
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DUOLINK: A DUAL PERSPECTIVE ON LINK PREDIC-
TION VIA LINE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Link prediction remains a persistent weakness of graph neural networks (GNNs):
despite strong results on node classification, decoder-based pipelines often trail
simple heuristics such as Common Neighbors or Adamic–Adar. We introduce
DuoLink, a line-graph formulation that casts link prediction as node classification
on L(G), where each edge-node is initialized with proximity indices and optional
attribute similarity, turning heuristics into trainable features. This removes the
encoder–decoder bottleneck, aligns message passing with edge neighborhoods,
and comes with theory: we prove a 1-WL expressivity separation and an iteration-
gap family showing that constant-depth models on L(G) can detect edge motifs
that bounded-depth decoders on G cannot. Empirically, DuoLink achieves state-
of-the-art performance on both homophilic and heterophilic benchmarks, with
near-perfect Hits@100 on homophilic graphs and large AUC gains in heterophilic
settings, consistently surpassing strong LP-GNN baselines and heuristics. By
treating edges as first-class nodes, DuoLink closes—and often reverses—the long-
standing gap between classical heuristics and GNNs, pointing toward unified graph
models across node, edge, and graph tasks.

1 INTRODUCTION

Link prediction is central to numerous applications across science and industry, from friend rec-
ommendations in social networks and protein–protein interaction discovery in biology to product
suggestions in recommender systems and knowledge graph completion (Liben-Nowell & Kleinberg,
2007; Guo et al., 2020). Graph Neural Networks (GNNs) are now a leading tool for learning on
graphs (Kipf & Welling, 2017; Hamilton et al., 2017b), yet their performance on link prediction
remains surprisingly limited. Recent benchmarks show that classical heuristics such as Common
Neighbors, Adamic–Adar, Katz, and matrix factorization often outperform state-of-the-art GNN
pipelines (Tola et al., 2025).

Why do GNNs that excel at node-level tasks struggle with edge-level inference? We highlight two
causes. First, standard pipelines learn node embeddings and then apply a separate decoder (for
example Hadamard or an MLP), creating a mismatch between representation learning and the edge
prediction objective (Zhang & Chen, 2018; Wang et al., 2022b). Second, simple and interpretable
heuristics capture essential edge-centric structure that GNN decoders frequently miss (Li et al., 2023).

These issues are amplified on heterophilic graphs, where edges often connect dissimilar nodes. While
heterophily has been widely studied for node classification (Pei et al., 2020; Zhu et al., 2020), its
impact on link prediction is less explored. Similarity-based decoders implicitly assume homophily,
which leads to systematic errors on heterophilic links. Recent studies (Zhu et al., 2024; Di Francesco
et al., 2024) emphasize that structural rather than feature-based signals are critical in such settings,
yet broadly effective solutions remain elusive.

We address these gaps by reformulating link prediction as node classification on the line graph. Each
candidate edge becomes a node with attributes derived from its local subgraph context and proximity
indices. This enables end-to-end training with a single GNN or transformer on L(G), aligning
the model’s inductive bias with the edge-level objective. Concretely, our approach (i) removes the
disconnect between node embeddings and edge scoring, (ii) integrates classical heuristics as trainable
inputs rather than external baselines, and (iii) applies across both homophilic and heterophilic graphs.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Beyond immediate accuracy gains, this formulation also supports the development of graph foun-
dational models that share architectures and parameters across node, edge, and graph tasks without
task-specific redesign (Mao et al., 2024; Liu et al., 2025). By aligning link prediction with message
passing on L(G), we enable practical weight sharing and consistent inductive biases across tasks.

Our contributions:

• We cast link prediction as node classification on the line graph, addressing core limitations of
decoder-based pipelines on G.

• We introduce DuoLink, a framework where GNNs and graph transformers operate on edge repre-
sentations initialized with classical proximity indices and optional attribute similarity, harmonizing
parametric learning with structural signals.

• We provide theoretical support showing a 1-WL expressivity separation and an iteration-gap
family where constant-depth models on L(G) detect key edge motifs that bounded-depth endpoint
decoders on G cannot.

• Experiments on homophilic and heterophilic benchmarks show that DuoLink consistently outper-
forms heuristics and strong GNN baselines, often by large margins.

By treating link prediction as a native node-classification problem on line graphs and by learning
over heuristic signals end to end, DuoLink narrows the gap between modern GNNs and classical
methods and points toward unified, scalable, and heterophily-aware graph representation learning.

2 BACKGROUND

2.1 RELATED WORK

GNNs and link prediction. Graph Neural Networks (GNNs) are the standard paradigm for
link prediction, where node embeddings are produced by message passing and link probabilities
are estimated through simple decoders such as dot product, MLP, or distance functions (Kipf &
Welling, 2016; Hamilton et al., 2017a; Guo et al., 2023). Beyond generic encoders, a rich set of
link-prediction–specialized GNNs has emerged: subgraph-based models (SEAL, BUDDY (Zhang
et al., 2021; Chamberlain et al., 2023)), path- and flow-based methods (Neo-GNN, NBFNet (Yun
et al., 2021; Zhu et al., 2021)), count-based decoders (NCN, NCNC (Wang et al., 2023)), positional
or equivariant architectures (PEG (Wang et al., 2022a)), and mixture models (Link-MoE (Ma et al.,
2024)). These approaches cover a wide algorithmic spectrum, yet most continue to follow the
encoder–decoder design, which can limit their ability to capture edge motifs and higher-order
interactions central to link formation.

Heterophily and link prediction. Heterophilic graphs, where edges frequently connect dissimilar
nodes, have been a focal point in node classification (Pei et al., 2020; Zhu et al., 2020; Luan et al.,
2022; Platonov et al., 2023a), but remain relatively underexplored in link prediction. Classical LP
methods, both heuristic and GNN-based, are grounded in homophilic priors with similarity decoders
(e.g., dot product, cosine), which fail when informative links span dissimilar features (Li et al., 2023).
Attention and generative models such as GAT (Veličković et al., 2018), VGAE (Kipf et al., 2016),
and GIC (Mavromatis & Karypis, 2021) extend node embedding strategies, but remain constrained by
similarity scoring. Recent heterophily-aware models propose alternative mechanisms: LINKX (Lim
et al., 2021) decouples features from topology, DisenLink (Zhou et al., 2022) disentangles latent
factors, CFLP (Zhao et al., 2022) employs counterfactual perturbations, LLP (Guo et al., 2023)
propagates labels directly, and CMP (Wang et al., 2025) incorporates causal message passing.
Despite these advances, general-purpose frameworks and systematic benchmarks for heterophilic
link prediction remain limited.

Line-Graph and Edge-Centric GNNs. Several works recast link prediction on the line graph:
LGNN (Cai et al., 2021) removes subgraph pooling, LGCL (Zhang et al., 2023) adds contrastive
losses, and LineDi2vec (Xing & Makrehchi, 2024) extends node2vec to edges. Edge-centric GNNs
instead update edges directly (e.g., EGNN (Gong & Cheng, 2019), EdgeNets (Isufi et al., 2021)).

DuoLink is distinct in three ways. (i) Feature integration: edge-nodes in L(G) are initialized with
classical proximity indices and attribute similarity, making heuristics trainable rather than external.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(ii) Objective alignment: DuoLink removes the endpoint–decoder stage, using a simple supervised
classifier on L(G) to align message passing with edge neighborhoods. (iii) Theory: we provide
WL-based guarantees showing that constant-depth models on L(G) capture edge motifs that bounded-
depth endpoint decoders on G cannot.

This combination of heuristic integration, edge-native supervision, and task-specific theory is not
present in prior line-graph or edge-centric approaches, and underpins DuoLink’s consistent gains on
both homophilic and heterophilic benchmarks. A detailed comparison is given in Appendix B.2.

2.2 PAIRWISE PROXIMITY FEATURES

Before GNNs emerged, link prediction relied on proximity-based heuristics and manual feature
engineering (Kumar et al., 2020; Menon & Elkan, 2011), and recent benchmarks reveal that these
simple methods still rival state-of-the-art GNNs (Li et al., 2023; Tola et al., 2025). They all hinge on
homophily which is the idea that structurally or semantically similar nodes are more likely to connect
and fall into two categories:

i. Local Proximity Indices. Exploit 1– or 2–hop neighborhoods. Let G = (V,E), N (u) the
neighbors of u, and ku = |N (u)|. Common scores S(u, v) include:

CN (u, v) = |N (u) ∩N (v)|,(Common Neighbors) J (u, v) =
|N (u) ∩N (v)|
|N (u) ∪N (v)|

,(Jaccard)

Scos(u, v) =
|N (u) ∩N (v)|√

kukv
,(Salton/Cosine) SS(u, v) =

2 |N (u) ∩N (v)|
ku + kv

,(Sørensen)

AA(u, v) =
∑

w∈N (u)∩N (v)

1

log kw
,(Adamic–Adar)

ii. Quasi-Local and Global Indices. Extend local scores to 3–hop or all-walk measures, incorpo-
rate spectral information, e.g. the Local Path index (Lü et al., 2009; Aziz et al., 2020), SimRank (Jeh
& Widom, 2002), and the Katz index (Katz, 1953).

iii. Attribute Similarity Indices. Beyond structural proximity, recent models add attribute
similarity (e.g., cosine of node attributes) to form richer pairwise features. Fed into a lightweight
classifier, these simple features still rival state-of-the-art models (Tola et al., 2025).

