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Abstract

Language Models (LMs) are increasingly used
for a wide range of prediction tasks, but their
training can often neglect rare edge cases, re-
ducing their reliability. Here, we define a strin-
gent standard of trustworthiness whereby the
task algorithm and circuit implementation must
be verified, accounting for edge cases, with no
known failure modes. We show that a model
can be trained to meet this standard if built
using mathematically and logically specified
frameworks. In this paper, we fully verify
an auto-regressive transformer model that per-
forms n-digit integer addition. To exhibit the
reusability of verified modules, we insert the
trained integer addition model into a larger un-
trained model and train the combined model to
perform both addition and subtraction. We find
extensive reuse of the addition circuits for both
tasks, easing verification of the more complex
subtractor model. We discuss how inserting
verified task modules into LMs can leverage
model reuse to improve verifiability and trust-
worthiness of LMs built using them. The reuse
of verified circuits reduces the effort to verify
more complex composite models which we be-
lieve to be a significant step towards safety and
interpretability of LMs.

1 Introduction

Transformer-based large language models (LLMs)
are powerful (Barak et al., 2022) yet largely in-
scrutable due to their complex, nonlinear inter-
actions in dense layers within high-dimensional
spaces. Given this complexity, their deployment in
critical settings (Zhang et al., 2022) highlights the
need for understanding their behavior. Hendrycks
and Mazeika (2022) argue that making these mod-
els interpretable is key to their safe use. Mechanis-
tic interpretability focuses on demystifying and val-
idating the algorithms behind model weights, trans-
lating complex computations into more human-
understandable components (Raukur et al., 2022).
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Figure 1: An overview of our methodology: (1) We
trained an accurate 6-digit integer addition model. (2)
We reverse-engineered the model to find the algorithms
that were implemented to perform addition. (3) We in-
serted the addition model into a new model, by copying
the weights of the attention heads and MLPs (in brown)
into the larger model during initialization. (4) We then
train the new model on 80% subtraction and 20% ad-
dition questions. (5) We find that the resulting model
predicts accurately and reuses the inserted addition cir-
cuits for both addition and subtraction questions.

This understanding aids in predicting model behav-
ior in new situations and fixing model errors.

In creating and training a model, we aim for high
accuracy and trustworthiness. We achieve this by
holding the model to a standard we term known-
good. We define a model performing a task to be
known-good if:

1. The model’s algorithm for the task and the
mechanisms it implements (the “circuits") are
understood.



2. All possible task edge cases have been identi-
fied and tested.

3. Empirically, the model prediction accuracy is
99.9999% (a standard reliability measure used
in industry and abbreviated as ““six nines").
That is, it can perform the task one million
times with at most 1 wrong prediction.

Exhaustive testing of a model task may be infea-
sible. For instance, when adding two 5-digit inte-
gers (e.g. 12345+67890) there are ten billion varia-
tions. Some tasks can be conceptualized within an
existing formal framework that allows identifica-
tion of all edge cases the model must handle. For
example, in 5-digit addition, the most uncommon
edge case is 55555+44445=100000, which requires
a carry bit to cascade through all digits, occurring
in only 0.002% of cases. A known-good model
must incorporate algorithms to manage all known
edge cases. A known-good model must have veri-
fied! circuits that perform the task accurately.

In this paper, we detail the development and in-
terpretation of a known-good model for addition.
Our findings indicate that the model constructs
a specific circuit for each edge case, with these
circuits sharing intermediate results. We confirm
the validity of the entire set of circuits, ensuring
they cover all identified edge cases. The model
achieves a very low training loss and has six nines
(99.9999%) accuracy. The model hence achieves
our known-good standard. Additionally, we de-
velop a “mixed" model capable of both addition
and subtraction, incorporating the known-good ad-
dition model. This mixed model has six nines ac-
curacy, and extensively reuses the addition circuits
for both operations, facilitating the interpretation
of the model’s algorithm. We make progress to-
ward a known-good model for both addition and
subtraction.

