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ABSTRACT

Link prediction remains a persistent weakness of graph neural networks (GNNs):
despite strong results on node classification, decoder-based pipelines often trail
simple heuristics such as Common Neighbors or Adamic—Adar. We introduce
DuoLink, a line-graph formulation that casts link prediction as node classification
on L(G), where each edge-node is initialized with proximity indices and optional
attribute similarity, turning heuristics into trainable features. This removes the
encoder—decoder bottleneck, aligns message passing with edge neighborhoods,
and comes with theory: we prove a 1-WL expressivity separation and an iteration-
gap family showing that constant-depth models on L(G) can detect edge motifs
that bounded-depth decoders on G cannot. Empirically, DuoLink achieves state-
of-the-art performance on both homophilic and heterophilic benchmarks, with
near-perfect Hits@ 100 on homophilic graphs and large AUC gains in heterophilic
settings, consistently surpassing strong LP-GNN baselines and heuristics. By
treating edges as first-class nodes, DuoLink closes—and often reverses—the long-
standing gap between classical heuristics and GNNs, pointing toward unified graph
models across node, edge, and graph tasks.

1 INTRODUCTION

Link prediction is central to numerous applications across science and industry, from friend rec-
ommendations in social networks and protein—protein interaction discovery in biology to product
suggestions in recommender systems and knowledge graph completion (Liben-Nowell & Kleinberg,
2007; Guo et al., 2020). Graph Neural Networks (GNNs) are now a leading tool for learning on
graphs (Kipf & Welling, 2017; Hamilton et al., 2017b), yet their performance on link prediction
remains surprisingly limited. Recent benchmarks show that classical heuristics such as Common
Neighbors, Adamic—Adar, Katz, and matrix factorization often outperform state-of-the-art GNN
pipelines (Tola et al., 2025).

Why do GNNs that excel at node-level tasks struggle with edge-level inference? We highlight two
causes. First, standard pipelines learn node embeddings and then apply a separate decoder (for
example Hadamard or an MLP), creating a mismatch between representation learning and the edge
prediction objective (Zhang & Chen, 2018; Wang et al., 2022b). Second, simple and interpretable
heuristics capture essential edge-centric structure that GNN decoders frequently miss (Li et al., 2023).

These issues are amplified on heterophilic graphs, where edges often connect dissimilar nodes. While
heterophily has been widely studied for node classification (Pei et al., 2020; Zhu et al., 2020), its
impact on link prediction is less explored. Similarity-based decoders implicitly assume homophily,
which leads to systematic errors on heterophilic links. Recent studies (Zhu et al., 2024; Di Francesco
et al., 2024) emphasize that structural rather than feature-based signals are critical in such settings,
yet broadly effective solutions remain elusive.

We address these gaps by reformulating link prediction as node classification on the line graph. Each
candidate edge becomes a node with attributes derived from its local subgraph context and proximity
indices. This enables end-to-end training with a single GNN or transformer on L(G), aligning
the model’s inductive bias with the edge-level objective. Concretely, our approach (i) removes the
disconnect between node embeddings and edge scoring, (ii) integrates classical heuristics as trainable
inputs rather than external baselines, and (iii) applies across both homophilic and heterophilic graphs.
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Beyond immediate accuracy gains, this formulation also supports the development of graph foun-
dational models that share architectures and parameters across node, edge, and graph tasks without
task-specific redesign (Mao et al., 2024; Liu et al., 2025). By aligning link prediction with message
passing on L(G), we enable practical weight sharing and consistent inductive biases across tasks.

Our contributions:

* We cast link prediction as node classification on the line graph, addressing core limitations of
decoder-based pipelines on G.

* We introduce DuoLink, a framework where GNNs and graph transformers operate on edge repre-
sentations initialized with classical proximity indices and optional attribute similarity, harmonizing
parametric learning with structural signals.

* We provide theoretical support showing a 1-WL expressivity separation and an iteration-gap
family where constant-depth models on L(G) detect key edge motifs that bounded-depth endpoint
decoders on G cannot.

* Experiments on homophilic and heterophilic benchmarks show that DuoLink consistently outper-
forms heuristics and strong GNN baselines, often by large margins.

By treating link prediction as a native node-classification problem on line graphs and by learning
over heuristic signals end to end, DuoLink narrows the gap between modern GNNs and classical
methods and points toward unified, scalable, and heterophily-aware graph representation learning.

2 BACKGROUND

2.1 RELATED WORK

GNNs and link prediction.  Graph Neural Networks (GNNs) are the standard paradigm for
link prediction, where node embeddings are produced by message passing and link probabilities
are estimated through simple decoders such as dot product, MLP, or distance functions (Kipf &
Welling, 2016; Hamilton et al., 2017a; Guo et al., 2023). Beyond generic encoders, a rich set of
link-prediction—specialized GNNs has emerged: subgraph-based models (SEAL, BUDDY (Zhang
et al., 2021; Chamberlain et al., 2023)), path- and flow-based methods (Neo-GNN, NBFNet (Yun
etal., 2021; Zhu et al., 2021)), count-based decoders (NCN, NCNC (Wang et al., 2023)), positional
or equivariant architectures (PEG (Wang et al., 2022a)), and mixture models (Link-MoE (Ma et al.,
2024)). These approaches cover a wide algorithmic spectrum, yet most continue to follow the
encoder—decoder design, which can limit their ability to capture edge motifs and higher-order
interactions central to link formation.

Heterophily and link prediction. Heterophilic graphs, where edges frequently connect dissimilar
nodes, have been a focal point in node classification (Pei et al., 2020; Zhu et al., 2020; Luan et al.,
2022; Platonov et al., 2023a), but remain relatively underexplored in link prediction. Classical LP
methods, both heuristic and GNN-based, are grounded in homophilic priors with similarity decoders
(e.g., dot product, cosine), which fail when informative links span dissimilar features (Li et al., 2023).
Attention and generative models such as GAT (Velickovi¢ et al., 2018), VGAE (Kipf et al., 2016),
and GIC (Mavromatis & Karypis, 2021) extend node embedding strategies, but remain constrained by
similarity scoring. Recent heterophily-aware models propose alternative mechanisms: LINKX (Lim
et al., 2021) decouples features from topology, DisenLink (Zhou et al., 2022) disentangles latent
factors, CFLP (Zhao et al., 2022) employs counterfactual perturbations, LLP (Guo et al., 2023)
propagates labels directly, and CMP (Wang et al., 2025) incorporates causal message passing.
Despite these advances, general-purpose frameworks and systematic benchmarks for heterophilic
link prediction remain limited.

Line-Graph and Edge-Centric GNNs.  Several works recast link prediction on the line graph:
LGNN (Cai et al., 2021) removes subgraph pooling, LGCL (Zhang et al., 2023) adds contrastive
losses, and LineDi2vec (Xing & Makrehchi, 2024) extends node2vec to edges. Edge-centric GNNs
instead update edges directly (e.g., EGNN (Gong & Cheng, 2019), EdgeNets (Isufi et al., 2021)).

DuoLink is distinct in three ways. (i) Feature integration: edge-nodes in L(G) are initialized with
classical proximity indices and attribute similarity, making heuristics trainable rather than external.
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(ii) Objective alignment: DuoLink removes the endpoint—decoder stage, using a simple supervised
classifier on L(G) to align message passing with edge neighborhoods. (iii) Theory: we provide
WL-based guarantees showing that constant-depth models on L(G) capture edge motifs that bounded-
depth endpoint decoders on G cannot.