However, while these pairwise similarity features remain effective across many benchmarks, they (i)
assume homophily, (ii) overlook higher-order structural motifs unless explicitly engineered, and (iii)
lack end-to-end trainability. This motivates our line-graph model DuoLink, which integrates heuristic
features and learned representations within a unified, differentiable framework.

3 DUOLINK: METHODOLOGY

In this section, we introduce DuoLink, a dual formulation of link prediction as node classification
on the line graph, enabling effective integration of classical edge heuristics. Link prediction is
traditionally posed as learning a decoder ϕ(hu, hv) over node embeddings hu, hv obtained by
message passing on G. This node-centric view infers edges post hoc and often misses rich edge-level
structure (e.g. triangles, wedges). We instead reformulate link prediction as node classification on
the line graph L(G), where each original edge becomes a node and adjacent edges in G become
neighbors in L(G) (See Figure 1). This transformation (i) enables message passing directly over
edge neighborhoods, naturally capturing local motifs, and (ii) allows classical heuristics (Common
Neighbors, Adamic–Adar, etc.) to be used as initial features.

In what follows, we formalize the transductive link-prediction problem and define L(G), describe
feature construction, present our GNN/transformer backbones, specify the prediction head and
loss (Sec. 3.1), and summarize our theoretical results on expressivity and inductive bias alignment
(Sec. 3.2). Throughout the paper, we focus on the common transductive link-prediction setting
(Appendix B.5), predicting edges among a fixed node set, though our line-graph GNN naturally
extends to inductive and semi-inductive scenarios (See Appendix B.7).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Line Graphs. Left: Graph G with four edges
distinguished by color. Right: Line graph L(G), where each
edge in G becomes a node colored identically.

Problem Setup and Notation. Let G = (V,E)
be an undirected graph with |V | = n, |E| = m, ad-
jacency matrix A ∈ {0, 1}n×n, and optional node
features X ∈ Rn×d. In the standard transductive link-
prediction setting, a GNN learns node embeddings
H = GNN(A,X), Hu ∈ Rh, and a decoder
ϕ : Rh × Rh → [0, 1] scores each pair (u, v). This
node-centric pipeline infers edges post hoc and may miss important edge-level structure (e.g. triangles,
wedges).

To align model bias with edge reasoning, we instead build the line graph L(G) = (VL, EL):
VL = E, EL =

{
{e, e′} : e ̸= e′, e ∩ e′ ̸= ∅

}
. Each original edge e = (u, v) ∈ E becomes

a node in VL, and two nodes in VL are adjacent if their edges in G share an endpoint (Bondy & Murty,
2008). We denote its adjacency by AL ∈ {0, 1}m×m (cf. Appendix B.1).

In this reformulation, link prediction becomes node classification on L(G): learn fL : VL → [0, 1]
with fL(e) high when e ∈ E. Each e = (u, v) is initialized as ze =

[
hstruct(u, v) ∥ hattr(u, v)

]
,

combining proximity indices and (if available) attribute similarity. A GNN or GT on (AL, Z) then
yields embeddings H(L) for classification.

Line-Graph Transformation. Given an undirected graph G = (V,E) with |V | = n and |E| = m,
we construct its line graph L(G) = (VL, EL) by treating each original edge e = (u, v) ∈ E as a
node in VL. Two nodes e = (u, v) and e′ = (u′, v′) in VL are connected by an edge in EL if and only
if they share a common endpoint in G: VL = E, EL =

{
{e, e′} : e ̸= e′, e ∩ e′ ̸= ∅

}
.

Equivalently, if B ∈ {0, 1}n×m is the incidence matrix of G, then the adjacency of L(G) is
AL = B⊤B − 2Im, (AL)ij = 1 ⇐⇒ ei, ej share an endpoint.

The details are given in Appendix B.1. This transformation increases the node count from n to
m, and the edge count to

∑
v∈V

(
deg(v)

2

)
, which is O

(∑
v deg(v)

2
)
. In practice, for sparse graphs

(
∑

v deg(v) = 2m), one can build L(G) in O(mdmax) time and space, where dmax is the maximum
degree in G (See Appendix B.3 for further details.).

Figure 2: A graph where u has degree 4 and v has
degree 3, sharing neighbor w. L(G) is the 1-skeleton
of the simplicial complex L̂(G): a tetrahedron ∆u on
{uv , uw , ux , uy} shaded light yellow, a triangle ∆v

on {uv , vw , vz} shaded light green, and the extra edge
between uw and vw .

Geometric View of L(G). An intuitive way to see why
the line-graph reformulation improves link prediction is
via its simplicial-complex interpretation. Notice that for
any vertex u ∈ V of degree k, we induce a complete
(k − 1)-graph in L(G) where its vertices correspond to
edges adjacent to u. In particular, for each vertex u ∈ V of
degree k, attach a (k− 1)-simplex ∆u in L(G) whose ver-
tices correspond to the 1-hop neighbors of u (Fig. 2). The
line graph L(G) is exactly the 1-skeleton of this simplicial
complex L̂(G): In this view, for every node u ∈ V of
degree k, there exists a (k − 1)-simplex ∆u ⊂ L̂(G),
and the node ê ∈ VL corresponding to original edge
e = (u, v) becomes the unique vertex in the intersection
∆u∩∆v . Furthermore, if u and v have common neighbors
{w1, . . . , wr} in G, then any adjacent node wi ∈ V will induce an edge ŵi in L̂(G) between ∆u and
∆v, connecting the nodes (̂u,wi) ∈ ∆u and (̂v, wi) ∈ ∆v (See Figure 2). Addition of any new (or
negative) edge e′ = (u′, v′) in G will result in the addition of a new node ê′ in VL such that ê′ will
connect to simplices ∆u′ and ∆v′ in L̂(G) becoming the unique vertex in ∆̃u′ ∩ ∆̃v′ = ê′.

In particular, edges with many shared neighbors or connecting substructures in G induce nodes in
L(G) with large, richly-labeled neighborhoods. In other words, if u and v have r common neighbors,
the node ê = (u, v) in L(G) links to r other “edge-nodes,” each representing a triangle u–wi–v. This
dense local neighborhood provides the GNN with direct, edge-centric evidence, rather than requiring
it to infer triangles indirectly from two separate node embeddings, making it significantly easier to
distinguish real links from non-links.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: DuoLink Flowchart. Given a graph G with positive (blue) and negative (red) edges, we first compute edge embeddings (proximity
indices) for each potential link. These indices become node features on the line graph L(G), where each original edge is treated as a node and
adjacency reflects shared endpoints. A GNN or graph transformer is then applied on L(G) to perform binary classification on these nodes,
yielding link predictions ŷi ∈ {0, 1}.

By operating on L(G), we enable any GNN architecture to perform message passing directly over
edge neighborhoods, aligning the inductive bias with link-prediction objectives.

Integration of Proximity Indices. Each node e = (u, v) ∈ VL of the line graph is initialized with
a feature vector ze that fuses structural and (optional) attribute proximity scores:

ze =
[
hstruct(u, v) ∥hattr(u, v)

]
∈ Rp+q.

The definitions of the proximity indices hstruct(u, v) are provided in Sec. 2.2. The vector
hattr(u, v) ∈ Rq encodes similarity of node attributes (e.g. cosine or Manhattan distance on Xu, Xv).
Further details on both the indices and the attribute similarities used in the model given in Ap-
pendix B.8.

To project ze into the GNN’s hidden dimension h, we apply a learnable linear layer:

H(0)
e = ϕ

(
ze
)
= σ

(
zeW

(0) + b(0)
)

∈ Rh,

where W (0) ∈ R(p+q)×h, b(0) ∈ Rh, and σ is a nonlinearity (e.g. ReLU). These enriched features let
the GNN leverage both heuristics and attributes in an end-to-end fashion.

3.1 GNN BACKBONE ON THE LINE GRAPH

With edge-node features H(0) ∈ Rm×h on L(G), we apply a generic backbone F – either a message-
passing GNN or a graph transformer – to learn refined edge embeddings:

H(ℓ+1) = F (ℓ)
(
H(ℓ), AL

)
, ℓ = 0, . . . , L− 1,

where AL is the adjacency of L(G).

