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Abstract

Ideological mapping on social media is typically framed as a supervised
classification task that depends on stable party systems and abundant
annotated data. These assumptions fail in contexts with weak political
institutionalization, such as Iran. We recast ideology detection as a fully un-
supervised mapping problem and introduce a text-network representation
system, uncovering latent ideological factions on Persian Twitter during
the 2022 Mahsa Amini protests. Using hundreds of millions of Persian
tweets, we learn joint text–network embeddings by fine-tuning ParsBERT
with a combined masked-language-modeling and contrastive objective and
by passing the embeddings through a Graph Attention Network trained
for link prediction on time-batched subgraphs. The pipeline integrates
semantic and structural signals without observing labels. Density-based
clustering reveals eight ideological blocs whose spatial relations mirror
known political alliances. Alignment with 883 expert-labeled accounts
yields 53% accuracy. This label-free framework scales to label-scarce con-
texts, offering new leverage for studying political debates online.

1 Introduction
Political ideology detection on Twitter (now X) has become a central task in computational
social science, especially within the context of English-speaking democracies. Numerous
studies have leveraged social media data to classify users’ political leanings and examine
partisan dynamics online (e.g., Barberá (2015); Pennacchiotti & Popescu (2011); Pelrine et al.
(2023); Yu et al. (2023); Törnberg (2023)). Most of the work done studies this topic in Western
contexts or English language countries, where ideologies map clearly onto formal party
affiliations (Rodrı́guez-Garcı́a et al., 2022; Chen et al., 2017; Jiang et al., 2023).
In this work, we focus on the Iranian Twittersphere during the “Mahsa Amini” protests of
2022—a period marked by intense social and political upheaval (Khorramrouz et al., 2023).
Unlike democracies with clear-cut partisan alignments, Iran’s political divisions are largely
ideological and fluid, lacking institutionalized party structures. This introduces unique
challenges for computational approaches to analyze partisan debates, with ambiguous
group boundaries and subtle self-identification.

To address this gap, we propose a method for capturing the ideological landscape in
politically complex settings, integrating two key signals from social media users: (1) textual
content derived from tweets, retweets, and user biographies, and (2) structural features
from their retweeting network. These signals are jointly modeled using unsupervised
representation learning, where we refine text embeddings through a Graph Attention
Network (GAT) using the structure of the retweet graph (Veličković et al., 2018).
In addition to identifying ideological groupings, our method provides insights into their
relative positioning in the representation space. Our results show that the spatial layout
of user embeddings reflects ideological proximity, with overlapping or opposing groups
mapping accordingly into a meaningful representation of Iran’s main political divisions.

1



Published as a conference paper at COLM 2025

Although we report classification metrics, the learning and discovery in certain settings
are entirely unsupervised meaning the graph-refined text embeddings are produced with-
out ever observing labels; clustering the embedding space unveils ideological groupings.

Figure 1: Left: 2D projection of the embedding space
showing predicted labels (O) and ground-truth labels
(X), filtered by a confidence threshold of 0.5 (see Sec-
tion 6.2). Top right: distribution of ground-truth hyper-
partisan labels. Bottom right: distribution of predicted
labels above the confidence threshold.

To validate these clusters, we rely
on a small, high-precision refer-
ence set of 883 users whose af-
filiations were manually verified
by domain experts and exhibit un-
mistakable partisan cues (e.g., ex-
plicit slogans, known public fig-
ures). We map clusters to ideologi-
cal labels via maximum-matching
against this reference set and fit a
multilayer perceptron for post-hoc
evaluation. This provides a quan-
titative check on how faithfully
the unsupervised clusters align
with expert knowledge. As shown
in Figure 1, our method embeds
users in a representation space
that closely reflects the relative po-
sitioning of ideological classes and
estimates their distribution within
the ideological landscape. This
design keeps discovery label-free
while still offering several familiar metrics for comparison.

The main contributions of this work are as follows.

• Task Formulation: The first unsupervised framework for ideology detection in settings
without well-defined political parties or formal partisan labels.

• Methodology: We combine contrastive and masked language modeling to learn text
embeddings, and refine them using GNNs based on retweet interactions, which leads to
a better graphical representation of political divisions.

