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Abstract

Speech Language Models (SLMs) aim to learn001
language from raw audio, without textual re-002
sources. Despite significant advances, our cur-003
rent models exhibit weak syntax and semantic004
abilities. However, if the scaling properties of005
neural language models hold for the speech006
modality, these abilities will improve as the007
amount of compute used for training increases.008
In this paper, we use models of this scaling009
behavior to estimate the scale at which our cur-010
rent methods will yield a SLM with the English011
proficiency of text-based Large Language Mod-012
els (LLMs). We establish a strong correlation013
between pre-training loss and downstream syn-014
tactic and semantic performance in SLMs and015
LLMs, which results in predictable scaling of016
linguistic performance. We show that the lin-017
guistic performance of SLMs scales up to three018
orders of magnitude more slowly than that of019
text-based LLMs. Additionally, we study the020
benefits of synthetic data designed to boost se-021
mantic understanding and the effects of coarser022
speech tokenization.023

1 Introduction024

Inspired by the remarkable ability of preschool025

children to learn language from raw sensory in-026

puts, Lakhotia et al. (2021) introduced in their sem-027

inal paper the textless NLP (Natural Language Pro-028

cessing) project. The project aimed to leverage029

advances in self-supervised speech representation030

learning for unsupervised unit discovery (Hsu et al.,031

2021; Chung et al., 2021) and generative neural032

language models (Brown et al., 2020) to jointly033

learn the acoustic and linguistic characteristics of034

a language from audio alone, without access to035

textual supervision (e.g. lexicon or transcriptions).036

They formalized this goal in the task of Genera-037

tive Spoken Language Modeling (GSLM), in which038

a language model is trained on sequences of self-039

supervised learned speech units.040

Despite a significant body of research on these041

Figure 1: Speech Language Models test loss curves for
all our single-epoch runs. Axes are in logarithmic scale.
The envelope of minimal loss per FLOP (black dots)
follows a power law (dashed line).

speech-based language models (SLMs) (Lakhotia 042

et al., 2021; Kharitonov et al., 2022; Borsos et al., 043

2023; Hassid et al., 2023), they are still far from 044

matching the syntactic and semantic abilities of 045

text-based systems (Hassid et al., 2023). Therefore, 046

the promise of textless NLP is yet to be realized. 047

However, if the scaling behavior of text-based neu- 048

ral language models (Brown et al., 2020; Kaplan 049

et al., 2020) holds for the speech modality, we can 050

reasonably expect those abilities to improve as the 051

amount of compute used for training increases. 052

In this work, we apply recently proposed models 053

of the scaling behavior of neural language models 054

to SLMs, and use them to estimate the scale at 055

which our current methods will match the linguistic 056

performance of Large Language Models (LLMs), 057

generative text-based systems that have achieved 058

remarkably strong performance across a wide range 059

of NLP applications (Brown et al., 2020). The main 060

contributions of this work are: 061

• We trained over 50 SLMs with different num- 062
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Figure 2: Downstream linguistic performance scaling with compute for LLMs and SLMs. Axes are in logarithmic
scale. Syntactic (BLIMP) and semantic (Topic Cloze and Story Cloze) metrics follow a power law before starting to
saturate. Linguistic performance scales up to three orders of magnitude more slowly in SLMs relative to LLMs.

