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Abstract

Numerical Partial Differential Equation (PDE) solvers often require discretizing
the physical domain by using a mesh. Mesh movement methods provide the
capability to improve the accuracy of the numerical solution without introducing
extra computational burden to the PDE solver, by increasing mesh resolution where
the solution is not well-resolved, whilst reducing unnecessary resolution elsewhere.
However, sophisticated mesh movement methods, such as the Monge-Ampère
method, generally require the solution of auxiliary equations. These solutions can
be extremely expensive to compute when the mesh needs to be adapted frequently.
In this paper, we propose to the best of our knowledge the first learning-based
end-to-end mesh movement framework for PDE solvers. Key requirements of
learning-based mesh movement methods are: alleviating mesh tangling, boundary
consistency, and generalization to mesh with different resolutions. To achieve
these goals, we introduce the neural spline model and the graph attention network
(GAT) into our models respectively. While the Neural-Spline based model provides
more flexibility for large mesh deformation, the GAT based model can handle
domains with more complicated shapes and is better at performing delicate local
deformation. We validate our methods on stationary and time-dependent, linear
and non-linear equations, as well as regularly and irregularly shaped domains.
Compared to the traditional Monge-Ampère method, our approach can greatly
accelerate the mesh adaptation process by three to four orders of magnitude, whilst
achieving comparable numerical error reduction.

∗Equal contribution.
†Corresponding Authors: Xiang Chen and Jun Wang.
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1 Introduction

Partial Differential Equations (PDEs) are widely used to model natural phenomena, ranging from
astrophysics and ocean dynamics to semiconductor device simulation and bio-engineering [Evans,
2010]. Acquiring accurate numerical solutions efficiently for complex PDEs is an essential but
challenging problem in all scientific and engineering disciplines. Solving PDEs using numerical
methods such as the Finite Element Method (FEM) requires discretizing the problem spatially and
temporally. A mesh is often used for spatial discretization and its quality affects the accuracy of the
numerical solution [Frey and George, 2007]. However, it is often prohibitively expensive to solve
the problem on a very high resolution mesh. Mesh adaptation is an advanced discretization method
designed to tackle this problem. It increases the mesh resolution where the solution requires higher
numerical accuracy, while decreasing the mesh resolution where unnecessary. Mesh adaptation
methods can be generally divided into two categories: h-adaptation and r-adaptation. In h-adaptation,
new mesh nodes are dynamically added to the regions where fine resolution is required. In r-
adaptation (or mesh movement), however, mesh nodes are only relocated or moved without changing
the mesh topology [Huang and Russell, 2011]. Compared to h-adaptation, r-adaptation has several
attractive features. First, no extra mesh points are generated, which keeps the dimension of the
linear system representing the discretized PDE unchanged. In addition, fixed mesh connectivity can
also make the structure of the stiffness matrix unchanged, which enables matrix pre-factorization to
accelerate the solution of the large linear systems encountered in FEM [Budd et al., 2009]. However,
a common problem of mesh movement methods is mesh tangling, in which lines connecting the
mesh nodes come across each other. Mesh movement methods based on optimal transport theory can
effectively prevent mesh tangling issues (see [Clare et al., 2022] for a discussion on this), but require
solving a Monge-Ampère equation at each adaptation step, which is highly time-inefficient.

AI-powered approaches to computing solutions of PDEs have been an emerging topic in recent years,
and show great potential in solving problems where traditional numerical PDE solvers struggle (e.g.
high dimensional problems [Han et al., 2018, Sheng and Yang, 2021]), or in accelerating the solution
process by learning a neural operator from the parameterized description of a PDE problem to its
corresponding solution [Li et al., 2020, Lu et al., 2019]. However, these methods still encounter fatal
bottlenecks, such as the precision guarantee of the solution, data efficiency, generalization capability,
etc. These are fundamental limits of deep learning, but essential for scientific computing scenarios.