• Application Context: We apply our method to a large-scale dataset of Persian Twitter ac-
tivity during the Mahsa Amini protests, enabling a data-driven exploration of ideological
conflicts in Iran.

2 Related Work

Ideology Detection via Text and Social Network Analysis. The task of political ideology
detection on social media has traditionally focused on Western liberal democracies, where
users’ partisan identities often align with established political parties. In these settings,
researchers have used both textual content and network structure to infer the ideological
leanings of online actors. One study demonstrated that language in tweets can predict users’
political ideology along a fine-grained spectrum (Preoţiuc-Pietro et al., 2017), while another
leveraged ideological phrase indicators to detect how politicians frame issues (Johnson et al.,
2017). More recently, Yu et al. (2023) showed that models like RoBERTa outperform even
large LLMs on ideology detection by distinguishing between ‘explicit’ and ‘implicit’ cues.
Moving beyond textual analysis, network-based approaches leverage homophily (i.e., the
tendency for like-minded users to connect within social networks (Barberá, 2015; Enjolras
& Salway, 2022)) to infer users’ political ideologies. In this context, retweet and follow
networks have been used to place users on a latent ideological space (Barberá, 2015) and to
identify ideological clustering in polarized events (Enjolras & Salway, 2022). These graph
structures often reveal ideological affinity even in the absence of textual data, and can
uncover community-level polarization as well as echo chambers.
Importantly, combined approaches have been shown to significantly enhance performance.
TIMME (Xiao et al., 2020) and Retweet-BERT (Jiang et al., 2023) jointly model user content
(tweets or bios) and network structure (retweets, mentions), showing that user embeddings
informed by both modalities are more robust than using either one of these approaches

2



Published as a conference paper at COLM 2025

Class Label Description Based on Bio Content

A Anti-IR Explicit opposition to the Islamic Republic;
support for revolutionary movements or criti-
cism of leadership.

K Kurdish Identity Identifies as Kurd or highlights challenges
faced by Kurd people; may use Kurdish lan-
guage.

S Monarchist Supports monarchy or constitutional monar-
chy; references Pahlavi family or phrases like
“long live the Shah.”

I Israeli Affiliation Mentions Israel; may identify as Israeli or be
linked to Israeli media or politics.

H Human Rights Mentions “Human Rights” in bio; signals ad-
vocacy for related issues.

B Baluch Identity Identifies as Baluch or highlights concerns of
the Baluch people.

M MEK Refers to or affiliates with the People’s Moja-
hedin Organization of Iran (MEK).

P Pro-IR Supports the Islamic Republic or its leader-
ship.

Table 1: Observed user classes (A–P) confidently detectable based on user bios.

on their own. For instance, Retweet-BERT achieved macro-F1 scores above 97% on U.S.
political datasets by embedding users based on retweet diffusion patterns and profile text.
He et al. (2024) further demonstrated that injecting graph structure into transformer-based
models enables better detection of mixed-ideology communities, uncovering ideological
gradients that text-only models are not able to detect.
Contrastive Learning and Text Representation in NLP. Within NLP, contrastive learning
has emerged as a powerful strategy for learning sentence or user embeddings, especially
in unsupervised or semi-supervised contexts. DeCLUTR (Giorgi et al., 2021) and CLEAR
(Wu et al., 2020) combined MLM with a contrastive loss to encourage semantically similar
inputs (e.g., paraphrases or augmentations) to have nearby embeddings. These methods
significantly improved downstream classification and clustering performance. Our work
builds on this line of research by implementing a joint MLM+Contrastive objective to fine-
tune Persian language models for user embedding, followed by graph-based refinement
using a GAT (Veličković et al., 2018) framework. This approach allows us to encode textual
ideology signals and retweet relational structure in a unified representation space, without
relying on extensive labeled data. To our knowledge, this represents the first attempt to
apply this modeling strategy to the Iranian Twittersphere, during a major political unrest.
Domain Background. While most prior work in computational ideology detection has
focused on Western settings, a growing body of research is examining political discourse on
Persian Twitter. Kermani & Rasouli (2022) mapped the retweet network during the 2017
Iranian presidential election, identifying three main ideological factions (reformists, conser-
vatives, and the diaspora) despite the lack of formal party structures. Azadi & Mesgaran
(2021) quantified the reach of regime-supporting vs. dissident accounts, showing that dissi-
dents were rapidly gaining influence despite the state’s disproportionate presence. Rahmati
et al. (2022) introduced a dataset of tweets from pro- and anti-regime figures and showed
that deep learning models could infer ideological stance from tweets. However, these
studies either relied on manual annotation, supervised classification, or isolated analysis of
content or network. In contrast, our work develops an unsupervised framework tailored to
the fluid, non-partisan, complex political environment of Iran. By jointly modeling language
and network structure, we capture overt and covert ideological signals, offering a scalable
approach to mapping ideological landscapes in low-label, high-uncertainty settings.