ber of parameters and data budgets. We show063

that the test loss of SLMs follows scaling064

power laws as those observed in text-based065

LLMs (Figure 1), and use the methods from066

Hoffmann et al. (2022) and Muennighoff et al.067

(2023) to model the scaling behavior of SLMs.068

• We establish a strong correlation between the069

test loss of neural LMs and the downstream070

metrics commonly used to evaluate their syn-071

tactic and semantic abilities. Therefore, the072

linguistic performance of LMs follows similar073

scaling laws (Figure 2). We leverage this in-074

sight to determine the relative efficiency with075

scale of SLMs relative to LLMs.076

• We speculate that SLMs require more context077

than fits in their context window to acquire078

from commonly used speech datasets the se-079

mantic understanding measured by our met-080

rics. Accordingly, we propose a new speech081

dataset to boost semantic understanding in082

SLMs. Specifically, we synthesized a spo-083

ken version of the Tiny Stories dataset (Eldan084

and Li, 2023), and show that its use during085

pre-training improves downstream semantic086

performance.087

• On the basis of our previous observation, we088

studied the use of unigram tokenization to089

shorten sequences and pack more information090

in the context window of SLMs. However,091

our results suggest that a coarser tokenization092

is detrimental to downstream performance.093

2 Background094

2.1 Generative spoken language modeling095

We follow the GSLM framework from Lakhotia096

et al. (2021). The general GSLM pipeline is com-097

posed of three separately trained models: (i) a 098

speech tokenizer, (ii) a language model, and (iii) a 099

vocoder (token-to-waveform) module. In the fol- 100

lowing, we provide background for the speech tok- 101

enizer and LM, as these are the components we use 102

in this work. For details about the vocoder please 103

refer to Lakhotia et al. (2021). 104

Speech tokenizers transform raw speech wave- 105

forms into discrete representations. A speech en- 106

coder is used to extract continuous representa- 107

tions that are then transformed into discrete se- 108

quences through vector quantization. Formally, 109

let X ∈ R denote the domain of audio sam- 110

ples, a waveform is therefore a sequence of sam- 111

ples x = (x1, . . . , xT ), where xt ∈ X for all 112

1 ≤ t ≤ T . An encoder F : Xm → Rd trans- 113

forms windows of samples of width m into d di- 114

mensional continuous frame representations. Ap- 115

plying F to x yields a sequence of frame represen- 116

tations z = (z1, . . . , zT ′), where usually T ′ < T . 117

Subsequently, a k-means algorithm is applied to 118

the encoder output to generate a sequence of dis- 119

crete speech tokens u = (u1, . . . , uT ′), where 120

ui ∈ {1, . . . ,K} for 1 ≤ i ≤ T ′, and K is the 121

size of the vocabulary. 122

Language models aim to learn the joint proba- 123

bility of token sequences P (w1, . . . , wn). By the 124

chain rule of probability, the probability of a se- 125

quence can be computed as a product of its condi- 126

tional probabilities: 127

P (w1, . . . , wn) =
n∏

i=1

P (wi|w1, . . . , wi−1) (1) 128

Neural LMs, parameterized by θ, are neural 129

networks that model the conditional probabilities 130

Pθ(wi|M(w1, . . . , wi−1)), where M is a represen- 131
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tation of the previous tokens. The network is opti-132