Message-Passing GNNs. A typical choice is a propagation rule of the form H(ℓ+1) =

σ
(
D̃

−1/2
L ÃLH

(ℓ)W (ℓ)
)
, where ÃL = AL + I, D̃L = diag(ÃL1), which covers GCN, GIN,

GAT (with attention weights replacing ÃL), and related variants.

Graph Transformers. Alternatively, one can use an attention-based transformer layer adapted to
graphs:

H ′ = MultiHeadAttn
(
Q = H(ℓ),K = H(ℓ), V = H(ℓ);AL

)
,

H(ℓ+1) = MLP
(
LayerNorm(H(ℓ) +H ′)

)
,

where attention scores are masked by AL or learned from it (e.g. Graphormer, SAN).

We defer architectural specifics and hyperparameters to Sec. 4, where we instantiate F with several
GNN and transformer models and demonstrate consistent performance gains from our line-graph
reformulation.

Prediction Head and Loss. After L layers of the backbone F , we attach a lightweight prediction
head g : Rh → [0, 1], e.g. a single linear layer with sigmoid: ŷe = σ

(
HL)

To train, we sample a set of negative edges E− uniformly from non-edges of G, and form the positive
set E+ = E. The objective L = −

∑
e∈E+ log ŷe −

∑
e∈E− log

(
1 − ŷe

)
+ λ∥W∥22, (binary

cross-entropy) where W collects all trainable weights and λ is a weight-decay coefficient. At test
time, we score candidate edges by ŷe and rank accordingly.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 EXPRESSIVITY AND INDUCTIVE BIAS ALIGNMENT

We formalize why operating on the line graph L(G) aligns message passing with edge prediction and
can separate edge patterns with strictly smaller depth than endpoint decoders on G.

Setup and model classes. Graphs are simple, finite, undirected, and connected. Unless stated, nodes
have no distinguishing initial features (uniform initial color). A t-layer 1-WL equivalent MPNN
on G produces node embeddings H = {hu}u∈V . An endpoint decoder then scores an edge (u, v)
via a continuous function ψ(hu, hv) (for example inner product, bilinear form, or an MLP on the
concatenation). This hypothesis class is denoted by Et.

On the line graphL(G), each edge e = (u, v) ∈ E becomes a node êwith initial features zê computed
from a constant-radius neighborhood of (u, v) in G (e.g., Common Neighbors, Adamic–Adar, Local
Path up to K, attribute similarity). A t-layer 1-WL–equivalent MPNN on L(G) consumes zê and is
followed by a 1-layer classifier; this class is denoted Lt.

Two candidate edges e1, e2 are indistinguishable by Et if every model in Et assigns them the same
score. Indistinguishability for Lt is defined analogously.

Inductive-bias. (Edge-neighborhood aggregation on L(G)) Message passing on L(G) aggregates,
in one round, information from edges adjacent to e = (u, v), hence from the two 1-hop star
neighborhoods around u and v viewed at the edge level. Endpoint decoders on G can only combine
the separately aggregated node embeddings hu and hv .
Theorem 3.1 (Expressivity separation for edge motifs). For every t ≥ 1 there exists a graph Gt and
two edges e+, e− ∈ E(Gt) such that

1. e+ participates in a triangle and e− does not;

2. after t rounds of the 1–WL color refinement onGt, the endpoint colors satisfy ct(u) = ct(u
′)

and ct(v) = ct(v
′) where e+ = (u, v) and e− = (u′, v′); hence every endpoint–decoder in

Et assigns the same score to e+ and e−;

3. there exists t0 ∈ 1, 2 and a model in Lt0 on L(Gt) that separates ê+ and ê−.

Next, we prove the existence of iteration-gap family of graphs.
Theorem 3.2 (Iteration-gap family). There exists a family {Gk}k≥1 and edges ek, e′k ∈ E(Gk) such
that (i) a model in L2 separates êk and ê′k for all k; (ii) every model in Ek assigns the same score
to ek and e′k.

DuoLink initializes edge-nodes with proximity indices, which can be consumed end to end on L(G).
Proposition 3.3 (Realizing proximity-index rules on L(G)). Let hstruct(u, v) ∈ Rp be any fixed
collection of proximity indices computed from a bounded-radius neighborhood of (u, v), for example
common neighbors, Adamic–Adar, Local Path up to length K, or truncated Katz. Initialize each
edge-node ê in L(G) with zê = [hstruct(u, v) ∥ hattr(u, v)]. For any Boolean threshold rule f on
these indices there exists a model in L1 with classifier ρ that realizes f(hstruct(u, v), hattr(u, v)).

Scope and implications. Theorems 3.1 and 3.2 do not assert that endpoint decoders can never
detect motifs; rather, they show that for any fixed WL depth there exist graphs where running a
shallow model on L(G) separates edge patterns that bounded-depth endpoint decoders on G cannot.
This formalizes the benefit of our reformulation: on L(G), edge motifs become first-class and are
captured at constant depth.

Link to DuoLink. Proposition 3.3 explains why DuoLink’s initialization matters: seeding edge-
nodes with bounded-radius proximity indices supplies motif evidence that a 1-layer model on L(G)
can already realize, and further layers can refine. Together, Theorems 3.1/3.2 justify the line-
graph component (constant-depth advantage), while Proposition 3.3 justifies the feature-integration
component (turning heuristics into trainable signals). This theory-to-design mapping aligns with
our ablations: +ProxI helps, but the largest gains come from the L(G) reformulation that removes
the endpoint–decoder bottleneck, especially on heterophilic graphs where edge-centric structure
dominates.

Complete proofs and explicit constructions are in Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We benchmark all methods on ten well-studied graphs that capture

Table 1: Homophilic and heterophilic benchmarks.

Dataset Nodes Edges Features Classes Edge hom.
CORA 2,708 5,278 1,433 7 0.81
CITESEER 3,327 4,552 3,703 6 0.74
PUBMED 19,717 44,324 500 3 0.80

TEXAS 183 309 1,703 5 0.11
WISCONSIN 251 499 1,703 5 0.20
CORNELL 183 280 1,703 5 0.30
ACTOR 7,600 26,752 932 5 0.22
ROMAN-EMPIRE 22,662 32,927 300 18 0.05

* Feature similarity ratio is given as there is no node classes (Zhu et al., 2024).

both homophilic and heterophilic connec-
tivity patterns. The homophilic collection
includes three widely used citation net-
works, CORA, CITESEER, PUBMED (Yang
et al., 2016). The heterophilic collection
comprises three university-webpage net-
works, TEXAS, WISCONSIN, CORNELL,
an actor co-occurrence graph ACTOR (Pei
et al., 2020; Shchur et al., 2018), and
the ROMAN-EMPIRE word-dependency
graph (Platonov et al., 2023b). This diverse
set of datasets enables a thorough evaluation of link-prediction performance across graphs with
markedly different structural and feature–label alignment properties. The details are given in Table 1.

Setup. Following the experimental settings in (Kipf et al., 2016; Pan et al., 2022), we split the links
in three parts: 85% training, 5% validation and 10% testing (except OGB datasets). We sample the
same number of nonexisting (negative) links. For more details, see Appendix B.6.

Hyperparameters. For all experiments, we fixed the number of training epochs to 1000 and used
a dropout rate of 0.1. For smaller datasets such as TEXAS, WISCONSIN, and CORNELL, we set the
hidden dimension to 32 and used a learning rate of 0.01. Batch normalization was applied in these
cases, and we tuned the number of GNN layers in the range {2, 4, 5} to assess depth sensitivity.

For the remaining (larger or more complex) datasets, we selected the hidden dimension from {64,
128}, used a learning rate of 0.001, and fixed the number of GNN layers to 5. In these settings, batch
normalization was not applied.

Computational Complexity and Runtime. The DuoLink framework reformulates link prediction
as node classification on the line graph L(G), introducing only modest overhead compared to
node-centric methods. Constructing L(G) from an input graph G = (V,E) with |V | = n and
|E| = m takes O(m, dmax) time and space, where dmax = maxv∈V deg(v), efficient for sparse
graphs. In L(G), the number of nodes is m and the number of edges is

∑
v∈V

(
deg(v)

2

)
, bounded by

O(m, dmax). Each GNN layer on L(G) thus incursO(|EL|) cost, matching per-layer complexity of a
standard GNN on G when |EL| = O(m, dmax). Computing classical edge heuristics (e.g., Common
Neighbors, Adamic–Adar) for initialization likewise requires O(m, dmax) time. Hence, for sparse
real-world networks where m ≫ n but dmax stays small, DuoLink preserves linear scaling in the
size of the original graph while enabling richer edge-centric learning.