A possible alternative is to perform learning-based mesh adaptation, by which the traditional numerical
PDE solvers can achieve better performance, while the time consumption of mesh adaptation is
greatly reduced. There have been some works in this direction [Zhang et al., 2020, Yang et al., 2021,
Huang et al., 2021, Fidkowski and Chen, 2021, Tingfan et al., 2021, Pfaff et al., 2020]. However,
most previous methods focus on mesh generation [Zhang et al., 2020] or mesh refinement [Yang
et al., 2021, Huang et al., 2021, Fidkowski and Chen, 2021], instead of topology-invariant mesh
movement as considered in this work. Moreover, the prior works are not end-to-end approaches,
which means the neural networks are used to predict certain metrics, such as the local mesh density
[Zhang et al., 2020, Huang et al., 2021] or the metric tensor [Fidkowski and Chen, 2021, Tingfan
et al., 2021, Pfaff et al., 2020], which then have to be fed into a traditional mesher/remesher to
obtain the mesh. Therefore, the overall performance is bounded by the mesher/remesher, which is
computational geometry based and hence not optimized for solving PDE problems. On the contrary,
in our method, the adapted mesh is directly output by the neural network.

In this work, we propose to the best of our knowledge the first learning-based end-to-end mesh
movement framework for PDE solvers. Taking the source term, the input field, and/or the PDE
parameters as input features, the model deforms an initial mesh to the adapted mesh by mesh
movement. In usage, the model can be applied to a class of PDEs without retraining. We design a
Neural-Spline based model for mesh deformation. It is an invertible neural network and hence can
avoid mesh tangling. Moreover, its mechanism naturally guarantees that a hypercubic boundary can
be maintained through learnable mapping. We also design a graph attention network (GAT) based
model for mesh deformation. The graph neural network can naturally describe domains with irregular
shapes and embed the relevant information. We utilize the attention mechanism of the GAT model to
guarantee each mesh node stays within its neighborhood so that mesh tangling can be alleviated.

Our main contributions are listed as follows:
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1. We propose a learning-based end-to-end mesh movement framework for PDE solvers, which
to the best of our knowledge is the first of its kind. Without interfering with the PDE solver,
the models can achieve numerical error reduction similar to the traditional Monge-Ampère
method, while the mesh generation is accelerated by three to four orders of magnitude.

2. A Neural-Spline based model and a GAT based model are proposed for mesh deformation.
Besides generalization to different PDE parameters, source terms, input solution fields, etc.,
the models are designed to guarantee boundary consistency, alleviate mesh tangling, and
generalize to different mesh densities, which are all desired for mesh movement.

2 Related Work

Mesh movement method. Mesh movement methods include velocity-based and location-based
methods. In the work of [Anderson and Rai, 1983, Gnoffo, 1982, Farhat et al., 1998], the mesh is
moved according to attraction and repulsion pseudo-forces between nodes motivated by a spring
model. The moving mesh finite element method [Baines et al., 2005] computes the solution and the
mesh simultaneously by minimizing the residual of the PDEs written in a finite element form. As for
location-based method, the moving mesh PDE (MMPDE) method [Huang and Russell, 2011] moves
the mesh through the gradient flow equation of an adaptation functional. In recent years, there has
been a growing interest in optimally-transported r-adapted meshes [Budd and Williams., 2009, Clare
et al., 2022].

AI for PDE. To solve a PDE problem, neural networks can be used to represent the function to
solve, and trained either with the residual loss of the PDE or using the variational principle [Raissi
et al., 2019, Yu et al., 2017]. Neural operators are proposed to learn an operator from the problem
function to the solution function [Li et al., 2020, Lu et al., 2019]. There also exist mesh-based PDE
solvers with deep learning. In [Pfaff et al., 2020], a graph neural network with additional world
edges is applied to predict dynamical systems, shown to be effective with a wide range of physical
systems. In [Belbute-Peres et al., 2020], a differentiable PDE solver is embedded in a neural network
to help predict accurate solutions and also backpropagate the loss so that the input coarse mesh can
be optimized.