mized to minimize the negative log-likelihood of133

observed ground truth sequences:134

L = −
n∑

i=1

Pθ(wi|M(w1, . . . , wi−1)) (2)135

Nowadays, the network is typically a transformer136

(Vaswani et al., 2017). LLMs are large transformer137

LMs trained on large text corpora (billions of pa-138

rameters and tokens). SLMs are neural LMs ap-139

plied to speech tokens u.140

2.2 Scaling laws for neural language models141

The performance of deep learning models often142

behaves predictably as a function of model size,143

dataset size, and compute (Hestness et al., 2017).144

Kaplan et al. (2020) showed that the loss L (Equa-145

tion 2) of large neural LMs scales with a power law146

behavior as a function of these three scale factors:147

L(C) ∝ Cγ , L(N) ∝ Nα, L(D) ∝ Dβ (3)148

Where C is the amount of compute (in FLOPS), N149

is the number of parameters of the model, and D is150

the number of training tokens.151

Building upon their work, Hoffmann et al. (2022)152

proposed a parametric function to model the final153

loss of neural LMs trained for a single epoch as a154

function of N and D:155

L̂(N,D) = E +
A

Nα
+

B

Dβ
(4)156

Where the first term is the loss for an ideal LM, and157

should correspond to the entropy of the distribution158

of token sequences. The second term captures the159

approximation error that results from using a neural160

network with N parameters to approximate the161

ideal generative process. The final term reflects162

that the model is not trained to convergence, as a163

finite number of optimization steps are performed164

on a sample of size D from the real distribution.165

Hoffmann et al. (2022) aimed to solve the prob-166

lem of optimal allocation of resources given a fixed167

compute budget Cavail. They proposed to approx-168

imate the compute needed to train a transformer169

LM with N parameters on D tokens as C ≈ 6ND.170

Then, the problem of optimal allocation of compute171

for model size and training data is:172

min
N,D

L̂(N,D), s.t. 6ND = Cavail (5)173

For which the solution is: 174

Nopt(C) = G

(
C

6

)a

Dopt(C) =
1

G

(
C

6

)b (6) 175

With: 176

G =

(
αA

βB

) 1
α+β

, a =
β

α+ β
, and b =

α

α+ β
177

Muennighoff et al. (2023) generalized Equation 178

4 to the case of multi-epoch training by replacing 179

D and N with terms corresponding to the effective 180

data D′ and effective model parameters N ′: 181

L̂(N ′, D′) = E +
A

N ′α +
B

D′β (7) 182

Where D′ ≤ D is the number of effective training 183

tokens, assuming that the value of repeated tokens 184

decays exponentially. Similarly, they note that over- 185

sized models offer diminishing returns per param- 186

eter, as excess parameters learn the same features 187

and do not add value (in the extreme). They pro- 188

pose an exponential decay model for them, yielding 189

a number of effective parameters N ′ ≤ N . They 190

derived the expressions for D′ and N ′ as: 191

D′ = UD + UDR
∗
D(1− e

−RD
R∗
D )

N ′ = UN + UNR∗
N (1− e

−RN
R∗
N )

(8) 192

Where UD is the number of unique tokens used, 193

RD = D
UD

− 1 is the number of repetitions (0 for 194

a single epoch), UN is the number of parameters 195

needed to optimally fit UD according to Equation 6, 196

RN = N
UN

− 1 is the number of excess parameters, 197

and R∗
D and R∗

N are constants. 198

The constants E, A, B, α, β, R∗
D and R∗

N can 199

be estimated empirically by fitting Equation 4 or 200

7 to a set of tuples (N,D,RN , RD, L) obtained 201

from training experiments with different budgets. 202

3 Experimental setup 203

3.1 Models and training 204

We adhere to the framework described in Section 205

2.1. For the speech tokenizer, we use a pre-trained 206

HuBERT model (Hsu et al., 2021) with frame-rate 207

of 25 Hz as the speech encoder F , and a vocabulary 208

size of K = 500. This setup reports the best per- 209

formance among publicly available models (Hassid 210
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SIZE LAYERS MODEL DIM. HEADS

20M 6 512 8
85M 12 768 12
155M 12 1024 16
309M 24 1024 16
823M 16 2048 32

Table 1: Models description.