3 Dataset
In response to the political unrest in Iran, a surge of ideologically charged hashtags began
appearing on Persian Twitter starting in September 2022. In this work, we leverage the
dataset proposed in earlier works (Omidi Shayegan et al., 2024), which utilized the Twitter
Research API to collect live tweets from October 18, 2022, to January 11, 2023. The tweet-
gathering process was guided by 26 initial hashtags—both in Persian and English—carefully
selected with regard to the Iranian political landscape. In total, the dataset comprises 231
million tweets from approximately 3.9 million unique users.
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Figure 2: The overlaps of classes (true posi-
tive multi-classes). Weight of each edge indi-
cates the number of users with both labels.

Figure 3: 2D node representation of ground
truth labeled users in the node space.

Graph Building. We first utilize the tweets and retweets in the dataset to: (1) construct a
retweet graph where users are nodes and directed edges (retweetee → retweeter, encoding
the flow of information) indicate retweet actions, and (2) create a text corpus for each user
as their node features.

The initial raw graph consisted of 3.1M nodes and 196.8M directed edges. We leverage
temporal information, as the dataset provides timestamps for all tweets and retweets,
enabling us to assign a precise timestamp to each edge.

When this directed multi-graph was converted into an undirected simple graph (by collaps-
ing directionality and removing multiple edges between node pairs) the resulting graph
retained only 57.9M unique edges. This implies that approximately 70% of the original
edges represented repeated interactions between the same node pairs.
After applying the pruning strategy described in detail in Section 4, the resulting graph was
substantially smaller, consisting of 148K nodes and 33.8M edges.

Annotation of Validation Set. We annotate a set of users to evaluate the proposed unsu-
pervised method. This annotation was done based on self-identified information in users’
profile bios. We started by a label-agnostic approach, not knowing what specific categories
we would encounter in this dataset. The first step was to identify the ideological leanings
present within the data. We focused on the top users (i.e., those with the highest number of
retweets) and examined whether these users self-identified with any ideologies.

We filtered the users based on their retweet counts (≥45K retweets, N=597) and manually
reviewed the bios of these users to check for any direct mentions of ideology. Approximately
56% of them explicitly stated their ideology or referenced specific groups in their bios.
After manually extracting the self-identified ideologies of the top users, we kept only the
ideologies that were mentioned by a notable number of users and created corresponding
classes for them, which corresponds to eight categories. In this context, “ideologies” mainly
refer to their stance in a political event. For example, some users were particularly concerned
with the human rights situation and cared enough to mention this stance in their profile bio.
We grouped them into the “Human Rights” class (Class H ). Although “Human Rights” is
not strictly a political ideology, it represents a stance, point of view, or political concern.

Table 1 summarizes the observed categories, which we were able to confidently label
based on the information expressed in user bios. 1 For each class, by going through the
corresponding bios, we gathered keywords and identifiers what users commonly used to
indicate their ideologies. These identifiers could be hashtags, phrases, or words related to
their ideology. This allowed us to extend the labeled set by looking for the identifiers in
users’ bios. After the users with identifiers were automatically selected, we filtered users
with at least 100 retweets and labeled 150 top retweeted users per ideology, if available.

