this full
agent lifecycle by first autonomously discovering specialist archetypes via evolu-
tionary search and then cultivating their expertise through experience, mirroring
how human experts learn through practice and reflection. We further introduce a
lightweight hierarchical control policy, "retain-then-escalate," which governs when
to leverage the established agent system versus when to adapt its structure. Through
comprehensive experiments, we demonstrate that this approach leads to significant
performance gains on expert-level scientific benchmarks like GPQA while match-
ing the state-of-the-art on broader domain tasks, demonstrating a promising path
toward agent systems that are simultaneously expert, adaptive, and efficient. 1

1 INTRODUCTION

Motivation. The emergence of sophisticated multi-agent systems capable of tackling complex
problems (Wu et al., 2024; Li et al., 2023; Hong et al., 2024) has marked a significant advance for
autonomous agents. While effective, these foundational systems were often manually hand-crafted
for specific tasks, which limited their scalability. In response, research has shifted towards automating
aspects of these systems, starting with prompt optimization (Khattab et al., 2024; Yuksekgonul et al.,
2025; Yang et al., 2024) or inter-agent communication via graph-based workflow representations
(Zhuge et al., 2024; Liu et al., 2024; Zhang et al., 2025a), and then, to the designs of agent systems
themselves. The automation of agent designs has since largely split into two distinct paradigms:
task-level optimization and query-level adaptation. In the case of (I) Task-Level Architecture
Search, prior works optimized for a single, static agent workflow for a specific task domain. These
approaches, which mirror early approaches in AutoML and Neural Architecture Search (NAS)
(Elsken et al., 2019), were pioneered by ADAS (Hu et al., 2025), which uses Meta Agent Search to
iteratively program new agents in executable code; AFlow (Zhang et al., 2025b), which similarly
adopts code representation but utilizes Monte Carlo Tree Search (MCTS) to efficiently navigate
the search space; and AgentSquare (Shang et al., 2025), which employs module evolution and
recombination to discover novel configurations in a constrained, modular code-based search space.
The primary limitation of these methods is their intrinsic "one-size-fits-all" nature: by searching for a
single best design for an entire task domain, they fundamentally lack the adaptability necessary to
dynamically allocate inference resources or customize the structure for individual user queries.

To address the rigidity of task-level systems, a recent paradigm shift has focused on generating a
unique workflow for each incoming query, (II) Query-Level Architecture Adaptation. MaAS
(Zhang et al., 2025c) introduces the concept of an "agentic supernet", optimizing a probabilistic
distribution of agent architectures during training and sampling a bespoke architecture from said
distribution for each query during inference. This paradigm has been extended by other methods
like FlowReasoner (Gao et al., 2025), which uses a reasoning-based meta-agent to generate query-
specific agent systems; ScoreFlow (Wang et al., 2025), which introduces Score-DPO, a method

1We will open-source all code upon release.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

that fine-tunes its per-query workflow generator using quantitative evaluation scores; MAS-GPT
(Ye et al., 2025), which trains an LLM to treat workflow construction as a generative task; and
MAS-Zero (Ke et al., 2025), which employs a meta-agent at inference time to iteratively generate and
refine agent configurations based on self-generated feedback. While these approaches offer superior
adaptivity, they are challenged by the lack of long-term state. Because the architecture is regenerated
or resampled for every query, the system incurs a significant "rediscovery" cost, and the individual
components or agents are largely prevented from accumulating deep, persistent expertise over time.

The prior work demonstrate a critical chasm between monolithic, task-level robustness and adaptive,
per-query regeneration. The former is static at inference, while the latter incurs "rediscovery"
costs by repeatedly invoking meta-agents for architectural search in lieu of leveraging persistent
knowledge, a system-level problem that a modular, agent-level memory addition would fail to
address. Our proposed framework, ASPEC, reconciles these limitations by integrating the specialized
mechanisms of self-evolving agents into a unified lifecycle within agent design automation. This
lifecycle establishes stable, persistent agent archetypes deployed by a "retain-then-escalate" control
policy, allowing the system to default to efficient and effective execution by relying on the persistent
knowledge of its specialist agents.

Contributions. In short, our core contributions are as follows:

• We propose ASPEC, a framework that manages the full lifecycle of expert specialist agents
via an automated two-stage methodology: (I) Discovery, where an LLM autonomously
explores the design space of agent archetypes using evolutionary processes, and (II) Culti-
vation, where selected agents autonomously cultivate their expertise on a training corpus.

• We introduce "retain-then-escalate", a control policy that, instead of being either fully static
or fully dynamic, defaults to retaining a stateful agent team across related queries to leverage
expertise and minimize cost, only escalating to architectural resampling when needed.

Related Work. The mechanisms for autonomous discovery and expertise cultivation as seen in self-
evolving agents have been explored individually across various research efforts. For instance, parallel
to workflow optimization, a distinct stream of research has explored agent specialization via prompt
optimization, starting with role assignment via ExpertPrompting (Xu et al., 2025), PromptBreeder
(Fernando et al., 2023), and PromptAgent (Wang et al., 2024a). Multi-agent frameworks like
EvoAgent (Yuan et al., 2025), which utilizes evolutionary algorithms to automatically generate and
optimize multiple specialized agents with diverse settings and roles; MASS (Zhou et al., 2025), which
optimizes individual role prompts alongside refining inter-agent communication; and AgentVerse
(Chen et al., 2024a) and AutoAgents (Chen et al., 2024b), which dynamically synthesize and
coordinate teams of expert roles, validate a critical insight: the identity of the agents is as important
as their interaction topology. However, this specialization is often stateless, and the focus remains
on generating an optimal team for a single task. In contrast, ASPEC’s Discovery process generates
persistent specialists whose structures are specifically designed to be retained and cultivated over
time rather than generated for transient collaboration or discarded after a single optimization run.

Another stream of research in self-evolving agents is expertise cultivation, focused on endowing agents
with non-parametric state (memory and experience) that persists beyond a single task interaction.
Such mechanisms are embodied by works like Reflexion (Shinn et al., 2023), which allows agents to
record natural-language critiques of their past actions in episodic memory to guide future behavior
and avoid recurring mistakes, and Self-Refine (Madaan et al., 2023), which employs a continuous
iterative refinement loop where the agent critiques and revises its initial outputs. Furthermore,
ExpeL (Zhao et al., 2024) processes past trajectories to generate insights and rules to guide further
interactions, AutoGuide (Fu et al., 2024) automatically generates context-aware guidelines from
offline experiences, facilitating the provision of relevant knowledge for active decision-making
processes, while Agent Workflow Memory (Wang et al., 2024b) records common subtask sequences
that can be retrieved and reused without re-planning from scratch. These prior works illustrate how
experiential knowledge can be accumulated and generalized into long-term competence.

While memory systems and reflection mechanisms exist, ASPEC proposes a systematic, two-stage
lifecycle framework where the Cultivation phase is explicitly linked to the output of the Discovery
phase. This linkage ensures that the stateful expertise (memory/reflections) is accumulated within the
designated, persistent specialist archetypes, facilitating the emergence of role-specific expertise.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

Meta-Controller

I II

III

"Think step-by-step to solve the

problem..."

"You are an expert physicist with deep

expertise in theoretical physics [...]"

"You have learned from experience to be

meticulous with algebraic manipulations

and to consider all assumptions [...]"

"For decay problems specifically, first

calculate the Lorentz factor, dilated

lifetime, then distance using "

"Think step-by-step to solve the

problem..."

Architect Specialist
Operators

Figure 1: The three main components of ASPEC.

ASPEC can be framed as a Hierarchical Reinforcement Learning (HRL) methodology consisting of a
low-level generative process for architectural redesign and agentic operator pool evolution, as well as
a lightweight, high-level policy that learns when to invoke this process efficiently. We formally define
these components below, starting with the modular units they operate upon: agentic operators.