We ran encoding extraction experiments on a single machine with 12th Generation Intel Core i7-
1270P vPro Processor (E-cores up to 3.50 GHz, P-cores up to 4.80 GHz), and 32GB of RAM
(LPDDR5-6400MHz). It took 2 minutes and 40 seconds to retrieve the encodings for PUBMED
dataset. The classification experiment were conducted on a virtual HPC node equipped with an
NVIDIA H100 NVL GPU (94 GB, PCIe), two AMD EPYC 9334 CPUs (2.7 GHz, 32 cores each),
and 768 GB of RAM. Under this configuration, vanilla SAGE completed training in 3 minutes and
52 seconds, while DL-SAGE required 13 minutes and 31 seconds for PUBMED dataset. The code is
available at https://anonymous.4open.science/r/DuoLink-061D.

4.2 RESULTS

DuoLink Improvements. Table 2 shows DuoLink delivers consistent, large gains over vanilla
GNN and transformer backbones (GCN (Kipf & Welling, 2016),GIN (Xu et al., 2019),GSAGE (Hamil-
ton et al., 2017a), DeepGCN (Li et al., 2020),GatedGraph (Li et al., 2016),SGFormer (Ren et al.,
2023) and Polynormer (Deng et al., 2024)) in both homophilic (Hits@100) and heterophilic (AUC)
settings. Standalone performance of heuristic features (ProxI) is already strong, but DuoLink not only
recovers those signals but exceeds them, often with double-digit average improvements, especially
on heterophilic benchmarks. A key reason is the conversion of link prediction into node classification

7

https://anonymous.4open.science/r/DuoLink-061D

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: DuoLink Improvements. Comparison of vanilla models, their proximity-index fused variants
(ProxI), and line-graph reformulation (DuoLink) on homophilic (Hits@100) and heterophilic (AUC) benchmarks.
Rightmost columns show average gains of ProxI and DuoLink over vanilla.

CORA CITESEER PUBMED ACTOR CORNELL TEXAS WISCONSIN ROMAN
0.81 0.74 0.80 Ave. 0.22 0.30 0.11 0.20 0.05 Ave.

Method Hits@100 Hits@100 Hits@100 Imp. AUC AUC AUC AUC AUC Imp.

ProxI+MLP 93.11±0.77 95.39±0.37 75.53±0.42 – 87.38±0.23 77.40±7.55 85.26±1.93 82.28±2.94 88.92±1.11 –

GCN 66.27±1.49 58.53±3.03 51.08±0.84 – 84.78±0.27 73.50±3.84 78.48±4.17 79.44±2.42 81.28±0.57 –
GCN+ProxI 84.54±1.55 87.81±1.17 73.34±1.78 23.27 88.04±0.50 80.05±3.90 86.57±1.83 86.57±1.83 86.21±2.01 9.98
DL-GCN 80.64±2.85 72.74±2.37 51.69±3.19 9.73 89.19±0.79 72.24±12.04 80.51±3.52 86.77±4.71 85.87±5.49 5.70
GIN 49.20±4.93 41.73±2.29 39.14±1.80 – 82.10±0.67 73.37±4.66 79.05±5.27 76.48±2.80 74.40±0.81 –
GIN+ProxI 85.13±1.11 86.1±2.20 73.82±4.23 38.33 87.67±0.72 81.13±3.28 86.44±2.33 86.17±2.14 90.83±1.34 15.61
DL-GIN 79.67±3.85 75.16±3.63 57.53±1.82 27.43 90.98±0.35 75.13±5.20 85.72±3.86 83.72±2.97 94.03±1.16 14.73
SAGE 60.06±3.24 60.00±4.07 56.25±2.23 – 83.34±0.66 69.66±6.03 73.03±5.19 69.69±2.78 80.30±0.95 –
SAGE+ProxI 71.40±3.41 59.00±4.49 65.60±2.69 6.56 87.55±0.43 72.70±6.00 76.91±4.77 79.60±1.79 89.99±1.08 10.24
DL-SAGE 98.11±0.73 97.09±0.70 96.68±0.53 38.52 98.52±0.23 79.09±1.63 85.80±4.97 88.74±2.17 98.36±0.45 24.83
DeepGCN 49.18±6.03 54.54±6.13 53.10±2.68 – 83.23±0.78 70.00±4.50 74.25±4.99 71.48±2.71 80.13±0.56 –
DeepGCN+ProxI 72.58±3.16 75.99±2.87 69.43±1.19 20.39 87.72±0.38 75.83±4.63 76.64±5.42 79.86±2.45 90.59±0.70 10.52
DL-DeepGCN 96.81±0.37 92.46±1.30 92.04±1.26 41.49 97.73±0.24 79.19±5.58 88.14±2.67 90.74±2.18 97.09±0.75 24.60
GatedGraph 27.08±3.19 33.03±4.61 45.70±3.75 – 82.49±1.21 69.68±4.72 71.91±5.32 71.87±4.11 76.89±2.66 –
GatedGraph+ProxI 77.40±2.30 66.36±7.07 72.91±2.02 36.95 87.57±0.97 74.30±5.14 78.05±4.78 80.75±2.73 89.65±1.48 12.49
DL-GatedGraph 97.25±0.90 95.90±1.94 92.21±2.40 59.85 97.74±0.61 76.38±5.54 85.18±5.35 88.44±3.09 98.52±0.38 24.47
SGFormer 39.66±7.85 44.12±7.13 51.86±3.55 – 82.90±1.17 67.63±5.01 74.10±4.77 71.22±3.08 76.23±1.66 –
SGFormer+ProxI 73.08±3.36 69.79±2.49 67.99±3.07 25.07 86.92±0.93 72.35±6.33 77.35±5.05 80.20±1.77 89.54±0.91 11.43
DL-SGFormer 97.61±0.55 94.16±1.84 94.04±1.23 50.06 97.52±0.77 74.07±2.54 84.90±3.29 86.58±2.29 97.51±0.62 22.83
Polynormer 42.58±6.40 51.93±6.96 59.94±2.84 – 81.73±0.19 70.38±4.76 73.45±4.66 72.25±3.51 80.89±0.73 –
Polynormer+ProxI 75.44±3.04 84.87±4.02 67.06±1.81 24.31 87.41±0.31 71.85±5.64 80.76±5.27 82.05±1.37 89.74±0.51 11.04
DL-Polynormer 98.42±0.51 97.70±0.87 94.29±0.69 45.32 98.60±0.22 81.19±7.34 85.67±6.55 88.48±3.11 99.49±0.16 24.91

on the line graph, where GNNs are naturally powerful; this reframing lets message passing operate
directly over edge neighborhoods and exposes structural motifs that decoder-based pipelines miss.

DuoLink’s strength lies in embedding classical heuristics as trainable edge-node features and refining
them through end-to-end learning. By reframing link prediction as node classification, it aligns the
model’s inductive bias with edge-level inference, combining the interpretability of ProxI with the
flexibility of deep learning. This fusion is especially effective in heterophilic settings, where structural
cues outweigh similarity.

DuoLink vs. SOTA on Homophilic Benchmarks. For the homophilic setting, we compare
DuoLInk with three families of approaches: embedding methods (Node2vec (Grover & Leskovec,
2016), Matrix Factorization (Menon & Elkan, 2011), MLP), standard GNNs (GCN (Kipf & Welling,
2016), GAT (Veličković et al., 2018), GSAGE (Hamilton et al., 2017a), GAE Kipf et al. (2016)),
and specialized link-prediction GNNs (SEAL (Zhang et al., 2021), Neo-GNN (Yun et al., 2021),
NBFNet (Zhu et al., 2021), PEG (Wang et al., 2022a), BUDDY (Chamberlain et al., 2023),
NCN/NCNC (Wang et al., 2023), Link-MoE (Ma et al., 2024)).

Table 3: Homophilic benchmarks. Link prediction
results (Hits@100). The top three models are highlighted:
First, Second, and Third.