1We acknowledge that there might be subgroups within these categories, specifically within the
Class A and P. However, our annotation strategy is not able to uncover the nuanced differences among
those subgroups. This categorization is not exhaustive and is identified merely based on observed
and confidently detectable groups to evaluate our computational method. Therefore, it is not valid for
any other purposes.
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For seven major ideological groups (excluding the “human rights” category , Class H ,
since their identifiers were very strong already), we manually validated these automatic
labels, retaining only the correct ones. There were 52 cases out of 915, where more than two
labels applied to the user. For those cases, we devised a classification hierarchy prioritizing
minority and less-represented groups. For users with multiple labels, only the highest-
priority label was retained. Finally, 32 of the labeled users were removed during the pruning
process of the graph, as they no longer existed in the final graph after the preprocessing
stage. We obtained a labeled dataset consisting of 883 users, each assigned a single label,
representing the respective ideological groups mentioned earlier.

4 Method

Our method consists of several steps: (1) preprocessing the textual data to create a corpus
for each user; (2) fine-tuning ParsBERT using MLM+CL objective; (3) embedding each user’s
corpus with the fine-tuned model; (4) constructing and preprocessing the retweet graph; (5)
assigning text embeddings as node features; and (6) training a GAT with a Link Prediction
(LP) objective. The following sections detail each step.

4.1 User Text Embedding

Each user is represented as a node in the graph. In GAT, nodes require initial feature
representations, which are propagated through edges to learn contextualized embeddings.
To provide these features, we assign text embeddings to each user node, derived from their
associated textual data. We make the corpuses by combining five of their randomly selected
original tweets, the user’s five most popular retweets, and their biography information.

Prior work has shown that ParsBERT (Farahani et al., 2021) demonstrates strong perfor-
mance in capturing the political landscape of Iranian Twitter (Omidi Shayegan et al., 2024).
We fine-tune ParsBERT by combining Masked Language Modeling (MLM) and Contrastive
Loss (CL), referred to as MLM+CL in this study. The MLM is trained on a corpus comprising
tweets and retweets from 500 random users. Additionally, for the CL, we construct pairs of
tweets labeled based on the ideology of their authors: pairs are similar if the authors share
the same ideology, and dissimilar otherwise. We combine MLM and CL using a weighted
sum. The contrastive loss is:

LCL =
B

∑
k=1

[
(1 − Sk)

1
2

d2
k + Sk

1
2

max(0, m − dk)
2
]

(1)

Here, Sk is the binary similarity label for pair k, where Sk = 0 if the tweets share the same
label and Sk = 1 otherwise; dk denotes the embedding distance between the tweets in
pair k; m is a margin parameter tuned through hyperparameter optimization; and B is the
batch size. The contrastive loss LCL penalizes dissimilar pairs whose embedding distance is
smaller than the margin m, and encourages similar pairs to have minimal distance.

The total loss for the training step is calculated by combining the contrastive loss LCL and
the MLM loss LMLM through a weighted average. The weight K is a hyperparameter that is
optimized during the hyperparameter tuning phase. The total loss for this training step is
defined as: LMLM+CL = (K)LCL + (1 − K)LMLM.

4.2 Graph Preprocessing

Once the graph was created as described in Section 3, we preprocessed the graph. This stage
involves several steps. We first remove self-loops and discard isolated nodes. Next, we
prune the edge list by removing approximately 90% of the nodes with the lowest out-degree.
Pre-computed user embeddings are then attached to corresponding nodes, and for users
without embeddings, we assign the average embedding of all available users.

Batching. Given the large size of the graph, processing it in its entirety would demand an
immense amount of memory, making it impractical to handle all at once. Therefore, the
graph must be split into batches before being passed to the GAT. Since the retweets have
timestamps, the temporal information can be used to split the graph into smaller timeframes,
using each timeframe as a batch. The size of each batch is fixed while progressing in time.
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In our LP task (detailed in Section 4.3), positive links are actual edges present in the batch
and negative links are generated by sampling from node pairs not forming edges in the
batch. The ratio of existing to non-existing edges in our graph is 1:330, so a 1:1 sampling
ratio is unsuitable for LP. We experimented with different ratios within the limits of our
computational resources and adopted a 1:20 ratio for training. Finally, for each batch, the
edge sets are partitioned into mutually exclusive training, validation, and test subsets.