This combination of heuristic integration, edge-native supervision, and task-specific theory is not
present in prior line-graph or edge-centric approaches, and underpins DuoLink’s consistent gains on
both homophilic and heterophilic benchmarks. A detailed comparison is given in Appendix B.2.

2.2  PAIRWISE PROXIMITY FEATURES

Before GNNs emerged, link prediction relied on proximity-based heuristics and manual feature
engineering (Kumar et al., 2020; Menon & Elkan, 2011), and recent benchmarks reveal that these
simple methods still rival state-of-the-art GNNs (Li et al., 2023; Tola et al., 2025). They all hinge on
homophily which is the idea that structurally or semantically similar nodes are more likely to connect
and fall into two categories:

i. Local Proximity Indices. Exploit 1- or 2-hop neighborhoods. Let G = (V, E), N (u) the
neighbors of u, and k,, = | (u)|. Common scores S(u, v) include:

CN (u,v) = |N(u) NN (v)|,(Common Neighbors) T (u,v) = W,(Jaccard)
_ W) NN (v)| : _ 2N (u) NN ()|
Seos(u,v) = N ,(Salton/Cosine) Ss(u,v) = I ,(Sgrensen)
1
AA(u,v) = Z ———— ,(Adamic—Adar)
weN (u)NN (v) log ke

ii. Quasi-Local and Global Indices. Extend local scores to 3—hop or all-walk measures, incorpo-
rate spectral information, e.g. the Local Path index (Lii et al., 2009; Aziz et al., 2020), SimRank (Jeh
& Widom, 2002), and the Katz index (Katz, 1953).

iii. Attribute Similarity Indices. = Beyond structural proximity, recent models add attribute
similarity (e.g., cosine of node attributes) to form richer pairwise features. Fed into a lightweight
classifier, these simple features still rival state-of-the-art models (Tola et al., 2025).

However, while these pairwise similarity features remain effective across many benchmarks, they (i)
assume homophily, (ii) overlook higher-order structural motifs unless explicitly engineered, and (iii)
lack end-to-end trainability. This motivates our line-graph model DuoLink, which integrates heuristic
features and learned representations within a unified, differentiable framework.

3 DUOLINK: METHODOLOGY

In this section, we introduce DuoLink, a dual formulation of link prediction as node classification
on the line graph, enabling effective integration of classical edge heuristics. Link prediction is
traditionally posed as learning a decoder ¢(h,, h,) over node embeddings h,, h, obtained by
message passing on GG. This node-centric view infers edges post hoc and often misses rich edge-level
structure (e.g. triangles, wedges). We instead reformulate link prediction as node classification on
the line graph L(G), where each original edge becomes a node and adjacent edges in G’ become
neighbors in L(G) (See Figure 1). This transformation (i) enables message passing directly over
edge neighborhoods, naturally capturing local motifs, and (ii) allows classical heuristics (Common
Neighbors, Adamic—Adar, etc.) to be used as initial features.

In what follows, we formalize the transductive link-prediction problem and define L(G), describe
feature construction, present our GNN/transformer backbones, specify the prediction head and
loss (Sec. 3.1), and summarize our theoretical results on expressivity and inductive bias alignment
(Sec. 3.2). Throughout the paper, we focus on the common transductive link-prediction setting
(Appendix B.5), predicting edges among a fixed node set, though our line-graph GNN naturally
extends to inductive and semi-inductive scenarios (See Appendix B.7).
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Problem Setup and Notation. Let G = (V,E)
be an undirected graph with |V| = n, |E| = m, ad-
jacency matrix A € {0,1}"*™, and optional node
features X € R™*?. In the standard transductive link-
prediction setting, a GNN learns node embeddings Elgurf; hllij;ainelGrag}h; Lfft: Grapll: f(gi)th f(;lur edge;
_ h istinguished by color. Right: Line grap! , where eacl

(I; ?RhGNg}gfh )i ())’ 1] H, € R i] an((l a djec'(])"(l'ifr edge in G' becomes a node colored identically.

: X — [0, 1] scores each pair (u,v). This
node-centric pipeline infers edges post hoc and may miss important edge-level structure (e.g. triangles,
wedges).

To align model bias with edge reasoning, we instead build the line graph L(G) = (Vi,EL):
Vi = E, Ep = {{e,e/}:e#¢, ene #0}. Eachoriginal edge e = (u,v) € E becomes
anode in V7, and two nodes in V7, are adjacent if their edges in GG share an endpoint (Bondy & Murty,
2008). We denote its adjacency by Ar, € {0,1}™>™ (cf. Appendix B.1).

In this reformulation, link prediction becomes node classification on L(G): learn fr, : Vi, — [0, 1]
with fi (e) high when e € E. Bach e = (u,v) is initialized as ze = [hsgruct (4, v) || hagee(u, v)],
combining proximity indices and (if available) attribute similarity. A GNN or GT on (A, Z) then
yields embeddings H (") for classification.

Line-Graph Transformation.  Given an undirected graph G = (V, E) with |V| = nand |E| = m,

we construct its line graph L(G) = (Vy,, E) by treating each original edge e = (u,v) € F asa

node in V. Two nodes ¢ = (u, v) and ¢/ = (u’,v’) in V7, are connected by an edge in E7, if and only

if they share a common endpointin G:  V, = E, Ep = {{e,e'}ie# €, ene #0}.

Equivalently, if B € {0,1}"*™ is the incidence matrix of G, then the adjacency of L(G) is
A, = B'B — 2I,, (AL)ij =1 <= e;,e; share an endpoint.

The details are given in Appendix B.1. This transformation increases the node count from n to
m, and the edge count to 3, 1 (*5™)), which is O(3>, deg(v)?). In practice, for sparse graphs

(>°, deg(v) = 2m), one can build L(G) in O(m dyyax) time and space, where dyyax is the maximum
degree in G (See Appendix B.3 for further details.).

Geometric View of L(G).  An intuitive way to see why (%) ®
the line-graph reformulation improves link prediction is \\ 4
via its simplicial-complex interpretation. Notice that for % I
any vertex u € V of degree k, we induce a complete Q Q
(k — 1)-graph in L(G) where its vertices correspond to \ VAN
edges adjacent to u. In particular, for each vertex u € V of \ / A
degree k, attach a (k — 1)-simplex A,, in L(G) whose ver- @
tices correspond to the 1-hop neighbors of u (Fig. 2). The @
line graph L(G) is exactly the 1-skeleton of this simplicial .
— Flgure 2: A graph where u has degree 4 and v has
complex L(G): In this view, for every node u € V of degree 3, sharing neighbor w. L(G) is the I-skeleton

deoree k. there exists a (k _ 1)-sim lex A, C L/(E) of the simplicial complex L(G): a tetrahedron A, on
g ’ p u > {wv, uw, uz, uy} shaded light yellow, a triangle A,

and the node € € Vg corresponding to original edge on {uv, vw, vz} shaded light green, and the extra edge
e = (u,v) becomes the unique vertex in the intersection ~between uw and v
Ay, NA,. Furthermore, if u and v have common neighbors

—

{wi,...,w,} in G, then any adjacent node w; € V will induce an edge w; in L(G) between A,, and
A,, connecting the nodes (u, w;) € A, and (v, w;) € A, (See Figure 2). Addition of any new (or
negative) edge ¢’ = (u/,v’) in G will result in the addition of a new node € in V7, such that e’ will

connect to simplices A, and A,/ in L(G) becoming the unique vertex in ﬁur N Ev/ =¢.