et al., 2023). For the SLMs we use the Llama archi-211

tecture (Touvron et al., 2023) with context window212

of 2050 tokens. Table 1 describes the model sizes213

used in our experiments. For the LLMs, we use the214

Pythia suite of pre-trained LLMs (Biderman et al.,215

2023), ranging in size from 14M to 6.9B param-216

eters (we do not use the largest 12B model), and217

trained with ∼300B tokens.218

All SLMs are optimized using AdamW219

(Loshchilov and Hutter, 2019) with weight decay220

of 0.1, maximum learning rate of 5e-4, half-cycle221

cosine decay learning rate schedule to 5e-5, and222

a warm-up initial stage of max(100, 0.01niters)223

steps, where niters is the number of training steps,224

which varies for each experiment according to the225

data budget. We use batch sizes of 64, 128, 256226

and 512 for the models with 20M, 85M, 155M and227

309M, and 828M parameters, respectively.228

To fit the constants in Equations 4 and 7, we229

adopt the approaches of Hoffmann et al. (2022)230

and Muennighoff et al. (2023), utilizing the Huber231

loss with δ = 0.03 as the error function and L-232

BFGS as optimizer. Following Muennighoff et al.233

(2023), we first fit the parameters E, A, B, α, and234

β using the single-epoch runs, and afterwards fit235

R∗
D and R∗

N using the multi-epoch runs.236

3.2 Evaluation237

We use the SBLIMP task (Nguyen et al., 2020)238

to measure syntactic performance. In SBLIMP,239

the model is presented with a matched pair of240

speech segments, grammatical and ungrammati-241

cal sentences. The objective is to assign higher242

probability to the grammatical sentence.243

To evaluate semantic understanding we use the244

spoken STORYCLOZE benchmark from Hassid245

et al. (2023), a spoken version of the StoryCloze246

textual benchmark (Mostafazadeh et al., 2016),247

which consists of 4k five-sentence commonsense248

stories. In StoryCloze, the model receives as in-249

put the first four sentences of a story, and has to250

assign higher probability to the correct final sen-251

tence than to an adversarial negative sample. The252

DATASET HOURS
HUBERT
TOKENS

UNIGRAM

LIBRISPEECH 960 67M 38M
LIBRILIGHT 53K 3.74B 2.11B
SWC 1K 32M 19M
TEDLIUM 1.6K 0.11B 67M
PEOPLE 7K 0.48B 0.29B
VOX POPULI 24K 1.64B 1.08B
STINYSTORIES 72K 4.82B 2.71B

TOTAL 160K 10.89B 6.31B

Table 2: Datasets statistics. The UNIGRAM column cor-
responds to the dataset of HuBERT tokens compressed
through unigram tokenization.

spoken benchmark comes in two versions: Story 253

Cloze and Topic Cloze. The difference between 254

them lies in how the negative sample is generated. 255

Spoken Story Cloze uses the same samples as the 256

textual benchmark, which require commonsense 257

reasoning to distinguish from the real ending. In 258

Topic Cloze, the negatives are randomly sampled 259

from the whole dataset, and therefore measures the 260

ability of the model to stay on topic. 261

Regarding upstream performance, in all cases we 262

report and use for the parametric fits the average 263

loss (Equation 2) on the test set. 264

3.3 Data 265

3.3.1 Datasets 266

We use a collection of publicly available English 267

speech datasets for training: LibriSpeech (Panay- 268

otov et al., 2015), LibriLight (Kahn et al., 2020), 269

SWC (Baumann et al., 2019), Tedlium (Hernandez 270

et al., 2018), People’s Speech (Galvez et al., 2021), 271

and Vox Populi (Wang et al., 2021b); and a novel 272

dataset: STINYSTORIES, a spoken version of the 273

Tiny Stories dataset (Eldan and Li, 2023) that we 274

synthesized using the single-speaker TTS system 275

provided by Wang et al. (2021a). Tiny Stories is 276

a synthetic text corpus of short stories designed 277

to boost commonsense reasoning in neural LMs. 278

We propose STINYSTORIES because we hypoth- 279

esize that the semantic understanding that tasks 280

such as Story Cloze measure is hard to acquire 281

from commonly used speech datasets. Consider 282

for instance the audiobooks in LibriLight. The 283

data has long-range dependencies spanning multi- 284

ple pages, whereas our SLMs can ingest roughly a 285

dozen sentences of spoken text in their context win- 286

dow. Other datasets, which were mainly designed 287

to serve as training data for automatic speech recog- 288

nition systems, consist of too small fragments of au- 289
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dio that lack meaningful causal structure. STINYS-290