Definition (Agentic Operator). Following MaAS (Zhang et al., 2025c), we define an agentic
operator O as a tuple O = (M,P, {Ti}ni=1) whereM ∈ M denotes the LLM backbone, P ∈ P
denotes the prompt, and {Ti} ⊆ T denotes the available tools. A multi-agent system is then
represented as a directed acyclic graph G = {V,E} where each vertex v ∈ V represents an instance
of an agentic operator and each edge e ∈ E defines the connection between two operators.

To facilitate the evolutionary process at the heart of our methodology, we structure the operator pool
Ot into two functionally distinct sets. First, the base operators (Obase), a static set of foundational,
stateless operators consisting of extensible single-/multi-agent systems, for instance Chain-of-Thought
(Wei et al., 2022) or LLM-Debate (Du et al., 2024a). Second, the specialist operators (Ospec), a
dynamic set of operators derived from base operators.

A specialist OS
i ∈ Ospec extends a base operator Oi ∈ Obase with a learned identity and a persistent

memory while inheriting its foundational reasoning structure (e.g., "think step-by-step"). It is a
tuple OS

i = (Oi,Ps,M) where Ps is a specialized prompt and M is a persistent, experience-driven
memory module. We decompose Ps into an identity, which is a rich descriptor of who the agent is
(Xu et al., 2025), and a set of directives, which are methodological principles for the agent’s thought
process, allowing for a rich and diverse "genetic" space of reasoning approaches (Naik et al., 2024).

Definition (Architect). The architect is the low-level generative component responsible for evolving
the operator pool and redesigning the multi-agent architecture, implemented as an in-context learning
LLM that operates via a multi-turn iterative reasoning process. We provide the prompt in Appendix
G.1 and give an example of its reasoning in Appendix A.2. Functionally, given a query qt, the
Architect is a process fA that maps a rich contextual input to a new system configuration

fA(qt,Ht−m:t−1,Ot−1,Gt−1)→ (Gt,Ot) (1)

whereHt−m:t−1 is a sliding window of the past m experiences including the executed architectures
and performance outcomes; Ot−1 is the previous operator pool; and Gt−1 is the current architecture.
Its objective is to find an architecture that maximizes the immediate cost-aware utility while being
general enough to be potentially retained for future tasks. We define this value in terms of the utility
with respect to the oracle at, Ut = U(Gt; qt, at), and the total costs of all API LLM calls, Ct(Gt).

G∗t = argmax
Gi∈G

E [Ut − λCt(Gt) + Vπθ
(st+1)] (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Query (): Implement the Crank-
Nicholson method on the 1-D time-
dependent Schrodinger equation...

Current

RESAMPLE

Architect

Environment

State at

: "...I need to remember that the
Hamiltonian's spatial derivative
makes the system tridiagonal....

: "...I need to remember that
when normalizing any vectors in
NumPy, if the norm is zero..."

Meta-Controller

Memory Update

Query (): Muscle glycogen is broken
down enzymatically to gluse-1-

phosphate...

 = RETAIN

 = ?

Current

Query (): A palpable left parasternal
impulse suggests which abnormality?

 = RESAMPLE

RETAIN

CoT

ClinicalBoard
(Debate)

Base Operator Pool ()

CoT Debate

CoT-SC ReAct

SelfRefine Ensemble

Testing

Specialist Operator Pool ()
TheoreticalPhysicist
(CoT)
ScientificProgrammer
(ReAct)
ClinicialBoard
(Debate)

Current Resampled

TheoreticalPhysicist
(CoT)

ScientificProgrammer
(ReAct)

"...CoT→ClinicalBoard is
unsuitable for a physics problem.

I will use my programmer and
physicist specialists instead..."

Figure 2: The online adaptation loop of ASPEC.

where Vπθ
(st+1) is the expected future value given the next state, formally defined in Equation 3.

While this generative process enables adaptation, by continuously rebuilding the architecture, the
system potentially forgoes the chance for the active specialists to deepen their expertise on the novel
task. Additionally, and perhaps even more importantly, the Architect’s invocation is computationally
expensive and poses a practical challenge at scale. To address the trade-off between adaptability,
experiential learning, and cost-efficiency, we propose the meta-controller, a lightweight gating module
that decides when to escalate to the Architect during deployment.

Definition (Meta-Controller). The meta-controller is a neural policy πθ(at|st) that makes a single
high-level decision: retain the current agent architecture, or resample a new one for a given query.
Its action space is discrete, that is, A = {aRETAIN, aRESAMPLE}. We formulate the training of the
meta-controller as a Markov Decision Process (MDP), where the action taken at step t− 1 determines
the architecture Gt−1 available in the subsequent state st. The state st at timestep t is therefore:

st = (eq(qt), eg(Gt−1)) (3)

where eq(·) and eg(·) are fixed-length query and textual graph embeddings, embedded with MiniLM
(Wang et al., 2020). While previous work (Zhang et al., 2025a) has used Graph Neural Networks
(GNNs) to encode architectural topology, we opt for a simpler, query-aware semantic representation.
Our ’bag-of-operators’ approach represents an architecture as an attention-weighted average of the
embeddings of its constituent operators. The attention weights are computed based on the similarity
between each operator and the input query embedding eq(qt). This method, inspired by Vaswani et al.
(2017), yields a dynamic, query-contextual state representation that captures what an architecture can
do for a specific query without the significant training overhead of a dedicated GNN.

The explicit objective for the meta-controller is to maximize the expected discounted sum of future
rewards over a stream of queries:

π∗
θ = argmax

πθ

E

[
t=T∑
t=0

γt ·Rt(st, at)

]
, γ ∈ [0, 1) (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

ReAct

Physicist (CoT)

Ensemble

Self-Refine

Base Operator Pool ()

CoT Debate

CoT-SC ReAct

SelfRefine Ensemble

Testing

I. Create

II. Refine

Prompt 1: "You are an expert
mathematician who has a deep

understanding of algebra..."

Prompt : "You are an algebraist
with expertise in linear & abstract

algebra, polynomial rings..."

Prompt 1: "You are a Python
programmer who is knowledgeable

about the NumPy library..."

Prompt 1: "You are a clinician who
is reviewing the case of a patient

with heart arrythmia..."

Prompt : "You are a board of
specialist doctors debating the

clinically correct treatment for..."

Prompt : "You are a scientific
programmer with deep expertise in
physics simulations with NumPy..."

Memory: Use NumPy's vectorized
operations over explicit loops for

better performance...

III. Experience Gathering

CoT

ReAct

Debate

Discovered
Specialists

Architect

CoT-Sc

ClinicalBoard (Debate)

Testing Self-Refine
Programmer

(ReAct)

Memory: To determine whether
aldosterone secretion is

unilateral, use AVS...

Memory: Recognizing that if is
odd, then
can simplify future determinant

calculations...

Environment

Reflection

Environment

Reflection

Environment

Reflection

Selection

Selected
Specialists

Figure 3: The offline automated specialist discovery and cultivation process.

Our framework’s methodology is twofold. First, an end-to-end offline process discovers stateful
specialists and trains the meta-controller (Figure 3 and Algorithm 2). These components are then
deployed in an online adaptation loop to handle unseen queries, with the operator pool fixed (Figure 2
and Algorithm 1). To explore the space of possible specialists and identify a set of specialist operators
Ospec such that the resulting operator pool is (1) high-performing, (2) diverse, and (3) specialized
to the problem task domain without human intervention, we split the learning objectives into two
distinct phases: an initial exploratory specialist discovery phase to address (1) and (2), and a focused,
experience-gathering cultivation phase to address (3), mirroring how a human expert might first learn
broad concepts and then deepen their knowledge through practice.

3.1 SPECIALIST DISCOVERY

Depicted as stages I and II in Figure 3, during the specialist discovery phase, the Architect iteratively
evolves a pool of specialists using its full action space (detailed in Appendix G.1). We formalize the
action space using the notions of creation and crossover.

Creation. Let O(1)
spec be the pool of specialist operators during the specialist discovery phase and

O(2)
spec be the pool of specialist operators during the cultivation phase. For a query qt, the Architect

can propose a specialist OS
i ∈ O(1)

spec derived from a base operator Oi by instantiating its prompt
with a structured identity-directive pair. The creation process employs multi-variant synthesis with
LLM adjudication. In practice, we overgenerate S = 3 candidate identity-directive variants with
diverse pairs, then judge variants via LLM-guided evaluation process that considers the reasoning
methodology and domain coverage. We provide the prompts for the Judge in Appendix G.3.

