
Increasing Trust in Language Models through the Reuse of Verified Circuits

Anonymous ACL submission

Abstract001

Language Models (LMs) are increasingly used002
for a wide range of prediction tasks, but their003
training can often neglect rare edge cases, re-004
ducing their reliability. Here, we define a strin-005
gent standard of trustworthiness whereby the006
task algorithm and circuit implementation must007
be verified, accounting for edge cases, with no008
known failure modes. We show that a model009
can be trained to meet this standard if built010
using mathematically and logically specified011
frameworks. In this paper, we fully verify012
an auto-regressive transformer model that per-013
forms n-digit integer addition. To exhibit the014
reusability of verified modules, we insert the015
trained integer addition model into a larger un-016
trained model and train the combined model to017
perform both addition and subtraction. We find018
extensive reuse of the addition circuits for both019
tasks, easing verification of the more complex020
subtractor model. We discuss how inserting021
verified task modules into LMs can leverage022
model reuse to improve verifiability and trust-023
worthiness of LMs built using them. The reuse024
of verified circuits reduces the effort to verify025
more complex composite models which we be-026
lieve to be a significant step towards safety and027
interpretability of LMs.028

1 Introduction029

Transformer-based large language models (LLMs)030

are powerful (Barak et al., 2022) yet largely in-031

scrutable due to their complex, nonlinear inter-032

actions in dense layers within high-dimensional033

spaces. Given this complexity, their deployment in034

critical settings (Zhang et al., 2022) highlights the035

need for understanding their behavior. Hendrycks036

and Mazeika (2022) argue that making these mod-037

els interpretable is key to their safe use. Mechanis-038

tic interpretability focuses on demystifying and val-039

idating the algorithms behind model weights, trans-040

lating complex computations into more human-041

understandable components (Raukur et al., 2022).042

+

+

+

+

A + B = ?

C1

+

① Train model
to perform 
6-digit
addition

+

+

+

A ± B = ?

C1

+

+

③ Initialise  
 components 
 in larger model

④ Train larger model for 6-digit
addition and subtraction

⑤ Identify how new circuits
interact with known, old
circuits in the larger model

② Identify
circuits that
allow model
to perform
addition
accurately

Figure 1: An overview of our methodology: (1) We
trained an accurate 6-digit integer addition model. (2)
We reverse-engineered the model to find the algorithms
that were implemented to perform addition. (3) We in-
serted the addition model into a new model, by copying
the weights of the attention heads and MLPs (in brown)
into the larger model during initialization. (4) We then
train the new model on 80% subtraction and 20% ad-
dition questions. (5) We find that the resulting model
predicts accurately and reuses the inserted addition cir-
cuits for both addition and subtraction questions.

This understanding aids in predicting model behav- 043

ior in new situations and fixing model errors. 044

In creating and training a model, we aim for high 045

accuracy and trustworthiness. We achieve this by 046

holding the model to a standard we term known- 047

good. We define a model performing a task to be 048

known-good if: 049

1. The model’s algorithm for the task and the 050

mechanisms it implements (the “circuits") are 051

understood. 052

1

2. All possible task edge cases have been identi-053

fied and tested.054

3. Empirically, the model prediction accuracy is055

99.9999% (a standard reliability measure used056

in industry and abbreviated as “six nines").057

That is, it can perform the task one million058

times with at most 1 wrong prediction.059

Exhaustive testing of a model task may be infea-060

sible. For instance, when adding two 5-digit inte-061

gers (e.g. 12345+67890) there are ten billion varia-062

tions. Some tasks can be conceptualized within an063

existing formal framework that allows identifica-064

tion of all edge cases the model must handle. For065

example, in 5-digit addition, the most uncommon066

edge case is 55555+44445=100000, which requires067

a carry bit to cascade through all digits, occurring068

in only 0.002% of cases. A known-good model069

must incorporate algorithms to manage all known070

edge cases. A known-good model must have veri-071

fied1 circuits that perform the task accurately.072

In this paper, we detail the development and in-073

terpretation of a known-good model for addition.074

Our findings indicate that the model constructs075

a specific circuit for each edge case, with these076

circuits sharing intermediate results. We confirm077

the validity of the entire set of circuits, ensuring078

they cover all identified edge cases. The model079

achieves a very low training loss and has six nines080

(99.9999%) accuracy. The model hence achieves081

our known-good standard. Additionally, we de-082

velop a “mixed" model capable of both addition083

and subtraction, incorporating the known-good ad-084

dition model. This mixed model has six nines ac-085

curacy, and extensively reuses the addition circuits086

for both operations, facilitating the interpretation087

of the model’s algorithm. We make progress to-088

ward a known-good model for both addition and089

subtraction.090

Hence, our main contributions are three-fold:091

• Defining several known-good n-digit addition092

models with six nines accuracy which all use093

the same algorithm.094

• Demonstrating a proof of concept for re-using095

a known good model in the training of another096

larger, more-capable model, simplifying the097

interpretation of the new model’s algorithm.098

1In this paper, ’verified’ has the mechanistic interpretabil-
ity meaning that a specific group of interconnected neurons
within a neural network reliably and causally contributes to
the model’s output in a meaningful, understandable way, with
supporting empirical evidence.

• Defining several n-digit addition and subtrac- 099

tion models with six nines accuracy, that reuse 100

established addition model circuits for both 101

operations, and detailing progress towards 102

these models being known-good. 103

2 Related Work 104

Mechanistic interpretability aims to reverse engi- 105

neer neural networks to find interpretable algo- 106

rithms that are implemented in a model’s weights 107

(Olah et al., 2020). Mathematical frameworks (El- 108

hage et al., 2021a) explain how transformer atten- 109

tion heads can work with each other to implement 110

complex algorithms. 111

Causal Scrubbing (Jenner et al., 2023) recom- 112

mends explaining a model algorithm by document- 113

ing a low-level computation graph, mapping from 114

the graph to the model nodes that implement the 115

computation, and performing experimentation ver- 116

ification. Investigative techniques such as abla- 117

tion interventions, activation unembeddings (nos- 118

talgebraist, 2020), and sparse autoencoders (Nanda, 119

2023; Cunningham et al., 2023), underpinned by 120

the more theoretical frameworks (Elhage et al., 121

2021b; Geva et al., 2022), provide tools to help 122

confirm a mapping. 123

Investigating pre-trained LMs on Arithmetic. 124

Even though basic arithmetic can be solved fol- 125

lowing a few simple rules, pre-trained LMs often 126

struggle to solve simple math questions (Hendrycks 127

et al., 2021). Causal mediation analysis (Stolfo 128

et al., 2023) has been used to investigate how large 129

pre-trained LMs like Pythia and GPT-J performed 130

addition to solve word problems. It is also possible 131

to improve a model’s arithmetic abilities used su- 132

pervised fine tuning - including enriched training 133

data (Liu and Low, 2023). 134

Studying Toy Models for Arithmetic. Doing 135

mechanistic interpretability on toy transformers can 136

help to better isolate clear, distinct circuits given the 137

highly specific experimental setup for the model 138

studied (Nanda et al., 2023). Quirke and Barez 139

(2024) detailed a 1-layer, 3-head transformer model 140

that performs 5-digit addition, showing it failed 141

on rare edge cases (e.g. “77778+22222=100000" 142

where a “carry 1" cascades through 4 digits), high- 143

lighting the importance of understanding and test- 144

ing all edge cases for trustworthiness. 145

Many natural prediction problems decompose 146

into a finite set of knowledge and skills that are 147

“quantized" into discrete chunks (quanta) (Michaud 148

2

et al., 2023). Models must learn these quanta to149

reduce loss. Understanding a network reduces to150

enumerating its quanta. Other studies (Schaeffer151

et al., 2023) prove useful ways to measure quanta152

in mathematical prediction problems.153

3 Methodology154

Transformer models may learn addition algorithms155

different from traditional human methods. We156

define an alternative, mathematically-equivalent157

framework for addition and demonstrate our model158

implements this approach.159

3.1 Mathematical Framework160

Consider the task of adding two n-digit numbers161

together. We define the first number as D =162

{Dn−1, Dn−2, . . . , D0} and the second number as163

D′ = {D′
n−1, D

′
n−2, . . . , D

′
0} and the answer as164

A = {An, An−1, . . . , A0}. Figure 2 shows an il-165

lustrative example.166

3 3 3 5 7 + 8 2 2 4 3 = 1 1 5 6 0 0
D4 D3 D2 D1 D0 D’4 D’3 D’2 D’1 D’0 A5 A4 A3 A2 A1 A0

D D’ A+ =

P0 P1 P2 P3 P4 P6 P7 P8 P9 P10 P12 P13 P14 P15 P16 P17P5 P11

Figure 2: For 5-digit addition, our model has 12 input
(question) and 6 output (answer) token positions. We
name the question tokens D4, ..., D0, and D’4, ..., D’0
and the answer tokens A5, ..., A0. For n-digits, we use
the terms Dn, D′

nand An.