AI for Meshing. AI methods have also been proposed for mesh generation, adaptation, and so
on. MeshingNet [Zhang et al., 2020] uses a neural network to learn the required local mesh density,
which can then be provided to a Delaunay triangulation based mesh generator to generate high-quality
meshes. The optimal local mesh density is also learned in [Huang et al., 2021] for mesh refinement.
On the other hand, the mesh refinement process is formulated as a reinforcement learning problem in
[Yang et al., 2021] to minimize the PDE solution error under given refinement budgets. The flow
field is predicted by machine learning models to calculate the metric tensor so that the mesh can be
optimized accordingly [Tingfan et al., 2021]. The authors in [Fidkowski and Chen, 2021] focused on
optimal anisotropic meshes by predicting the desired element aspect ratio. In [Pfaff et al., 2020], the
sizing field is predicted by a neural network for adaptive remeshing along with the system dynamics.

3 Method

3.1 Problem Statement

For each learning task, we consider a class of PDE problems P defined on the domain Ω in D dimen-
sions. Each specific sample Pn ∈ P (n = 1, 2, 3, . . . ) is determined by PDE related information,
such as source terms, boundary conditions, PDE parameters, solution fields, etc. We use Xn to param-
eterize such information, which will be fed into the neural network as raw features, so that the trained
model can generalize to a class of PDEs. The sample-specific information Xn = {pn,Mn} can be
further categorized into global parameters pn and position-dependent parametersMn. Depending
on the type of the PDE problem and the terms we expect the trained model to be able to generalize to,
some examples of pn are wave number of the Helmholtz equation and viscosity coefficient of the
Burgers’ equation, and options ofMn are source terms, system states in the previous timestep for
time-dependent equations, etc.

3



PDE Solver 𝒮𝒮

Initial Mesh 𝒯𝒯init

PDE Problem 𝒫𝒫𝑛𝑛

Adapted Mesh 𝒯𝒯𝑛𝑛M2N

Solution 𝒖𝒖𝑛𝑛M2N

M2N Framework

GNN 
Block

GAT
Deformer

Global Feature Extractor

M2N - GAT

Graph
Constructor

(b) Mesh Movement Network Implementation(a) Framework Overview

Sample Conv GAP

(c) Global Feature Extractor

Neural
SplineGlobal Feature Extractor

M2N - Spline

Global Parameters 𝒑𝒑𝑛𝑛

𝝃𝝃init

Global Parameters 𝒑𝒑𝑛𝑛

𝒳𝒳𝑛𝑛

𝒫𝒫𝑛𝑛

ℳ𝑛𝑛 𝑴𝑴𝑛𝑛 𝑬𝑬𝑛𝑛

Mesh Movement 
Network ℱM2N

ℳ𝑛𝑛 𝑬𝑬𝑛𝑛

𝝃𝝃init

𝝃𝝃Spline

𝝃𝝃GAT

𝒯𝒯𝑛𝑛
Spline

𝒯𝒯𝑛𝑛GAT

𝝃𝝃init

ℳ𝑛𝑛 𝑬𝑬𝑛𝑛

𝑯𝑯𝑛𝑛

Figure 1: Proposed mesh movement network framework. (a) Given an initial mesh and an input
state, the mesh deformer outputs an adapted mesh, which is then fed to the PDE solver. (b) The
implementations of the Neural-Spline and the GAT based mesh movement networks. (c) The structure
of the Global Feature Extractor.

Meshing is the procedure to spatially discretize a domain, which is necessary for most numerical
methods to solve PDEs. Among these methods, the Finite Element Method (FEM) has been widely
used in various engineering fields, which we will take as our solving method in the experiments. The
initial mesh is generated with a traditional mesh generator. We denote the initial mesh by T init and the
mesh node positions in T init by ξinit. Since the generation of the initial mesh is purely computational
geometry based, the sample-specific information Xn cannot be utilized, hence T init is shared by all
samples Pn ∈ P. A standard PDE solver S will take as input the PDE problem Pn discretized on the
mesh T init and output the corresponding solution uinit

n = S(Pn(T init)).