To prevent early fragmentation, we enforce a dynamic pool size limit of 2 × k, where k is the
maximum size of the final specialist selection pool. If the pool exceeds this limit, the Architect
is restricted from creating new specialists and must combine or prune existing agents, forcing the
consolidation of narrow capabilities.

Crossover. Given parent specialist operators OS
1 and OS

2 , the Architect can synthesize a child
specialist OS

c , similarly by using variant generation. This similarly triggers a multi-variant synthesis
process with LLM adjudication that combines both parents’ specialist identities and directives,
preserving their expertise. We provide the prompts used to perform this synthesis in G.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Selection. At the end of the specialist discovery phase, we select the top-k specialists for cultivation
by solving a multi-objective optimization problem that balances performance and diversity:

- Problem pattern: Expectation value of
an operator (e.g.,) given a non-

normalized wavefunction.
- Approach summary: Normalize

wavefunction, apply the operator, and
integrate.

- Failure mode: Forgetting to normalize
the wavefunction before calculating the

expectation value.
- General rule: ALWAYS normalize the

wavefunction before calculating
expectation values in quantum

mechanics.

Memory ()

Environmental
Feedback

Crossover

You are an expert physicist tackling
complex scientific problems. You have

deep expertise in physics, including
electromagnetism, thermodynamics, wave
optics, linear algebra, wave phenomena,

kinetics, and statistical mechanics [...]

Think step by step...

- [...] Analyze wave phenomena using
Huygens' principle, superposition, and

interference. Relate wave properties such as
wavelength, frequency, and amplitude to the

energy and momentum of the wave.

 - [...] Apply the laws of thermodynamics and
statistical mechanics to analyze systems

involving heat, energy, and entropy.

Prompt ()

Base: CoT

Thought Thought

Specialist Lineage

Figure 4: Case study of a physics specialist discovered on GPQA. The crossover action allows us to
trace back the agent’s "lineage" and identify aspects of its prompt that have been inherited from its
ancestors. The full final prompt and more examples of its memory entries are in Appendix A.3.

O(2)
spec = arg max

|Ospec|≤k


∑

OS
i ∈O(1)

spec

p(OS
i) + Diversity(Ospec)


Diversity(O(2)

spec) =

k∑
j=1

max
OS

i ∈Cj∩Ospec

p(OS
i)

(5)

where p(OS
i) represents the average performance of specialist OS

i and Cj is the j-th cluster in
embedding space obtained via K-means clustering on specialist operator embeddings.

3.2 SPECIALIST CULTIVATION

Depicted as stage III of Figure 3, during the specialist cultivation phase, the selected top-k discovered
specialists deepen their domain expertise through post-execution reflection on a training corpus.
The cultivation process is applied independently to each specialist, resulting in distinct, specialized
memories, as can be seen in Figure 4. For each specialist OS

i with accumulated memory Mi, we
implement a semantic retrieval mechanism (Lewis et al., 2020) to inject relevant experience during
tasks. Given a query qt, we partition the memory into structured chunks, then inject the most relevant
chunks for injection as contextual knowledge during specialist execution.

4 RESULTS

Benchmarks & Baselines. We evaluate ASPEC on five public benchmarks across three domains:
math reasoning with MATH (Hendrycks et al., 2021), question answering with MMLU (Hendrycks
et al., 2021) and GPQA (Rein et al., 2024), code generation with HumanEval (Du et al., 2024b)
and SciCode (Tian et al., 2024). In particular, GPQA and SciCode are expert-level QA and coding
benchmarks respectively. Further details on the dataset statistics are in Appendix F.

We select 13 representative baselines across (1) hand-designed single agents, in particular Chain-
of-Thought (Wei et al., 2022), Self-Refine (Madaan et al., 2023), Self-Consistency (Wang et al.,
2023), Reflexion (Shinn et al., 2023); (2) hand-designed multi-agents, in particular LLM-Debate
(Du et al., 2024a), DyLAN (Liu et al., 2024); (3) automated agent specialisation methods with
Role Assignment (Xu et al., 2025), AutoAgents (Chen et al., 2024b), EvoAgent (Yuan et al., 2025);
and (4) autonomous agent design frameworks, including query-level MaAS (Zhang et al., 2025c),
and task-level AFlow (Zhang et al., 2025b) and ADAS (Hu et al., 2025). Details for the baseline
setups are in Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Implementation. We select Gemini 2.0 Flash to be the standard execution model across all methods,
alongside GPT-4o-mini and Llama 3.3 70B Instruct in Figure 4. We set the size of the sliding window
in Equation 1 to be m = 10 and the maximum number of specialists in Equation 5 to be k = 5.

Table 1: Performance comparison across methods. We use Gemini 2.0 Flash with a temperature of
T = 0.3 consistently across all methods. Best results are in bold, second-best are underlined

Method MATH HumanEval MMLU GPQA SciCode (SP) Average

Vanilla 73.2 87.8 86.0 56.3 24.0 65.3

CoT (Wei et al., 2022) 74.5 90.4 88.2 58.2 24.3 65.5
CoT-SC (Wang et al., 2023) 75.1 91.2 88.8 57.1 25.2 67.5
Self-Refine (Madaan et al., 2023) 74.8 91.3 88.5 57.4 24.6 67.3
Reflexion (Shinn et al., 2023) 73.5 86.8 88.5 57.1 25.1 66.2

LLM-Debate (Du et al., 2024a) 74.4 85.5 87.1 59.7 24.0 66.1
DyLAN (Liu et al., 2024) 75.4 89.3 88.9 61.3 25.2 68.0

Role Assignment (Xu et al., 2025) 72.4 91.2 89.5 57.4 23.5 67.6
AutoAgents (Chen et al., 2024b) 73.4 88.0 85.3 56.8 24.8 65.7
EvoAgent (Yuan et al., 2025) 75.9 90.2 88.3 61.5 24.8 68.1

ADAS (Hu et al., 2025) 74.5 82.9 90.0 58.2 24.8 66.2
AFlow (Zhang et al., 2025b) 76.5 89.3 90.5 61.3 24.3 68.4
MaAS (Zhang et al., 2025c) 74.4 91.6 87.3 57.8 25.6 67.4

ASPEC 77.3 91.4 90.0 62.8 26.6 69.6

Performance Analysis. The results from Table 1 demonstrate that ASPEC can consistently match
or outperform existing hand-crafted or automated agentic systems across mathematical reasoning,
question answering, and coding. Its benefits are most pronounced on GPQA, where it achieves a score
of 62.8%. This represents a substantial 6.5% improvement over the vanilla Gemini 2.0 Flash model.
Furthermore, ASPEC surpasses the leading hand-designed agent (LLM-Debate) by 3.1%, the top
autonomous agent framework (AFlow) by 1.5%, and the best automated agent specialisation method
(EvoAgent) by 1.3%. ASPEC also leads on SciCode, a benchmark composed of realistic scientific
research problems that are decomposed into sequential subproblems. We note that the "retain-then-
escalate" structure allows retained specialists to build upon context and learned knowledge from
previous steps, which is crucial for success in multi-part scientific coding.

This naturally leads to the question of whether specialists trained on specific domains can be trans-
ferred to other domains. To this end, Figure 4 confirms that the performance gains from the
ASPEC methodology are robustly transferable across different models and benchmarks. In the
cross-benchmark analysis (Figure 4, right), we compare the standard configuration against an ablation
labeled ONLYSPEC, where the operator pool is restricted exclusively to specialists trained on a
different source domain (e.g., utilizing MATH-trained specialists for HumanEval), and find that the
ONLYSPEC configuration matches or even slightly exceeds the performance of the full system. We
attribute this to the cultivation of "T-shaped" reasoning strategies for specialists (Appendix G.3);
furthermore, restricting the pool prevents the Architect from defaulting to "safe" but less capable
generalist base operators, effectively forcing the utilization of these expert reasoning archetypes.