In particular, edges with many shared neighbors or connecting substructures in GG induce nodes in
L(G) with large, richly-labeled neighborhoods. In other words, if v and v have r common neighbors,
the node € = (u,v) in L(G) links to r other “edge-nodes,” each representing a triangle u~w;-v. This
dense local neighborhood provides the GNN with direct, edge-centric evidence, rather than requiring
it to infer triangles indirectly from two separate node embeddings, making it significantly easier to
distinguish real links from non-links.
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Original Graph (G) Line Graph (L(G)) Binary-Classification

E9

Predict link: y; € {0,1}

E10

Compute Edge Embeddings Learn node embeddings in L(G)
for each edge (edge embeddings of original graph(G))
—— Positive edge (y; = 1)

Negative edge (yi = 0)

Flgure 3: DuoLink Flowchart. Given a graph G’ with positive (blue) and negative (red) edges, we first compute edge embeddings (proximity
indices) for each potential link. These indices become node features on the line graph L(G), where each original edge is treated as a node and
adjacency reflects shared endpoints. A GNN or graph transformer is then applied on L(G) to perform binary classification on these nodes,
yielding link predictions §; € {0, 1}.

By operating on L(G), we enable any GNN architecture to perform message passing directly over
edge neighborhoods, aligning the inductive bias with link-prediction objectives.

Integration of Proximity Indices. Each node ¢ = (u, v) € V, of the line graph is initialized with
a feature vector z. that fuses structural and (optional) attribute proximity scores:
Ze = [hstruct (U, U) H hattr(ua U)} S RP-HI-

The definitions of the proximity indices hgtruct(u,v) are provided in Sec. 2.2. The vector
hattr (u, v) € RY encodes similarity of node attributes (e.g. cosine or Manhattan distance on X, X,).
Further details on both the indices and the attribute similarities used in the model given in Ap-
pendix B.8.

To project z, into the GNN’s hidden dimension h, we apply a learnable linear layer:
HY = ¢(z0) = o(2.W @ +0@) € R,

where W(©) ¢ R(P+0)xh p(0) ¢ R” and o is a nonlinearity (e.g. ReLU). These enriched features let
the GNN leverage both heuristics and attributes in an end-to-end fashion.

3.1 GNN BACKBONE ON THE LINE GRAPH

With edge-node features H(®) € R™*" on L(G'), we apply a generic backbone F — either a message-
passing GNN or a graph transformer — to learn refined edge embeddings:

7D = FOEHO AL, (=0,...,L -1,
where Ay, is the adjacency of L(G).

Message-Passing GNNs. A typical choice is a propagation rule of the form H(¢+1)
J(Dzl/zflL H(Z)W(Z)), where A, = A + 1, D, = diag(/lLl), which covers GCN, GIN,
GAT (with attention weights replacing Ap), and related variants.

Graph Transformers. Alternatively, one can use an attention-based transformer layer adapted to
graphs:
H' = MultiHeadAttn(Q = HY, K = HO, vV = H®; Ap),

H"+D = MLP (LayerNorm(H + H')),
where attention scores are masked by A, or learned from it (e.g. Graphormer, SAN).

We defer architectural specifics and hyperparameters to Sec. 4, where we instantiate J with several
GNN and transformer models and demonstrate consistent performance gains from our line-graph
reformulation.

Prediction Head and Loss.  After L layers of the backbone JF, we attach a lightweight prediction
head g : R" — [0, 1], e.g. a single linear layer with sigmoid: ~ §. = o(H%)

To train, we sample a set of negative edges E~ uniformly from non-edges of G, and form the positive
set ET = E. The objective £ = =y pilogfe = cp-log(l — g.) + A|W]|3, (binary
cross-entropy) where W collects all trainable weights and A is a weight-decay coefficient. At test
time, we score candidate edges by 7. and rank accordingly.
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3.2 EXPRESSIVITY AND INDUCTIVE BIAS ALIGNMENT

We formalize why operating on the line graph L(G) aligns message passing with edge prediction and
can separate edge patterns with strictly smaller depth than endpoint decoders on G.

Setup and model classes. Graphs are simple, finite, undirected, and connected. Unless stated, nodes
have no distinguishing initial features (uniform initial color). A t-layer 1-WL equivalent MPNN
on G produces node embeddings H = {hy }uev. An endpoint decoder then scores an edge (u, v)
via a continuous function v (h,,, h,) (for example inner product, bilinear form, or an MLP on the
concatenation). This hypothesis class is denoted by E;.

On the line graph L(G), each edge e = (u, v) € E becomes a node é with initial features z; computed
from a constant-radius neighborhood of (u,v) in G (e.g., Common Neighbors, Adamic—Adar, Local
Path up to K, attribute similarity). A t-layer 1-WL—equivalent MPNN on L(G) consumes z; and is
followed by a 1-layer classifier; this class is denoted L;.

Two candidate edges e, es are indistinguishable by E, if every model in E; assigns them the same
score. Indistinguishability for L, is defined analogously.

Inductive-bias. (Edge-neighborhood aggregation on L(G)) Message passing on L(G) aggregates,
in one round, information from edges adjacent to e = (u,v), hence from the two 1-hop star
neighborhoods around v and v viewed at the edge level. Endpoint decoders on GG can only combine
the separately aggregated node embeddings h,, and h,,.

Theorem 3.1 (Expressivity separation for edge motifs). For every t > 1 there exists a graph G, and
two edges e, e~ € E(G) such that

1. et participates in a triangle and e~ does not;

2. aftert rounds of the 1-WL color refinement on Gy, the endpoint colors satisfy ci(u) = ¢ (u')
and c;(v) = c;(v') where et = (u,v) and e~ = (u/,v"); hence every endpoint-decoder in
E; assigns the same score to e and e ;

3. there exists to € 1,2 and a model in Ly, on L(G,) that separates é* and é~.

Next, we prove the existence of iteration-gap family of graphs.
Theorem 3.2 (Iteration-gap family). There exists a family { Gy }x>1 and edges ey, e}, € E(Gy,) such

that (i) a model in Ly separates éj, and e), for all k;  (ii) every model in Ey, assigns the same score
to ey, and e}

DuoLink initializes edge-nodes with proximity indices, which can be consumed end to end on L(G).
Proposition 3.3 (Realizing proximity-index rules on L(G)). Let hyper(u,v) € RP be any fixed
collection of proximity indices computed from a bounded-radius neighborhood of (u,v), for example
common neighbors, Adamic-Adar, Local Path up to length K, or truncated Katz. Initialize each
edge-node é in L(G) with ze = [ Rstruct(u, ) || hanr(u,v)]. For any Boolean threshold rule f on
these indices there exists a model in Ly with classifier p that realizes f(Ngyer(t, 0), hagr(u, ).

Scope and implications. Theorems 3.1 and 3.2 do not assert that endpoint decoders can never
detect motifs; rather, they show that for any fixed WL depth there exist graphs where running a
shallow model on L(G) separates edge patterns that bounded-depth endpoint decoders on G cannot.
This formalizes the benefit of our reformulation: on L(G), edge motifs become first-class and are
captured at constant depth.

Link to DuoLink. Proposition 3.3 explains why DuoLink’s initialization matters: seeding edge-
nodes with bounded-radius proximity indices supplies motif evidence that a 1-layer model on L(G)
can already realize, and further layers can refine. Together, Theorems 3.1/3.2 justify the line-
graph component (constant-depth advantage), while Proposition 3.3 justifies the feature-integration
component (turning heuristics into trainable signals). This theory-to-design mapping aligns with
our ablations: +ProxI helps, but the largest gains come from the L(G) reformulation that removes
the endpoint—decoder bottleneck, especially on heterophilic graphs where edge-centric structure
dominates.