First, we adopt the framework from Quirke and167

Barez (2024) for our model’s addition process. The168

“Simple Addition" sub-task An.SA, which naively169

calculates the sum of digit pairs, is defined as:170

An.SA = (Dn +D′
n) mod 10 (1)171

When there is no carry bit from the previous digit172

An = An.SA. The “Simple Carry" sub-task173

An.SC determines whether the addition creates174

a carry bit:175

An.SC =

{
1 if (Dn +D′

n) ≥ 10,

0 otherwise.
(2)176

While Quirke et al.’s model is capable of handling177

simple addition and carry bits generated directly178

from digit pair addition, it encounters difficulties179

with ’cascading carry’ bits, where a carry bit from180

one digit position propagates to the next.181

Consider “00144+00056=000210". Adding 4+5182

in the tens position doesn’t generate a carry bit183

directly, but a carry bit propagates from the ones 184

position. A model only summing digit pairs and 185

their direct carry bits would fail, producing an in- 186

correct result like “00144+50006=000110". The 187

Quirke et al. 1-layer model could cascade carry 188

bits across two digits, but not three or more. 189

3.2 Extending the Mathematical Framework 190

To answer “44444+55556=" with “100000", an ac- 191

curate model must predict the first answer digit 192

A5 as “1". To do so, an accurate model must 193

implement a “carry one cascade" circuit, which 194

combines the “carry one" information from all five 195

digits. This is especially hard as the model predicts 196

answer tokens from left to right. 197

We introduce a digit-level sub-task called Tri- 198

Case that calculates the essential “carry one" in- 199

formation for a single pair of digits Dn and D′
n. 200

TriCase has 3 possible outputs representing a defi- 201

nite carry one (ST10), a possible carry one depend- 202

ing on the results of other calculations (ST9), or 203

definitely not a carry one (ST8): 204

An.ST = TriCase︸ ︷︷ ︸
(Dn,D′

n)

=


ST10 if (Dn +D′

n) ≥ 10,

ST9 if (Dn +D′
n) = 9,

ST8 if (Dn +D′
n) ≤ 8,

(3) 205

To perform the “cascading carry one" calcula- 206

tion, we introduce a TriAdd sub-task. It handles 207

the case where a possible carry one becomes a def- 208

inite carry one because the next lower digit pair 209

generated a carry one. TriAdd is defined as: 210

An.SV = TriAdd︸ ︷︷ ︸
(An.ST,An−1.ST)

=


ST10 if An.ST = ST10 or

(An.ST = ST9 and
An−1.ST = ST10),

ST8 otherwise.

(4) 211

The model can use ST and SV to accurately 212

calculate A5 as 1 or 0 by using A5 = A4.SV = 213

TriAdd(A4.ST, TriAdd(A3.ST, TriAdd(A2.ST, Tri- 214

Add(A1.ST, A0.ST)))). Note that in calculating A5, 215

the model has also calculated an accurate carry bit 216

for each answer digit. For example, the carry bit 217

for A4 is A3.SV = TriAdd(A3.ST, TriAdd(A2.ST, 218

TriAdd(A1.ST, A0.ST))). 219

3

With this framework, the model only needs the220

sub-tasks An.SA, An.ST and An.SV to accurately221

perform addition (but some models also use the222

redundant An.SC sub-task). This framework, if223

implemented by a model, is sufficient for the model224

to perform n-digit addition accurately.225

Figure 3 diagrams how our model’s algorithm226

uses SA, SC, ST and SV to perform addition. This227

algorithm is like the 99% accurate Quirke et al.228

algorithm but contains an additional circuit (the229

shaded boxes) to calculate “cascading carry one"230

data to predict with 99.9999% accuracy.231

= … A3A(n) A1A2

A0.ST

A1.ST

A2.ST

…

A(n-1).ST

A1.SV

A2.SV

…

A(n-1).SV

A(n)

A(n-1).SA

A(n-2).SC

A(n-2).SV

A(n-1)

…

…

…

A2.SA

A1.SC

A1.SV

A2

A1.SA

A0.SC

A1

A0.SA

A0

…

…

Figure 3: To predict with 99.9999% accuracy, the
addition algorithm first calculates “carry one" values
(An.ST), combining them into “cascading carry one"
values (An.SV). At the “+" token, An−1.SV gives
the first answer digit as 1 or 0. The other answer dig-
its are calculated by combining “base add" (An.BA)
and “carry one" (An.SC) calculations with the pre-
calculated An.SV values.

3.3 Techniques232

In investigating the model circuits, we want to un-233

derstand what each attention head or MLP layer is234

doing across each token position, and how it relates235

to our mathematical framework. Hence, we define236

a node as the computation done by an attention237

head or MLP layer for a given token position. To238

investigate what each node is doing, we use the239

following techniques:240

1. Intervention Ablation. To find out how the241

model depends on the output of a node, we242

replace the output of that node with the vector243

that is the mean of all of its outputs across244

a batch and measure how that impacts down-245

stream performance. We also use (automated,246

n-digit) intervention ablation tests, specific to247

each sub-task, to test for the expected sub-task248

behavior.249

2. Attention Patterns. To find out what the250

model attends to at a node, we take the at-251

tention pattern at that token position and take 252

the significant tokens attended to (> 0.01 post 253

softmax). 254

3. Principal Component Analysis (PCA). We 255

use PCA to investigate the outputs of atten- 256

tion heads, especially where our framework 257

suggests the head output may be tri-state or 258

bi-state. 259

4. Question Complexity. We categorized ques- 260

tions by computational complexity (App. G). 261

Addition categories (S0-S4) and subtraction 262

categories (M0-M4) reflect the number of se- 263

quential digits a “carry one" or “borrow one" 264

cascades through, respectively. We analyzed 265

which nodes were necessary for correct pre- 266

dictions in each category. 267

4 Experiments 268

4.1 Training a Five-Digit Addition Model 269

The Quirke et al. 5-digit 1-layer addition model 270

achieved an accuracy of ∼ 99%. Our experi- 271

ments suggested that a 2-layer, 3-head model was 272

the smallest configuration capable of achieving 273

99.9999% accuracy (see App. D for alternatives 274

tested). This configuration effectively doubled 275

the computational power compared to the 1-layer 276

model (see App. B for mode model configuration 277

details). Moreover, a 2-layer model introduces 278

the capability to “compose" the attention heads 279

in novel ways, facilitating the implementation of 280

more complex algorithms (Elhage et al., 2021b). 281

We trained a 5-digit, 2-layer, 3-head model, with 282

a 14 token vocabulary (0, .., 9, +, -, =, *, /), batch 283

size of 64, learning rate of 0.00008 and weight 284

decay of 0.1. Training used an infinite dataset en- 285

riched with rare edge cases. Loss was defined as the 286

mean across all answer tokens of their negative log 287

likelihood loss. After 30 thousand training batches, 288

the model’s final training loss was ∼ 2.3 × 10−8. 289

Testing showed this model has six nines accuracy. 290

(More details in App. C and Tab. 6). 291

4.2 Investigating Five-Digit Addition 292

Ablation experiments targeting the nodes revealed 293

that the model depends only on nodes located in 294

nine token positions (Figs 6 and 7). Further ab- 295

lation experiments show that for these nine token 296

positions, the model uses 36 nodes in predictions. 297

The effects of node ablation on our complexity and 298

answer-impact metrics were analyzed (see Figs 5 299

4

(P6) (P9) (P10) (P11) (P12) (P13) (P14) (P15) (P16) (P17)
D’4 D’1 D’0 = + A5 A4 A3 A2 A1

L0H0
A4 A2 A1

L0H1 A5 A5..3

A5

A3 A0
L0H2 A5

A5..1
L0MLP A5..2 A4 A3 A2 A1 A0
L1H0
L1H2

A4 A3 A2
L1MLP A1 A0

Table 1: For a sample model, all nodes used in predictions are shown by token position (horizontally) and model
layer (vertically), detailing the answer digits they impact. Here, the attention heads in token position P10 labelled
A5..3 help predict the answer digits A3, A4 and A5. For all addition and mixed models studied, before the "="
token, each node often calculates data used to predict multiple answer digits. After the "=" token, all nodes in a
given token position are used to predict a single answer digit.

and Table 1), providing insight into the specific300

computations performed at each node. For each301

answer digit An, using test questions correspond-302

ing to the ST8, ST9 and ST10 categories, we per-303

formed PCA on the nodes yielding interpretable304

results. Specifically nine “node and answer-digit”305

combinations (see Figs 8 and 9) showed strong306

clustering of the questions aligned to the ST8, ST9307

and ST10 categories.308

The algorithm predicts the first answer digit, A5,309

at position P11. A5, which is always 0 or 1, is the310

most challenging to predict as it may rely on a long311

carry one cascade (e.g. 55555+44445=100000).312

An accurate algorithm must compute this cascade313

using the nodes located in positions P8 to P11. As314

illustrated in Figure 7, these nodes attend to all315

digit pairs from D4 D’4 to D0 D’0. Additionally,316

the PCA data, as shown in Figures 8 and 9, suggest317

that these nodes produce tri-state outputs. After318

our first two algorithm hypothesises failed testing319

(see App. H and I), we discovered that the model320

utilizes a minimal set of “carry one” information,321

leading to the development of the TriCase quanta.322

The model performs An.ST using bigrams (see323

App. F) to map two input tokens to one result token324

e.g. “6” + “7” = ST10. In positions P8 to P11, the325

model does An.ST calculations on all digit pairs326

from D4 D’4 to D0 D’0.327

An MLP layer can be thought of as a “key-value328

pair" memory (Meng et al., 2022; Geva et al., 2021)329

that can hold many bigrams and trigrams. We posit330

our MLP implements the TriAdd function using331

bigrams and trigrams to calculate An.SV values332

from An.ST values.333

For a specific 5-digit addition model instance, 334

we mapped the algorithm to individual nodes and 335

verified each node’s role using ablation interven- 336

tion. Figure 3 diagrams the algorithm, with node 337

details in App. J. The model adheres to all known 338

constraints and achieves six nines accuracy. We 339

concluded this model instance is well-understood, 340

well-functioning, and hence known-good. 341

The 1-layer model uses 21 nodes to achieve two 342

nines (99%) accuracy. This model uses 36 nodes 343

(an increase of 71%) to achieve six nines accuracy. 344

4.3 Training n-digit Addition models 345

To investigate whether this algorithm is used 346

widely, we first trained seven 2-layer addition 347

models with 5-, 6- and 10-digits, using differ- 348

ent seeds, a different optimizer, and changing 349

the answer format to include a sign token (e.g. 350

111111+222222=+0333333). 351

These seven models all have very low loss (e.g. 352

1.5e-8) and six nines accuracy. (Details in Tab.6.) 353

4.4 Investigating n-digit Addition models 354

We developed a declarative method to outline each 355

sub-task. For instance, a sub-task may focus on 356

question digits D2 and D’2, affect answer digit A3, 357

influence S0 but not S1 complexity questions, and 358

have specific PCA results and ablation tests. Using 359

this declaration, we identified nodes performing 360

these sub-tasks across all models. 361

An algorithm hypothesis, such as the one in sec- 362

tion 4.2, is described by the required sub-tasks and 363

their relationships. For example, our addition algo- 364

rithm specifies that the model must execute An.ST 365

5

(P11) (P12) (P13) (P14) (P15) (P16) (P17) (P18) (P19) (P20)
D’1 D’0 = + A6 A5 A4 A3 A2 A1

L0H0 A2.ST A3.ST A1.ST A4.ST A4.SC A3.SC A2.SC A1.SC A0.SC
L0H1 A1.ST A0.ST

A5.SA A4.SA A3.SA A2.SA A1.SA A0.SA
L0H2 A5.ST

Table 2: All addition models studied implement our addition algorithm. The algorithm SA, SC and ST sub-tasks all
exist for each digit and in appropriate token positions. For a sample model, this map shows the subtask locations.
Interestingly, here each SA sub-task is shared across two attention heads.