A high-quality adapted mesh can significantly improve the accuracy-efficiency trade-off of the PDE
numerical solution. There are in general two types of mesh adaptation techniques. In this work, we
consider mesh movement, or r-adaptation, which means we will not modify the number and topology
of mesh nodes, but only relocate them. This characteristic provides the advantage that no remeshing
needs to be performed, and there will be less repetitive computation for the PDE solver since the
input matrices will maintain a constant size and sparsity structure [Budd et al., 2009]. A typical
mesh movement method F will map the nodes ξinit in the initial mesh T init to ξadap

n = F(ξinit,Xn),
so that the adapted mesh T adap

n will be constructed with ξadap
n and the topology defined on the initial

mesh. The PDE solution corresponding to the adapted mesh discretization uadap
n = S(Pn(T adap

n ))
is expected to be much more accurate than uinit

n , although the scale of the discretized problem that
solver S receives is exactly the same. One of the most advanced mesh movement methods is the
Monge-Ampère (MA) method. The mesh nodes optimized by the MA method ξMA

n = FMA(ξ
init,Xn)

will be taken as the supervised signal to train the neural network model, while the computational
efficiency and accuracy of the corresponding solution uMA

n = S(Pn(T MA
n )) will be compared against.

3.2 Framework Overview

The computational cost of sophisticated traditional mesh movement methods is often too expensive.
In some cases, the cost of mesh adaptation is comparable to or even higher than that of solving the
underlying PDE problem, which is generally unacceptable. Therefore, our goal is to model a Mesh
Movement Network (M2N) based mapping FM2N(·|θ), where θ represents the trainable parameters,
such that the mesh adaptation process can be greatly accelerated. The proposed framework is
demonstrated in Figure 1(a). We consider constructing a learning-based mesh movement method that
relocates the nodes ξinit in the initial mesh given the input state Xn:

ξM2N
n = FM2N(ξ

init,Xn|θ), (1)

from which the adapted mesh T M2N
n can be reconstructed based on the topology of the initial mesh.

From our empirical study, we take ℓ1 loss between the model output and the adapted mesh nodes
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obtained with the Monge-Ampère method:

L(θ) =
∑

Pn∈Ptrain

∥∥∥ξM2N
n − ξMA

n

∥∥∥
1
. (2)

Under the M2N framework, we implemented two network structures: a Neural-Spline based network
and a GAT based network, which are denoted as M2N-Spline and M2N-GAT, respectively. Both
models are designed to be capable of alleviating mesh tangling, keeping boundary consistency, and
generalizing to mesh with different resolutions, which are key requirements for mesh movement.
Because of their inherent characteristics, the M2N-Spline model behaves better when large global
mesh deformation is required, while M2N-GAT is able to handle irregularly shaped domains and
can better learn delicate local deformation. The detailed model structures will be introduced in the
following sections, and more specifics of the model implementations can be found in Appendix A.

3.3 Neural-Spline based Network

As demonstrated in Figure 1(b), our Neural-Spline based network is mainly composed of two parts,
where the input information Xn = {pn,Mn} will be separately fed into the model. The global
feature extractor GFE(·) extracts features from the position-dependent parametersMn to obtain the
mesh resolution invariant embedding En. En together with the global physical parameters pn will
then be fed into the neural spline deformer to control the mesh node relocation, i.e.,

FSpline
M2N (ξinit,Xn) = Spline(ξinit,GFE(Mn)⊕ pn), (3)

where operator ⊕ represents tensor concatenation.

Global Feature Extractor As shown in Figure 1(c), the global feature extractor has three modules:

GFE(Mn) = GAP(Conv(Sample(Mn))). (4)

In detail, we uniformly sample the input stateMn in the domain Ω. If the domain is with an irregular
boundary, sampling is performed inside its minimum bounding box and the values of the sampling
points outside the domain boundary are set to zero. The sampled states are assembled as a state tensor
Mn. To keep the extracted feature invariant to the magnitude, the state tensor Mn is normalized
by its maximum absolute value. After normalization, Mn is sent into the convolutional layers for
feature extraction, whose output is further fed into a Global Average Pooling (GAP) layer [Lin et al.,
2013] to obtain a mesh resolution invariant global embedding En. The embedding En will then be
concatenated with global physical parameters pn to obtain In, which is fed into the deformer.