Complete proofs and explicit constructions are in Appendix A.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We benchmark all methods on ten well-studied graphs that capture
both homophilic and heterophilic connec-
tivity patterns. The homophilic collection
includes three widely used citation net-

Table 1: Homophilic and heterophilic benchmarks.

Dataset Nodes Edges Features Classes Edge hom.
works, CORA, CITESEER, PUBMED (Yang 8 g
o . CORA 2,708 5278 1433 7 0.81
et al., 20]6) The heterophlllc collection CITESEER 3,327 4,552 3,703 6 0.74
comprises three university-webpage net-  PUBMED 19717 44324 500 3 0.80
works, TEXAS, WISCONSIN, CORNELL,  TExas é83 igg 1'782 5 85(])
. WISCONSIN 51 1,703 5 .
an actor co-occurrence graph ACTOR (Pei o pneir 183 280 1703 5 030
et al., 2020; Shchur et al., 2018), and  Acror 7,600 26752 932 5 0.22
ROMAN-EMPIRE 22,662 32,927 300 18 0.05

the ROMAN-EMPIRE word-dependency
graph (Platonov et al., 2023b). This diverse
set of datasets enables a thorough evaluation of link-prediction performance across graphs with
markedly different structural and feature—label alignment properties. The details are given in Table 1.

* Feature similarity ratio is given as there is no node classes (Zhu et al., 2024).

Setup. Following the experimental settings in (Kipf et al., 2016; Pan et al., 2022), we split the links
in three parts: 85% training, 5% validation and 10% testing (except OGB datasets). We sample the
same number of nonexisting (negative) links. For more details, see Appendix B.6.

Hyperparameters. For all experiments, we fixed the number of training epochs to 1000 and used
a dropout rate of 0.1. For smaller datasets such as TEXAS, WISCONSIN, and CORNELL, we set the
hidden dimension to 32 and used a learning rate of 0.01. Batch normalization was applied in these
cases, and we tuned the number of GNN layers in the range {2, 4, 5} to assess depth sensitivity.

For the remaining (larger or more complex) datasets, we selected the hidden dimension from {64,
128}, used a learning rate of 0.001, and fixed the number of GNN layers to 5. In these settings, batch
normalization was not applied.

Computational Complexity and Runtime. The DuoLink framework reformulates link prediction
as node classification on the line graph L(G), introducing only modest overhead compared to
node-centric methods. Constructing L(G) from an input graph G = (V, E) with |V| = n and
|E| = m takes O(m, dmax) time and space, where dy.x = max,cy deg(v), efficient for sparse
graphs. In L(G), the number of nodes is m and the number of edges is ) .y (degz(”)), bounded by
O(m, dmax). Each GNN layer on L(G) thus incurs O(|E|) cost, matching per-layer complexity of a
standard GNN on G when |EL| = O(m, dax). Computing classical edge heuristics (e.g., Common
Neighbors, Adamic—Adar) for initialization likewise requires O(m, dpax) time. Hence, for sparse
real-world networks where m > n but dy,., stays small, DuoLink preserves linear scaling in the
size of the original graph while enabling richer edge-centric learning.

We ran encoding extraction experiments on a single machine with 12th Generation Intel Core i7-
1270P vPro Processor (E-cores up to 3.50 GHz, P-cores up to 4.80 GHz), and 32GB of RAM
(LPDDR5-6400MHz). It took 2 minutes and 40 seconds to retrieve the encodings for PUBMED
dataset. The classification experiment were conducted on a virtual HPC node equipped with an
NVIDIA H100 NVL GPU (94 GB, PCle), two AMD EPYC 9334 CPUs (2.7 GHz, 32 cores each),
and 768 GB of RAM. Under this configuration, vanilla SAGE completed training in 3 minutes and
52 seconds, while DL-SAGE required 13 minutes and 31 seconds for PUBMED dataset. The code is
available at https://anonymous.4open.science/r/DuoLink-061D.

4.2 RESULTS

DuoLink Improvements. Table 2 shows DuoLink delivers consistent, large gains over vanilla
GNN and transformer backbones (GCN (Kipf & Welling, 2016),GIN (Xu et al., 2019),GSAGE (Hamil-
ton et al., 2017a), DeepGCN (Li et al., 2020),GatedGraph (Li et al., 2016),SGFormer (Ren et al.,
2023) and Polynormer (Deng et al., 2024)) in both homophilic (Hits@ 100) and heterophilic (AUC)
settings. Standalone performance of heuristic features (ProxI) is already strong, but DuoLink not only
recovers those signals but exceeds them, often with double-digit average improvements, especially
on heterophilic benchmarks. A key reason is the conversion of link prediction into node classification
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Table 2: DuoLink Improvements. Comparison of vanilla models, their proximity-index fused variants
(ProxI), and line-graph reformulation (DuoLink) on homophilic (Hits@ 100) and heterophilic (AUC) benchmarks.
Rightmost columns show average gains of ProxI and DuoLink over vanilla.

CORA CITESEER ~ PUBMED ACTOR CORNELL TEXAS WISCONSIN ~ ROMAN
0.81 0.74 0.80 Ave. 0.22 0.30 0.11 0.20 0.05 Ave.
Method Hits@100 Hits@100 Hits@100 Imp. AUC AUC AUC AUC AUC Imp.
ProxI+MLP 93.114+077 95394037 75.53+0.42 - \ 87.38+023  77.40+755  85.26+1.93 82.28+2.94 88.92+1.11 -
GCN 66.27+149  58.53+303 51.08+0.84 - 84.78+027  73.50+384  78.48x417  79.441242  81.28x057 -
GCN+ProxI 84.54+155 87.81+117  73.34x178  23.27 | 88.04+050 80.05+390 86.57+1.83 86.57+1.83 86.21+201  9.98
DL-GCN 80.64+285 72.74+237 51.69+319  9.73 | 89.19+079 72.24+1204 80.514352 86.77+4.11 85.87+s549  5.70
GIN 49.20+493  41.73+229  39.14+1.80 - 82.10+0.67 73.37+466  79.05+527  76.48+280  74.40+0s1 -
GIN+ProxI 85134111 86.1+220  73.82+423 3833 | 87.67+072  81.13+328  86.44+233 86.17+214  90.83+134 15.61
DL-GIN 79.67+385  75.16+363 57.53+182 27.43 | 90.98+035 75.13+520 85.72+386  83.72+297  94.03x116  14.73
SAGE 60.06+324  60.00+4.07  56.25+2.23 - 83.34+066 69.60+6.03 73.03+519  69.69+2.78 80.30+0.95 -
SAGE+ProxI 71404341 59.00+449  65.60+260  6.56 | 87.55+043 72.70+600 76.91+477  79.60+179  89.99+108 10.24
DL-SAGE 98.11+073  97.09+070 96.68+0.53 38.52 | 98.52+023  79.09+163  85.80+4.97 88.74+217  98.36+045 24.83
DeepGCN 49.18+6.03  54.54+613  53.10+2.68 - 83.23+078  70.00+450  74.25+499  71.48+271 80.13+0.56 -
DeepGCN+ProxI 72584316 75994287 69.43x119  20.39 | 87.72+038 75.83+463 76.64+542  79.86+245  90.59x070 10.52
DL-DeepGCN 96.81+037 92.46+130 92.04+126 41.49 | 97.73+024 79.194558  88.14+267  90.74+218  97.09+075 24.60
GatedGraph 27.08+3.19  33.03+461 45.70+3.75 - 82.49+121  69.68+472 7191532 71.87+411  76.89+2.66 -
GatedGraph+ProxI  77.40+230  66.36+707 72.91+202 36.95 | 87.57+097 74.30+5.14 78.05+478  80.75+273  89.65+148 12.49
DL-GatedGraph 97.25+090 95.90+194 92214240 59.85 | 97.74+061  76.38+554  85.18+535  88.44+3.00  98.52+038  24.47
SGFormer 39.66+785 44.12+713  51.86+3.55 - 82.90+117  67.63+s501  74.10+477  71.224308  76.23+1.66 -
SGFormer+ProxI 73.08+336  69.79+249  67.99+307  25.07 | 86.92+093  72.35+633  77.35+5.05 80.20+1.77 89.54+091 11.43
DL-SGFormer 97.61x055 94.16+184 94.04x123 50.06 | 97.52+077 74.07+254 84.90+329  86.58+220  97.51x062 22.83
Polynormer 42.58+640 51.93+696 59.94+284 - 81.73+0.19  70.38+476  73.45+466  72.25+351 80.89+0.73 -
Polynormer+ProxI ~ 75.44+3.04 84.87+402 67.06+1.81 24.31 | 87.41+031 71.85+564 80.76+527  82.05+1.37  89.74x051 11.04
DL-Polynormer 98.42+051  97.70+087 94.29+060 4532 | 98.60+022 81.19+73¢ 85.67+655  88.48+311  99.491016 2491