4.3 Graph Neural Network Link Prediction

Once the graph, its features, and the edge splits are prepared, they are passed to the neural
network. We use GAT to learn node representations (Veličković et al., 2018), using text
embeddings as input features propagated through the graph via message passing. We train
the model using a link prediction (LP) objective, where node labels are not required. Instead,
edges serve as binary supervision: existing edges are treated as positive samples, and non-
existent edges as negative samples. The model is optimized to maximize cosine similarity
between connected node pairs and minimize it for unconnected pairs. Our architecture
consists of four GAT layers followed by a fully connected MLP as the final layer.2

5 Experiments

To understand the structure and properties of the learned node representation space, we
conduct classification, clustering, and 2D visualization of the embeddings. As baselines, we
include “Random”, which assigns each user a randomly initialized vector with the same
size as the text embeddings and “Fixed”, which assigns all users the same feature vector,
initialized as the average of all user text embeddings.

5.1 Reducing Dimensionality

To enable 2D visualization of the learned representations, we computed low-dimensional
projections and evaluated their effectiveness as well. We initially experimented with both
t-SNE and UMAP, but found that t-SNE failed to preserve the structural properties of the
data. As a result, we used UMAP for all dimensionality reduction experiments. The impact
of this reduction is reported in Table 2 under the “Reduced” and “Not Reduced” settings.

5.2 Classification for Evaluation

We use an MLP classifier to evaluate the representations with labeled data. Since the graph
training procedure is unsupervised and based on LP, we do evaluation through performance
in a downstream classification task. To ensure robust results, each model (i.e., each GAT and
its attached text embedding combination) is trained five times and evaluated independently.

For each instance (i.e., every time the model is trained) we pass the node representations
through MLP classifiers with different hidden layers of sizes [2, 4, ..., 128], training a classifier
five times for each size. Resulting in 35 accuracy measurements. Then, the hidden size with
the best average validation performance is used to evaluate the instance ten times on the
test set. The average of these ten scores is reported as the instance-level accuracy. Finally,
we compute the mean and standard deviation across the five instances to report the model’s
overall performance and stability.

5.3 Clustering User Representations

Once we obtained the user representations, we aimed to determine whether they exhibited
meaningful clusters in our test set. We anticipated that these clusters would align with
the classes identified earlier during the labeling process, as the most influential users (i.e.,
those with the greatest influence in the graph) had self-identified with these groups, and
a significant number of users in the network were retweeting them. Consequently, we
attempted to cluster the user representations into eight clusters, using KMeans algorithm.
To evaluate the alignment between these clusters and the classes, we applied three methods:

2The hyperparameters are gnn classes=32, num heads=3, mlp classes=8, and gnn out channels=16.
For the optimization we use learning rate≃0.050, warmup steps=20, step-wise learning rate decay with
gamma=0.999 and early stopping.
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Method Classification acc % Clustering acc % Clustering ARI
Reduced Not Reduced Reduced Not Reduced Reduced Not Reduced

MLM+CL 44.9±4.6 52.5±2.5 45.1±2.1 42.4±2.4 0.177±0.010 0.195±0.023
MLM 45.2±1.0 50.4±3.0 44.8±4.2 41.3±1.6 0.197±0.026 0.162±0.007

Random 39.9±1.5 42.7±1.2 38.3±2.1 37.2±3.0 0.134±0.015 0.130±0.011
Fixed 30.5±2.4 13.8±0.9 33.5±2.5 32.7±1.7 0.085±0.020 0.083±0.012

Table 2: Classification and clustering results for graph representations, with and without
dimensionality reduction.

(a) Confidence Threshold = 0 (b) Confidence Threshold = 0.7

Figure 4: Comparison of predicted and ground-truth labels in the 2D embedding space at
different confidence thresholds. Each subfigure shows predicted labels (O) and ground-truth
labels (X), with corresponding label distributions.

1. Cluster-to-Class Alignment: To evaluate clustering performance, we use an assignment
algorithm (Crouse, 2016) to find the optimal one-to-one mapping between discovered
clusters and ground-truth classes. This mapping allows us to interpret each cluster as
representing a specific class, enabling the computation of clustering accuracy with the
ground truth class labels.