Neural-Spline based Deformer Normalizing flow models [Kobyzev et al., 2020] are proposed
to learn invertible mappings. Neural spline [Durkan et al., 2019], as a specific type of normaliz-
ing flows, transforms the input with a differentiable monotone rational-quadratic spline function
RQS(·|K), where K represents the learnable anchor points that determines the invertible map-
ping. In our model, the neural spline deformer Spline(ξinit, In) is a stack of neural spline layers
RQSd(ξ

(d)|Kd(In, ξ
(−d))), each of which transforms one dimension of the input node coordinates

ξ(d), whose anchor points Kd are parameterized by the input features In and the other dimensions
of node coordinates ξ(−d).

Since the neural spline model is guaranteed to be an invertible mapping, mesh tangling can be
alleviated. A specialty of the neural spline model is that, the end points of the spline function are
fixed, therefore the intervals of the input and the output can be kept unchanged. In our case, this
property is utilized to preserve the mesh with a hypercubic boundary (e.g. a rectangle in the 2-D
case). Moreover, since the neural spline learns a continuous mapping, it can naturally generalize to
different mesh resolution input.

3.4 GAT based Network

Although the Neural-Spline based network is well-designed for meshes of hypercubic domains, it is
difficult to extend to domains with more general boundaries. Therefore, we also propose a Graph
Neural Network (GNN) based model, which can naturally handle irregular domains. As shown in
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Figure 1(b), the model consists of a two-branch feature extractor and a Graph Attention Network (GAT,
[Veličković et al., 2017]) based mesh deformer GAT(·). In this subsection, we omit the sample index
n when there is no misunderstanding, hence: FGAT

M2N(ξ
init,X ) = GAT(ξinit,LFE(M),GFE(M)⊕ p).

Feature Extractor The feature extractor of the GAT-based network consists of two branches. One
is the global feature extractor same as Eq. (4), the output of which will also be concatenated with
global physical parameters p to obtain I . The other is a GNN-based local feature extractor LFE(·).
Our experiments empirically show that both branches are necessary for end-to-end performance.

For the local feature extractor, we need to first construct the input graph G = (V,E) for each sample.
The graph shares the same node number and graph topology with the initial mesh T init. For each graph
node index i ∈ {1, . . . , |V |}, the input feature v

(0)
i is the sampling of the input stateM at ξinit

i , the
position of node i in the initial mesh T init. To preserve the mesh density information, the node distance
∥ξinit

i − ξinit
j ∥ are encoded into edge features e(0)ij as the relative edge features. The constructed graph

will then be processed by the GNN block with a message passing mechanism to propagate the local
physical information across the graph. The edge features are updated by a Multi-Layer Perceptron
(MLP) fk(·): e(k)ij ← fk(e

(k−1)
ij ,v

(k−1)
i ,v

(k−1)
j ), and the node features are updated by summing up

the surrounding edge features v(k)
i ←

∑
j∈N (i) e

(k)
ij , where k ∈ {1, 2, . . . KGNN} means the layer

index, andN (i) refers to the neighbors of node i. At the output of the final layer, the features of each
graph node are concatenated with the extracted global feature I to assemble Hi = v

(KGNN)
i ⊕ I . We

use H = [H1, . . . ,H |V |] to represent the extracted features of the entire graph.

GAT

GAT Deformer

𝑯𝑯 SELU
GAT

𝑯𝑯(0)
SELU 

𝝃𝝃(𝟎𝟎)

𝑯𝑯(1) �𝑯𝑯(2)

𝝃𝝃(𝟏𝟏) 𝝃𝝃(𝟐𝟐)

�𝑯𝑯(1)

𝝃𝝃init

�𝑯𝑯(0)

𝒯𝒯𝑛𝑛GAT

Figure 2: The implementation of the GAT Deformer.

GAT-based Deformer As shown in
Figure 2, the deformer consists of
KGAT GAT blocks. The k-th block
takes two inputs, mesh node positions
ξ(k−1) and extracted features H(k−1),

where H(k−1) = Ĥ
(k−1)

⊕ ξ(k−1).