Figure 5: Cross-model (left) and cross-benchmark (right) transferability results. We evaluate both the
full ASPEC and ASPEC with only specialists trained on a different benchmark.

LLM Backbone GPQA MATH HumanEval

Gemini 2.0 Flash 56.3 73.2 87.8
ASPEC (Gemini 2.0 Flash) 62.5 77.3 91.4

GPT-4o-mini 38.2 61.8 86.6
ASPEC (GPT-4o-mini) 43.8 64.7 90.9

Llama 3.3 70B Instruct 45.6 51.3 88.5
ASPEC (Llama 3.3 70B Instruct) 53.5 54.8 90.8

HumanEval MMLU
60

70

80

90

Sc
or

e

ASpec
Full - Train:GPQA OnlySpec - Train:GPQA
Full - Train:MATH OnlySpec - Train:MATH

Efficiency Analysis. Table 2 demonstrates that ASPEC is cost-efficient across both training and
inference. In particular, running the offline training process on GPQA incurred only a total cost of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1.38 USD. We find that once a strong specialist pool has been found, the Architect often prefers lean
architectures utilizing those specialists. As shown in Table 6, removing specialists causes costs to
increase significantly – the Architect becomes under-confident in its generalist pool and samples
highly complex, but redundant multi-agent architectures in an attempt to compensate.

Table 2: Efficiency comparison across methods on the GPQA benchmark.
Training Inference

Method Total
tokens

Total costs
(USD)

Wall clock
(min)

Total
tokens

Total costs
(USD)

Wall clock
(min)

Accuracy
(%)

CoT-SC (Wang et al., 2023) – – – 3,757,527 0.85 58 57.1
LLM-Debate (Du et al., 2024a) – – – 4,081,114 0.94 50 59.7
EvoAgent (Yuan et al., 2025) – – – 7,080,338 1.45 75 61.8

AFlow (Zhang et al., 2025b) 102,012,408 20.14 257 9,997,154 1.58 45 61.3
MaAS (Zhang et al., 2025c) 11,600,690 3.43 139 11,015,542 2.07 93 57.8

ASPEC 2,395,636 1.38 53 3,204,549 0.88 63 62.8

5 DISCUSSION

5.1 ABLATIONS OF SYSTEM COMPONENTS AND CONTROL POLICIES

Figure 6: Ablation study of our framework’s components (left) and sensitivity to the maximum
number of specialists k and sliding window length m (right) on GPQA. For sensitivity plots, the
central line shows the mean performance over 4 runs.

Method Accuracy
(%)

Total cost
(USD)

Control Policy Alternatives

ASPEC w/ random policy 58.3 1.05
ASPEC w/ h = 0.2 59.6 1.21
ASPEC w/ LLM-as-gate 62.5 3.74
(Gemini 2.0 Flash)

System Components

ASPEC w/o specialist operators 57.4 2.26
ASPEC w/o base operators 61.3 0.48
ASPEC w/o meta-controller 62.7 2.0
ASPEC w/o Architect 61.0 1.28
ASPEC w/o specialist memory 61.4 0.94

ASPEC 62.8 0.88

0 2 4 6 8 10

55

60

65

Maximum number of specialists (k)

Accuracy

Total cost

1

2

0 5 10 15 20
56

58

60

62

64

Sliding window length (m)

Accuracy
Total cost

1

1.5

We perform an ablation study on five key components: (I) without specialist operators, with the
operator pool restricted to O = Obase for all qt; (II) without base operators, with O = Ospec for all
qt; (III) without meta-controller, which is akin to always resampling; and (IV) without architect,
in which we construct a static architecture consisting of all specialist operators in Ospec, and (V)
without specialist memory. Furthermore, we perform additional experiments on a suite of alternative
control policies. These include a random "coin-flip", a cosine similarity heuristic (resample if the
cosine similarity of qt and Gt−1 is below a threshold of h = 0.2), and LLM-as-gate.

As seen in Table 6, removing specialists causes a 5.4% drop in performance from 62.8% to 57.4% and
a near tripling of the total cost from 0.88 USD to 2.26 USD. Additionally, removing base operators,
but keeping specialists, resulted in a lesser 1.5% drop. This demonstrates that the expert specialists
are the primary drivers of both performance and efficiency. Removing the meta-controller results in a
comparable performance of 62.7% at a ∼ 2.3 times increase in total costs. We note that even in this
mode, the Architect can learn to proxy the "retain" action by re-sampling Gt−1, but this invocation
process is fundamentally less efficient that the explicit "retain" decision made by the controller. Table

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 further reveals that the alternative control policies yield significantly lower accuracy at 58.3%
compared to the meta-controller’s 62.5%, and while the LLM-as-gate policy achieves a comparatively
high accuracy 62.5%, it does so at a substantially higher cost,∼ 4.25 times that of the meta-controller.

5.2 SENSITIVITY ANALYSES

We analyze the sensitivity of ASPEC to two main parameters: the maximum size of the specialist
pool, k, from Equation 5, and the length of the sliding window from Equation 1, m. As shown
in Figure 6, setting k at both extremities reduced performance, suggesting a light Goldilocks-like
effect on GPQA. At k = 1, the system achieves 58.8%, performing similarly to the "ASPEC w/o
specialist operators" ablation as seen in Table 6, indicating that a single specialist lacks the domain
coverage to outperform generalist operators. Conversely, at k = 10, performance drops to 60.9%,
which aligns closely with the "ASPEC w/o specialist memory" ablation in Table 6. We attribute this
to experience fragmentation: with a larger pool size, individual specialists are selected less frequently
by the Architect during the Cultivation phase. Since memory is only acquired upon execution, these
"sparse" specialists fail to accumulate the dense history required to form deep expertise.

We hypothesize that this is not a fundamental limitation but rather reflects a trade-off between
specialist diversity and expertise. Future work could explore how the optimal specialist pool size, k,
changes with the breadth of the target domain and the accumulated experience of each specialist.

5.3 CONVERGENCE OF THE SPECIALIST DISCOVERY PROCESS

Figure 7: Visualization of discovered specialist operator embeddings on a "narrow" domain bench-
mark (GPQA) and on a "broad" domain benchmark (MMLU).

To determine whether ASPEC’s discovery process reliably finds similar expert archetypes, we
embedded the prompts of discovered specialists across 5 independent trials and plotted them in Figure
7. We find that there is strong convergence on GPQA (Figure 7, left), with different runs independently
discovering the same key roles (chemistry, biology, physics), desmontrating the robustness of the
process for specialized domains. Conversely, on the broad-domain MMLU benchmark (Figure 7,
right), the process shows some divergence, exploring different but viable team compositions to cover
the vast topic space. Even so, we find pockets of convergence in well-defined sub-domains like the
physical sciences.

Taken together, these results show that the ASPEC discovery process adapts its convergence/diver-
gence behavior based on the specificity of the target domain.

5.4 RATIONALITY OF THE META-CONTROLLER

We compare a learned meta-controller’s decisions against the LLM-as-gate "oracle proxy" in Table 6.
On GPQA, the controller learns a pragmatic economic policy, where its high rate of "overconfident"
disagreements with the perfectionist oracle reflects a deliberate trade-off for cost efficiency. On
MMLU, this behavior persists, but instances of "wasteful caution" reveal the limitations of its
lightweight state representation, leading to unnecessary resampling.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 8: Side-by-side comparison of confusion matrices for GPQA (left) and MMLU (right).

6 LIMITATIONS & FUTURE WORKS

A key future direction is the development of a rigorous theoretical framework to model the con-
vergence properties of the specialist discovery process with respect to factors like domain breadth,
potentially leading to principles for self-tuning the discovery process. Future work should also
validate ASPEC’s applicability in more diverse environments, particularly on complex, real-world
software engineering tasks such as those in SWE-bench (Jimenez et al., 2024). Intuitively, special-
ists discovered and cultivated on a specific repository could autonomously internalize its unique
conventions and APIs, a promising avenue for automating repository-specific expertise without
manually engineered rules. Finally, the risk of specialists amplifying training biases through memory
cultivation, a risk that warrants further investigation and the development of mitigation strategies.