2. Cluster Centers as Class Anchors: We analyzed the cluster centers by identifying the
nearest users in the embedding space and inspecting their ground-truth labels. This
analysis helps reveal if certain classes are concentrated around specific cluster centers,
offering insight into the correspondence between clusters and true class distributions.

3. Adjusted Random Index (ARI): We report the ARI (Chacón & Rastrojo, 2023) for the
clusters by comparing them with the ground truth labels. ARI is a similarity score
between -0.5 and 1.0. ARI = 1 means the cluster and the ground truth labels are the same.

6 Results and Discussions

To assess the quality of the user representations, we evaluate them in supervised classifica-
tion and unsupervised clustering tasks mentioned in Section 4. Table 2 presents the results
for models trained with MLM and MLM+CL, with and without dimensionality reduction.
6.1 Classification Accuracy

The highest classification accuracy is achieved by the MLM+CL model without dimension-
ality reduction, reaching 52.5%, indicating that contrastive learning effectively structures
the embedding space for supervised tasks. The baseline MLM model also performs well
(50.4%), showing that MLM captures meaningful semantic features even without supervised
data. As a reference, GAT trained with randomly initialized node features achieves 42.7%
accuracy—substantially above the 12.5% chance level for eight classes.

Furthermore, Table 2 shows that the graph achieves relatively good performance even when
initialized with random node features (42.7% ± 1.2 %), suggesting that the graph structure
alone contains meaningful information for ideology detection. This table also shows that
the Random features perform better than initializing all of the nodes with the same vector.
6.2 Confidence of Predictions

To assess the confidence of our MLP model’s predictions, we applied varying thresholds
to the softmax output, retaining only those predictions with the highest probability. This
filtering allows us to examine how prediction distributions shift as confidence increases.
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Model

MLM+CL
Cluster 0 1 2 3 4 5 6 7
Class M S P A&K I P S&A H

Overlaps - - - 9 - - 11 -

MLM
Cluster 0 1 2 3 4 5 6 7
Class H&M A&S I K H H P S&B

Overlaps 6 11 - - - - - 2

Table 3: Comparison of cluster centers as class anchors between MLM+CL (limited supervi-
sion) and MLM (fully unsupervised) models. In the case of multiple classes, the number of
overlaps of the classes is provided.

As shown in Figures 1 and 4, raising the confidence threshold alters the distribution of
predicted labels, revealing that some classes are predicted with higher certainty than others.
In particular, Figure 4b shows that labels such as Class A and Class S are less confidently
predicted. This is likely due to substantial overlap between these classes, making them
more difficult for the model to distinguish.

6.3 Clustering Accuracy and ARI

We assessed clustering alignment using the linear sum assignment algorithm. The MLM+CL
model outperforms by achieving a clustering accuracy of 45.1% ± 1.1% compared to 44.8%
± 4.2% for the MLM model. This suggests that even without label supervision on the
evaluation layer, the clusters obtained with KMeans can help us group the ideologies.

Interestingly, dimensionality reduction improves clustering performance across both models,
indicating that projecting the embeddings to a lower-dimensional space may help disentan-
gle ideological groupings in the absence of labels. Notably, the best “fully-unsupervised”
result is achieved by the reduced MLM model, reaching 44.8% clustering accuracy—despite
having no access to labels during training or evaluation. This performance is specifically
important to us because it highlights the utility of our method for exploring political spaces
where ground-truth labels are limited or unavailable.

The highest ARI is achieved by the MLM model with dimensionality reduction (0.197±0.026),
suggesting that while reduction may slightly harm classification accuracy, it can improve
clustering alignment by filtering out noisy dimensions. This pattern is consistent with
the clustering accuracy results. The MLM+CL model without reduction follows closely
(0.195±0.023), and given the overlapping standard errors, the difference is not statistically
significant. Notably, the MLM+CL model performs better without reduction (0.195±0.023
vs. 0.177±0.010), indicating that contrastive learning yields more structured embeddings
without the need for further compression.