Hence, our main contributions are three-fold:

* Defining several known-good n-digit addition
models with six nines accuracy which all use
the same algorithm.

* Demonstrating a proof of concept for re-using

a known good model in the training of another

larger, more-capable model, simplifying the
interpretation of the new model’s algorithm.

'In this paper, *verified’ has the mechanistic interpretabil-

ity meaning that a specific group of interconnected neurons

within a neural network reliably and causally contributes to

the model’s output in a meaningful, understandable way, with
supporting empirical evidence.

* Defining several n-digit addition and subtrac-
tion models with six nines accuracy, that reuse
established addition model circuits for both
operations, and detailing progress towards
these models being known-good.

2 Related Work

Mechanistic interpretability aims to reverse engi-
neer neural networks to find interpretable algo-
rithms that are implemented in a model’s weights
(Olah et al., 2020). Mathematical frameworks (El-
hage et al., 2021a) explain how transformer atten-
tion heads can work with each other to implement
complex algorithms.

Causal Scrubbing (Jenner et al., 2023) recom-
mends explaining a model algorithm by document-
ing a low-level computation graph, mapping from
the graph to the model nodes that implement the
computation, and performing experimentation ver-
ification. Investigative techniques such as abla-
tion interventions, activation unembeddings (nos-
talgebraist, 2020), and sparse autoencoders (Nanda,
2023; Cunningham et al., 2023), underpinned by
the more theoretical frameworks (Elhage et al.,
2021b; Geva et al., 2022), provide tools to help
confirm a mapping.

Investigating pre-trained LMs on Arithmetic.
Even though basic arithmetic can be solved fol-
lowing a few simple rules, pre-trained LMs often
struggle to solve simple math questions (Hendrycks
et al., 2021). Causal mediation analysis (Stolfo
et al., 2023) has been used to investigate how large
pre-trained LMs like Pythia and GPT-J performed
addition to solve word problems. It is also possible
to improve a model’s arithmetic abilities used su-
pervised fine tuning - including enriched training
data (Liu and Low, 2023).

Studying Toy Models for Arithmetic. Doing
mechanistic interpretability on toy transformers can
help to better isolate clear, distinct circuits given the
highly specific experimental setup for the model
studied (Nanda et al., 2023). Quirke and Barez
(2024) detailed a 1-layer, 3-head transformer model
that performs 5-digit addition, showing it failed
on rare edge cases (e.g. “77778+22222=100000"
where a “carry 1" cascades through 4 digits), high-
lighting the importance of understanding and test-
ing all edge cases for trustworthiness.

Many natural prediction problems decompose
into a finite set of knowledge and skills that are
“quantized" into discrete chunks (quanta) (Michaud



et al., 2023). Models must learn these quanta to
reduce loss. Understanding a network reduces to
enumerating its quanta. Other studies (Schaeffer
et al., 2023) prove useful ways to measure quanta
in mathematical prediction problems.

3 Methodology

Transformer models may learn addition algorithms
different from traditional human methods. We
define an alternative, mathematically-equivalent
framework for addition and demonstrate our model
implements this approach.

3.1 Mathematical Framework

Consider the task of adding two n-digit numbers
together. We define the first number as D =
{Dy—1,Dyp—2,..., Dy} and the second number as
D" ={D]_,,D,_5,...,Dj} and the answer as

A={A,,An_1,...,Ap}. Figure 2 shows an il-
lustrative example.

D + D’ = A

3335 7|+4(82243|=(115600
D4 D3 D2 D1 DO D4 D'3 D’2 D1 D0 A5 A4 A3 A2 A1 A0
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Figure 2: For 5-digit addition, our model has 12 input
(question) and 6 output (answer) token positions. We
name the question tokens D4, ..., DO, and D’4, ..., D’0
and the answer tokens A5, ..., AO. For n-digits, we use
the terms D,,, D} and A,,.