TORIES consists of full stories with causal structure291

that fit within the context window of our SLMs.292

We do not include samples from STINYSTORIES293

in our test set, as we intend to use our test loss as294

measure of the quality with which SLMs model nat-295

ural language, not synthetic one. For other datasets296

we use the defined held-out sets for testing. In cases297

where a held-out set is not defined, we randomly298

sampled 1% of the data to serve as test set. See299

Table 2 for dataset sizes.300

3.3.2 Data budgets301

In order to have a representative set of sam-302

ples to fit Equations 4 and 7, for each model303

size, we performed training runs with a ratio of304

training tokens D to parameters N : D/N ∈305

{2, 4, 8, 10, 20, 32, 64, 100}. This setup yields306

single-epoch and multi-epoch runs for the larger307

models but not for the smaller models (e.g. for the308

model with 85M parameters the maximum number309

of training tokens corresponds to 0.99 epochs). To310

better fit Equation 7, we performed additional ex-311

periments so that for each model size there were312

runs with training epochs in {2, 4, 8, 10}, with the313

exception of the 828M parameter model, for which314

the maximum was 8 epochs.315

4 Results316

4.1 Gains from sTinyStories317

In order to determine if STINYSTORIES meaning-318

fully contributes to the semantic understanding319

of SLMs, we compare the performance on Topic320

Cloze and Story Cloze of models trained on one321

epoch of the union of LibriSpeech and LibriLight,322

against models trained on an equivalent amount323

of STINYSTORIES tokens. Figure 3 shows the ob-324

tained results. Models trained on STINYSTORIES325

consistently outperform those trained on audio-326

books across all model scales. A factor that could327

contribute to the observed performance gain is the328

match between training and evaluation speakers, as329

both STINYSTORIES and Story Cloze were synthe-330

sized using the single-sepaker TTS from Wang et al.331

(2021a). However, we believe this to be unlikely332

as the speech tokenizer we use likely captures little333

speaker-specific information (Nguyen et al., 2023).334

To isolate the potential impact of speaker mismatch335

between training and evaluation data, we created336

a multi-speaker version of the Story Cloze bench-337

Figure 3: Gains from synthetic data on downstream
semantic performance of SLMs. Pre-training on sTinyS-
tories yields consistent improvements on semantic un-
derstanding relative to pre-training on audiobooks (Lib-
riSpeech plus LibriLight). Performance gains hold for
mismatched train and test speakers.

mark using Bark TTS 1, and repeat the evaluations. 338

The results, also shown in Figure 3, indicate that 339

even with mismatched train and test speakers train- 340

ing on STINYSTORIES yields performance gains. 341

4.2 Benchmarking our setup 342

To validate our setup, we compared our best per- 343

forming model with other models in the SLM lit- 344

erature in Table 3. Our model outperformed all 345

other speech-only LMs on the semantic tasks, and 346

performed second best in general, even relative 347

to hybrid speech-text LMs. Notably, our model 348

outperformed models with a larger compute bud- 349

get. Considering that the models from Hassid et al. 350

(2023) and Nguyen et al. (2024) use similar hyper- 351

parameters (same speech tokenizer and the Llama 352

architecture for LMs); the most likely factor to ex- 353

plain the performance difference is the data used. 354

We believe these results further illustrate the bene- 355

fits from using STINYSTORIES. 356

4.3 Scaling laws 357

We trained multiple SLMs for each model size with 358

different data budgets as described in Section 3.3.2. 359

The resulting learning curves for single-epoch runs 360

are presented in Figure 1 as a function of compute, 361

1https://github.com/suno-ai/bark
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PARAMETERS TOKENS BLIMP TOPIC CLOZE STORY CLOZE
Speech-only language models
GSLM (LAKHOTIA ET AL., 2021) 100M - 54.2 66.6 53.3
AUDIOLM (BORSOS ET AL., 2023) 150M - 64.7 - -
HASSID ET AL. (2023), COLD-INIT 1.3B 1.3B 10.8B 56.5 - -
NGUYEN ET AL. (2024) 7B 100B 58.0 72.9 54.8
OURS (BEST MODEL) 823M 82B 61.3 78.0 56.7
Speech language models initialized from text language models
TWIST (HASSID ET AL., 2023)