6.4 Effect of Dimensionality Reduction

Dimensionality reduction shows mixed effects. While it generally lowers classification
performance, likely due to loss of fine-grained discriminative features, it improves clus-
tering accuracy across all models and increases ARI in the MLM setting. This suggests
that reduction may help by smoothing the embedding space and emphasizing broader
ideological groupings. In contrast, the MLM+CL model achieves its highest ARI without
reduction, showing that contrastive supervision benefits from preserving high-dimensional
structure. The classification results further support this, as the models perform best without
reduction—likely because contrastive signals are more effectively captured by the MLP in
the original embedding space.

6.5 Spatial Distribution of Ideologies in Representation Space

To better understand the ideological landscape, we reduced the node representations to 2D.
Figure 3 shows the labeled data, based on the best-performing model. Classes with high
overlap, such as Classes A, K, and S (see Figure 2), appear closely positioned, making them
harder to distinguish. This proximity likely contributes to model’s lower confidence when
labeling Classes A and S, which might be predicted interchangeably.

In contrast, Class P forms a well-separated cluster, making it easier for the model to classify.
This is supported by Figures 1 and 4, where its support remains stable even at higher
confidence thresholds. We also observe that Classes I, H, and M form a distinct cluster,
separate from the denser region composed of Classes A, S, K, and B. Upon closer inspection,
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Figure 5: Distance distribution of the closest labeled users to each cluster center. Dotted
lines indicate labeled users, with density estimates overlaid.

we find that the core cluster mainly consists of anonymous users, likely representing the
broader public, while the isolated cluster is composed mostly of known political figures
or activists. The instance used for the visualizations achieved a classification accuracy of
60.9% while not reduced and 49.6% on the 2D reduced representations.

6.6 Cluster Centers as Class Anchors

To evaluate the alignment the discovered clusters with ground truth classes, we examined if
each class could be mapped to a distinct cluster. Figure 5a shows the distance distribution
of the 5% closest labeled users to each cluster center. Based on this proximity analysis, we
derived the cluster-to-class mapping presented in Table 3. For the MLM+CL model, 7 out
of 8 classes align with a distinct cluster. In the case of the MLM model, all 8 classes are
represented, though with lower confidence due to a higher degree of label overlap within
clusters. We can also see that the classes which have more overlaps in Figure 2 tend to be
harder to distinguish for the model.

7 Conclusion and Future Work
In this work, we presented an unsupervised framework for mapping political ideologies
in low-label environments with less well-defined ideologies, by combining contrastive lan-
guage modeling with graph-based representation learning. Applied to Persian Twitter data
during the 2022 Mahsa Amini protests, our method revealed eight latent ideological factions
and demonstrated strong alignment with expert-verified ground truth labels. Notably, the
spatial layout of the discovered clusters mirrored known political cleavages, offering a
unique lens into Iran’s political landscape—one that lacks well-defined party structures.

Our results show that combining textual content and retweet network structure can provide
valuable insights into user alignment without relying on predefined labels. This is especially
relevant where party systems are informal , and large-scale labeled data is unavailable.

Nonetheless, the approach has certain limitations. Access to user-level interaction data is
becoming more restricted due to changes in platform APIs, making future data collection
less straightforward. In addition, our method emphasizes prominent users and overt
ideological cues, which may limit its ability to detect more subtle or emerging perspectives.

Future research could extend this framework to other linguistic and political settings,
adapting it to different sources of user interactions and addressing current constraints
on data accessibility. Incorporating temporal dynamics or additional modalities (such as
images or hyperlinks) may also improve the resolution of detected ideological patterns.
More broadly, unsupervised approaches like this can support scalable, data-driven analysis
of political discourse in varied online environments.
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Miguel Ángel Rodrı́guez-Garcı́a, Soto Montalvo Herranz, and Raquel Martı́nez Unanue.
URJC-Team at PoliticEs 2022: Political Ideology Prediction using Linear Classifiers. 3202,
September 2022. URL https://ceur-ws.org/Vol-3202/politices-paper11.pdf.

Petter Törnberg. ChatGPT-4 Outperforms Experts and Crowd Workers in Annotating
Political Twitter Messages with Zero-Shot Learning, April 2023. URL http://arxiv.org/
abs/2304.06588. arXiv:2304.06588 [cs].
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