For the first block, Ĥ
(0)

= H and
ξ(0) = ξinit. The GAT block performs
the following transforms:

Ĥ
(k)

i = SELU

∑
j∈Ni

α
(k)
ij W(k)H

(k−1)
j

 , ξ
(k)
i =

∑
j∈Ni

α
(k)
ij ξ

(k−1)
j , (5)

where α
(k)
ij is the attention score indicating the importance of node j to node i in the k-th block,

acquired by the method introduced in [Veličković et al., 2017], and W(k) is a learnable weight
matrix. To keep the mesh shape consistent before and after deformation, the nodes originally on the
boundary are restricted to move along the boundary of the domain ∂Ω. The adapted mesh T GAT will
be constructed from the output mesh node positions of the last block ξ(KGAT). Because of the attention
mechanism, during the mesh vertex relocation process, the movement of each mesh node is confined
inside the convex hull composed of its 1-ring neighbors, hence effectively alleviating mesh tangling.

4 Experiment

We evaluate our proposed models against two learning-based baseline models and the traditional
Monge-Ampère (MA) method, using error reduction ratio compared to the numerical solution on
the initial mesh, mesh adaptation time consumption, and element inversion ratio, to validate their
performance, generalization capability, and robustness. The experiments are conducted on the
stationary and linear Poisson’s equation in both a square domain and an irregular heptagonal domain,
and the time-dependent non-linear Burgers’ equation, where the supervised optimized meshes are
generated with the traditional MA method. Each experiment is run three times with different random
seeds to ensure the reliability of the model performances and provide mean and standard deviation
of the results, which are summarized in the tables. More details of the experimental setup, dataset
generation, model training, and experimental results can be found in the Appendix.
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Table 1: Performance summary of the Poisson’s equation problem on the square domain.
Method Error Reduction (%) Time (ms) Element Inversion (%)

MA (traditional) 23.11 5220.99 0.00
M2N-Spline 20.82 ± 0.35 5.55 ± 0.01 0.00
MLP-Deform-Clip 16.74 ± 0.90 3.02 ± 0.03 1.60
M2N-GAT 20.38 ± 0.51 9.09 ± 0.02 0.00
GAT-Deform-Clip 19.95 ± 0.38 10.41 ± 0.05 3.11

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Before clipping

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) After clipping

Figure 3: Illustration of the mesh movement results of the
baseline models before and after clipping.

As mentioned in Section 1, there is
no similar previous work to compare
results against. Comparisons with
learning-based h-adaptation [Pfaff
et al., 2020, Zhang et al., 2020, Fid-
kowski and Chen, 2021, Huang et al.,
2021] will not be fair, because they be-
long to a different type of mesh adap-
tation methods, and the downstream
PDE solver will receive discretized
problems with different topology and
scale. Therefore, we compare our
proposed models with two baselines
that can be interpreted as ablated ver-
sions of our proposed models. The
model MLP-Deform-Clip replaces the
neural-spline block with MLP. The model GAT-Deform-Clip replaces the GAT-deformer with the
ordinary GAT block. Instead of learning the positions of mesh nodes, we set the learning target as the
mesh nodes displacement for the baseline models, because it gives better performance according to
experimental results. In order to enforce that baseline models can also preserve boundary consistency,
the nodes moved out of the boundary will be pulled back into the domain, and the displacement
component perpendicular to the boundary is clipped for the nodes which are supposed to stay on the
boundary, as shown in Figure 3. However, there is no straightforward way to alleviate mesh tangling.

4.1 Poisson’s Equation

Poisson’s equation is a second-order, linear, stationary PDE, which is widely used in electrostatics
and thermodynamics, amongst other fields. We consider solving a class of 2-D Poisson’s equations
with different Dirichlet boundary conditions and mesh resolutions:

−∇ · ∇u(x, y) = f(x, y), (x, y) ∈ Ω,

u(x, y) = u0(x, y), (x, y) ∈ ∂Ω.
(6)

For both the square and heptagonal domain experiments, we generate analytical u samples from
a mixed Gaussian distribution, which are fed into Poisson’s equation to obtain the corresponding
source terms f and boundary conditions u0 as the problem samples, whereas the u functions serve as
the ground truth.