sub-tasks for each question digit before the “=” to-366

ken. We created a framework for declaring n-digit367

algorithm hypotheses and testing them against the368

sub-tasks found in each model, mapping the results369

(see Table 2 for an example).370

Our seven 2-layer addition models all implement371

our addition algorithm. Given their six nines ac-372

curacy and implementation of the same algorithm,373

we can confirm these models as known-good.374

4.5 Training n-digit Mixed models375

To explore reuse, we initialized untrained mod-376

els with a known-good addition-only model, then377

trained them to perform both subtraction and addi-378

tion. We call these “mixed" models.379

Specifically, we trained seven larger (6- or 10-380

digit, 2- or 3-layer, 3- or 4-head) models after ini-381

tializing them with the weights from a known-good382

2-layer 3-head addition model. The first 2 layers,383

first 3 heads of the mixed model were initialized384

with the addition model weights. We trained the385

mixed model with 80% subtraction and 20% ad-386

dition batches. We enriched the (infinite) train-387

ing dataset with rare addition and subtraction edge388

cases.389

Some models achieved six nines accuracy and390

the others five nines. Attempts to “freeze" the in-391

serted attention heads and/or MLP layers by peri-392

odically copying the addition weights back into the393

mixed model every 100 training steps resulted in394

lower accuracy. (Refer App.M and Tab.6)395

4.6 Investigating n-digit Mixed models396

Unlike addition, subtraction question answers can397

be either positive or negative. Similar looking398

positive-answer (e.g. 10009-10000=+000009) and399

negative-answer (e.g. 10009-20000=-009991) sub-400

traction questions can give answers that differ at401

several digit positions. We posited that the model402

treats three distinct question classes “addition",403

“positive-answer subtraction" and “negative-answer404

5000 10000 15000 20000 25000 30000 35000

10n

1μ

100μ

0.01

1

Training Steps

Lo
g

Lo
ss

Figure 4: Each mixed model was initialized with the
weights from a known-good addition model, then was
trained on 80% subtraction and 20% addition batches.
A sample log loss graph (final loss 8.0e-9) is shown.

subtraction" differently. Ablation of nodes showed 405

that some nodes only help predict one question 406

class, some help predict two classes and some all 407

three classes. It also showed that the inserted ad- 408

dition nodes are heavily used and the majority be- 409

come polysemantic, performing both addition and 410

subtraction calculations. (Details in Tab.3.) 411

Used Inserted
Question class # % # %
All questions 96 48
Addition 61 64% 42 88%
Positive-answer sub 70 73% 40 83%
Negative-answer sub 53 55% 29 60%

Table 3: Mixed models re-use most inserted addition-
model nodes. Many inserted nodes become polyse-
mantic during training - performing addition, positive-
answer subtraction and negative-answer subtraction sub-
tasks simultaneously. For a sample mixed model that
uses 96 nodes and had 48 nodes inserted, this table
shows inserted node reuse.

To investigate the subtraction algorithm, and par- 412

alleling addition algorithm subtasks, we defined 413

subtraction-specific sub-tasks Base Diff and Bor- 414

row One (see Tab. 4) and complexity measures (see 415

App. G and N). 416

We found that the inserted nodes that performed 417

SA in the addition model, perform SA, MD and ND 418

in the mixed model. (Refer Table 5.) These three 419

6

Name +ve
Sub

-ve
Sub

Definition

Base Diff MD ND Dn- D′
n% 10

Borrow One MB NB Dn- D′
n< 0

Table 4: We define 2 “positive-answer subtraction" and
2 “negative-answer subtraction" sub-tasks that parallel
the addition sub-tasks Base Add SA and Carry One SC

sub-tasks are similar in that each performs a map-420

ping from 100 input cases (10 Dnx 10 D′
n) to 10421

output cases (0..9). The mixed model “upgraded"422

these nodes to be polysemantic during training.423

Similarly, some SC addition nodes became pol-424

ysemantic and now process SC, MB and/or NB .425

An accurate subtraction model must answer426

“cascading borrow one" questions like 100000-427

000001=+0099999. We define the “essence of428

borrow one" subtask MT used by both positive-429

answer (M) and negative answer (N) subtraction430

questions. MT is like addition’s ST subtask:431

An.MT = TriCase︸ ︷︷ ︸
(Dn,D′

n)

=


MTN if Dn < D′

n

MT0 if Dn = D′
n

MT1 if Dn > D′
n

(5)432

For M questions, MTN is a definite borrow one,433

MT0 is a possible borrow one (depending on the434

results of other digit calculations) and MT1 is def-435

initely not a borrow one. For N questions, the436

interpretation is the opposite.437

Paralleling addition’s “cascading carry one"438

An.SV calculation, we define “cascading borrow439

one" calculation sub-tasks An.MV for positive-440

answer subtraction and An.NV for negative-441

answer subtraction. We posit the MLP imple-442

ments TriAdd-like functions using bigrams and443

trigrams to calculate An.MV and An.NV values444

from An.MT values.445

4.7 Mixed model question class detection446

We posit that there is a specific circuit to detect447

whether a question is in the S, M or N class. If the448

question operator is “+" then the class is S, but if449

the question operator is “-" then the model must450

calculate if D >= D′ to distinguish between the451

M and N classes. For accuracy, it needs this answer452

by the “=" token to predict the first answer token453

(the answer sign) as “+" or “-".454

D >= D′ can be derived from the An.MT data. 455

Alternatively, this calculation could be a distinct 456

circuit using a new sub-task we define as: 457

An.GT =

{
1 if Dn ≥ D′

n,

0 otherwise.
(6) 458

For a 4 digit question, D >= D′ can be cal- 459

culated as A3.GT=1 or (A3.GT=0 and (A2.GT=1 460

or (A2.GT=0 and (A1.GT=1 or (A1.GT=0 and 461

A0.GT=1))). Our test for GT is that ablation causes 462

the answer to change sign. The MT calculation is 463

very similar. 464

We found An.MT and An.GT subtasks in all 465

mixed models. Usually (but not always) both sub- 466

tasks are calculated by the same node. (Table 2 467

shows an example.) As both the MT and GT 468

approaches are valid, models can learn valid al- 469

gorithm sub-task implementations that differ per 470

answer digit. 471

We further posit that a node that implements say 472

A2.SA, A2.MD and A2.ND does not know whether 473

it is dealing with a S, M or N question, so it outputs 474

all three possible answers to the residual stream. 475

Another node must calculate the S, M or N distinc- 476

tion likely by attending to the question operator 477

(OPR) and the answer sign (SGN). We define atten- 478

tion sub-tasks OPR and SGN for these calculations. 479

Table 2 shows that for each answer digit one at- 480

tention head attends to both OPR and SGN. We 481

believe these heads transfer sufficient data to the 482

residual stream to allow the MLP layer(s) to calcu- 483

late the question class, and so select the appropriate 484

output from the polysemantic A2.SA/MD/ND node. 485

4.8 Mixed model summary 486

The 7 mixed experimental models achieve five or 487

six nines accuracy and contain the same sub-tasks, 488

implying a common algorithm. However, without 489

fully understanding this algorithm, we can’t con- 490

firm these models as known-good. 491

5 Conclusion 492

We successfully trained and verified known-good 493

5-, 6- and 10-digit, 2-layer, 3-head addition mod- 494

els implementing the same algorithm with minor 495

variations. 496

We demonstrated component reuse by integrat- 497

ing an existing addition model into a larger “mixed" 498

model for both addition and subtraction, achieving 499

six nines accuracy. This integration helped us un- 500

derstand the mixed model’s algorithm. The mixed 501

7

(P9) (P10) (P11) (P12) (P13) (P14) (P15) (P16) (P17) (P18) (P19) (P20)
D’3 D’2 D’1 D’0 = A7 A6 A5 A4 A3 A2 A1

L0H0
A4.MT A3.MT A4.ST A2.SC A1.SC A0.SC OPR
A4.GT A3.MT A4.MT A4.SC A3.SC A2.NB A1.MB A0.MB SGN

OPR A1.NB A0.NB

L0H1
A2.ST A1.ST A3.ST A0.ST A5.SA

A4.ST A2.MT A1.MT A3.GT A0.MT A5.MD
A2.GT A1.GT A0.GT A4.SA A3.SA A2.SA A1.SA A0.SA

L0H2
A5.ST A5.SA A4.MD A3.MD A2.MD A1.MD A0.MD
OPR A5.MD A4.ND A3.ND A2.ND A1.ND A0.ND
SGN A5.ND

L0H3
OPR OPR OPR OPR OPR OPR
SGN SGN SGN SGN SGN SGN

Table 5: For mixed models, in later tokens, polysemantic attention heads simultaneously generate outputs for the
three question classes addition S, M and N. Other heads calculate the question class by attending to the question
operation (OPR) token and the answer sign (SGN) token. The MLP layers then select the output appropriate for the
class. In this sample map, from P16, the first 3 rows contain many polysemantic nodes, while the 4th row calculates
the question class.