on the line graph, where GNNs are naturally powerful; this reframing lets message passing operate
directly over edge neighborhoods and exposes structural motifs that decoder-based pipelines miss.

DuoLink’s strength lies in embedding classical heuristics as trainable edge-node features and refining
them through end-to-end learning. By reframing link prediction as node classification, it aligns the
model’s inductive bias with edge-level inference, combining the interpretability of ProxI with the
flexibility of deep learning. This fusion is especially effective in heterophilic settings, where structural
cues outweigh similarity.

DuoLink vs. SOTA on Homophilic Benchmarks.  For the homophilic setting, we compare
DuoLInk with three families of approaches: embedding methods (Node2vec (Grover & Leskovec,
2016), Matrix Factorization (Menon & Elkan, 2011), MLP), standard GNNs (GCN (Kipf & Welling,
2016), GAT (Velickovi¢ et al., 2018), GSAGE (Hamilton et al., 2017a), GAE Kipf et al. (2016)),
and specialized link-prediction GNNs (SEAL (Zhang et al., 2021), Neo-GNN (Yun et al., 2021),
NBFNet (Zhu et al., 2021), PEG (Wang et al., 2022a), BUDDY (Chamberlain et al., 2023),
NCN/NCNC (Wang et al., 2023), Link-MoE (Ma et al., 2024)).

Table 3: Homophilic benchmarks. Link prediction
results (Hits@100). The top three models are highlighted:
First, Second, and Third.

Table 3 shows that DuoLink establishes a new
state of the art on homophilic link predic-
tion benchmarks. Both DL-SAGE and DL-
Polynormer achieve near-perfect Hits@ 100 on

. Models CORA CITESEER PUBMED

Cora, Citeseer, and Pubmed, clearly outper-
forming all prior methods, including the most Node2Vec 84.88+096  89.89+148  63.07+034
7. MF 66.394+503  59.47+269  53.75+2.06
competitive LP-GNNs such as SEAL, BUDDY,  ypp 85.52+144  91.25+190  84.19+133
E.e (i;(g/lﬁl;’ NACTlfNISN E ’ dNBFl,;Ieé’l PI;G,hand GCN 91.29+125  91.74+124  87.41+0.65
ink-Mok. As ighlighted 1n lable 2, these gt 90.70=105  91.69+121  80.95+072
gains stem from the line-graph reformulation = SAGE 91.00+152  96.50+053  90.02+0.70
itself, rather than from heuristic augmentation, GAE 92.75+095  95.17+050  84.30+031
since it elevates edge motifs to first-class learn-  SEAL 84764116  85.604271  76.06+4.12
ing targets and incorporates proximity indices =~ BUDDY 91424126 95.40+063 83214059
as trainable signals. This design removes the gg’Fgl‘iN g;-ggim gg-égﬂ"” gg}éi“s
. . € .05+0.46 0064042 164071
epdpgmt—decoder bottleneck of conyentlpnal PEG 0142050 9482108 76451383
pipelines and equips the model with direct — NcN 95.56:079  96.17+106  90.43=0.64
structural evidence for true links. Even against ~ NCNC 95.62+084  97.54+059  91.93+0.60
the Strongest recent baselines’ DuoLink con- Link-MoE 96.26+0.09 96.44+0.14 90.38+0.24
sistently delivers higher accuracy with lower = DL-SAGE 98.11+073  97.09+070  96.68+0.53
Variance, underscoring its robustness. These DL-Polynormer 98.42-+0.51 97.70+0.87 94.29+0.69
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findings confirm that aligning message passing with edge neighborhoods not only bridges the long-
standing gap with heuristics but also secures a decisive advantage for homophilic link prediction.

DuoLink vs. SOTA on Heterophilic Benchmarks. In the heterophilic setting, we compare
DuoLink against attention and generative baselines (GAT (Velickovic et al., 2018), VGAE (Kipf
et al., 2016), GIC (Mavromatis & Karypis, 2021)) and heterophily-aware models (LINKX (Lim et al.,
2021), DisenLink (Zhou et al., 2022), CFLP (Zhao et al., 2022), LLP (Guo et al., 2023), CMP (Wang
et al., 2025)).

On  heterophilic  benchmarks, Table 4: Heterophilic Benchmarks. Link prediction results
DuoLink variants (DL-SAGE, DL- (AUC%). The top three models are highlighted: First, Second, and

Polynormer) far outperform both Third.
standard baselines (GAT, VGAE,

GIC) and Specialized heterophily- Model ACTOR CORNELL TEXAS WISCONSIN  ROMAN

) : GAT 67.80+1.12  61.13+323  65.73+5.06 68.10+440  83.34+034

aware methods (LINKX, DisenLink, v g 70.82+081  58.18+047 66.75:1000 7130460  73.27:083

CFLP, LLP), often by very large  cIc 70294020 58014341  66.19+73  75.24+s45  56.80:38

margins in AUC. This gap hlgh- LINKX 72134104 59.43+417 71924382 80.10+3.80  69.23+0.95

: : L : DisenLink 59.19+048  60.71+s510  77.88+4.03 84.40+190  67.66+0.84
1lghtS that COHVCHF]OH&] SImlla.'rlty CFLP 80.41+032 73.14+542  66.02+3.84 79.14+4.89 OOM

or feature-decoupling assumptions  LLP 80.37+107 68204796 71.88+395 67434040  82.63+34s
break down in heterophilic settings CMP 86.81+055 73.59+538  79.26+538 NA NA

s
DL-SAGE 98.52+023  79.09+163  85.80+4.97 88.74+217  98.36+0.45

whereas DuoLink’s line-graph
reformulation gives GNNs direct
access to edge-centric structural
context, letting proximity heuristics be refined through message passing over richly connected
neighborhoods. By casting link prediction as node classification on the line graph and initializing
edge nodes with classical proximity indices, DuoLink aligns inductive bias with the true inference
granularity. That alignment is especially powerful in heterophilic settings, where edge formation
depends on higher-order connectivity patterns rather than feature similarity, making the fusion of
heuristics and learned representations critical for reliable prediction.