- WARM-INIT 1.3B 1.3B 10.8B 57.1 70.6 52.4
- WARM-INIT 7B 7B 36B 59.0 74.1 55.1
- WARM-INIT 13B 13B 36B 59.2 76.4 55.4

Mutltimodal speech-text language models initialized from text language models
SPIRIT-LM (NGUYEN ET AL., 2024) 7B 100B 58.3 82.9 61.0
Toplines
PYTHIA (BIDERMAN ET AL., 2023) 6.9B 6.9B 300B 80.0 97.5 76.21
HUMAN (HASSID ET AL., 2023) - - - 90.2 79.9

Table 3: Models benchmarking. The best model resulting from our experiments obtains the best semantic perfor-
mance across speech-only models, and the second best overall in all tasks.

MODALITY
γq

BLIMP TCLOZE SCLOZE

TEXT 0.066 0.039 0.046
SPEECH 0.021 0.025 0.017

Table 4: γq power law coefficients of downstream per-
formance with compute as depicted in Figure 2.

and show that the envelope of minimal loss per362

FLOP follows a power law.363

4.3.1 Downstream scaling with compute364

We analyzed the relationship between the upstream365

and linguistic downstream performance in SLMs366

and LLMs. Figure 4 shows the obtained results.367

Downstream linguistic metrics before saturation368

are strongly correlated with the upstream test loss369

in both LLMs and SLMs. Therefore, the envelope370

of maximum downstream performance per FLOP371

also follows a power law, i.e. for a downstream per-372

formance function Q, Q ∝ Cγq . The power laws373

for the different performance metrics are presented374

in Figure 2 and the exponents in Table 4.375

These results allow us to compare the efficiency376

with scale of LLMs and SLMs. For each metric,377

we can interpret the ratio between the γq exponents378

of the power laws of LLMs and SLMs as the rel-379

ative efficiency with scale. For BLIMP, the ratio380

is 0.066
0.021 = 3.14, indicating that for an increase in381

compute ∆C yielding a ∆Q in LLM’s syntactic382

performance, SLMs require 103.14∆C to get the383

same ∆Q. Similarly, for Topic Cloze and Story384

Cloze the ratios are 1.56 and 2.7, respectively.385

E A B α β R∗
N R∗

D

TEXT
MUENNIGHOFF ET AL.

1.87 521 1488 0.35 0.35 5.31 15.4

SPEECH 1.73 13.9 39.8 0.25 0.24 31.0 25.0

SPEECH
(UNIGRAM) 1.42 3.85 8.90 0.15 0.16 - -

Table 5: Scaling law parameters fit to Equations 4 and 7
for different language tokenizations.

4.3.2 Scaling with parameters and tokens 386

We fitted the functions from Equations 4 and 7 to 387

our data using the procedure described in Section 388

3.1. We present the empirically fitted scaling law 389

parameters and compare them to the ones obtained 390

for text by Muennighoff et al. (2023) in Table 5. 391

From Equation 6, Nopt ∝ Ca and Dopt ∝ Cb. For 392

both modalities a ≈ b ≈ 0.5, suggesting that as 393

compute increases, model size and data should be 394

scaled equally for optimal performance. Contrary 395

to text, R∗
N > R∗

D, indicating that repeated tokens 396

decay faster than excess parameters (albeit both 397

slower than in text). Therefore, in SLMs, compute 398

allocated to parameters should scale faster than 399

compute allocated for epochs. 400

4.4 Unigram tokenization 401

As mentioned in Section 3.3, we believe that the 402

limited context window of SLMs could cripple their 403

ability to model the long-range dependencies in 404

language required for causal reasoning. Seeking 405

to mitigate this limitation, we apply unigram to- 406

kenization to shorten the length of speech token 407

sequences. We use the SentencePiece tokenizer 408
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Figure 4: Correlation between downstream linguistic performance and test loss for LLMs and SLMs. Syntactic
(BLIMP) and semantic (Topic Cloze and Story Cloze) metrics are strongly linearly correlated with the upstream test
loss before saturation.