model reuses most inserted addition nodes, upgrad-502

ing many to become polysemantic - performing503

both addition and subtraction subtasks simultane-504

ously.505

Our work supports Michaud et al. (2023)’s as-506

sertion that many prediction problems can be bro-507

ken into finite “quanta" computations essential for508

loss minimization. It also aligns with the idea that509

understanding a network’s functionality involves510

identifying and comprehending its sub-quanta.511

5.1 Future Work512

In the future, we aim to develop a comprehensive,513

known-good model for n-digit addition, subtrac-514

tion, and multiplication. Our approach could also515

be applied to create known-good models in logical516

reasoning and planning.517

Further exploration of using known-good mod-518

els to improve LLMs is a promising direction for519

enhancing LLM trustworthiness and capabilities.520

This aligns with current research in the field, in-521

cluding model composition (Bansal et al., 2024),522

LM up-scaling which emulates fine-tuning a large523

model using a small model (Mitchell et al., 2023),524

and inserting accurate models into untrained ones525

(as demonstrated in this paper). Additionally, re-526

search on "spare" neurons in LLMs (Voita et al.,527

2023; Hu et al., 2021) suggests potential for small-528

scale modifications to fix erroneous circuits, further529

supporting this approach.530

Developing methods to incorporate compact531

known-good models into LLMs could democratize532

AI Safety research, allowing small teams to focus 533

on specific areas and create quality components to 534

improve LLMs. 535

6 Limitations 536

While we identify and test the role of each node 537

in the mixed model algorithm, we do not detail 538

the data representation of the polysemantic nodes, 539

SGN nodes, and OPR nodes output in the residual 540

stream. This limitation means we can not detail 541

the transformation of this data performed by MLP 542

layer nodes that support accurate answer digit pre- 543

diction. 544

Our automated framework for discovering algo- 545

rithm sub-tasks in models, while instrumental in 546

accelerating our research, has limitations. Some 547

aspects are specific to our math models and may 548

not be directly applicable to other domains. 549

Furthermore, while we have made progress on 550

a declarative language to describe algorithms in 551

terms of necessary sub-tasks and a framework to 552

test these descriptions against specific models, this 553

work is still in its early stages. 554

7 Impact Statement 555

Our work aims to explain the inner workings of 556

transformer-based language models, which may 557

have broad implications for a wide range of ap- 558

plications. A deeper understanding of generative 559

AI has dual usage. While the potential for misuse 560

exists, we discourage it. The knowledge gained 561

can be harnessed to safeguard systems, ensuring 562

8

they operate as intended. It is our sincere hope that563

this research will be directed towards the greater564

good, enriching our society and preventing detri-565

mental effects. We encourage responsible use of566

AI, aligning with ethical guidelines.567

References568

Rachit Bansal, Bidisha Samanta, Siddharth Dalmia, Ni-569
tish Gupta, Shikhar Vashishth, Sriram Ganapathy,570
Abhishek Bapna, Prateek Jain, and Partha Talukdar.571
2024. Llm augmented llms: Expanding capabilities572
through composition. Preprint, arXiv:2401.02412.573

Boaz Barak, Benjamin L. Edelman, Surbhi Goel,574
Sham M. Kakade, Eran Malach, and Cyril Zhang.575
2022. Hidden progress in deep learning: Sgd576
learns parities near the computational limit. ArXiv,577
abs/2207.08799.578

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert579
Huben, and Lee Sharkey. 2023. Sparse autoencoders580
find highly interpretable features in language models.581
Preprint, arXiv:2309.08600.582

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom583
Henighan, Nicholas Joseph, Ben Mann, Amanda584
Askell, Yuntao Bai, Anna Chen, Tom Conerly,585
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac586
Hatfield-Dodds, Danny Hernandez, Andy Jones,587
Jackson Kernion, Liane Lovitt, Kamal Ndousse,588
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-589
plan, Sam McCandlish, and Chris Olah. 2021a. A590
mathematical framework for transformer circuits.591
Transformer Circuits Thread. Https://transformer-592
circuits.pub/2021/framework/index.html.593

Nelson Elhage, Neel Nanda, Catherine Olsson, et al.594
2021b. A mathematical framework for transformer595
circuits. https://transformer-circuits.pub/596
2021/framework/index.html.597

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav598
Goldberg. 2022. Transformer feed-forward layers599
build predictions by promoting concepts in the vo-600
cabulary space. Preprint, arXiv:2203.14680.601

Mor Geva, Roei Schuster, Jonathan Berant, and Omer602
Levy. 2021. Transformer feed-forward layers are key-603
value memories. In Proceedings of the 2021 Confer-604
ence on Empirical Methods in Natural Language Pro-605
cessing, pages 5484–5495, Online and Punta Cana,606
Dominican Republic. Association for Computational607
Linguistics.608

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul609
Arora, Steven Basart, Eric Tang, Dawn Song, and610
Jacob Steinhardt. 2021. Measuring mathematical611
problem solving with the math dataset. In Thirty-612
fifth Conference on Neural Information Processing613
Systems Datasets and Benchmarks Track (Round 2).614

Dan Hendrycks and Mantas Mazeika. 2022. X-risk615
analysis for ai research. ArXiv, abs/2206.05862.616

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 617
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 618
Weizhu Chen. 2021. Lora: Low-rank adaptation of 619
large language models. Preprint, arXiv:2106.09685. 620

Erik Jenner, Adrià Garriga-alonso, and Egor 621
Zverev. 2023. A comparison of causal scrub- 622
bing, causal abstractions, and related meth- 623
ods. https://www.lesswrong.com/posts/ 624
uLMWMeBG3ruoBRhMW/a-comparison-of-causal- 625
scrubbing-causal-abstractions-and. 626

Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat: 627
Fine-tuned llama outperforms gpt-4 on arithmetic 628
tasks. Preprint, arXiv:2305.14201. 629

Kevin Meng, David Bau, Alex Andonian, and Yonatan 630
Belinkov. 2022. Locating and editing factual associ- 631
ations in gpt. https://proceedings.neurips.cc/ 632
paper_files/paper/2022/file/ 633
6f1d43d5a82a37e89b0665b33bf3a182-Paper- 634
Conference.pdf. 635

Eric J. Michaud, Ziming Liu, Uzay Girit, and Max 636
Tegmark. 2023. The quantization model of neural 637
scaling. Preprint, arXiv:2303.13506. 638

Eric Mitchell, Rafael Rafailov, Archit Sharma, Chelsea 639
Finn, and Christopher D. Manning. 2023. An emula- 640
tor for fine-tuning large language models using small 641
language models. Preprint, arXiv:2310.12962. 642

Neel Nanda. 2023. One layer sparce autoen- 643
coder. https://github.com/neelnanda-io/1L- 644
Sparse-Autoencoder. 645

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess 646
Smith, and Jacob Steinhardt. 2023. Progress mea- 647
sures for grokking via mechanistic interpretability. 648
Preprint, arXiv:2301.05217. 649

nostalgebraist. 2020. interpreting gpt: the logit 650
lens. https://www.alignmentforum.org/posts/ 651
AcKRB8wDpdaN6v6ru/interpreting-gpt-the- 652
logit-lens. 653

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel 654
Goh, Michael Petrov, and Shan Carter. 2020. 655
Zoom in: An introduction to circuits. Distill. 656
Https://distill.pub/2020/circuits/zoom-in. 657

Philip Quirke and Fazl Barez. 2024. Understanding ad- 658
dition in transformers. In The Twelfth International 659
Conference on Learning Representations. 660

Tilman Raukur, An Chang Ho, Stephen Casper, and 661
Dylan Hadfield-Menell. 2022. Toward transparent ai: 662
A survey on interpreting the inner structures of deep 663
neural networks. 2023 IEEE Conference on Secure 664
and Trustworthy Machine Learning (SaTML), pages 665
464–483. 666

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. 667
2023. Are emergent abilities of large language mod- 668
els a mirage? Preprint, arXiv:2304.15004. 669