DL-Polynormer 98.60+0.22 81.19+734  85.67+655 88.48+3.11  99.49+0.16
* NA means code is not available, OOM means Out of Memory.

t-SNE Visualizations. We provide t-SNE visualizations in Appendix B.9 to compare test-set edge
representations from raw heuristics, standard GNNs, and DuoLink. As shown in Figures 4a to 4d,
DuoLink achieves much clearer separation of positive and negative edges, demonstrating the benefit
of edge-centric learning on the line graph.

Limitations. = While our approach shows strong performance and broad applicability, it introduces
some additional preprocessing due to line graph construction, which may impact scalability on very
large or dense graphs. However, this overhead is manageable in all evaluated settings, and efficient
construction strategies can further mitigate it. Our current experiments focus on static graphs, but the
framework is general and can be extended to dynamic or temporal graphs in future work. Although
we incorporate classical heuristics to enhance performance, the model remains flexible and effective
even when such features are absent or limited.

5 CONCLUSION

We introduced DuoLink, a line-graph formulation that casts link prediction as node classification on
L(G) and treats classical proximity indices and attribute similarity as trainable edge-node inputs.
This closes the encoder—decoder gap, comes with WL-based guarantees (expressivity separation
and an iteration-gap family), and yields consistent gains on homophilic and heterophilic bench-
marks. Beyond showing improvements beyond heuristics alone, DuoLink clearly departs from prior
line-graph methods by integrating heuristics inside the model and aligning message passing with
edge neighborhoods under a task-specific theory. Looking ahead, we aim to extend DuoLink to dy-
namic/temporal and heterogeneous graphs (via typed line graphs), integrate it into graph foundational
models with self-supervised objectives on L(G), and tighten motif-level theory while scaling with
sparse, memory-aware implementations for large real-world graphs.
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Appendix

A PROOFS OF THEOREMS

In this part, we provide complete proofs of the theoretical results stated in Section 3.2. The main
goal is to rigorously justify the separation claims between endpoint-based link predictors and line-
graph-based models. We first establish the expressivity separation for edge motifs (Theorem 3.1),
which shows that shallow GNNs on L(G) can capture local edge patterns invisible to bounded-depth
endpoint decoders on G. We then extend this to an iteration-gap family (Theorem 3.2), where
line-graph models with constant depth succeed while endpoint decoders require depth that grows with
the graph construction. Finally, we prove Proposition 3.3, which formalizes how common proximity
indices can be encoded as initial features on L(G) and realized by a single WL layer and linear
classifier. Together these results provide the mathematical underpinnings for our claim that DuoLink
aligns inductive bias with edge-centric learning and supports practical feature integration.

Theorem 3.1. (Expressivity separation for edge motifs) For every t > 1 there exists a graph Gy and
two edges et e~ € E(G¢) such that

1. et participates in a triangle and e~ does not;

2. gfter t rounds of the 1-WL color refinement on Gy, the endpoint colors satisfy c;(u) = ci(u)
and c;(v) = c;(v') where et = (u,v) and e~ = (u',v'); hence every endpoint-decoder in
E; assigns the same score to et and e~ ;

3. there exists to € 1,2 and a model in Ly, on L(G,) that separates é* and é™.

Proof of Theorem 3.1.  To establish the separation, we explicitly construct for each depth ¢ a graph
G containing two marked edges: one in a triangle and one not. We then use regular tree padding to
guarantee that, after ¢ rounds of 1-WL, the endpoint colors of both edges remain indistinguishable,
so any endpoint decoder scores them equally. Finally, we show that in the line graph L(G}) the local
neighborhoods of the two edge-nodes differ by a simple cross-edge pattern, allowing a shallow WL
refinement on L(G,) to separate them.

Construction of G;. Fix t > 1 and an integer A > 3.

Triangle core. Create vertices u, v, w and edges (u,v), (v, w), (w,u). Attach (A—2) disjoint leaf
roots to each of u, v, w and then replace each such leaf by the root of an identical (A —1)-ary tree of
depth t—1 (every internal node has total degree A). Denote the marked edge by e™ = (u, v).

Diamond core. Create vertices u’,v’, a, ¢ and edges (u',v"), (v, a), (a,c), (¢,v’) so that ', a, ¢, v’
forms a 4-cycle with diagonal (u/,v"). Attach (A —2) disjoint leaf roots to each of u’,v’, a, ¢ and
replace each leaf by the root of an identical (A —1)-ary tree of depth t—1 as above. Denote the
marked edge by e™ = (uv/,v").

This yields the graph G; which contains the two marked edges e™ and ™.

Step 1. By construction, e™ participates in the triangle (u, v, w), while e~ has no common neighbor
and therefore is in no triangle. We use the following standard fact about color refinement on regular
tree paddings.

Lemma A.1 (Synchronized padding). Let Ta p denote the rooted (A—1)-ary tree of depth D with
uniform initial color on all vertices and total degree A for every internal node. For any two copies of
Ta,p, forall rounds s = 0,1, ..., D all nodes at the same depth have the same 1-WL color at round
s. Moreover, if two host vertices x and y have the same round-s color and each is attached to the
roots of m disjoint copies of Ta_p, then after one more WL round the multisets of neighbor colors at
x and y that come from the attached trees are identical.

Proof. The claim for Ta p follows by induction on s. At round 0 all colors are equal. If nodes at
depth d have equal colors at round s, then a node at depth d — 1 sees the same multiset of round-s
colors from its children and the same number of neighbors overall, hence nodes at depth d — 1 get
equal colors at round s+ 1. The second statement follows because attached trees evolve independently
and symmetrically and contribute identical neighbor color multisets to  and y when = and y share
the same round-s color. O
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Step 2. Run 1-WL color refinement on G with uniform initial colors. We show that after ¢ rounds,
ci(u) = ci(u') and ¢ (v) = e (V).
We establish a stronger invariant by inductionon s = 0,1,...,¢:

C%s) = {u,u'}, Cés) = {v,v'}, Cés) ={w,a,c},

such that every vertex in Cl(s) has the same round-s color, and every node inside an attached tree has
a round-s color that depends only on its depth and on which class Cz-(s) its root is attached to.

The base case s = Q is trivial. Assume the claim holds at round s. Consider u and u’. Each has
one neighbor in C;”, one neighbor in C;”, and A —2 roots of attached trees. By the induction
hypothesis and Lemma A.1, the multiset of round-s neighbor colors at v and v’ is identical, hence
cs+1(u) = csy1(u'). The same argument applies to v and v'. For w, a, ¢, each has two neighbors in

c{s) U Cés) with the same pair of round-s colors (up to permutation), and the same number of attached

tree roots, hence they share the same round-(s + 1) color. The attached trees remain synchronized

by Lemma A.1. This proves the invariant for round s + 1, and in particular ¢;(u) = ¢;(u’) and

ct(v) = e (V).

Since every E; endpoint decoder reads only the pair (A, h,) produced by t WL-equivalent rounds,
* and e~ are indistinguishable for E;.