Square Domain In this experiment, we train the models on cases with mesh resolution of 15× 15
and 20× 20, each with 275 samples. To evaluate the models and how well they generalize to different
mesh resolutions, we test on cases with mesh resolution from 12 × 12 to 23 × 23, each with 125
samples. Moreover, we deliberately set the optimal mesh movement to be drastic, in order to test how
well different models can handle mesh tangling.

The quantitative results are summarized in Table 1. The proposed models, M2N-Spline and M2N-
GAT, can achieve similar error reduction compared to the traditional MA method, while the mesh
generation speed is two to three orders of magnitude faster. In addition, although the proposed models
perform only marginally better than the two baseline models in error reduction and time, they are
proven very effective to keep the mesh untangled. In comparison, the baseline models suffer from
mesh tangling.
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(a) MA
(37.55%)

(b) M2N-Spline
(34.3%)

(c) MLP-Deform-
Clip (illegal)

(d) M2N-GAT
(32.05%)

(e) GAT-Deform-
Clip (illegal)

Figure 4: Comparison of mesh movement for an
example problem of the Poisson’s equation on
the square domain. The percentage values in the
parentheses are the error reduction ratios.

(a) MA
(33.35%)

(b) M2N-Spline
(14.98%)

(c) MLP-Deform-
Clip (10.40%)

(d) M2N-GAT
(28.33%)

(e) GAT-Deform-
Clip (27.16%)

Figure 5: Comparison of mesh movement for an
example problem of the Poisson’s equation on the
heptagonal domain. The percentage values in the
parentheses are the error reduction ratios.

Table 2: Performance summary of the Poisson’s equation problem on the heptagonal domain.
Method Error Reduction (%) Time (ms) Element Inversion (%)

MA (traditional) 26.57 7329.78 0.00
M2N-Spline 16.15 ± 0.40 5.97 ± 0.05 0.28
MLP-Deform-Clip 16.49 ± 0.46 2.60 ± 0.02 0.56
M2N-GAT 22.39 ± 0.27 9.41 ± 0.03 0.00
GAT-Deform-Clip 22.40 ± 0.47 10.81 ± 0.07 0.68

An example is given in Figure 4, where the mesh density in the upper left corner needs to be very
high (shown in Figure 4(a)). It is demonstrated that M2N-Spline is more flexible for the cases where
the overall mesh deformation is required to be large. On the other hand, for M2N-GAT, because of
the constrained movement in each layer to alleviate mesh tangling and the finite layer numbers, it
does not learn as well in such scenarios.

Irregular Heptagonal Domain To evaluate the performance of different models for more general
domain shapes, we conduct an experiment using Poisson’s equation in an irregular heptagonal domain.
The models are trained at mesh densities of 13, 16, 19, and 22, each with 320 samples, and tested on
mesh densities from 12 to 23, each with 80 samples, to evaluate the performance and generalization
capability of the models. The initial mesh T init is generated with the Delaunay triangulation method
provided by Gmsh [Geuzaine and Remacle, 2009].

The results are summarized in Table 2. It can be seen that all deep learning models can perform mesh
movement around two to three orders of magnitude faster than the traditional MA method. Two GNN-
based models perform better than the other two models, with the error reduction ratio comparable to
the MA method. This is because the GNN-based models can naturally embed the information of the
entire irregular domain into the network, and there are extra local feature extractors in the model. On
the contrary, both the M2N-Spline and the MLP-Deform-Clip models are point-to-point mappings
with only the global feature extractor, hence lacking such capabilities. The results of all methods for
an example are shown in Figure 5, from which we can see that the GNN-based models can better
capture the delicate local structure where mesh resolution needs to be increased. Although mesh
tangling still will not occur for M2N-GAT, it happens for M2N-Spline, because for the M2N-Spline
model, its guarantee only works for hypercubic boundaries (rectangle in the 2-D case).
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Table 3: Performance summary of the Burgers’ equation problem.
Method Error Reduction (%) Time (ms) Element Inversion (%)