9

https://arxiv.org/abs/2401.02412
https://arxiv.org/abs/2401.02412
https://arxiv.org/abs/2401.02412
https://api.semanticscholar.org/CorpusID:250627142
https://api.semanticscholar.org/CorpusID:250627142
https://api.semanticscholar.org/CorpusID:250627142
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://arxiv.org/abs/2203.14680
https://arxiv.org/abs/2203.14680
https://arxiv.org/abs/2203.14680
https://arxiv.org/abs/2203.14680
https://arxiv.org/abs/2203.14680
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://api.semanticscholar.org/CorpusID:249626439
https://api.semanticscholar.org/CorpusID:249626439
https://api.semanticscholar.org/CorpusID:249626439
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://www.lesswrong.com/posts/uLMWMeBG3ruoBRhMW/a-comparison-of-causal-scrubbing-causal-abstractions-and
https://www.lesswrong.com/posts/uLMWMeBG3ruoBRhMW/a-comparison-of-causal-scrubbing-causal-abstractions-and
https://www.lesswrong.com/posts/uLMWMeBG3ruoBRhMW/a-comparison-of-causal-scrubbing-causal-abstractions-and
https://www.lesswrong.com/posts/uLMWMeBG3ruoBRhMW/a-comparison-of-causal-scrubbing-causal-abstractions-and
https://www.lesswrong.com/posts/uLMWMeBG3ruoBRhMW/a-comparison-of-causal-scrubbing-causal-abstractions-and
https://arxiv.org/abs/2305.14201
https://arxiv.org/abs/2305.14201
https://arxiv.org/abs/2305.14201
https://arxiv.org/abs/2305.14201
https://arxiv.org/abs/2305.14201
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://arxiv.org/abs/2303.13506
https://arxiv.org/abs/2303.13506
https://arxiv.org/abs/2303.13506
https://arxiv.org/abs/2310.12962
https://arxiv.org/abs/2310.12962
https://arxiv.org/abs/2310.12962
https://arxiv.org/abs/2310.12962
https://arxiv.org/abs/2310.12962
https://github.com/neelnanda-io/1L-Sparse-Autoencoder
https://github.com/neelnanda-io/1L-Sparse-Autoencoder
https://github.com/neelnanda-io/1L-Sparse-Autoencoder
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://doi.org/10.23915/distill.00024.001
https://arxiv.org/pdf/2310.13121.pdf
https://arxiv.org/pdf/2310.13121.pdf
https://arxiv.org/pdf/2310.13121.pdf
https://api.semanticscholar.org/CorpusID:251104722
https://api.semanticscholar.org/CorpusID:251104722
https://api.semanticscholar.org/CorpusID:251104722
https://api.semanticscholar.org/CorpusID:251104722
https://api.semanticscholar.org/CorpusID:251104722
https://arxiv.org/abs/2304.15004
https://arxiv.org/abs/2304.15004
https://arxiv.org/abs/2304.15004

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya670
Sachan. 2023. A mechanistic interpretation of arith-671
metic reasoning in language models using causal672
mediation analysis. In Proceedings of the 2023 Con-673
ference on Empirical Methods in Natural Language674
Processing, pages 7035–7052.675

Elena Voita, Javier Ferrando, and Christoforos Nalmpan-676
tis. 2023. Neurons in large language models: Dead,677
n-gram, positional. Preprint, arXiv:2309.04827.678

Angela Zhang, Lei Xing, James Zou, and Joseph C. Wu.679
2022. Shifting machine learning for healthcare from680
development to deployment and from models to data.681
Nature Biomedical Engineering, 6:1330 – 1345.682

A Appendix: Terminology683

These terms and abbreviations are used in this pa-684

per and the associated Colabs and python code:685

• Pn : Model (input or output) token position.686

Zero-based. e.g. P18, P18L1H0687

• Ln : Model layer n. Zero-based. e.g.688

P18L1H2689

• Hn : Attention head n. Zero-based. e.g.690

P18L1H2691

• Mn : MLP neuron n. Zero-based692

• PnLnHn : Location / name of a single atten-693

tion head, at a specified layer, at a specific694

token position695

• PnLnMn : Location / name of a single MLP696

neuron, at a specified layer, at a specific token697

position698

• D : First number of the pair question numbers699

• Dn : nth numeric token in the first question700

number. Zero-based. D0 is the units value701

• D’ : Second number of the pair question num-702

bers703

• D’n : nth token in the second question number.704

Zero-based. D0 is the units value705

• A : Answer to the question (including answer706

sign)707

• An : nth token in the answer. Zero-based. A0708

is the units value. The highest token is the “+"709

or "-" answer sign710

• S : Prefix for Addition. Think S for Sum. Aka711

ADD.712

• SA : Basic Add. An addition sub-task. An.SA 713

is defined as (Dn + D’n) % 10. e.g. 5 + 7 714

gives 2 715

• SC : Carry One. An addition sub-task. An.SC 716

is defined as Dn + D’n >= 10. e.g. 5 + 7 717

gives True 718

• SS : Make Sum 9. An addition sub-task. 719

An.SS is defined as Dn + D’n == 9. e.g. 5 + 7 720

gives False 721

• ST : TriCase. An addition sub-task. Refer 722

paper 2 for details 723

• ST8, ST9, ST10 : Outputs of the ST TriCase 724

sub-task. 725

• M : Prefix for Subtraction with a positive an- 726

swer. Think M for Minus. Aka SUB 727

• : Basic Difference. A subtraction sub-task. 728

An.MD is defined as (Dn - D’n) % 10. e.g. 3 - 729

7 gives 6 730

• : Borrow One. A positive-answer subtraction 731

sub-task. An.MB is defined as Dn - D’n < 0. 732

e.g. 5 - 7 gives True 733

• MZ : Make Zero. A positive-answer subtrac- 734

tion sub-task. An.MZ is defined as Dn - D’n 735

== 0. e.g. 5 - 5 gives True 736

• MT : TriCase. A positive-answer subtraction 737

sub-task. 738

• MT1, MT0, MT-1 : Outputs of the MT TriC- 739

ase sub-task. 740

• N : Prefix for Subtraction with a negative an- 741

swer. Think N for Negative. Aka NEG 742

• ND : Basic Difference. A negative-answer 743

subtraction sub-task. An.ND is defined as (Dn 744

- D’n) % 10. e.g. 3 - 7 gives 6 745

• NB : Borrow One. A negative-answer subtrac- 746

tion sub-task. An.NB is defined as Dn - D’n 747

< 0. e.g. 5 - 7 gives True 748

• NZ : Make Zero. A negative-answer subtrac- 749

tion sub-task. An.NZ is defined as Dn - D’n 750

== 0. e.g. 5 - 5 gives True 751

• NT : TriCase. A negative-answer subtraction 752

sub-task. 753

10

https://arxiv.org/abs/2309.04827
https://arxiv.org/abs/2309.04827
https://arxiv.org/abs/2309.04827
https://api.semanticscholar.org/CorpusID:250283181
https://api.semanticscholar.org/CorpusID:250283181
https://api.semanticscholar.org/CorpusID:250283181