Models CORA CITESEER PUBMED

Node2Vec 84.88±0.96 89.89±1.48 63.07±0.34

MF 66.39±5.03 59.47±2.69 53.75±2.06

MLP 85.52±1.44 91.25±1.90 84.19±1.33

GCN 91.29±1.25 91.74±1.24 87.41±0.65

GAT 90.70±1.03 91.69±1.21 80.95±0.72

SAGE 91.00±1.52 96.50±0.53 90.02±0.70

GAE 92.75±0.95 95.17±0.50 84.30±0.31

SEAL 84.76±1.16 85.60±2.71 76.06±4.12

BUDDY 91.42±1.26 95.40±0.63 83.21±0.59

Neo-GNN 87.76±1.37 89.10±0.97 86.12±1.18

NBFNet 88.63±0.46 86.68±0.42 79.18±0.71

PEG 91.42±0.80 94.82±0.81 76.45±3.83

NCN 95.56±0.79 96.17±1.06 90.43±0.64

NCNC 95.62±0.84 97.54±0.59 91.93±0.60

Link-MoE 96.26±0.09 96.44±0.14 90.38±0.24

DL-SAGE 98.11±0.73 97.09±0.70 96.68±0.53
DL-Polynormer 98.42±0.51 97.70±0.87 94.29±0.69

Table 3 shows that DuoLink establishes a new
state of the art on homophilic link predic-
tion benchmarks. Both DL-SAGE and DL-
Polynormer achieve near-perfect Hits@100 on
Cora, Citeseer, and Pubmed, clearly outper-
forming all prior methods, including the most
competitive LP-GNNs such as SEAL, BUDDY,
Neo-GNN, NCN/NCNC, NBFNet, PEG, and
Link-MoE. As highlighted in Table 2, these
gains stem from the line-graph reformulation
itself, rather than from heuristic augmentation,
since it elevates edge motifs to first-class learn-
ing targets and incorporates proximity indices
as trainable signals. This design removes the
endpoint–decoder bottleneck of conventional
pipelines and equips the model with direct
structural evidence for true links. Even against
the strongest recent baselines, DuoLink con-
sistently delivers higher accuracy with lower
variance, underscoring its robustness. These

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

findings confirm that aligning message passing with edge neighborhoods not only bridges the long-
standing gap with heuristics but also secures a decisive advantage for homophilic link prediction.

DuoLink vs. SOTA on Heterophilic Benchmarks. In the heterophilic setting, we compare
DuoLink against attention and generative baselines (GAT (Veličković et al., 2018), VGAE (Kipf
et al., 2016), GIC (Mavromatis & Karypis, 2021)) and heterophily-aware models (LINKX (Lim et al.,
2021), DisenLink (Zhou et al., 2022), CFLP (Zhao et al., 2022), LLP (Guo et al., 2023), CMP (Wang
et al., 2025)).

Table 4: Heterophilic Benchmarks. Link prediction results
(AUC%). The top three models are highlighted: First, Second, and
Third.

Model ACTOR CORNELL TEXAS WISCONSIN ROMAN

GAT 67.80±1.12 61.13±3.23 65.73±5.06 68.10±4.40 83.34±0.34

VGAE 70.82±0.81 58.18±9.47 66.75±10.09 71.30±4.60 73.27±0.83

GIC 70.29±0.29 58.01±3.41 66.19±7.32 75.24±8.45 56.80±3.83

LINKX 72.13±1.04 59.43±4.17 71.92±3.82 80.10±3.80 69.23±0.95

DisenLink 59.19±0.48 60.71±5.10 77.88±4.03 84.40±1.90 67.66±0.84

CFLP 80.41±0.32 73.14±5.42 66.02±3.84 79.14±4.89 OOM
LLP 80.37±1.07 68.20±7.96 71.88±3.95 67.43±0.40 82.63±3.48

CMP 86.81±0.55 73.59±5.38 79.26±5.38 NA NA

DL-SAGE 98.52±0.23 79.09±1.63 85.80±4.97 88.74±2.17 98.36±0.45

DL-Polynormer 98.60±0.22 81.19±7.34 85.67±6.55 88.48±3.11 99.49±0.16

* NA means code is not available, OOM means Out of Memory.

On heterophilic benchmarks,
DuoLink variants (DL-SAGE, DL-
Polynormer) far outperform both
standard baselines (GAT, VGAE,
GIC) and specialized heterophily-
aware methods (LINKX, DisenLink,
CFLP, LLP), often by very large
margins in AUC. This gap high-
lights that conventional similarity
or feature-decoupling assumptions
break down in heterophilic settings,
whereas DuoLink’s line-graph
reformulation gives GNNs direct
access to edge-centric structural
context, letting proximity heuristics be refined through message passing over richly connected
neighborhoods. By casting link prediction as node classification on the line graph and initializing
edge nodes with classical proximity indices, DuoLink aligns inductive bias with the true inference
granularity. That alignment is especially powerful in heterophilic settings, where edge formation
depends on higher-order connectivity patterns rather than feature similarity, making the fusion of
heuristics and learned representations critical for reliable prediction.

t-SNE Visualizations. We provide t-SNE visualizations in Appendix B.9 to compare test-set edge
representations from raw heuristics, standard GNNs, and DuoLink. As shown in Figures 4a to 4d,
DuoLink achieves much clearer separation of positive and negative edges, demonstrating the benefit
of edge-centric learning on the line graph.

Limitations. While our approach shows strong performance and broad applicability, it introduces
some additional preprocessing due to line graph construction, which may impact scalability on very
large or dense graphs. However, this overhead is manageable in all evaluated settings, and efficient
construction strategies can further mitigate it. Our current experiments focus on static graphs, but the
framework is general and can be extended to dynamic or temporal graphs in future work. Although
we incorporate classical heuristics to enhance performance, the model remains flexible and effective
even when such features are absent or limited.

5 CONCLUSION

We introduced DuoLink, a line-graph formulation that casts link prediction as node classification on
L(G) and treats classical proximity indices and attribute similarity as trainable edge-node inputs.
This closes the encoder–decoder gap, comes with WL-based guarantees (expressivity separation
and an iteration-gap family), and yields consistent gains on homophilic and heterophilic bench-
marks. Beyond showing improvements beyond heuristics alone, DuoLink clearly departs from prior
line-graph methods by integrating heuristics inside the model and aligning message passing with
edge neighborhoods under a task-specific theory. Looking ahead, we aim to extend DuoLink to dy-
namic/temporal and heterogeneous graphs (via typed line graphs), integrate it into graph foundational
models with self-supervised objectives on L(G), and tighten motif-level theory while scaling with
sparse, memory-aware implementations for large real-world graphs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Furqan Aziz, Haji Gul, Irfan Uddin, and Georgios V Gkoutos. Path-based extensions of local link
prediction methods for complex networks. Scientific reports, 10(1):19848, 2020.

J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate Texts in Mathematics.
Springer, Berlin, Heidelberg, 2008. ISBN 978-1-84800-049-6.

Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Yannick Hammerla, Michael M Bronstein, and Max Hansmire. Graph neu-
ral networks for link prediction with subgraph sketching. In ICLR, 2023.

Chenhui Deng et al. Polynormer: Polynomial-expressive graph transformer in linear time. In ICLR,
2024.

Andrea Giuseppe Di Francesco, Francesco Caso, Maria Sofia Bucarelli, and Fabrizio Silvestri. Link
prediction under heterophily: A physics-inspired graph neural network approach. arXiv preprint
arXiv:2402.14802, 2024.

Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 9211–9219, 2019.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD, pp.
855–864, 2016.

Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, and Qing He. A
survey on knowledge graph-based recommender systems. IEEE Transactions on Knowledge and
Data Engineering, 34(8):3549–3568, 2020.

Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh V Chawla, Neil Shah, and Tong
Zhao. Linkless link prediction via relational distillation. In ICML, pp. 12012–12033. PMLR, 2023.

Will Hamilton et al. Inductive representation learning on large graphs. NeurIPS, 30, 2017a.

William Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, volume 30, pp. 1025–1035, 2017b.

Elvin Isufi, Fernando Gama, and Alejandro Ribeiro. Edgenets: Edge varying graph neural networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7457–7473, 2021.

Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context similarity. In KDD, pp.
538–543, 2002.

Di Jin, Rui Wang, Meng Ge, Dongxiao He, Xiang Li, Wei Lin, and Weixiong Zhang. Raw-gnn:
Random walk aggregation based graph neural network. In 31st International Joint Conference on
Artificial Intelligence, IJCAI 2022, pp. 2108–2114. International Joint Conferences on Artificial
Intelligence, 2022.

Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43, 1953.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Thomas N Kipf et al. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016.

Ajay Kumar, Shashank Sheshar Singh, Kuldeep Singh, and Bhaskar Biswas. Link prediction
techniques, applications, and performance: A survey. Physica A: Statistical Mechanics and its
Applications, 553:124289, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, and Dawei
Yin. Evaluating graph neural networks for link prediction: Current pitfalls and new benchmarking.
NeurIPS, 2023.

Qimai Li, Zhengyang Han, and Xiao-Ming Wu. Deepergcn: All you need to train deeper graph neural
networks. In ICML, pp. 5278–5288, 2020.

Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence neural
networks. In ICLR, 2016.

David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks. Journal of
the American society for information science and technology, 58(7):1019–1031, 2007.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. NeurIPS, 34:20887–20902, 2021.

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang,
Lichao Sun, Philip S Yu, et al. Graph foundation models: Concepts, opportunities and challenges.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025.

Linyuan Lü, Ci-Hang Jin, and Tao Zhou. Similarity index based on local paths for link prediction
of complex networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 80(4):
046122, 2009.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang,
and Doina Precup. Revisiting heterophily for graph neural networks. NeurIPS, 35:1362–1375,
2022.

Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure
Leskovec, and Doina Precup. When do graph neural networks help with node classification:
Investigating the homophily principle on node distinguishability. NeurIPS, 2023.

Li Ma, Haoyu Han, Juanhui Li, Harry Shomer, Hui Liu, Xiaofeng Gao, and Jiliang Tang. Mixture of
link predictors on graphs. In NeurIPS, 2024.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In Forty-first
International Conference on Machine Learning, 2024.

Costas Mavromatis and George Karypis. Graph infoclust: Maximizing coarse-grain mutual informa-
tion in graphs. In Pacific-Asia conference on knowledge discovery and data mining, pp. 541–553.
Springer, 2021.

Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization. In ECML PKDD,
pp. 437–452. Springer, 2011.

Liming Pan et al. Neural link prediction with walk pooling. In ICLR, 2021.

Liming Pan et al. Neural link prediction with walk pooling. In International Conference on Learning
Representations, 2022.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN: Geometric
graph convolutional networks. ICLR, 2020.

Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
graph datasets for node classification: Homophily-heterophily dichotomy and beyond. Advances
in Neural Information Processing Systems, 36:523–548, 2023a.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of gnns under heterophily: Are we really making progress? In The
Eleventh International Conference on Learning Representations, 2023b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sucheng Ren, Xingyi Yang, Songhua Liu, and Xinchao Wang. Sg-former: Self-guided transformer
with evolving token reallocation. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 6003–6014, 2023.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Astrit Tola et al. Proxi: Challenging the gnns for link prediction. TMLR, 2025.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. ICLR, 2018.

Botao Wang, Jia Li, Heng Chang, Keli Zhang, and Fugee Tsung. Heterophilic graph neural networks
optimization with causal message-passing. In Proceedings of the Eighteenth ACM International
Conference on Web Search and Data Mining, pp. 829–837, 2025.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding for
more powerful graph neural networks. In International Conference on Learning Representations,
2022a.

Xiyuan Wang et al. Neural common neighbor with completion for link prediction. In ICLR, 2023.

Yiwei Wang, Bryan Hooi, Yozen Liu, Tong Zhao, Zhichun Guo, and Neil Shah. Flashlight: Scalable
link prediction with effective decoders. In Learning on Graphs Conference, pp. 14–1. PMLR,
2022b.

Chen Xing and Masoud Makrehchi. Line graph is the key: An exploration of line graph on link
prediction with social networks. In 2024 11th International Conference on Behavioural and Social
Computing (BESC), pp. 1–7. IEEE, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In ICML, pp. 40–48. PMLR, 2016.

Seongjun Yun et al. Neo-gnns: Neighborhood overlap-aware graph neural networks for link prediction.
NeurIPS, 34:13683–13694, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In NeurIPS, 2018.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. NeurIPS, 34:9061–9073, 2021.

Zehua Zhang, Shilin Sun, Guixiang Ma, and Caiming Zhong. Line graph contrastive learning for link
prediction. Pattern Recognition, 140:109537, 2023.

Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from counterfactual
links for link prediction. In ICML, pp. 26911–26926. PMLR, 2022.

Shijie Zhou, Zhimeng Guo, Charu Aggarwal, Xiang Zhang, and Suhang Wang. Link prediction on
heterophilic graphs via disentangled representation learning. arXiv preprint arXiv:2208.01820,
2022.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. NeurIPS, 33:
7793–7804, 2020.

Jiong Zhu, Gaotang Li, Yao-An Yang, Jing Zhu, Xuehao Cui, and Danai Koutra. On the impact of
feature heterophily on link prediction with graph neural networks. In NeurIPS, 2024.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. NeurIPS, 34:29476–
29490, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A PROOFS OF THEOREMS

In this part, we provide complete proofs of the theoretical results stated in Section 3.2. The main
goal is to rigorously justify the separation claims between endpoint-based link predictors and line-
graph-based models. We first establish the expressivity separation for edge motifs (Theorem 3.1),
which shows that shallow GNNs on L(G) can capture local edge patterns invisible to bounded-depth
endpoint decoders on G. We then extend this to an iteration-gap family (Theorem 3.2), where
line-graph models with constant depth succeed while endpoint decoders require depth that grows with
the graph construction. Finally, we prove Proposition 3.3, which formalizes how common proximity
indices can be encoded as initial features on L(G) and realized by a single WL layer and linear
classifier. Together these results provide the mathematical underpinnings for our claim that DuoLink
aligns inductive bias with edge-centric learning and supports practical feature integration.

Theorem 3.1. (Expressivity separation for edge motifs) For every t ≥ 1 there exists a graph Gt and
two edges e+, e− ∈ E(Gt) such that

1. e+ participates in a triangle and e− does not;
2. after t rounds of the 1–WL color refinement onGt, the endpoint colors satisfy ct(u) = ct(u

′)
and ct(v) = ct(v

′) where e+ = (u, v) and e− = (u′, v′); hence every endpoint–decoder in
Et assigns the same score to e+ and e−;

3. there exists t0 ∈ 1, 2 and a model in Lt0 on L(Gt) that separates ê+ and ê−.

Proof of Theorem 3.1. To establish the separation, we explicitly construct for each depth t a graph
Gt containing two marked edges: one in a triangle and one not. We then use regular tree padding to
guarantee that, after t rounds of 1–WL, the endpoint colors of both edges remain indistinguishable,
so any endpoint decoder scores them equally. Finally, we show that in the line graph L(Gt) the local
neighborhoods of the two edge-nodes differ by a simple cross-edge pattern, allowing a shallow WL
refinement on L(Gt) to separate them.

Construction of Gt. Fix t ≥ 1 and an integer ∆ ≥ 3.

Triangle core. Create vertices u, v, w and edges (u, v), (v, w), (w, u). Attach (∆−2) disjoint leaf
roots to each of u, v, w and then replace each such leaf by the root of an identical (∆−1)-ary tree of
depth t−1 (every internal node has total degree ∆). Denote the marked edge by e+ = (u, v).

Diamond core. Create vertices u′, v′, a, c and edges (u′, v′), (u′, a), (a, c), (c, v′) so that u′, a, c, v′
forms a 4-cycle with diagonal (u′, v′). Attach (∆−2) disjoint leaf roots to each of u′, v′, a, c and
replace each leaf by the root of an identical (∆−1)-ary tree of depth t−1 as above. Denote the
marked edge by e− = (u′, v′).

This yields the graph Gt which contains the two marked edges e+ and e−.

Step 1. By construction, e+ participates in the triangle (u, v, w), while e− has no common neighbor
and therefore is in no triangle. We use the following standard fact about color refinement on regular
tree paddings.
Lemma A.1 (Synchronized padding). Let T∆,D denote the rooted (∆−1)-ary tree of depth D with
uniform initial color on all vertices and total degree ∆ for every internal node. For any two copies of
T∆,D, for all rounds s = 0, 1, . . . , D all nodes at the same depth have the same 1–WL color at round
s. Moreover, if two host vertices x and y have the same round-s color and each is attached to the
roots of m disjoint copies of T∆,D, then after one more WL round the multisets of neighbor colors at
x and y that come from the attached trees are identical.

Proof. The claim for T∆,D follows by induction on s. At round 0 all colors are equal. If nodes at
depth d have equal colors at round s, then a node at depth d− 1 sees the same multiset of round-s
colors from its children and the same number of neighbors overall, hence nodes at depth d− 1 get
equal colors at round s+1. The second statement follows because attached trees evolve independently
and symmetrically and contribute identical neighbor color multisets to x and y when x and y share
the same round-s color.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Step 2. Run 1–WL color refinement on Gt with uniform initial colors. We show that after t rounds,

ct(u) = ct(u
′) and ct(v) = ct(v

′).

We establish a stronger invariant by induction on s = 0, 1, . . . , t:

C(s)
1 = {u, u′}, C(s)

2 = {v, v′}, C(s)
3 = {w, a, c},

such that every vertex in C(s)
i has the same round-s color, and every node inside an attached tree has

a round-s color that depends only on its depth and on which class C(s)
i its root is attached to.

The base case s = 0 is trivial. Assume the claim holds at round s. Consider u and u′. Each has
one neighbor in C(s)

2 , one neighbor in C(s)
3 , and ∆−2 roots of attached trees. By the induction

hypothesis and Lemma A.1, the multiset of round-s neighbor colors at u and u′ is identical, hence
cs+1(u) = cs+1(u

′). The same argument applies to v and v′. For w, a, c, each has two neighbors in
C(s)
1 ∪C(s)

2 with the same pair of round-s colors (up to permutation), and the same number of attached
tree roots, hence they share the same round-(s+ 1) color. The attached trees remain synchronized
by Lemma A.1. This proves the invariant for round s + 1, and in particular ct(u) = ct(u

′) and
ct(v) = ct(v

′).