Figure 5: Comparison of the scaling behavior of SLMs trained on raw speech tokens and unigram compressed
tokens. Axes are in logarithmic scale. The upstream loss of SLMs trained on unigram tokens scales better with
compute, but downstream performance scales worse. Notably, the Story Cloze metric for SLMs trained on unigram
tokens does not seem to improve with increased compute.

(Kudo and Richardson, 2018) with a vocabulary409

size of 5000. We choose the vocabulary size on410

the scale of previous works that have used simi-411

lar tokenization strategies for speech applications412

(Chang et al., 2023). The resulting dataset sizes413

after compression are presented in Table 2.414

We train a set of Speech LMs on the compressed415

datasets, with model sizes up to 309M parame-416

ters and data budgets ranging from 740M to 6.31B417

tokens. We analyze the scaling behavior of the418

upstream and downstream metrics and compare419

it with SLMs trained on raw HuBERT speech to-420

kens in Figure 5. SLMs trained on unigram com-421

pressed speech tokens show similar upstream scal-422

ing with compute, but worse downstream scaling.423

Notably, the performance on the StoryCloze bench-424

mark does not seem to scale with compute.425

We fitted the function from Equation 4 to the426

results obtained on the compressed dataset. Table 5427

presents the resulting scaling law parameters. Sim-428

ilar to the previous findings, for a given compute429

budget, scaling model size and training data equally430

is optimal for performance. Due to the poor down-431

stream results obtained with unigram tokenization432

and the lack of sufficient compute resources, we433

did not perform multi-epoch training experiments.434

5 Related work 435

Previous works have studied the scaling behavior 436

of neural networks on speech applications. Droppo 437

and Elibol (2021) showed that acoustic models 438

trained with an auto-predictive coding loss follow 439

similar power laws to those observed in neural LMs. 440

Aghajanyan et al. (2023) used the scaling laws from 441

Hoffmann et al. (2022) to model the scaling behav- 442

ior of the upstream loss of neural LMs on multiple 443

modalities, including speech. They used a speech 444

tokenizer with higher framerate (50 Hz) and vo- 445

cabulary size (K = 2000) than the one we used 446

(Section 3.1). Such fine-grained tokenizers capture 447

a lot of the paralinguistic information in speech 448

(Nguyen et al., 2023). Therefore, their speech to- 449

kens can be considered almost a different modality 450

due to the acoustic variance. Furthermore, they do 451

not study the behavior with scale of downstream 452

performance. In this work, we focus on the linguis- 453

tic content of the signal. As reported by Hassid 454

et al. (2023), our speech tokenizer performs best 455

on downstream linguistic applications, and is there- 456

fore a more suitable choice to study the scaling 457

behavior of the linguistic performance of SLMs. 458

This paper is most closely related to the work 459

of Hassid et al. (2023). We largely follow their 460
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setup in terms of hyperparameters and evaluation461