First, we adopt the framework from Quirke and
Barez (2024) for our model’s addition process. The
“Simple Addition" sub-task A,,.S A, which naively
calculates the sum of digit pairs, is defined as:

A,.SA = (D, + D)) mod 10 (1)
When there is no carry bit from the previous digit
A, = A,.SA. The “Simple Carry" sub-task
A,,.SC determines whether the addition creates
a carry bit:

1 if (D, + D)) > 10,
0 otherwise.

Ap.SC = { 2

While Quirke et al.’s model is capable of handling
simple addition and carry bits generated directly
from digit pair addition, it encounters difficulties
with ’cascading carry’ bits, where a carry bit from
one digit position propagates to the next.
Consider “00144+00056=000210". Adding 4+5
in the tens position doesn’t generate a carry bit

directly, but a carry bit propagates from the ones
position. A model only summing digit pairs and
their direct carry bits would fail, producing an in-
correct result like “00144+50006=000110". The
Quirke et al. 1-layer model could cascade carry
bits across two digits, but not three or more.

3.2 Extending the Mathematical Framework

To answer “44444+55556=" with “100000", an ac-
curate model must predict the first answer digit
A5 as “1". To do so, an accurate model must
implement a “carry one cascade" circuit, which
combines the “carry one" information from all five
digits. This is especially hard as the model predicts
answer tokens from left to right.

We introduce a digit-level sub-task called Tri-
Case that calculates the essential “carry one" in-
formation for a single pair of digits D,, and D),.
TriCase has 3 possible outputs representing a defi-
nite carry one (S710), a possible carry one depend-
ing on the results of other calculations (S79), or
definitely not a carry one (S76):

A,,.ST = TriCase =
~——

(Dn,D})

ST10 if (D, + D)) >10, (3)
ST9 if (D, + D) =9,

ST8  if (D, + D) <8,

To perform the “cascading carry one" calcula-
tion, we introduce a TriAdd sub-task. It handles
the case where a possible carry one becomes a def-
inite carry one because the next lower digit pair
generated a carry one. TriAdd is defined as:

Ap.SV = TriAdd =
—

(An.ST,An_1.ST)

ST10 if A,,.8T = ST10 or
(A,.ST = ST9 and
Ap—1.8T = ST10),
ST8  otherwise.

The model can use ST and SV to accurately
calculate A5 as 1 or O by using A5 = A4.5V =
TriAdd(A4.ST, TriAdd(A3.ST, TriAdd(A2.ST, Tri-
Add(A1.ST, A0.ST)))). Note that in calculating AS,
the model has also calculated an accurate carry bit
for each answer digit. For example, the carry bit
for A4 is A3.SV = TriAdd(A3.ST, TriAdd(A2.5T,
TriAdd(A1.8T, A0.ST))).



With this framework, the model only needs the
sub-tasks A,.SA, A,,.ST and A,.SV to accurately
perform addition (but some models also use the
redundant A,,.SC sub-task). This framework, if
implemented by a model, is sufficient for the model
to perform n-digit addition accurately.

Figure 3 diagrams how our model’s algorithm
uses SA, SC, ST and SV to perform addition. This
algorithm is like the 99% accurate Quirke et al.
algorithm but contains an additional circuit (the
shaded boxes) to calculate “cascading carry one"
data to predict with 99.9999% accuracy.
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Figure 3: To predict with 99.9999% accuracy, the
addition algorithm first calculates “carry one" values
(A,,.ST), combining them into “cascading carry one"
values (4,.SV). At the “+" token, A,_1.SV gives
the first answer digit as 1 or 0. The other answer dig-
its are calculated by combining “base add" (A4,,.BA)
and “carry one" (4,.5C) calculations with the pre-
calculated A,,.SV values.

3.3 Techniques

In investigating the model circuits, we want to un-
derstand what each attention head or MLP layer is
doing across each token position, and how it relates
to our mathematical framework. Hence, we define
a node as the computation done by an attention
head or MLP layer for a given token position. To
investigate what each node is doing, we use the
following techniques:

1. Intervention Ablation. To find out how the
model depends on the output of a node, we
replace the output of that node with the vector
that is the mean of all of its outputs across
a batch and measure how that impacts down-
stream performance. We also use (automated,
n-digit) intervention ablation tests, specific to
each sub-task, to test for the expected sub-task
behavior.