While our lightweight meta-controller is crucial for efficiency, we identify its alignment with an
"oracle proxy" LLM-as-gate policy as another critical area for improvement. The results of our
ablations study on GPQA in Table 6 might be masking an underlying limitation: the meta-controller’s
decision-making process diverges from the oracle proxy’s, as explored in Section 5.4. This divergence
can become a significant weakness when its lightweight state representation leads to errors such
as unnecessary resampling or over-cautious retaining. The central challenge is to design a gating
mechanism that achieves the decision-making fidelity of the LLM-as-gate oracle proxy while retaining
the low computational overhead of a small, specialized policy.

Finally, we observe that the interplay between the meta-controller’s policy, the Architect’s choices, and
the specialists’ memory accumulation creates a complex, co-evolutionary dynamic. A conservative
"Retain" policy concentrates experience into a smaller set of active architectures, potentially guiding
those agents to develop broader, more resilient memories to cope with slightly mismatched queries.
Conversely, a highly dynamic policy distributes experience more sparsely across the specialist pool.
Furthermore, because the Architect conditions its decisions on recent history (sliding window), it
may develop path-dependent preferences for certain teams that "suffice" even if they are not optimal,
further influencing the distribution of experience. Future work could explicitly model this joint
optimization to ensure the control policy and specialist cultivation are perfectly aligned.

7 CONCLUSION

This paper introduced ASPEC, a framework designed to bridge the gap between static, efficient
agent workflows and adaptive, per-query optimizers. Our central contribution is a methodology for
creating and managing stateful specialist agents that accumulate expertise over time, mirroring human
learning. This is achieved through an automated lifecycle of evolutionary discovery and experiential
cultivation, governed by a "retain-then-escalate" policy that ensures cost-effective adaptation. Our
results on challenging scientific benchmarks such as GPQA suggest that this agent-centric approach
can lead to substantial performance improvements without sacrificing efficiency. We believe this
work presents a promising direction for autonomously creating agent systems that can develop deep
expertise while retaining the flexibility to adapt to new challenges. 2

2Large Language Models (LLMs) were used to assist in writing this paper.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen LLM applications via multi-agent conversations. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
BAakY1hNKS.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for mind exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=VtmBAGCN7o.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. DSPy: Compiling declarative language model calls into
state-of-the-art pipelines. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=sY5N0zY5Od.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic" differentiation" via text. Nature, 639(7985):609–616, March
2025. doi: 10.1038/s41586-025-08661-4.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. GPTSwarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
uTC9AFXIhg.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An llm-
agent collaboration framework with agent team optimization. Conference on Language Modeling,
2024.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies
via graph neural networks. In Forty-second International Conference on Machine Learning, 2025a.
URL https://openreview.net/forum?id=LpE54NUnmO.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal
of Machine Learning Research, 20(55):1–21, 2019.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=t9U3LW7JVX.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. AFlow: Automating agentic workflow generation. In The Thirteenth International Confer-
ence on Learning Representations, 2025b. URL https://openreview.net/forum?id=
z5uVAKwmjf.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
LLM agent search in modular design space. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=mPdmDYIQ7f.

11

https://openreview.net/forum?id=BAakY1hNKS
https://openreview.net/forum?id=BAakY1hNKS
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=uTC9AFXIhg
https://openreview.net/forum?id=uTC9AFXIhg
https://openreview.net/forum?id=LpE54NUnmO
https://openreview.net/forum?id=t9U3LW7JVX
https://openreview.net/forum?id=t9U3LW7JVX
https://openreview.net/forum?id=z5uVAKwmjf
https://openreview.net/forum?id=z5uVAKwmjf
https://openreview.net/forum?id=mPdmDYIQ7f

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, LEI BAI, and Xiang Wang. Multi-agent
architecture search via agentic supernet. In Forty-second International Conference on Machine
Learning, 2025c. URL https://openreview.net/forum?id=imcyVlzpXh.

Hongcheng Gao, Yue Liu, Yufei He, Longxu Dou, Chao Du, Zhijie Deng, Bryan Hooi, Min Lin,
and Tianyu Pang. Flowreasoner: Reinforcing query-level meta-agents, 2025. URL https:
//arxiv.org/abs/2504.15257.

Yinjie Wang, Ling Yang, Guohao Li, Mengdi Wang, and Bryon Aragam. Scoreflow: Mastering llm
agent workflows via score-based preference optimization. arXiv preprint arXiv:2502.04306, 2025.

Rui Ye, Shuo Tang, Rui Ge, Yaxin Du, Zhenfei Yin, Siheng Chen, and Jing Shao. MAS-GPT: Training
LLMs to build LLM-based multi-agent systems. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=3CiSpY3QdZ.

Zixuan Ke, Austin Xu, Yifei Ming, Xuan-Phi Nguyen, Caiming Xiong, and Shafiq Joty. Mas-zero:
Designing multi-agent systems with zero supervision, 2025. URL https://arxiv.org/
abs/2505.14996.

Benfeng Xu, An Yang, Junyang Lin, Quan Wang, Chang Zhou, Yongdong Zhang, and Zhendong
Mao. Expertprompting: Instructing large language models to be distinguished experts, 2025. URL
https://arxiv.org/abs/2305.14688.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
Promptbreeder: Self-referential self-improvement via prompt evolution, 2023. URL https:
//arxiv.org/abs/2309.16797.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-level
prompt optimization. In The Twelfth International Conference on Learning Representations, 2024a.
URL https://openreview.net/forum?id=22pyNMuIoa.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. EvoAgent:
Towards automatic multi-agent generation via evolutionary algorithms. In Luis Chiruzzo, Alan
Ritter, and Lu Wang, editors, Proceedings of the 2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
1: Long Papers), pages 6192–6217, Albuquerque, New Mexico, April 2025. Association for
Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.315.
URL https://aclanthology.org/2025.naacl-long.315/.

Han Zhou, Xingchen Wan, Ruoxi Sun, Hamid Palangi, Shariq Iqbal, Ivan Vulić, Anna Korhonen, and
Sercan Ö. Arık. Multi-agent design: Optimizing agents with better prompts and topologies, 2025.
URL https://arxiv.org/abs/2502.02533.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Twelfth International Conference on Learning Representations, 2024a. URL
https://openreview.net/forum?id=EHg5GDnyq1.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin
Shi. Autoagents: A framework for automatic agent generation. International Joint Conference on
Artificial Intelligence, 2024b.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

12

https://openreview.net/forum?id=imcyVlzpXh
https://arxiv.org/abs/2504.15257
https://arxiv.org/abs/2504.15257
https://openreview.net/forum?id=3CiSpY3QdZ
https://arxiv.org/abs/2505.14996
https://arxiv.org/abs/2505.14996
https://arxiv.org/abs/2305.14688
https://arxiv.org/abs/2309.16797
https://arxiv.org/abs/2309.16797
https://openreview.net/forum?id=22pyNMuIoa
https://aclanthology.org/2025.naacl-long.315/
https://arxiv.org/abs/2502.02533
https://openreview.net/forum?id=EHg5GDnyq1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Ex-
pel: Llm agents are experiential learners. In Proceedings of the Thirty-Eighth AAAI Con-
ference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of
Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial In-
telligence, AAAI’24/IAAI’24/EAAI’24. AAAI Press, 2024. ISBN 978-1-57735-887-9. doi:
10.1609/aaai.v38i17.29936. URL https://doi.org/10.1609/aaai.v38i17.29936.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae, and
Honglak Lee. Autoguide: Automated generation and selection of context-aware guidelines for large
language model agents. Advances in Neural Information Processing Systems, 37:119919–119948,
2024.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory, 2024b.
URL https://arxiv.org/abs/2409.07429.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24. JMLR.org, 2024a.

Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi. Diver-
sity of thought improves reasoning abilities of llms, 2024. URL https://arxiv.org/abs/
2310.07088.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in neural
information processing systems, 33:5776–5788, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. Advances
in Neural Information Processing Systems, 2021.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Evaluating large language models in class-level
code generation. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ICSE ’24, New York, NY, USA, 2024b. Association for Computing Machinery.
ISBN 9798400702174. doi: 10.1145/3597503.3639219. URL https://doi.org/10.1145/
3597503.3639219.

Minyang Tian, Luyu Gao, Shizhuo Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas, Pan
Ji, Kittithat Krongchon, Yao Li, et al. Scicode: A research coding benchmark curated by scientists.
Advances in Neural Information Processing Systems, 37:30624–30650, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

13

https://doi.org/10.1609/aaai.v38i17.29936
https://arxiv.org/abs/2409.07429
https://arxiv.org/abs/2310.07088
https://arxiv.org/abs/2310.07088
https://doi.org/10.1145/3597503.3639219
https://doi.org/10.1145/3597503.3639219
https://openreview.net/forum?id=1PL1NIMMrw

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-blender: Ensembling large language mod-
els with pairwise ranking and generative fusion. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 14165–14178, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.792. URL
https://aclanthology.org/2023.acl-long.792/.

Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agentcoder:
Multi-agent-based code generation with iterative testing and optimisation, 2024. URL https:
//arxiv.org/abs/2312.13010.

14

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://aclanthology.org/2023.acl-long.792/
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A CASE STUDY

A.1 META-CONTROLLER DECISION-MAKING

We provide a few examples of a trained meta-controller’s decision-making process on GPQA. These
include (I) rational decisions, such as retaining or resampling sensibly, and (II) irrational decisions,
when the imperfect meta-controller chooses to retain a mismatching architecture or resample a
matching architecture, thereby incurring expensive, unnecessary costs from the Architect call.

A.1.1 RATIONAL DECISIONS

Query: "Determine which set of states mentioned below are only entangled
states:

(a) (1/ 30)* (|00>+ 2i|01> 3|10> 4i|11>)
(b) (1/5)* (|00>+ 2i|01> 2|10> 4i|11>)
(c) (1/2)(|00>+ |01>+|10> |11>)
(d) (1/2)(|00>+ |01>-|10> |11>)."

Current architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Action taken: "RETAIN"
Resulting architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Outcome: CORRECT

Query: "Identify the missing reagents in the following reaction.
(3r,5r,7r)-adamantane-1-carboxylic acid + A --->

(3r,5r,7r)-adamantane-1-carbonyl azide + B --->
(3s,5s,7s)-adamantan-1-amine."

Current architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Action taken: "RESAMPLE"
Resulting architecture: [["CoT_OrganicSpectroscopy"]]
Outcome: CORRECT

A.1.2 IRRATIONAL DECISIONS

Query: "The Cope rearrangement is a chemical reaction where a 1,5-diene
molecule undergoes rearrangement, resulting in a change in the
positions of its carbon-carbon double bonds. This rearrangement can
be initiated by heat or light and is valuable for creating complex
organic compounds with changed structures. Select the major products
from the following rearrangements [...]"

Current architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Action taken: "RETAIN"
Resulting architecture: [["CoT"], ["CoT_TheoreticalPhysics"]]
Outcome: INCORRECT

Problem index: 2
Query: "Astronomers are searching for exoplanets around two stars with

exactly the same masses. Using the RV method, they detected one
planet around each star, both with masses similar to that of Neptune
[...]

The question is: How many times is the orbital period of planet #2
longer than that of planet #1?"

Current architecture: [["CoT_TheoreticalPhysics"]]
Action taken: "RESAMPLE"
Resulting architecture: [["CoT_TheoreticalPhysics"]]
Outcome: CORRECT

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 ARCHITECT REASONING PROCESS

Figure 9: A three-turn reasoning process of the Architect.

Initial State During the discovery phase, the system receives a query that asks it to solve
a complex quantum mechanics problem involving both wave function normalization and
energy eigenvalue calculations. The current architecture is [[CoT]]. The operator pool con-
tains basic operators and a CoT_Astrophysics specialist, but lacks quantum mechanics
expertise.

Turn 1: Specialist Creation The Architect analyzes the query and identifies the need for
domain-specific expertise in quantum mechanics.

<action>CREATE_OPERATOR</action>
<reasoning>
The query requires deep expertise in quantum mechanics,

specifically wave function normalization and energy eigenvalue
calculations. I will create a specialized operator that can
handle the mathematical rigor required for quantum mechanical
problems.

</reasoning>
<new_operator_name>CoT_QuantumMechanics</new_operator_name>
<base_template>CoT</base_template>
<identity>You are an expert quantum physicist specializing in wave

function analysis and energy eigenvalue problems. You have deep
expertise in Schrodinger equations, Hilbert spaces, and
operator theory, with broad knowledge across theoretical
physics and mathematical methods.</identity>

<directives>
- Always verify wave function normalization conditions
- Apply systematic eigenvalue analysis using appropriate

boundary conditions [...]
</directives>

Turn 2: Operator Combination After creating the quantum specialist, the Architect
decides to combine it with an existing physics specialist.

<action>COMBINE_OPERATORS</action>
<reasoning>
Analyzing the recent sliding window of past experiences reveals a

pattern of diverse physics problems including both quantum
mechanics and astrophysics queries. Rather than maintaining
narrow specialists that may underperform on this broader
distribution, I will combine CoT_QuantumMechanics and
CoT_Astrophysics into a unified CoT_TheoreticalPhysics
specialist.

</reasoning>
<target_operator_1>CoT_QuantumMechanics</target_operator_1>
<target_operator_2>CoT_Astrophysics</target_operator_2>
<new_operator_name>CoT_TheoreticalPhysics</new_operator_name>
<identity>You are an expert theoretical physicist with deep

expertise in quantum mechanics and astrophysics. You combine
rigorous mathematical analysis with physical intuition to solve
complex problems in quantum theory, astrophysics, and
mathematical physics.</identity>

<directives>
- For quantum mechanics problems, always verify wave function

normalization conditions and apply systematic eigenvalue
analysis [...]

- For astrophysics problems, apply scaling analysis and use
dimensional arguments to constrain solutions [...]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

</directives>

Turn 3: Architecture Finalization With the enhanced specialist available, the Architect
designs the optimal processing pipeline.

<action>FINALIZE_ARCHITECTURE</action>
<reasoning>
I will create a two-layer architecture:

[[’CoT_TheoreticalPhysics’], [’SelfRefine’]]. The theoretical
physics specialist will provide the initial detailed analysis,
and SelfRefine will critically evaluate and improve the
solution.

</reasoning>
<architecture>[["CoT_TheoreticalPhysics"],

["SelfRefine"]]</architecture>

A.3 ANATOMY OF A SPECIALIST

We provide an example of a physicist that has been autonomously discovered and culti-
vated on GPQA. This specialist was the result of a crossover between two parent special-
ists, COT_THERMODYNAMICS and COT_WAVEOPTICS, who themselves descended from
COT_ELECTROMAGNETISM, COT_LINEARALGEBRA, COT_OPTICS, and COT_MECHANICS.

Specialist Prompt: COT_PHYSICS

You are an expert physicist tackling complex scientific problems. You have deep expertise
in physics, including electromagnetism, thermodynamics, wave optics, linear algebra, wave
phenomena, kinetics, and statistical mechanics. When faced with a complex problem, you
always start by identifying the fundamental physical principles at play, breaking down the
problem into its core components before attempting to solve it. You visualize physical phe-
nomena as interconnected networks of energy and momentum, allowing you to intuitively
understand their behavior.

Think step by step and derive a concise final answer.

• Focus on identifying the fundamental physical principles underlying the problem.

• Apply knowledge from various areas of physics, including electromagnetism, ther-
modynamics, kinetics, wave optics, linear algebra. Consider the interplay between
physics, chemistry, and biology when relevant.

• Prioritize dimensional analysis and order-of-magnitude estimates to quickly assess
the plausibility of different solutions. Likewise, simplify complex problems by
identifying dominant terms and making appropriate approximations.