Since every Et endpoint decoder reads only the pair (hu, hv) produced by t WL-equivalent rounds,
e+ and e− are indistinguishable for Et.

Step 3. Consider the line graph L(Gt). The node corresponding to e+ = (u, v) is denoted ê+

and that for e− = (u′, v′) is ê−. The neighbors of ê+ are the edge-nodes incident to u and to v
(excluding (u, v)), which form two cliques in L(Gt) of size ∆−1 each. Among these neighbors the
two edge-nodes (u,w) and (v, w) are present. On the e− side, the neighbors of ê− are the edge-nodes
incident to u′ and to v′ (excluding (u′, v′)), with the special neighbors (u′, a) and (v′, c).

Run 1–WL on L(Gt) with uniform initial colors. By degree symmetry, the first refinement partitions
the neighbor sets of both ê+ and ê− into two types: the ∆−2 “light” edges incident to a degree-1 leaf
inGt, and one “heavy” edge incident to the core neighbor on each side. Denote these heavy neighbors
by hu = (u,w) and hv = (v, w) around ê+, and by hu′ = (u′, a) and hv′ = (v′, c) around ê−.

At the next refinement, hu and hv generally receive different colors, because their endpoint neighbor-
hoods in Gt differ: the u-side and v-side are distinguishable once the multiset of colors coming from
their attached trees propagates one round through L(Gt), while hu′ and hv′ remain synchronized by
the diamond symmetry. Consequently the multiset of neighbor colors of ê+ differs from that of ê−
after a constant number of WL rounds on L(Gt). Hence there exists t0 ∈ {1, 2} such that a model in
Lt0 separates ê+ and ê−.

Combining the three steps proves Theorem 3.1.

Theorem 3.2. (Iteration-gap family) There exists a family {Gk}k≥1 and edges ek, e′k ∈ E(Gk) such
that (i) a model in L2 separates êk and ê′k for all k; (ii) every model in Ek assigns the same score
to ek and e′k.

Proof of Theorem 3.2. We instantiate the hypothesis classes as in Section 3.2: Ek are k-layer
1-WL–equivalent endpoint decoders on G, and Lt are t-layer 1-WL–equivalent models on L(G)
followed by a 1-layer classifier. In line with DuoLink’s initialization, models in Lt may use bounded-
radius edge-node features zê (e.g., proximity indices such as Common Neighbors), which depend on
a constant-radius neighborhood of (u, v) in G, independent of k. Endpoint decoders in Ek operate on
node embeddings only, as defined in Section 3.2.

Construction of Gk. Fix k ≥ 1 and ∆ ≥ 3. Build Gk using the two cores from Theorem 3.1,
padded with regular trees to depth k − 1:

Triangle side. Create u, v, w and edges (u, v), (v, w), (w, u). Attach (∆− 2) disjoint leaf roots to
each of u, v, w and replace each leaf by the root of an identical (∆− 1)-ary tree of depth k− 1 (every
internal node has total degree ∆). Mark ek = (u, v).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Diamond side. Create u′, v′, a, c and edges (u′, v′), (u′, a), (a, c), (c, v′). Attach (∆ − 2) disjoint
leaf roots to each of u′, v′, a, c and replace each leaf by the root of an identical (∆− 1)-ary tree of
depth k − 1. Mark e′k = (u′, v′).

Property (ii): indistinguishability for Ek. Run 1–WL on Gk with uniform initial colors. Exactly
as in the proof of Theorem 3.1, the synchronized padding (Lemma A.1) implies that after k rounds

ck(u) = ck(u
′) and ck(v) = ck(v

′).

Hence any k-layer endpoint decoder in Ek receives identical pairs (hu, hv) and (hu′ , hv′) (up to
injective recodings of ck), and must assign the same score to ek and e′k. This proves (ii).

Property (i): separation for L2 with bounded-radius edge features. Initialize each edge-node
ê = (u, v) in L(Gk) with the Common Neighbors feature

CN(u, v) = |{x ∈ V : (u, x) ∈ E and (v, x) ∈ E }|,
optionally concatenated with other bounded-radius indices. This feature depends only on the 2-hop
neighborhood of (u, v) in Gk, hence its radius is constant in k.

By construction, ek = (u, v) has a common neighbor w, so CN(u, v) ≥ 1. In contrast, e′k = (u′, v′)

has no common neighbor, so CN(u′, v′) = 0. Therefore the two edge-nodes êk and ê′k have distinct
initial features zêk ̸= z

ê′k
.

A model in L2 (indeed, even L1) followed by a 1-layer classifier can separate these two points in feature
space. Concretely, a single linear classifier on zê implements the threshold rule 1{CN(u, v) ≥ 1},
which outputs different labels for êk and ê′k. Hence (i) holds.

For every k ≥ 1 we have constructed Gk and marked edges ek, e′k such that (ii) indistinguishability
persists for all models in Ek, while (i) separation is achieved by a constant-depth line-graph model L2
using bounded-radius edge features. This proves Theorem 3.2.

Now, we prove Proposition 3.3. First, we need a key lemma.
Lemma A.2 (Identity layer on L(G)). In L1, there exist message/update parameters so that the
single MPNN layer on L(G) outputs

h
(1)
ê = zê ,

i.e., it copies the initial edge-node features to the post-layer embedding.

Proof of Lemma A.2. Use an MPNN with self-loops on L(G) and injective aggregation (e.g., sum).
Set neighbor messages to zero and the self-message to the identity on zê, and choose the update to
return its first argument. Then the aggregated message at ê equals zê and the update outputs h(1)ê = zê.
This is a standard parameter choice within 1-WL–equivalent MPNNs.

Proposition 3.3 (Realizing proximity-index rules on L(G)) Let hstruct(u, v) ∈ Rp be any fixed
collection of proximity indices computed from a bounded-radius neighborhood of (u, v), for example
common neighbors, Adamic–Adar, Local Path up to length K, or truncated Katz. Initialize each
edge-node ê in L(G) with zê = [hstruct(u, v) ∥ hattr(u, v)]. For any Boolean threshold rule f on
these indices there exists a model in L1 with classifier ρ that realizes f(hstruct(u, v), hattr(u, v)).

Proof of Proposition 3.3. Let f : Rp → {0, 1} be a Boolean threshold rule, so there exist w ∈ Rp

and τ ∈ R with
f(x) = 1{⟨w, x⟩ ≥ τ}.

Recall zê = [hstruct(u, v) ∥ hattr(u, v)]. Apply one layer of L1 as in Lemma A.2 to obtain h(1)ê = zê.
Define the 1-layer classifier ρ : Rp+q → [0, 1] by ρ(h) = 1

{
⟨w̃, h⟩ ≥ τ

}
, where w̃ = [w ∥ 0q]

puts zero weight on the attribute block. Then for every edge-node ê,

ρ
(
h
(1)
ê

)
= 1

{
⟨w, hstruct(u, v)⟩ ≥ τ

}
= f(hstruct(u, v), hattr(u, v)) .

Thus a model in L1 realizes f on L(G).

The bounded-radius assumption guarantees that computing hstruct(u, v) and hattr(u, v) depends
only on a constant-radius neighborhood in G, independent of graph size. No further property is
required.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B FURTHER EXPERIMENTAL DETAILS

B.1 LINE-GRAPH ADJACENCY VIA INCIDENCE MATRIX

Let G = (V,E) be an undirected graph with |V | = n and |E| = m. Define its incidence matrix
B ∈ {0, 1}n×m by

Bu,e =

{
1, if node u is an endpoint of edge e,
0, otherwise.

Then the original graph adjacency A can be recovered (up to self-loops) as

A = BB⊤ − diag(d) , du =
∑
e

Bu,e = deg(u).

More importantly, the line-graph adjacency AL ∈ {0, 1}m×m is given by AL = B⊤B − 2Im

(AL)e,e′ =

{
1, e ̸= e′ share exactly one endpoint in G,
0, otherwise.

Since (B⊤B)e,e = 2 for each edge e, subtracting 2Im removes self-loops and yields the correct
line-graph structure.

B.2 DUOLINK VS. OTHER LINE-GRAPH APPROACHES

Table 5 summarizes the design differences between DuoLink and representative line-graph methods.
Here, “Heuristics” denotes initializing edge-nodes on L(G) with classical proximity indices and
training over them end to end, “Attr. sim.” refers to explicit attribute-similarity features (e.g., cosine
of node embeddings), and “WL separation” indicates theoretical results showing expressivity or
iteration-gap advantages for line-graph models over endpoint decoders on G.

Table 5: Conceptual contrast with representative line-graph approaches. A checkmark indicates
explicit support.