• GT : Greater Than. A (positive-answer or754

negative-answer) subtraction sub-task. An.GT755

is defined as Dn > D’n. e.g. 3 > 5 gives False756

• OPR : Operator. A sub-task that attends to757

the + or - token in the question (which de-758

termines whether the question is addition or759

subtraction).760

• SGN : Sign. A sub-task that attends to the761

first answer token, which is + or -762

• PCA : Principal Component Analysis763

• EVR : Explained Variance Ratio. In PCA,764

EVR represents the percentage of variance765

explained by each of the selected components.766

B Appendix: Model Configuration767

Addition, subtraction and mixed (addition and sub-768

traction) training experiments were done in a Colab769

notebook. The Colab runs on a T4 GPU. Each train-770

ing run takes up to 60 mins. The key parameters771

(and their common configurations) are:772

• n_layers = 1, 2 or 3: Number of layers.773

• n_heads = 3 or 4: Number of attention heads.774

• n_digits = 5, 6 or 10: Number of digits in the775

question.776

Each digit is represented as a separate token.777

(Liu and Low, 2023) state that LLaMa’s “remark-778

able arithmetic ability ... is mainly atributed to779

LLaMA’s consistent tokenization of numbers". The780

model’s vocabulary contains 14 tokens (0, .., 9, +,781

-, =, *, /) to enable this and planned future investi-782

gations.783

Training uses a new batch of data each step (aka784

Infinite Training Data) to minimise memorisation.785

Depending on the configuration, each training run786

processes 1 to 4 million training datums. For the787

5-digit addition problem there are 100,000 squared788

(that is 10 billion) possible questions. So the train-789

ing data is much less than 1% of the possible prob-790

lems.791

Addition and subtraction include rare edge792

cases. For example, the SS cascades (e.g.793

44445+55555=100000, 54321+45679=1000000,794

44450+55550=10000, 1234+8769=10003) are ex-795

ceedingly rare. The data generator was enhanced796

to increase the frequency of all known edges cases.797

This lead to lower model loss.798

Validation test data covering all edge cases was 799

manually constructed. These test cases are not used 800

during training. 801

The Colabs will be made available on publica- 802

tion. 803

C Appendix: Model Loss 804

The model defaults to batch size = 64, learning 805

rate = 0.00008 and weight decay = 0.1. The loss 806

function is simple: 807

• Per Digit Loss: For “per digit” graphs and 808

analysis, for a given answer digit, the loss 809

used is negative log likelihood. 810

• All Digits Loss: For “all answer digits” graphs 811

and analysis, the loss used is the mean of the 812

“per digit” loss across all the answer digits. 813

In our experimental models, the number of digits 814

in the question varies from 5 to 10, the number of 815

layers varies from 1 to 4, the number of heads 816

varies from 3 to 4. Each experimental model’s loss 817

is detailed in Tab. 6. 818

D Appendix: Addition Model Shape 819

While we wanted a very low loss addition model, 820

we also wanted to keep the model compact - in- 821

tuiting that a smaller model would be easier to 822

understand than a large model. Here are the things 823

we tried to reduce loss that didn’t work: 824

• Increasing the frequency of hard (cascading 825

SS) examples in the training data so the model 826

has more hard examples to learn from. This 827

improved training speed but did not reduce 828

loss. 829

• Increasing the number of attention heads from 830

3 to 4 or 5 (while still using 1 layer) to provide 831

more computing power. 832

• Changing the question format from 833

“12345+22222=” to “12345+22222equals” 834

giving the model more prediction steps after 835

the question is revealed before it needs to 836

state the first answer digit. 837

• With n_layers = 1 increasing the number of 838

attention heads from 3 to 4. 839

• Changing the n_layers to 2 and n_heads to 2. 840

The smallest model shape that did reduce loss 841

significantly was 2 layers with 3 attention heads. 842

11

E Appendix: Experimental models843

Twenty-one models were trained and analyzed (re-844

fer Tab. 6). The models and analysis output will be845

made available on HuggingFace on publication to846

support further research in AI Safety.847

For each model the ’VerifiedArithmeticTrain’848

Colab notebook generates two files:849

• A “XXXXXX.pth" file containing the model850

weights851

• A “XXXXXX_train.json" file containing con-852

figuration information and training loss data853

While, for each model the ’VerifiedArithmetic-854

Analysis’ Colab notebook generates two more files:855

• A “XXXXXX_behavior.json" file contain-856

ing generic “behavior" facts learnt about the857

model by the Colab e.g. P18L0H0 attends to858

tokens D3 and D’3859

• A “XXXXXX_maths.json" file containing860

“maths-specific" facts learnt about the model861

by the Colab e.g. P18L0H0 performs the862

A3.SC sub-task.863

F Appendix: TriAdd Implementation864

TriAdd transfers data from An−1to Anby integrat-865

ing the values of An−1.ST and An.ST . This func-866

tion can be represented as nine bigram mappings867

with three possible outputs. (Refer Tab.7.)868

Note that in the case An.ST = ST9 and869

An−1.ST = ST10, the answer is indeterminate.870

The result could be ST8 or ST9 but importantly871

it can not be ST10. We choose to use ST8 in our872

definition, but ST9 would work just as well.873

G Appendix: Complexity874

To analyze question difficulty, we categorized ad-875

dition questions by the complexity of the compu-876

tation required to solve the question, as shown in877

Tab. 8. The categories are arranged according to878

the number of digits that a carry bit has to cascade879

through.880

H Appendix: Addition Hypothesis 1881

Given the 2-layer attention pattern’s similarity to882

1-layer attention pattern, and the above evidence,883

our first (incorrect) hypothesis was that the 2-layer884

algorithm:885

• Is based on the same SA, SC and SS operations 886

as the 1-layer. 887

• Uses the new early positions to (somehow) do 888

the SS calculations with higher accuracy than 889

the 1-layer model. 890

• The long double staircase still finalises each 891

answer digit’s calculation. 892

• The two attention nodes in the long double 893

staircase positions do the SA and SC calcula- 894

tions and pull in SS information calculated in 895

the early positions. 896

If this is correct then the 2-layer algorithm suc- 897

cessfully completes these calculations: 898

• A0 = A0.SA 899

• A1 = A1.SA + A0.SC 900

• A2 = A2.SA + (A1.SC or (A1.SS & A0.SC)) 901

• A3 = A3.SA + (A2.SC or (A2.SS & A1.SC) 902

or (A2.SS & A1.SS & A0.SC)) 903

• A4 = A4.SA + (A3.SC or (A3.SS & A2.SC) 904

or (A3.SS & A2.SS & A1.SC) or (A3.SS & 905

A2.SS & A1.SS & A0.SC)) 906

• A5 = A4.SC or (A4.SS & A3.SC) or (A4.SS 907

& A3.SS & A2.SC) or (A4.SS & A3.SS 908

& A2.SS & A1.SC) or (A4.SS & A3.SS & 909

A2.SS & A1.SS & A0.SC) 910

Our intuition is that there are not enough useful 911

nodes in positions 8 to 11 to complete the A5 calcu- 912

lation this way. So we abandoned this hypothesis. 913

I Appendix: Addition Hypothesis 2 914

Our second (incorrect) hypothesis was that the 2- 915

layer algorithm has a more compact data represen- 916

tation, so it can pack more calculations into each 917

node, allowing it to accurately predict A5 in step 918

11. 919

We claimed the model stores the sum of each 920

digit-pair as a single token in the range “0” to “18” 921

(covering 0+0 to 9+9). We name this operator An.T, 922

where T stands for “token addition”: 923

• An.T = Dn+ D′
n 924

The An.T operation does not understand math- 925

ematical addition. Tab. 9 shows how the model 926

implements the T operator as a bigram mapping. 927

12

Num
Digits

Num
Layers

Num
Heads

Train
Steps

Train
Seed

Train
loss

Addition
Fails / M

Subtract
Fails / M

Heads
used

MLPs
used

Addition models
5 1 3 30K 372001 9.4e-2 12621 N/A 15 6
5 2 3 15K 372001 1.6e-8 0 N/A 30 16
5 2 3 40K 372001 2.0e-9 0 N/A 22 15
6 2 3 15K 372001 1.7e-8 2 N/A 31 17
6 2 3 20K 173289 1.5e-8 0 N/A 28 17
6 2 3 20K 572091 7.0e-9 0 N/A 35 17
6 2 3 40K 372001 2.0e-9 0 N/A 29 17
10 2 3 40K 572091 7.0e-9 0 N/A 44 28

Subtraction models
6 2 3 30K 372001 5.8e-6 N/A 0 40 21
10 2 3 75K 173289 2.0e-3 N/A 6672 101 37

Mixed models
6 3 4 40K 372001 5.0e-9 1 0 54 26
10 3 4 75K 173289 1.1e-6 2 295 143 53

Mixed models initialized with addition model
6 2 3 40K 572091 2.4e-8 0 5 57 21
6 3 3 40K 572091 1.8e-8 0 3 70 35
6 3 3 80K 572091 1.6e-8 0 3 75 35
6 3 4 40K 372001 8.0e-9 0 0 72 26
6 3 4 40K 173289 1.4e-8 3 2 60 29
6 3 4 50K 572091 2.9e-8 0 4 79 29
10 3 3 50K 572091 6.3e-7 6 7 90 45

Mixed models initialized with add model. Reset useful heads every 100 steps
6 4 4 40K 372001 1.7e-8 3 8 51 30

Mixed models initialized with add model. Reset useful heads & MLPs every 100 steps
6 4 3 40K 372001 3.0e-4 17 3120 115 53

Table 6: Main experimental models studied. The number of addition and subtraction failures per million questions
is shown. The best 5-, 6- and 10-digit models are bolded.

An.ST An.ST An.ST
An−1.ST = ST8 = ST9 = ST10
ST8 ST8 ST9 ST10
ST9 ST8 ST9 ST10
ST10 ST8 * ST10 ST10

Table 7: An.TriAdd can be calculated from An.ST and
An−1.ST through nine bigram mappings and yielding
the three distinct outputs ST8, ST9 and ST10

An.T is a compact way to store data. Tab. 10928

show how, if it needs to, the model can convert a929

An.T value into a one-digit-accuracy SA, SC or SS930

value.)931

Our notation shorthand for one-digit-accuracy932

these “conversion" bigram mappings is:933

• An.SA = (An.T % 10) where % is the modulus934

operator935

• An.SC = (An.T // 10) where // is the integer 936

division operator 937

• An.SS= (An.T == 9) where == is the equality 938

operator 939

The A0.T value is accurate. But the other An.T 940

values are not accurate because each is constrained 941

to information from just one digit. We define an- 942

other more accurate operator An.T2 that has “two- 943

digit accuracy”. An.T2 is the pair sum for the nth 944

digit plus the carry bit (if any) from the n-1th digit 945

T: 946

• An.T2 = An.T + An−1.SC 947

An.T2 is more accurate than An.T. The An.T2 948

value is always in the range “0” to “19” (covering 949

0+0+0 to 9+9+CarryOne). Tab. 11 show how the 950

model can implement the T2 operator as a mapping. 951

13

Name Contains Example Freq
S0 SA 11111+12345=23456 ∼5%
S1 SA,SC 11111+9=22230 ∼21%
S2 SA,SCx2 11111+89=22300 ∼34%
S3 SA,SCx3 11111+889=23000 ∼28%
S4 SA,SCx4 11111+8889=30000 ∼11%
S5 SA,SCx5 11111+88889=100000 ∼2%

Table 8: We categorise addition questions into non-
overlapping “calculation complexity" quanta, ordered
by increased computational difficulty (and decreasing
occurrence frequency). Five-digit addition questions
quanta are S0 to S5. Ten-digit addition question quanta
are S0 to S10. S10’s frequency is ∼ 3e− 4 showing the
need to enrich training data for rare edge cases.

Dnvs D′
n 0 1 ... 4 5 ... 8 9

0 0 1 ... 4 5 ... 8 9
1 1 2 ... 5 6 ... 9 10
...
4 4 5 ... 8 9 ... 12 13
5 5 6 ... 9 10 ... 13 14
...
8 8 9 ... 12 13 ... 16 17
9 9 10 ... 13 14 ... 17 18

Table 9: Implementing the T operator as a bigram map-
ping from 2 input tokens to 1 result token.

Following this pattern, we define operators952

An.T3, An.T4 and An.T5 with 3, 4 and 5 digit953

accuracy respectively:954

• An.T3 = An.T + (An−1.T2 // 10) aka An.T955

+ An−1.SC2956

• An.T4 = An.T + (An−1.T3 // 10) aka An.T957

+ An−1.SC3958

• An.T5 = An.T + (An−1.T4 // 10) aka An.T959

+ An−1.SC4960

The value A4.T5 is accurate as it integrates SC961

and cascading SS data all the way back to and in-962

cluding A0.T. The values A1.T2, A2.T3, A3.T4 are963

also all accurate. If the model knows these values964

it can calculate answer digits accurately:965

• A1 = A1.T2 % 10966

• A2 = A2.T3 % 10967

• A3 = A3.T4 % 10968

• A4 = A4.T5 % 10969

An.T An.SA An.SC An.SS
0 0 0 0
1 1 0 0
...
8 8 0 0
9 9 0 1

10 0 1 0
...
17 7 1 0
18 8 1 0

Table 10: Converting a An.T value into a SA , SC or SS
value.