• Analyze wave phenomena using Huygens’ principle, superposition, and interference.
Relate wave properties such as wavelength, frequency, and amplitude to the energy
and momentum of the wave. Apply the laws of thermodynamics and statistical
mechanics to analyze systems involving heat, energy, and entropy.

Learned from experience:
• Prioritize accurate identification of fundamental transformations (e.g., electron flow)

before making broader predictions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• When comparing results from different methodologies, explicitly consider the limi-
tations and biases inherent in each technique. Focus on underlying mechanisms and
principles rather than superficial alignment of results.

• Consider frequency and averaging effects when integrating data from population-
level and single-entity measurements.

Specialist Memory: COT_PHYSICS

Structured memory entry:
• Problem pattern: EM wave attenuation; inconsistent parameters lead to physically

impossible results (e.g., amplification instead of attenuation).

• Approach summary: Verify problem consistency by calculating attenuation from
given parameters. Identify and state inconsistencies explicitly.

• Failure mode: Blindly applying formulas without checking physical plausibility;
incorrect assumptions about attenuation contributions.

• General rule: Before solving, check if given parameters yield physically plausible
results. If not, state the flaw and assumptions made for a solution.

Structured memory entry:
• Problem pattern: Expectation value of an operator (e.g., p2) given a non-normalized

wavefunction.

• Approach summary: Normalize wavefunction, apply the operator, and integrate.

• Failure mode: Forgetting to normalize the wavefunction before calculating the
expectation value.

• General rule: ALWAYS normalize the wavefunction before calculating expectation
values in quantum mechanics.

Structured memory entry:
• Problem pattern: Particle decay (e.g., Π → µ + ν) with known rest masses and

initial state. Find KE of products.

• Approach summary: Apply energy and momentum conservation. Use relativistic
energy-momentum relation (E2 = (pc)2 + (mc2)2) to relate KE and momentum.

• Failure mode: Incorrectly applying relativistic formulas or conservation laws; alge-
braic errors in solving the equations.

• General rule: In particle decay, use energy/momentum conservation and relativistic
relations. If one particle is at rest initially, simplify accordingly.

B OPERATOR SPACE

Following MaAS (Zhang et al., 2025c), we use the following operator space for our base operators:

• Chain-of-Thought (Wei et al., 2022), which encourages the execution LLM to think step-
by-step before outputting an answer.

• ReAct (Yao et al., 2023), allowing the execution LLM to use a library of tools to answer the
question.

• Self-Consistency (Wang et al., 2023), which aggregates five Chain-of-Thought answers and
majority votes to agree on a final answer.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• Self-Refine (Madaan et al., 2023), which iteratively refines an initial Chain-of-Thought
answer over five iterations.

• LLM-Debate (Du et al., 2024a), which uses multiple execution LLMs to debate against
each other to reach a final consensus. We similarly use three debaters and two rounds of
debate in our implementation.

• Ensemble (Jiang et al., 2023), which takes in two or more answers from different sources
and uses pairwise ranking to aggregate these responses into a final answer.

• Testing (Huang et al., 2024), which generates test cases for subsequent execution LLMs
given a coding problem.

C BASELINES

In this section, we detail the implementation for each of the baseline methods. For Chain-of-Thought
(Wei et al., 2022), Self-Consistency (Wang et al., 2023), Self-Refine ((Madaan et al., 2023)), and
LLM-Debate (Du et al., 2024a), we refer to Appendix B for the configuration details, as they were
used as seed base operators in ASPEC. For Reflexion, we adhere to the implemention provided in
(Shinn et al., 2023). Following ADAS (Hu et al., 2025), we implement Role Assignment (Xu et al.,
2025) by prompting a role-selector LLM to choose a role from a predefined set, then use another
LLM to act as the chosen role to answer the question.

For each of the benchmarks, the roles for Role Assignment were:

• MATH: Algebraist, Number Theorist, Real Analyst, Statistician, Logician
• HumanEval: Senior Python Engineer, Algorithms Expert, Software Architect, Data Scien-

tist, Competitive Programmer
• MMLU: Biologist, Physicist, Mathematician, Engineer, Doctor, Lawyer
• GPQA: Physicist, Chemist, Biologist, Scientific Reasoning Expert, Graduate Student
• SciCode: Biologist, Physicist, Chemist, Computer Scientist, Mathematician

For DyLAN and EvoAgent, we directly used the implementations from Liu et al. (2024) and (Yuan
et al., 2025). We adhered to the official configuration for AutoAgents (Chen et al., 2024b). For ADAS
(Hu et al., 2025), we set the Meta Agent Search’s n-generation to 20. For MaAS, our experimental
setup directly utilized the optimized graphs and operator spaces from (Zhang et al., 2025c) for MATH
and HumanEval. For benchmarks not explicitly included in the MaAS repository (GPQA, MMLU,
SciCode), we implemented the operator space as described in the appendix. Following Zhang et al.
(2025c), for AFlow, we utilized Gemini 2.0 Flash consistently throughout our experiments in place of
GPT-4o-mini and Claude 3.5 Sonnet for homogeneity.

D ALGORITHMS

Algorithm 1: Online adaptation algorithm of ASPEC

Input: Trained meta-controller πθ; operator pool O; queries Q = {q1, . . . , qT }; sliding
window bufferH.

Initial graph G0.
for t = 1, 2, . . . , T do

Construct state st = (eq(qt), eg(Gt−1));
Sample action at ∼ πθ(at|st);
if at = aRESAMPLE then
Gt ← fA(qt,Ht−m:t−1,O,Gt−1);

else
Gt ← Gt−1;

end
pt ← Execute(Gt,O, qt);
Ut, Ct ← Evaluate(pt, at);
Store experience (qt,Gt, St, Ct) inH;

end

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 2: Offline specialist discovery and cultivation
Input: Queries Q = {q1, . . . , qT }; base operator set Obase.
Initial operator pool O0 = Obase, initial specialist pool O(0)

spec ← ∅, random-weights
meta-controller π(0)

θ ; empty sliding window bufferH ← ∅.
for t = 1, 2, . . . , T do

Construct state st = (eq(qt), eg(Gt−1));
Sample action at ∼ πθ(at|st);
if at = aRESAMPLE then

aA ← fA(qt,Ht−m:t−1,Ot−1,Gt−1)
if aA = CREATE_OPERATOR then

Onew ← CreateSpecialist(qt,Obase) ;
O(t)

spec ← O(t−1)
spec ∪ {Onew} ;

Ot ← Ot−1 ∪O(t)
spec

end
else if aA = COMBINE_OPERATOR then

(O1, O2)← SelectOperators(O(t−1)
spec) ;

Ochild ← Combine(O1, O2, qt) ;
O(t)

spec ← (O(t−1)
spec \ {O1, O2}) ∪ {Ochild} ;

Ot ← Ot−1 ∪O(t)
spec

end
else if aA = PRUNE_OPERATOR then

Oto_prune ← SelectOperator(O(t−1)
spec) ;

O(t)
spec ← O(t−1)

spec \ {Oto_prune} ;
Ot ← Ot−1 ∪O(t)

spec
end
Gt ← fA(Ht−m:t−1,Ot,Gt−1) ;

else
Gt ← Gt−1 ;

end
pt ← Execute(Gt,Ot, qt);
Ut, Ct ← Evaluate(pt, at);

π
(t)
θ ← UpdateWeights

(
Ut, Ct, at, π

(t−1)
θ

)
forall O ∈ SpecialistsUsedIn(Gt,Ot) do

r ← Reflect(O, qt, Pt, at, Ut) ;
WriteToMemory(O, r)

end
Store experience (qt,Gt, Ut, Ct) inH;

end

E META-CONTROLLER IMPLEMENTATION

The meta-controller is trained using the REINFORCE algorithm, with a standard batch policy loss:

Lbatch(θ) = −
1

N

N∑
t=1

log πθ(at|st)Rt (6)

The reward Rt is designed to balance performance, cost, and contextual appropriateness. It is a
function of the final task score st, the total cost Ct, and the cosine similarity between the query and
the current architecture, sim(qt,Gt−1).