2. Attention Patterns. To find out what the
model attends to at a node, we take the at-

tention pattern at that token position and take
the significant tokens attended to (> 0.01 post
softmax).

3. Principal Component Analysis (PCA). We
use PCA to investigate the outputs of atten-
tion heads, especially where our framework
suggests the head output may be tri-state or
bi-state.

4. Question Complexity. We categorized ques-
tions by computational complexity (App. G).
Addition categories (S0-S4) and subtraction
categories (M0-M4) reflect the number of se-
quential digits a “carry one" or “borrow one"
cascades through, respectively. We analyzed
which nodes were necessary for correct pre-
dictions in each category.

4 Experiments

4.1 Training a Five-Digit Addition Model

The Quirke et al. 5-digit 1-layer addition model
achieved an accuracy of ~ 99%. Our experi-
ments suggested that a 2-layer, 3-head model was
the smallest configuration capable of achieving
99.9999% accuracy (see App. D for alternatives
tested). This configuration effectively doubled
the computational power compared to the 1-layer
model (see App. B for mode model configuration
details). Moreover, a 2-layer model introduces
the capability to “compose” the attention heads
in novel ways, facilitating the implementation of
more complex algorithms (Elhage et al., 2021b).

We trained a 5-digit, 2-layer, 3-head model, with
a 14 token vocabulary (O, .., 9, +, -, =, *, /), batch
size of 64, learning rate of 0.00008 and weight
decay of 0.1. Training used an infinite dataset en-
riched with rare edge cases. Loss was defined as the
mean across all answer tokens of their negative log
likelihood loss. After 30 thousand training batches,
the model’s final training loss was ~ 2.3 x 1075,
Testing showed this model has six nines accuracy.
(More details in App. C and Tab. 6).

4.2 Investigating Five-Digit Addition

Ablation experiments targeting the nodes revealed
that the model depends only on nodes located in
nine token positions (Figs 6 and 7). Further ab-
lation experiments show that for these nine token
positions, the model uses 36 nodes in predictions.
The effects of node ablation on our complexity and
answer-impact metrics were analyzed (see Figs 5



Table 1: For a sample model, all nodes used in predictions are shown by token position (horizontally) and model
layer (vertically), detailing the answer digits they impact. Here, the attention heads in token position P10 labelled
AS5..3 help predict the answer digits A3, A4 and AS. For all addition and mixed models studied, before the "="

token, each node often calculates data used to predict multiple answer digits. After the "=" token, all nodes in a
given token position are used to predict a single answer digit.

and Table 1), providing insight into the specific
computations performed at each node. For each
answer digit A,,, using test questions correspond-
ing to the ST8, ST9 and ST10 categories, we per-
formed PCA on the nodes yielding interpretable
results. Specifically nine ‘“node and answer-digit”
combinations (see Figs 8 and 9) showed strong
clustering of the questions aligned to the ST8, ST9
and ST10 categories.

The algorithm predicts the first answer digit, AS,
at position P11. A5, which is always O or 1, is the
most challenging to predict as it may rely on a long
carry one cascade (e.g. 55555+44445=100000).
An accurate algorithm must compute this cascade
using the nodes located in positions P8 to P11. As
illustrated in Figure 7, these nodes attend to all
digit pairs from D4 D’4 to DO D’0. Additionally,
the PCA data, as shown in Figures 8 and 9, suggest
that these nodes produce tri-state outputs. After
our first two algorithm hypothesises failed testing
(see App. H and I), we discovered that the model
utilizes a minimal set of “carry one” information,
leading to the development of the TriCase quanta.
The model performs A,,.ST using bigrams (see
App. F) to map two input tokens to one result token
e.g. “6” + “7” = ST10. In positions P8 to P11, the
model does A,,.ST calculations on all digit pairs
from D4 D’4 to DO D’0.