An.T An.T2 if
An−1.SC==0

An.T2 if
An−1.SC==1

0 0 1
1 1 2
...
9 9 10
10 10 11
...
17 17 18
18 18 19

Table 11: Calculating An.T2 from An.T and An−1.T

• A5 = A4.T5 // 10 970

In this hypothesis, all the answer digits are ac- 971

curately calculated using the nodes in positions 8 972

to 11. This hypothesis 2 is feasible, elegant and 973

compact - reflecting the authors (human) values for 974

good code. 975

Experimenation shows the model does not imple- 976

ment this hypothesis. It retains the long staircase 977

SA calculations in positions 11 to 16. Why? Two 978

reasons suggest themselves: 979

• Hypothesis 2 is too compact. The model is 980

not optimising for compactness. The long 981

staircase is discovered early in training, and it 982

works for simple questions. Once the overall 983

algorithm gives low loss consistently it stops 984

optimising. 985

• Hypothesis 2 accurately predicts all answer 986

digits in step 11 - reflecting the authors (hu- 987

man) values for good code. The model is not 988

motivated to do this. It just needs to accurately 989

predict A5 as 1 or 0 in step 11 and A4 in step 990

12 - nothing more. 991

We abandoned this hypothesis. 992

14

J Appendix: Addition Hypothesis 3993

The hypothesis 3 pseudo-code was derived itera-994

tively by obtaining experimental results and map-995

ping them to mathematical operations. Some of the996

experiments and mappings were:997

• Ablation experiments show that the A5 value998

is accurately calculated in prediction step 11999

using 5 attention heads and 5 MLP layers. The1000

pseudo-code accurately calculates A5 while1001

constraining itself to this many steps.1002

• Ablating the nodes one by one shows which1003

answer digit(s) are reliant on each node1004

(Ref Table 1). Most interestingly, ablating1005

P10.L0.H1 impacts the answer digits A5, A4,1006

A3, A2 (but not A1 and A0). This node is1007

used in the calculation of A5, A4, A3, A2 in1008

prediction steps 11, 12, 13 and 14. These re-1009

lationships are constraints that are all obeyed1010

by the pseudo-code.1011

• The pseudo-code has 4 instances where1012

An.ST is calculated using TriCase. PCA1013

of the corresponding nodes (P8.L0.H1,1014

P9.L0.H1, P11.L0.H2 and P14.L0.H1) shows1015

tri-state output for the specified Dn. (see Fig-1016

ure 8).1017

• The pseudo-code has 4 instances where com-1018

pound functions using TriCase and TriAdd to1019

generate tri-state outputs. PCA of the corre-1020

sponding nodes (P11.L0.H1, P12.L0.H1 and1021

P13.L0.H1) shows tri-state output for the spec-1022

ified Dn. (see Figure 8).1023

• Activation patching (aka interchange interven-1024

tion) experiments at attention head level con-1025

firmed some aspects of the calculations (see1026

§ K for details.1027

• The pseudo code includes calculations like1028

A1.ST which it says is calculated in P9.L0.H11029

and P9.L0.MLP. Ablation tells us both nodes1030

are necessary. For the attention head we use1031

the PCA results for insights. We didn’t imple-1032

ment a similar investigative tool for the MLP1033

layer, so in the pseudo-code we attribute the1034

calculation of A1.ST to both nodes.1035

• For P10.L0.H1, the attention head PCA could1036

represent either a bi-state or tri-state output1037

(see Figure 9). The MLP layer at P10.L0.MLP1038

could map the attention head output to either1039

a bi-state or tri-state. We cannot see which. 1040

The pseudo-code shows a tri-state calculation 1041

at P10.L0.MLP, but with small alterations the 1042

pseudo-code would work with a bi-state out- 1043

put. 1044

• For P15.L0.H1 the attention head PCA could 1045

represent either a bi-state or tri-state output 1046

(see Figure 9). The pseudo-code shows a 1047

bi-state calculation A0.SC at P15.L0.H1, but 1048

with small alterations the pseudo-code would 1049

work with a tri-state output. 1050

• The calculation of A1.ST2 in P14.L0.H1 is 1051

a interesting case. The model needs A1.ST2 1052

for A2 accuracy. The model could simply 1053

reuse the accurate A1.ST2 value calculated in 1054

P10. Activation patching shows that it does 1055

not. Instead the P14 attention heads calcu- 1056

late A1.ST1 from D1 and D’1 directly, and 1057

only relies on the P10.D1.ST2 value in the 1058

case where A1.ST2 != A1.ST. That is, the cal- 1059

culation is “use P14.A1.ST1 value else use 1060

A1.ST2 values". This aligns with the model 1061

learning the P10.A1.ST calculation early in 1062

training (for 90% accuracy) and later learning 1063

that P10.A1.ST2 contains additional informa- 1064

tion it can use to get to six nines accuracy. 1065

D'4 D'1 D'0 = + A5 A4 A3 A2 A1

L1MLP

L1H2

L1H0

L0MLP

L0H2

L0H1

L0H0

S0

S1

S0

S1

S3

S2 S1

S0

S2

S0

S3

S1

S0

S1

S0

S0

S4

S0

S0

S0

S3

S0

S1

S0

S0

S2

S0

S1

S0

S0

S0

S0

S0

S0

P6 P9 P10 P11 P12 P13 P14 P15 P16 P17

Figure 5: For a sample 5-digit 2-layer 3-head addition
model, this map shows a compacted view of all useful
token positions (horizontally) and all useful attention
heads and MLP layers (vertically) used in predictions as
green cells. Each cell shows the simpliest (lowest com-
plexity) quanta S0, S1, etc impacted when we ablate
each node. To answer S0 questions, only the S0 nodes
are used. To answer S1 questions, S0 and S1 nodes
are used, etc. The model only uses nodes in nine token
positions.

15

D'4 D'1 D'0 = + A5 A4 A3 A2 A1

L1MLP

L1H2

L1H0

L0MLP

L0H2

L0H1

L0H0

5

1

1

<1

11

1

8

24

18

18

14

<1

9

9

<1

43

26

71

53

<1

46

55

56

<1

57

13

47

53

<1

39

1

37

54

44

42

59

73

P6 P9 P10 P11 P12 P13 P14 P15 P16 P17

Figure 6: This map shows the % of enriched questions
that fail when we ablate each node in a 5-digit 2-layer
3-head addition model. The model only uses nodes in
token positions P8 to P16 (i.e. tokens D’2 to A1). Lower
percentages correspond to rarer edge cases. The grey
space represents nodes that are not used by the model.

D'4 D'1 D'0 = + A5 A4 A3 A2 A1

L1H2

L1H0

L0H2

L0H1

L0H0

D4
D'4

D'4

D'4
D4

D'2
D2

D'1
D1

D'0
D0

D'3
D3

=
D'3
D3

D'0
D'4

D'4
D'1
D4

D'3
D3

D'4
D4

D'0
A5

OPR
=

D'3
D3

D'0
=

OPR
A4

D'1
D1

D'2
D2

=
OPR
A3

D'0
D0

D'1
D1

D'0
D0

P6 P9 P10 P11 P12 P13 P14 P15 P16 P17

Figure 7: This map shows the input tokens each atten-
tion head attends to at each token position in a 5-digit
2-layer 3-head addition model. At token position P11
the model predicts the first answer digit A5. All digit
pairs (e.g. D2 D’2) are attended to by P11.

K Appendix: Addition Interchange1066

Interventions1067

To test the hypothesis 3 mapping of the mathemati-1068

cal framework (casual abstraction) to the model at-1069

tention heads, various “interchange interventions"1070

(aka activation patching) experiments were per-1071

formed on the model, where1072

• A particular claim about an attention head has1073

selected for testing.1074

• The model predicted answers for sample test1075

questions, and the attention head activations1076

were recorded (stored).1077

• The model then predicted answers for more1078

questions, but this time we intervened during1079

the prediction to override the selected atten-1080

tion head activations with the activations from1081

the previous run.1082

10 0 10
1

0

1

P8.L0.H1, A2

10 0 10

0

1

P9.L0.H1, A1

10 0 10
1

0

1

P11.L0.H1, A3

5 0 5 10
10

0

10
P11.L0.H2, A4

10 0 10
1

0

1

P12.L0.H1, A3

10 0 10

0

1

2
P13.L0.H1, A2

10 0 10

0

1

P14.L0.H1, A1
T8: 0-8
T9
T10: 10-18

Figure 8: For 5-digit addition, for these attention heads,
for exactly 1 answer digit Aneach, PCA shows these
interpretable results. The dot colours show the TriCase
value of each question. The PCA data and TriCase
quanta are both tri-state and strongly correlated.

Using this approach we obtained the findings in 1083

Tab. 12. 1084

L Appendix: N-Digit Addition 1085

The addition models perform addition accurately. 1086

Visualizations that provided insights into the behav- 1087

ior of the model, aiding our interpretation of the 1088

algorithm, are below: 1089

Some notes about the models: 1090

• The models selected different attention heads 1091

in the early positions to use to do the same 1092

logical calculations. 1093

• Some models use 2 attention heads per digit to 1094

do the SA calculation, whereas some models 1095

only uses one (and so are more compact). 1096

• The PCA trigrams have difference appear- 1097

ances in different models (but the same in- 1098

terpretable clusters). Refer Figures 8 1099

16

Nodes Claim: Attention head(s) perform ... Finding: Attention head(s) perform a
function that ...

P8.L0.H1 and
MLP

A2.ST = TriCase(D2, D’2) impacting
A4 and A5 accuracy

Based on D2 and D’2. Triggers on a A2
carry value. Provides carry bit used in A5
and A4 calculation.

P9.L0.H1 and
MLP

A1.ST = TriCase(D1, D’1) impacting
A5, A4 and A3 accuracy

Based on D1 and D’1. Triggers on a A1
carry value. Provides carry bit used in A5,
A4 and A3 calculation.

P10.L0.H1
and MLP

A1.ST2 = TriAdd(A1.ST, TriCase(D0,
D’0)) impacting A5, A4, A3 and A2
accuracy

Based on D0 and D’0. Triggers on a A0
carry value. Provides carry bit used in A5,
A4, A3 and A2 calculation.