Method Uses L(G) LP as node-cls on L(G) Heuristics Attr. sim. WL separation End-to-end

LGNN (Cai et al., 2021) ✓ ✓ ✓
LGCL (Zhang et al., 2023) ✓ ✓ ✓
LineDi2vec (Xing & Makrehchi, 2024) ✓

DuoLink (ours) ✓ ✓ ✓ ✓ ✓ ✓

Notes. LGNN and LGCL both operate on the line graph and treat LP as node classification, training
with supervised objectives, but neither incorporates classical heuristics or explicit attribute-similarity
features as trainable inputs. LineDi2vec leverages the line graph for edge embeddings in an unsuper-
vised manner rather than supervised node classification on L(G). In contrast, DuoLink combines
edge-node initialization with heuristics and attribute similarity, supports GNN and transformer back-
bones on L(G), and is the only approach providing WL-based theoretical guarantees tailored to edge
tasks.

B.3 SCALABILITY AND BATCHING

Time and Space Complexity. Naïvely, each node u ∈ V of degree k, induces a k-complete
subgraph in L(G) where the vertices are the adjacent to u. As k-complete graph has

(
deg(u)

2

)
edges,

constructing L(G) by examining each vertex’s adjacency list takes∑
u∈V

(
deg(u)

2

)
= O

(∑
u

deg(u)2
)

= O (mdmax),

where dmax is G’s maximum degree and m = |E|. Memory usage is dominated by storing AL,
which in sparse form requires O(mdmax) entries.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.4 GRAPH HOMOPHILY AND HETEROPHILY

For completeness, we recall two standard homophily metrics in a labeled graph G = (V,E, C), where
C : V → {1, . . . , N} assigns each node to a class:

• Node homophily ratio: Hn(G) = 1
|V|

∑
v∈V

∣∣{u∈N (v):C(u)=C(v)}
∣∣

deg(v) .

This measures, on average, the fraction of same-class neighbors per node.

• Edge homophily ratio: He(G) =
∣∣{(u,v)∈E:C(u)=C(v)}

∣∣
|E| ,

i.e. the proportion of edges that connect nodes of the same class.

Both Hn and He lie in [0, 1]. By convention, Hn ≥ 0.5 (or He ≥ 0.5) indicates a homophilic graph,
while lower values denote heterophily (Zhu et al., 2020; Luan et al., 2022). Recent works propose
alternative and more nuanced homophily measures to capture class imbalance, multi-factor similarity,
and higher-order interactions (Jin et al., 2022; Luan et al., 2023).

B.5 LINK-PREDICTION SETTINGS

Let G = (V,E,X) be an undirected, unweighted graph with node set V = {v1, . . . , vn}, edge set
E ⊂ V×V , and an attribute matrix X ∈ Rn×m whose ith row Xi is them-dimensional feature vector
of node vi. We partition both nodes and edges into observed (old) and unobserved (new) subsets,
V = Vo ∪ Vu and E = Eo ∪ Eu.

During training, we see only Go = (Vo,Eo), and our goal is to predict whether each candidate pair in
V × V belongs to Eu. Depending on which nodes are allowed at test time, link prediction falls into
three categories (Menon & Elkan, 2011):

1. Transductive
(
Vo = V

)
. All nodes are known at train time, and we predict missing edges

among them.

2. Inductive
(
Vo ∩ Vu = ∅

)
. We score edges between entirely unseen nodes using only their

features.

3. Semi-inductive. Test edges may involve one or two nodes from Vu.

In this paper, we restrict our focus to the commonly used transductive setting. Extensions to inductive
and semi-inductive tasks are straightforward and discussed in Appendix B.7.

B.6 DUOLINK AND TRANSDUCTIVE SETTING

Following established protocols in link prediction (Kipf et al., 2016; Pan et al., 2021), we randomly
partition the set of positive edges E into 85%, 5%, and 10% splits for training (E+

train), validation
(E+

valid), and testing (E+
test), respectively, except for OGB datasets, which use their predefined splits.

For each group, we sample an equal number of negative edges, node pairs not present in E, to form
E−

train, E−
valid, and E−

test. We denote the union of positives and negatives in each split as Etrain =

E+
train ∪ E

−
train, Evalid = E+

valid ∪ E
−
valid, and Etest = E+

test ∪ E−
test.

To construct the input graphs for our experiments, we adopt the standard transductive setting. The
training line graph is built from the graph Gtrain = (V,Etrain), which contains only the training
edges. We generate its line graph L(Gtrain), where each node represents a training edge and adjacency
reflects shared endpoints in Gtrain. Node features are computed for all candidate edges in Etrain (both
positive and negative), including proximity indices and attribute similarities.

For evaluation, we construct the test line graph from the full graph Gtest = (V,Etrain ∪ Evalid ∪
Etest). The corresponding line graph L(Gtest) provides the evaluation context for all test candidates.
Specifically, we classify candidate edges fromE+

test andE−
test as nodes inL(Gtest) using their respective

features. This procedure ensures that all predictions are made within the full observed graph, while
training is restricted strictly to the training set, thus preventing any information leakage.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.7 EXTENSIONS TO INDUCTIVE SETTINGS

Although our experiments focus on the transductive scenario, DuoLink extends naturally to inductive
and semi-inductive link prediction:

• New nodes. When a previously unseen node u′ arrives with feature Xu′ , we compute
its incident edge-nodes e′ = (u′, v) for v ∈ V . We then assemble N1(e

′) in L(G) via
on-the-fly similarity heuristics hstruct(u′, v) and prune to S neighbors.

• New edges. To score a candidate edge e′ = (u′, v′), we compute ∆u′ ∩∆v′ using current
node features and local topology, embed e′ and its sampled neighbor-edges, and apply the
same GNN layers.

This procedure requires only local recomputation of heuristics and sampling, without retraining or
global graph access.

B.8 PROXIMITY INDICES FOR DUOLINK

To enrich our link prediction framework with informative structural signals, we incorporated a
comprehensive set of classical and higher-order heuristic indices. These features have demonstrated
utility across a wide range of tasks, particularly in sparse or heterophilic settings where node attributes
may be unreliable or absent. In our DuoLink framework, we utilized these indices {I(u,v)} as initial
node embeddings for the nodes {η(u,v)} for the line graph L(G).

The following proximity indices were computed for each candidate edge (node pair):

• Shortest Path Length
• Number of 2-paths and 3-paths
• Jaccard, Salton, and Sorensen indices
• 3-Jaccard, 3-Salton, and 3-Sorensen (higher-order extensions)
• Adamic-Adar index
• Hub Promoted Index (HPI) and Hub Depressed Index (HDI)
• Cosine Similarity, L1, and L2 distances (Attribute similarity)
• Pearson Correlation
• Jaccard similarity for binary vectors.

B.9 T-SNE VISUALIZATIONS

The t-SNE visualizations on the test sets (Figures 4a to 4d) illustrate the representational differences
between raw heuristic proximity indices (left), conventional node-pair embeddings from SAGE using
Hadamard products of node embeddings (center), and DuoLink-SAGE embeddings obtained via the
line graph (right). While raw proximity heuristics carry some discriminative signal, positives and
negatives remain partially mixed and diffuse. The standard SAGE embeddings collapse this structure
further, leading to highly intertwined and indistinct clusters, hindering accurate edge classification.

In contrast, DuoLink-SAGE produces embeddings that exhibit distinct, well-separated clusters for
positive (real) and negative (fake) edges. This substantial improvement confirms that reformulating
link prediction as node classification on the line graph allows GNNs to directly refine heuristic
structural cues via edge-centric message passing. Consequently, DuoLink embeddings capture
meaningful higher-order patterns missed by conventional decoders, directly explaining the strong
empirical performance gains observed across the benchmarks.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) PUBMED

(b) ACTOR

(c) CORA

(d) ROMAN-EMPIRE

Figure 4: t-SNE Visualizations t-SNE visualizations of test-set edge representations for four datasets (Pubmed,
Actor, Cora, Roman-Empire). Left: raw proximity heuristic features; middle: standard SAGE node-pair
embeddings via Hadamard product; right: DuoLink-SAGE edge-centric embeddings on the line graph. Positive
(real) and negative (fake) edges are colored separately. DuoLink-SAGE yields markedly better class separation,
demonstrating how the line-graph reformulation and integrated structural heuristics enable clearer discrimination
compared to both standalone heuristics and conventional decoded embeddings.

19

	Introduction
	Background
	Related Work
	Pairwise Proximity Features

	DuoLink: Methodology
	GNN Backbone on the Line Graph
	Expressivity and Inductive Bias Alignment

	Experiments
	Experimental Setup
	Results

	Conclusion
	Proofs of Theorems
	Further Experimental Details
	Line‐Graph Adjacency via Incidence Matrix
	DuoLink vs. Other Line-Graph Approaches
	Scalability and Batching
	Graph Homophily and Heterophily
	Link‐Prediction Settings
	Duolink and Transductive Setting
	Extensions to Inductive Settings
	Proximity Indices for DuoLink
	t-SNE Visualizations