metrics. They reported improved linguistic down-462

stream performance with scale in SLMs, but did463

not characterize their scaling behavior. Our scaling464

laws allow practitioners to determine the compute465

needed to attain a specific loss, syntactic and/or se-466

mantic performance; and its optimal allocation with467

respect to parameters and tokens. To the best of our468

knowledge, we are the first to model the scaling469

properties of downstream linguistic performance in470

SLMs, and to study the scaling of the considered471

downstream metrics on text-based LLMs. This en-472

ables a comparison between the two modalities in473

terms of scaling efficiency.474

6 Discussion475

Our work showed that the upstream and down-476

stream linguistic performance of our current meth-477

ods for GSLM scales predictably with compute.478

This suggests that with sufficient computational479

resources, the goal of the textless NLP project480

of achieving neural LMs trained exclusively on481

speech, and matching the linguistic proficiency of482

their text-based counterparts, is achievable. The483

cost of such models could be prohibitive though, as484

we estimate that they will require up to three orders485

of magnitude more compute than a text-based LLM486

to achieve equivalent performance. In this regard,487

recent methods that leverage transfer learning from488

text-based LLMs (Hassid et al., 2023; Zhang et al.,489

2023; Nguyen et al., 2024) are likely to be a bet-490

ter choice to achieve highly performant generative491

speech models. These hybrid text-speech genera-492

tive models often enable cross-modal applications493

such as ASR or TTS. However, it remains to be494

seen how knowledge transfer from LLMs performs495

when the speech data is in a different language than496

the one the LLM was trained on. If there is no sig-497

nificant cross-lingual knowledge transfer between498

text and speech modalities, SLMs could still be an499

attractive choice for low-resource languages.500

We explored the use of synthetic data and coarser501

tokenization to increase the semantic abilities of502

SLMs. Our synthetic dataset improved seman-503

tic performance, but using a coarser tokenization504

led to overall degradation of downstream perfor-505

mance. We do not have yet an hypothesis for why506

coarser tokens degrade performance, as this seems507

counter-intuitive, and contradicts the findings on508

other speech applications (Chang et al., 2023). We509

leave this as an interesting issue to address in fu-510

ture work. Moreover, we believe that working on 511

methods that allow to increase the information den- 512

sity per context-window of SLMs holds promise to 513

improve their scaling behavior. 514

7 Limitations 515

Any extrapolation from our models of the scal- 516

ing behavior of SLMs should be considered opti- 517

mistic for the following reasons: 1) Our models 518

for downstream performance ignore the fact that 519

the metrics saturate. As observed in text LLMs, 520

the improvements with scale slow down as perfor- 521

mance approaches the saturation value. It is likely 522

that, due to saturation, the compute required to 523

yield a particular performance will be larger than 524

predicted. Moreover, due to the lower density of 525

linguistic information per context window in SLMs 526

relative to LLMs, the saturation values of the met- 527

rics may be lower for SLMs. 2) The LLMs from 528

the Pythia suite that we used in this study are likely 529

overtrained (all models were trained with ∼300B 530

tokens). Optimally trained LLMs (according to 531

Equation 6) should show better performance with 532

scale, and therefore widen the gap with the scaling 533

efficiency of SLMs. 3) The envelope of minimal 534

loss per FLOP (Figure 1) might show a slight neg- 535

ative curvature at larger scale (Hoffmann et al., 536

2022), reducing the scaling efficiency. 537

8 Conclusions 538

We have trained a large set of SLMs with different 539

compute budgets and studied the scaling properties 540

of their upstream and downstream performance us- 541

ing recently proposed models of scaling laws for 542

neural LMs. The obtained models allow practition- 543

ers to optimally allocate compute to attain a spe- 544

cific loss, syntactic, and/or semantic performance. 545

We showed that the pre-training loss and down- 546

stream linguistic performance of SLMs and LLMs 547

is highly correlated, and both scale predictably ac- 548

cording to power laws. This allowed us to compare 549

the scaling properties of SLMs and LLMs, from 550

which we established that the linguistic abilities of 551

SLMs scale up to three orders of magnitude more 552

slowly. Additionally, we proposed a new speech 553

dataset, STINYSTORIES, and showed that its use 554

during pre-training improves downstream seman- 555

tic performance. Finally, we explored the use of 556

coarser speech tokenization as a method to increase 557

the amount of tokens per context window in SLMs, 558

but obtained worse downstream performance. 559
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