P11.L0.H1
and MLP

A3.ST4 = TriAdd(TriCase(D3, D’3),
TriAdd(A2.ST, A1.ST2)) impacting A5
accuracy

Based on D3 and D’3. Triggers on a A3
carry value. Provides carry bit used in A5
calculations.

P11.L0.H2
and MLP

A4.ST = TriCase(D4, D’4) impacting
A5 accuracy A4

Based on D4 and D’4. Triggers on a A4
carry value. Provides carry bit used in A5
calculation.

P12.L0.H0+H2
and MLP

A4.SA = (D4 + D’4) % 10 impacting
A4 accuracy A4

Sums D4 and D’4. Impacts A4.

P13.L0.H0+H2
and MLP

A3.SA = (D3 + D’3) % 10 impacting
A3 accuracy

Sums D3 and D’3. Impacts A3.

P14.L0.H0+H2
and MLP

A2.SA = (D2 + D’2) % 10 impacting
A2 accuracy

Sums D2 and D’2. Impacts A2.

P14.L0.H1
and MLP

(D1 + D’1) / 10 + P10.A1.ST2 info im-
pacting A2 accuracy

Calculates P10.A1.ST1 but add P10.A1.ST2
info when A1.ST != A1.ST2. Impacts A2

P15.L0.H0+H2
and MLP

A1.SA = (D1 + D’1) % 10 impacting
A1 accuracy

Sums D1 and D’1. Impacts A1.

P15.L0.H1
and MLP

A0.SC = (D0 + D’0) / 10 impacting A1
accuracy

Triggers when D0 + D’0 >10. Impacts A1
digit by 1

P16.L0.H0+H2
and MLP

A0.SA = (D0 + D’0) % 10 impacting
A0 accuracy

Sums D0 and D’0. Impacts A0.

Table 12: Interchange Interventions experiments used activation patching to test the claims addition hypothesis 3
made for each attention head in a sample mixed model. Experimental results are consistent with hypothesis 3 for all
nodes.

+ve
Sub

Contains -ve
Sub

Contains Like

M0 MD N/A N/A S0
M1 MD,MB N1 ND,NB S1
M2 MD,MBx2 N2 ND,NBx2 S2
M3 MD,MBx3 N3 ND,NBx3 S3
M4 MD,MBx4 N4 ND,NBx4 S4

Table 13: We define “positive-answer subtraction" and
“negative-answer subtraction" calculation complexity
quanta that parallel the addition quanta.

• Per answer digit, some models use the SC1100

calculation, whereas some models optimize it1101

out and rely solely on the ST value (and so1102

are more compact).1103

M Appendix: Mixed Model Initialization 1104

We experimented with three approaches to re-using 1105

the trained addition model in the “mixed" (addition 1106

and subtraction) model: 1107

• Initialize Only: Initialize the untrained mixed 1108

model with the addition model weights before 1109

training begins. 1110

• Freeze Attention: As per “Initialize Only", 1111

but also every 100 training steps recopy the at- 1112

tention head weights from the addition model 1113

into the partially-trained mixed model. 1114

• Freeze All: As per “Initialize Only", but also 1115

every 100 training steps recopy the entire ad- 1116

17

0 10
1

0

1

P10.L0.H1, A0

0 10
1

0

1

P15.L0.H1, A0

Figure 9: For 5-digit addition, for these attention heads,
for exactly 1 digit Aneach, PCA shows these inter-
pretable results. The dot colours show the TriCase value
of each question. The PCA and TriCase data are strongly
correlated, but the PCA data has 2 states.

D'4 D'1 D'0 = + A5 A4 A3 A2 A1

L1MLP

L1H2

L1H0

L0MLP

L0H2

L0H1

L0H0

S0

S1

S0

S1

S3

S2 S1

S0

S2

S0

S3

S1

S0

S1

S0

S0

S4

S0

S0

S0

S3

S0

S1

S0

S0

S2

S0

S1

S0

S0

S0

S0

S0

S0

P6 P9 P10 P11 P12 P13 P14 P15 P16 P17

Figure 10: This map shows the simpliest (lowest com-
plexity) quanta S0, S1, etc impacted when we ablate
each node in the 5-digit 2-layer 3-head addition model.
To answer S0 questions, only the S0 nodes are used. To
answer S1 questions, S0 and S1 nodes are used, etc.

dition model (attention heads and MLP layers)1117

into the partially-trained mixed model.1118

Our intuition was that “Initialize Only" would1119

give the mixed model the most freedom to learn1120

new algorithms, but that the “Freeze Attention" and1121

“Freeze All" approaches would make the resulting1122

trained mixed model easier to interpret (as we could1123

reuse our addition model insights).1124

After experimentation we found that the “Initial-1125

ize Only" approach was the only one that quickly1126

trained to be able to do both addition and subtrac-1127

tion accurately. We concluded that the other two1128

methods constrainws the model’s ability to learn1129

new algorithms too much.1130

We also experimented with “where" in the model1131

we inserted the addition (6-digit, 2-layer, 3-head)1132

model into the slightly larger (6-digit, 3-layer, 4-1133

head) mixed model. That is, do we initialize the1134

first 2 layers or the last 2 layers of the mixed model?1135

Also do we initialize the first 3 attention heads or1136

the last 3 attention heads of the mixed model? Our1137

D'1 D'0 = + A6 A5 A4 A3 A2 A1

L1MLP

L1H1

L1H0

L0MLP

L0H2

L0H1

L0H0 13

1

<1

11

9

3

13

14

14

10

27

8

<1

2

26

1

52

57

<1

<1

30

1

1

40

56

<1

32

15

<1

45

52

25

1

1

49

54

34

25

1

50

59

25

<1

56

61

36

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Figure 11: This map shows the % of questions that fail
when we ablate each node in the 6-digit 2-layer 3-head
addition model. The model only uses nodes in token
positions P11 to P20. Lower percentages correspond to
rarer edge cases. The grey space represents nodes that
are not useful.

intuition was that initializing the first layers and 1138

heads would be more likely to cause the model to 1139

re-use the addition circuits adding interpretability, 1140

so we used this approach. 1141

N Appendix: N-Digit Subtraction 1142

The mixed models perform addition and subtrac- 1143

tion accurately. Visualizations that provided in- 1144

sights into the behavior of the model, aiding our 1145

interpretation of the algorithm, are below: 1146

Figure 12: This map of a sample 6-digit mixed model
shows the 98 nodes used to predict answers to addition
(S), positive-answer subtraction (M) and/or negative-
answer subtraction (N) questions. Before training the
mixed model, 48 nodes were initalized pre-training with
a smaller addition model’s weights. These are have
a red border. During mixed model training, 39 of 48
of the initalized monosemantic nodes were generalized
(become poly-semantic) and now help predict two or
three question classes.

Some notes about the mixed models: 1147

18

D'3 D'2 D'1 D'0 = A7 A6 A5 A4 A3 A2 A1

L2MLP

L1MLP

L1H3

L1H2

L0MLP

L0H2

L0H1

L0H0
S1

S1

S2

S1

S1

S2

S2

S1

S1

S1

S2

S2

S1

S1

S0

S1

S0

S1

S0

S1

S1

S0

S1

S0

S1

S0

S2

S0

S1

S1

S0

S1

S0

S2

S1

S0

S0

S0

S0

P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Figure 13: This map shows the simplest complexity
quanta S0, S1, etc used in each useful node of the 6-
digit 3-layer 4-head mixed model when doing addition
questions.

D5 OPR D'3 D'2 D'1 D'0 = A7 A6 A5 A4 A3 A2 A1

L2MLP

L2H2

L1MLP

L1H2

L1H1

L1H0

L0MLP

L0H3

L0H2

L0H1

L0H0

M0

M1 M3

M1

M2

M1

M1

M1

M2

M1

M2

M2

M0

M3

M0

M0

M1

M0

M1

M2

M0

M1

M0

M0

M0

M2

M0

M0

M0

M1

M0

M1

M0

M0

M0

M1

M0

M1

M0

M0

M1

M0

M1

M1

P0 P6 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Figure 14: This map shows the simpliest complexity
quanta M0, M1, etc used in each useful node of the
6-digit 3-layer 4-head mixed model for subtraction
questions with positive answers.

• All the notes about the addition model (above)1148

also apply to the mixed model.1149

• The model contains a new sub-task that stands1150

out: The algorithm relies on calculations done1151

at token position P0, when the model has only1152

seen one question token! What information1153

can the model gather from just the first token?1154

Intuitively, if the first token is a “8" or “9" then1155

the first answer token is more likely to be a “+"1156

(and not a “-"). The model uses this heuristic1157

even though this probabilistic information is1158

sometimes incorrect and so will work against1159

the model achieving very low loss.1160

19

	Introduction
	Related Work
	Methodology
	Mathematical Framework
	Extending the Mathematical Framework
	Techniques

	Experiments
	Training a Five-Digit Addition Model
	Investigating Five-Digit Addition
	Training n-digit Addition models
	Investigating n-digit Addition models
	Training n-digit Mixed models
	Investigating n-digit Mixed models
	Mixed model question class detection
	Mixed model summary

	Conclusion
	Future Work

	Limitations
	Impact Statement
	Appendix: Terminology
	Appendix: Model Configuration
	Appendix: Model Loss
	Appendix: Addition Model Shape
	Appendix: Experimental models
	Appendix: TriAdd Implementation
	Appendix: Complexity
	Appendix: Addition Hypothesis 1
	Appendix: Addition Hypothesis 2
	Appendix: Addition Hypothesis 3
	Appendix: Addition Interchange Interventions
	Appendix: N-Digit Addition
	Appendix: Mixed Model Initialization
	Appendix: N-Digit Subtraction