Step 3. Consider the line graph L(G;). The node corresponding to et = (u,v) is denoted et

and that for e~ = (u/,v') is e—. The neighbors of et are the edge-nodes incident to u and to v
(excluding (u, v)), which form two cliques in L(G}) of size A—1 each. Among these neighbors the

two edge-nodes (u,w) and (v, w) are present. On the e~ side, the neighbors of e~ are the edge-nodes
incident to v’ and to v’ (excluding (u', v")), with the special neighbors (u’, a) and (v', ¢).
Run 1-WL on L(G}) with uniform initial colors. By degree symmetry, the first refinement partitions

the neighbor sets of both et and e~ into two types: the A—2 “light” edges incident to a degree-1 leaf
in G¢, and one “heavy” edge incident to the core neighbor on each side. Denote these heavy nelghbors

by hy = (u,w) and h,, = (v, w) around et and by h, = (v, a) and h,s = (v, ¢) around e~

At the next refinement, h,, and h,, generally receive different colors, because their endpoint neighbor-
hoods in G, differ: the u-side and v-side are distinguishable once the multiset of colors coming from
their attached trees propagates one round through L(G}), while h, and hv/ remain synchronized by

the diamond symmetry. Consequently the multiset of neighbor colors of e+ differs from that of e~
after a constant number of WL rounds on L(G¢). Hence there exists to € {1, 2} such that a model in

L, separates et and e~.

Combining the three steps proves Theorem 3.1. O

Theorem 3.2. (Iteration-gap family) There exists a family {Gy}r>1 and edges ey, ¢}, € E(Gy) such
> k

that (i) a model in Ly separates €y, and e}, for allk;  (ii) every model in Ej, assigns the same score
to ey, and e}

Proof of Theorem 3.2.  We instantiate the hypothesis classes as in Section 3.2: Ej are k-layer
1-WL-equivalent endpoint decoders on G, and L; are t-layer 1-WL~equivalent models on L(G)
followed by a 1-layer classifier. In line with DuoLink’s initialization, models in L; may use bounded-
radius edge-node features z; (e.g., proximity indices such as Common Neighbors), which depend on
a constant-radius neighborhood of (u, v) in G, independent of k. Endpoint decoders in Ej, operate on
node embeddings only, as defined in Section 3.2.

Construction of G;. Fix k£ > 1 and A > 3. Build G}, using the two cores from Theorem 3.1,
padded with regular trees to depth k& — 1:

Triangle side. Create u, v, w and edges (u,v), (v, w), (w,u). Attach (A — 2) disjoint leaf roots to
each of u, v, w and replace each leaf by the root of an identical (A — 1)-ary tree of depth k£ — 1 (every
internal node has total degree A). Mark e, = (u, v).
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Diamond side. Create u',v’, a, ¢ and edges (u',v’), (v, a), (a,c), (¢,v’). Attach (A — 2) disjoint
leaf roots to each of u’, v’, a, ¢ and replace each leaf by the root of an identical (A — 1)-ary tree of
depth k£ — 1. Mark e}, = (v, v').

Property (ii): indistinguishability for E;,. Run 1-WL on G}, with uniform initial colors. Exactly
as in the proof of Theorem 3.1, the synchronized padding (Lemma A.1) implies that after & rounds
cx(u) = cp(u) and cr(v) = ep(v').

Hence any k-layer endpoint decoder in Ej, receives identical pairs (h.,, hy) and (hys, h,) (up to

injective recodings of ¢j), and must assign the same score to ey, and e},. This proves (ii).

Property (i): separation for L, with bounded-radius edge features. Initialize each edge-node
é = (u,v) in L(G},) with the Common Neighbors feature

CN(u,v) = {z€V:(u,z) € FEand (v,z) € E}|,
optionally concatenated with other bounded-radius indices. This feature depends only on the 2-hop
neighborhood of (u, v) in G}, hence its radius is constant in k.
By construction, e, = (u,v) has a common neighbor w, so CN(u, v) > 1. In contrast, e}, = (u’,v")

has no common neighbor, so CN(u’, v") = 0. Therefore the two edge-nodes ¢;, and e, have distinct
initial features zg; # 2.
k

A modelin L, (indeed, even L) followed by a 1-layer classifier can separate these two points in feature
space. Concretely, a single linear classifier on z; implements the threshold rule 1{CN(u,v) > 1},

which outputs different labels for €, and (%. Hence (i) holds.
For every k > 1 we have constructed G}, and marked edges ey, e}, such that (ii) indistinguishability
persists for all models in Eg, while (i) separation is achieved by a constant-depth line-graph model L,
using bounded-radius edge features. This proves Theorem 3.2. O
Now, we prove Proposition 3.3. First, we need a key lemma.

Lemma A.2 (Identity layer on L(G)). In Ly, there exist message/update parameters so that the
single MPNN layer on L(G) outputs

hél) = Zé¢,
i.e., it copies the initial edge-node features to the post-layer embedding.

Proof of Lemma A.2. Use an MPNN with self-loops on L(G) and injective aggregation (e.g., sum).
Set neighbor messages to zero and the self-message to the identity on z;, and choose the update to
return its first argument. Then the aggregated message at € equals z; and the update outputs hgl) = 2.
This is a standard parameter choice within 1-WL—-equivalent MPNNs. O

Proposition 3.3 (Realizing proximity-index rules on L(G)) Let hgpe(u,v) € RP be any fixed
collection of proximity indices computed from a bounded-radius neighborhood of (u,v), for example
common neighbors, Adamic-Adar, Local Path up to length K, or truncated Katz. Initialize each
edge-node é in L(G) with ze = [Rgmer(1, V) || hagr(u,v) ). For any Boolean threshold rule f on
these indices there exists a model in Ly with classifier p that realizes f(Rgyer(t, 0), hagr(u, v)).

Proof of Proposition 3.3. Let f : RP — {0, 1} be a Boolean threshold rule, so there exist w € R?

and 7 € R with
f(@) = {{w,z) = 7}.
Recall zz = [ hstruct (4, ) || hastr(u, v) ]. Apply one layer of Ly as in Lemma A.2 to obtain hél) = Ze.
Define the 1-layer classifier  p : RPT4 — [0,1] by p(h) = 1{(w,h) > 7}, where w = [w || 0]
puts zero weight on the attribute block. Then for every edge-node é,
p(hél)) - 1{<w, hstruct (Ua U)> Z T} = f(hstruct (uv U)v hattr (uv U)) .
Thus a model in L, realizes f on L(G).

The bounded-radius assumption guarantees that computing hgtyuct (¢, v) and hater (u, v) depends
only on a constant-radius neighborhood in G, independent of graph size. No further property is
required.
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B FURTHER EXPERIMENTAL DETAILS

B.1 LINE-GRAPH ADJACENCY VIA INCIDENCE MATRIX

Let G = (V, E) be an undirected graph with |V| = n and |E| = m. Define its incidence matrix
B e {0,1}"*™ by
B _ 1, ifnode w is an endpoint of edge e,
“€ 710, otherwise.

Then the original graph adjacency A can be recovered (up to self-loops) as

A=BB'" —diag(d), d,= Z By = deg(u).

More importantly, the line-graph adjacency A;, € {0,1}™*™ is givenby A;, = B' B — 21,

1, e # ¢ share exactly one endpoint in G,
0, otherwise.

(AL)e,e' - {
Since (B" B)... = 2 for each edge e, subtracting 21, removes self-loops and yields the correct
line-graph structure.

B.2 DUOLINK VS. OTHER LINE-GRAPH APPROACHES

Table 5 summarizes the design differences between DuoLink and representative line-graph methods.
Here, “Heuristics” denotes initializing edge-nodes on L(G) with classical proximity indices and
training over them end to end, “Attr. sim.” refers to explicit attribute-similarity features (e.g., cosine
of node embeddings), and “WL separation” indicates theoretical results showing expressivity or
iteration-gap advantages for line-graph models over endpoint decoders on G.