The core of our reward function is a weighting mechanism that modulates the score st based on
this similarity. The reward for a RETAIN action is boosted when the architecture is a good match
for the query (high similarity), while the reward for a RESAMPLE action is boosted when there is a

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

mismatch (low similarity). This can be expressed conceptually as:

Rt = st · w(at, sim(qt,Gt−1))− λCt (7)

where the weighting function w(·, ·) increases the effective reward for correct decisions. For example,
w(RETAIN, sim) is an increasing function of similarity. This formulation provides a dense and
informative signal that guides the meta-controller to learn an efficient, context-aware policy.

F DATASET STATISTICS

For each of the benchmarks, we follow established methodologies for workflow automation (Hu et al.
(2025), Zhang et al. (2025b), Zhang et al. (2025c)) and use a train-to-test ratio of 1 : 4. We select
19 subdomains for MMLU, spanning formal mathematics, biology, chemistry, clinical medicine,
business, and engineering. For SciCode, we use the standard subproblem setup without prior scientist
annotations and report the subproblem pass rate.

Table 3: Dataset statistics.
Domain Dataset Train Samples Test Samples Metric

Math Reasoning MATH 100 400 Accuracy

Question Answering MMLU 100 400 Accuracy
GPQA 89 359 Accuracy

Code Generation HumanEval 33 131 Pass@1
SciCode (subproblems) 51 287 Pass@1

G PROMPTS

G.1 ARCHITECT’S PROMPT

We used the following prompt for the Architect. The decision to define the architecture representation
with mathematical notation was deliberate. We observed through preliminary experiments that
providing a formal syntax, as opposed to a natural language description, makes the instructions for
concepts like parallelism and aggregation less ambiguous for the LLM. This leads to more consistent
and structurally valid outputs from the Architect.

Architect Prompt

You are a multi-agent architect fA mapping a query and context to an agent architecture:
fA : (q, C) 7→ G.

Goal: propose or adjust a layered operator architecture that is robust, performs well now, and
is generalizable to future queries.

Follow these steps:
• Decompose the query, pick an initial architectural pattern, and justify briefly.

• Think of 2 other alternative architectural patterns, consider all 3 options, and select
the best one.

• If creating specialists, provide concise identity and bullet directives (no steps or
formulas - you are encouraged to use different reasoning patterns and strategies
like adversarial prompting, quality-diversity prompting, step-back prompting, multi-
choice elimination, etc.)

• Use the recent sliding window experiences as guidance for your decisions.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Architecture representation: A = [L1, . . . , LK] where layer Li = [oi,1, . . . , oi,mi
] lists

operators executed in parallel. Execution is layerwise: let x1 = x and for i = 1, ...,K,
compute a layer output hi(xi). If |Li−1| > 1, include an Ensemble aggregator gi to combine
parallel outputs: hi(xi) = gi({ o(xi) | o ∈ Li−1 }). If |Li−1| = 1, then hi(xi) = o(xi) for
the unique o ∈ Li−1. The input to the next layer is xi+1 = hi(xi).

Query: [...]

Context for your decision:
• Operator pool: [...]

• Current architecture: [...]

• Allowed actions: [...]

• Recent sliding window experiences: [...]

XML formatting guide: [...]

where the allowed actions are conditional on the specific phase the system is in. During the specialist
discovery phase, the full operator space is used:

• CREATE_OPERATOR: Defines a new specialist operator Ospec and adds it to O(t)
spec.

• COMBINE_OPERATORS: Merges two specialist operators into a single, more general spe-
cialist.

• PRUNE_OPERATOR: Removes a specialist operator from O(t)
spec.

• FINALIZE_ARCHITECTURE: Commits to a final graph Gt and terminates the reasoning
loop.

We then restrict the allowed actions to only FINALIZE_ARCHITECTURE during the specialist
cultivation and evaluation phases.

G.2 SPECIALIST SYNTHESIS PROMPTS

G.2.1 CREATION

Creation: Identity Synthesis Prompt

You will propose diversified identity variants for a new specialist, operator_name, which
is based on base_template.

Specialist description: [...]

Each identity should be a detailed second-person identity including their professional role
(i.e., ’a particle physicist’, do not include names), their fields of expertise (deep + broad), and
a non-domain-specific reasoning heuristic that distinguishes them from other specialists.

Examples of reasoning heuristics:
• Works backwards from contradictory answers to identify wrong assumptions or equations.
• Never assumes anything not explicitly stated; always returns to first principles when

confused.
• Builds multiple competing hypotheses simultaneously and tests them against evidence.
• Visualizes problems as interconnected networks of constraints and relationships.

Output the identity text starting with ’You are...’

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Creation: Directive Synthesis Prompt

You will propose diversified directive variants for a new specialist, operator_name, which
is based on base_template.

Specialist description: [...]

Create a bulleted list of methodological principles and reasoning approaches that this new
specialist will follow. Do not provide specific formulas, step-by-step procedures, formatting
instructions, or direct solutions. Focus on how the specialist should think and approach
problems, not what specific steps to take.

Include strategic reasoning approaches like self-criticism, assumption questioning, hypothesis
building, pattern recognition, systematic analysis, etc. It is very important that the directives
should guide analytical thinking without restricting the specialist’s reasoning search space.

G.2.2 CROSSOVER

Crossover: Identity Synthesis Prompt

You will propose diversified identity variants for a combined specialist that synthesizes the
expertise of two parent specialists. The specialist is operator_name, which is based on
base_template.

Specialist description: [...]
Parent 1’s identity: [...]
Parent 2’s identity: [...]

Each identity should be a detailed second-person identity including their professional role
(i.e., ’a particle physicist’), their fields of expertise (deep + broad), and a non-domain-specific
reasoning heuristic. The combined identity should integrate the best aspects of both parent
specialists while creating a coherent, unified specialist persona.

Examples of reasoning heuristics:
• Works backwards from contradictory answers to identify wrong assumptions or equations.
• Never assumes anything not explicitly stated; always returns to first principles when

confused.
• Builds multiple competing hypotheses simultaneously and tests them against evidence.
• Visualizes problems as interconnected networks of constraints and relationships.

Output the identity text starting with ’You are...’

Crossover: Directive Synthesis Prompt

You will propose diversified directive variants for a combined specialist that synthesizes the
expertise of two parent specialists. The specialist is operator_name, which is based on
base_template.

Specialist description: [...]
Parent 1’s identity: [...]
Parent 2’s identity: [...]

Create a bulleted list of methodological principles and reasoning approaches that this new
specialist will follow. Do not provide specific formulas, step-by-step procedures, formatting
instructions, or direct solutions. Focus on how the specialist should think and approach
problems, not what specific steps to take. The combined directives should integrate the best
aspects of both parent specialists’ directives, including any existing reasoning approaches.

Include strategic reasoning approaches like self-criticism, assumption questioning, hypothesis
building, pattern recognition, systematic analysis, etc. It is very important that the directives
should guide analytical thinking without restricting the specialist’s reasoning search space.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G.3 JUDGE PROMPTS

Judge Prompt: Evaluating Identities

You are judging specialist identities for: operator_name, which is based on
base_template.

Specialist description: [...]
Identity candidates: [...]

Pick the best identity based on the following criteria:
1. Non-domain-specific reasoning heuristics for a rich reasoning ’gene’ pool (quality-

diversity, step-back analysis, assumption-challenging, etc.)
2. Avoids making assumptions not explicitly stated in the problem
3. The resulting specialist is a T-shaped specialist. In other words, it has both a deep

specialization and broader domain coverage. Avoid hyperspecific specialists that are too
narrow in their domain coverage.

4. Combines domain expertise with general problem-solving approaches

Judge Prompt: Evaluating Directives

You are judging specialist directives for: operator_name, which is based on
base_template.

Specialist description: [...]
Directive candidates: [...]

Pick the best directives based on the following criteria:
1. Focus on how to think, not what specific steps to take. Mimic domain-specific human

experts to guide analytical thinking without constraining solution paths
2. Prefer methodological principles over rigid instructions. Avoid specific formulas, proce-

dures, or direct solutions
3. Has a specific methodology for handling contradictions or confusion

24