MA (traditional) 60.24 81590.64 0.00
M2N-Spline 48.92 ± 1.33 5.54 ± 0.02 0.00
MLP-Deform-Clip 43.53 ± 1.91 2.92 ± 0.01 0.00
M2N-GAT 57.75 ± 0.68 8.93 ± 0.01 0.00
GAT-Deform-Clip 51.69 ± 4.01 10.41 ± 0.01 0.53

4.2 Burgers’ Equation

The viscous Burgers’ equation is a non-linear, time-dependent PDE describing advection and diffusion
processes in fluids. In this experiment, we consider a class of 2-D Burgers’ equations with different
previous states, viscosity coefficients, and mesh resolutions:

∂u

∂t
+ (u · ∇)u− ν∇2u = 0, (x, y) ∈ Ω,

(n · ∇)u = 0, (x, y) ∈ ∂Ω,
(7)

where constant scalar ν > 0 represents the viscosity coefficient and u is the velocity vector field
obeying this PDE. We define the problem on the unit square domain Ω = [0, 1]2.

(a) MA (b) M2N-Spline (c) M2N-GAT

Figure 6: Comparison of mesh movement for the Burgers’
equation problem. In each row is a different sample.

In this experiment, we still train the
models on cases with mesh resolu-
tion of 15 × 15 and 20 × 20, each
with 9 trajectories and 60 timesteps
per trajectory, and with different
viscosity coefficients. Since a unit
square domain is considered in
this experiment, the initial uniform
structured mesh T init can be easily
obtained by interpolation. To evalu-
ate the models and how well they
can generalize to different mesh
resolutions, we test on cases with
mesh resolution from 11 × 11 to
24×24, each with 8 trajectories and
60 timesteps per trajectory.

The results are summarized in Table
3. It can be found that all learning-
based methods are three to four or-
ders of magnitude faster than the tra-
ditional MA method. The accelera-
tion is about one order of magnitude
larger than Poisson’s equation ex-
periments, because the MA method
runs even slower for a nonlinear
PDE. Mesh tangling never occurs
for M2N-Spline and M2N-GAT in
this experiment. The GNN-based
models perform better than the other
two models, because they contain
extra local feature extractors, and
local information can be propagated
better through edges, which is im-
portant for the Burgers’ equation
problem. Some generated mesh ex-
amples at different timesteps of four
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different trajectories are shown in Figure 6, where it can be seen that M2N-GAT is better at performing
delicate local deformation compared to the M2N-Spline model.

5 Conclusion

In this paper, we have proposed the Mesh Movement Network (M2N), which to the best of our
knowledge is the first learning-based end-to-end mesh movement method for PDE solvers. Traditional
mesh movement methods can improve the accuracy of numerical PDE solutions without modifying the
topology of the mesh, at the expense of solving an auxiliary PDE, which is often very computationally
expensive and sometimes makes the approach infeasible. With the power of deep learning, M2N
generates adapted meshes for different PDE problems of the same type, with the solution precision
comparable to ground truth but at a much faster speed. To achieve this robustly, we have designed a
Neural-Spline based and a GAT based mesh deformer, to guarantee the output adapted mesh retains
boundary consistency, alleviates mesh tangling, and generalizes to different mesh densities. The
results are validated on the static linear Poisson’s equation with regular and irregular domains, and
the time-dependent nonlinear Burgers’ equation.

On the other hand, there are still several limitations and future directions worth discussing. First of
all, although the proposed Neural-Spline based and GAT based models can effectively alleviate the
mesh tangling issue, they cannot theoretically guarantee that. Therefore, analyses of mesh tangling
avoidance and error reduction improvement can be conducted. Secondly, in this paper, we used the
Monge-Ampère method to generate the supervised optimized meshes, while there are other traditional
r-adaptation methods that can also be considered and tested. Finally, the scale and complexity of
the current experiments are still far from practical applications. Experiments with more complicated
boundary shapes, in larger scales, in higher dimensions, and for more diverse PDE types, can be
conducted to better validate the proposed methods.
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