Table 5: Conceptual contrast with representative line-graph approaches. A checkmark indicates
explicit support.

Method Uses L(G) LPasnode-clson L(G) Heuristics Attr. sim. WL separation End-to-end
LGNN (Cai et al., 2021) v v v
LGCL (Zhang et al., 2023) v v '
LineDi2vec (Xing & Makrehchi, 2024) v

DuoLink (ours) v v v v v v

Notes. LGNN and LGCL both operate on the line graph and treat LP as node classification, training
with supervised objectives, but neither incorporates classical heuristics or explicit attribute-similarity
features as trainable inputs. LineDi2vec leverages the line graph for edge embeddings in an unsuper-
vised manner rather than supervised node classification on L(G). In contrast, DuoLink combines
edge-node initialization with heuristics and attribute similarity, supports GNN and transformer back-
bones on L(G), and is the only approach providing WL-based theoretical guarantees tailored to edge
tasks.

B.3 SCALABILITY AND BATCHING

Time and Space Complexity. Naively, each node u € V of degree k, induces a k-complete
subgraph in L(G) where the vertices are the adjacent to u. As k-complete graph has (degé(")) edges,
constructing L(G) by examining each vertex’s adjacency list takes

3y (degju)) _ O(zu:deg(u)?) = O (M dmax),

ueV

where dpax is G’s maximum degree and m = |E|. Memory usage is dominated by storing Ay,
which in sparse form requires O(m d,,,ax) entries.
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B.4 GRAPH HOMOPHILY AND HETEROPHILY

For completeness, we recall two standard homophily metrics in a labeled graph G = (V, E, C), where
C:V —{1,...,N} assigns each node to a class:

 Node homophily ratio: H,(G) = ITIJI >oey |{ue/\/(vd)e:g((vu)):6(v)}| .

This measures, on average, the fraction of same-class neighbors per node.

. Edge homophily ratio: He(g) _ }{(u,'t))E]EZICE(lu):C(U)}‘ ’

i.e. the proportion of edges that connect nodes of the same class.

Both H,, and H, lie in [0, 1]. By convention, H,, > 0.5 (or H. > 0.5) indicates a homophilic graph,
while lower values denote heterophily (Zhu et al., 2020; Luan et al., 2022). Recent works propose
alternative and more nuanced homophily measures to capture class imbalance, multi-factor similarity,
and higher-order interactions (Jin et al., 2022; Luan et al., 2023).

B.5 LINK-PREDICTION SETTINGS

Let G = (V,E, X) be an undirected, unweighted graph with node set V = {vy,..., v, }, edge set
E C V x V, and an attribute matrix X € R"*"™ whose ith row X is the m-dimensional feature vector
of node v;. We partition both nodes and edges into observed (old) and unobserved (new) subsets,
yV=y,UuV, and E=E,UE,.

During training, we see only G, = (V,,E,), and our goal is to predict whether each candidate pair in
VY x V belongs to E,,. Depending on which nodes are allowed at test time, link prediction falls into
three categories (Menon & Elkan, 2011):

1. Transductive (VO = V). All nodes are known at train time, and we predict missing edges
among them.

2. Inductive (VO Ny, = (Z)). We score edges between entirely unseen nodes using only their
features.

3. Semi-inductive. Test edges may involve one or two nodes from V,,.

In this paper, we restrict our focus to the commonly used transductive setting. Extensions to inductive
and semi-inductive tasks are straightforward and discussed in Appendix B.7.

B.6 DUOLINK AND TRANSDUCTIVE SETTING

Following established protocols in link prediction (Kipf et al., 2016; Pan et al., 2021), we randomly
partition the set of positive edges F into 85%, 5%, and 10% splits for training (E;“am), validation
(Ej;hd), and testing (F,l,), respectively, except for OGB datasets, which use their predefined splits.
For each group, we sample an equal number of negative edges, node pairs not present in F, to form

Ein Eoaa» and Eiey. We denote the union of positives and negatives in each split as Fiin =
+ - _ nt - _nt -
Etrain U Etrain’ Eva]id - Evalid U Evalid’ and Etest - Etesl U Elesl‘

To construct the input graphs for our experiments, we adopt the standard transductive setting. The
training line graph is built from the graph Gyuin = (V, Eiin), Which contains only the training
edges. We generate its line graph L(G.in ), where each node represents a training edge and adjacency
reflects shared endpoints in G,;,. Node features are computed for all candidate edges in Ei,, (both
positive and negative), including proximity indices and attribute similarities.

For evaluation, we construct the test line graph from the full graph Giesy = (V, Eyain U Evatia U
Eest). The corresponding line graph L(Ges) provides the evaluation context for all test candidates.
Specifically, we classify candidate edges from E, and E as nodes in L (G ) using their respective
features. This procedure ensures that all predictions are made within the full observed graph, while
training is restricted strictly to the training set, thus preventing any information leakage.
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B.7 EXTENSIONS TO INDUCTIVE SETTINGS

Although our experiments focus on the transductive scenario, DuoLink extends naturally to inductive
and semi-inductive link prediction:

* New nodes. When a previously unseen node v’ arrives with feature X,/, we compute
its incident edge-nodes ¢’ = (u’,v) for v € V. We then assemble N7 (€’) in L(G) via
on-the-fly similarity heuristics hgtpyuet (@', v) and prune to S neighbors.

» New edges. To score a candidate edge ¢/ = (u’,v’), we compute A,» N A,/ using current
node features and local topology, embed ¢’ and its sampled neighbor-edges, and apply the
same GNN layers.

This procedure requires only local recomputation of heuristics and sampling, without retraining or
global graph access.

B.8 PROXIMITY INDICES FOR DUOLINK

To enrich our link prediction framework with informative structural signals, we incorporated a
comprehensive set of classical and higher-order heuristic indices. These features have demonstrated
utility across a wide range of tasks, particularly in sparse or heterophilic settings where node attributes
may be unreliable or absent. In our DuoLink framework, we utilized these indices {/(, )} as initial
node embeddings for the nodes {7,y } for the line graph L(G).

The following proximity indices were computed for each candidate edge (node pair):

 Shortest Path Length

* Number of 2-paths and 3-paths

e Jaccard, Salton, and Sorensen indices

* 3-Jaccard, 3-Salton, and 3-Sorensen (higher-order extensions)
¢ Adamic-Adar index

* Hub Promoted Index (HPI) and Hub Depressed Index (HDI)
* Cosine Similarity, L1, and L2 distances (Attribute similarity)
* Pearson Correlation

* Jaccard similarity for binary vectors.

B.9 T-SNE VISUALIZATIONS

The t-SNE visualizations on the test sets (Figures 4a to 4d) illustrate the representational differences
between raw heuristic proximity indices (left), conventional node-pair embeddings from SAGE using
Hadamard products of node embeddings (center), and DuoLink-SAGE embeddings obtained via the
line graph (right). While raw proximity heuristics carry some discriminative signal, positives and
negatives remain partially mixed and diffuse. The standard SAGE embeddings collapse this structure
further, leading to highly intertwined and indistinct clusters, hindering accurate edge classification.

In contrast, DuoLink-SAGE produces embeddings that exhibit distinct, well-separated clusters for
positive (real) and negative (fake) edges. This substantial improvement confirms that reformulating
link prediction as node classification on the line graph allows GNNs to directly refine heuristic
structural cues via edge-centric message passing. Consequently, DuoLink embeddings capture
meaningful higher-order patterns missed by conventional decoders, directly explaining the strong
empirical performance gains observed across the benchmarks.
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