An MLP layer can be thought of as a “key-value
pair" memory (Meng et al., 2022; Geva et al., 2021)
that can hold many bigrams and trigrams. We posit
our MLP implements the TriAdd function using
bigrams and trigrams to calculate A,.SV values
from A,,.ST values.

For a specific 5-digit addition model instance,
we mapped the algorithm to individual nodes and
verified each node’s role using ablation interven-
tion. Figure 3 diagrams the algorithm, with node
details in App. J. The model adheres to all known
constraints and achieves six nines accuracy. We
concluded this model instance is well-understood,
well-functioning, and hence known-good.

The 1-layer model uses 21 nodes to achieve two
nines (99%) accuracy. This model uses 36 nodes
(an increase of 71%) to achieve six nines accuracy.

4.3 Training n-digit Addition models

To investigate whether this algorithm is used
widely, we first trained seven 2-layer addition
models with 5-, 6- and 10-digits, using differ-
ent seeds, a different optimizer, and changing
the answer format to include a sign token (e.g.
111111+222222=+0333333).

These seven models all have very low loss (e.g.
1.5e-8) and six nines accuracy. (Details in Tab.6.)

4.4 Investigating n-digit Addition models

We developed a declarative method to outline each
sub-task. For instance, a sub-task may focus on
question digits D2 and D’2, affect answer digit A3,
influence SO but not S1 complexity questions, and
have specific PCA results and ablation tests. Using
this declaration, we identified nodes performing
these sub-tasks across all models.

An algorithm hypothesis, such as the one in sec-
tion 4.2, is described by the required sub-tasks and
their relationships. For example, our addition algo-
rithm specifies that the model must execute A,,.S7T



(P11) | (P12) | (P13) | (P14) | (P15) | (P16) | (P17) | (P18) | (P19) | (P20)

D1 | DO - + A6 A5 A4 A3 A2 A1
LOHO | A2.ST | A3.ST | A1.ST | A4.ST | A4.SC| A3.SC| A2.5C | A1.SC AO.SC-I
LOH1 | A1ST A5.SA | A4.SA | A3.SA| A2.SA | A1.SA| A0.SA
LOH2 A5.ST

Table 2: All addition models studied implement our addition algorithm. The algorithm SA, SC and ST sub-tasks all
exist for each digit and in appropriate token positions. For a sample model, this map shows the subtask locations.
Interestingly, here each SA sub-task is shared across two attention heads.

G__

sub-tasks for each question digit before the “=" to-
ken. We created a framework for declaring n-digit
algorithm hypotheses and testing them against the
sub-tasks found in each model, mapping the results
(see Table 2 for an example).

Our seven 2-layer addition models all implement
our addition algorithm. Given their six nines ac-
curacy and implementation of the same algorithm,
we can confirm these models as known-good.

4.5 Training n-digit Mixed models

To explore reuse, we initialized untrained mod-
els with a known-good addition-only model, then
trained them to perform both subtraction and addi-
tion. We call these “mixed" models.

Specifically, we trained seven larger (6- or 10-
digit, 2- or 3-layer, 3- or 4-head) models after ini-
tializing them with the weights from a known-good
2-layer 3-head addition model. The first 2 layers,
first 3 heads of the mixed model were initialized
with the addition model weights. We trained the
mixed model with 80% subtraction and 20% ad-
dition batches. We enriched the (infinite) train-
ing dataset with rare addition and subtraction edge
cases.

Some models achieved six nines accuracy and
the others five nines. Attempts to “freeze" the in-
serted attention heads and/or MLP layers by peri-
odically copying the addition weights back into the
mixed model every 100 training steps resulted in
lower accuracy. (Refer App.M and Tab.6)

4.6 Investigating n-digit Mixed models

Unlike addition, subtraction question answers can
be either positive or negative. Similar looking
positive-answer (e.g. 10009-10000=+000009) and
negative-answer (e.g. 10009-20000=-009991) sub-
traction questions can give answers that differ at
several digit positions. We posited that the model
treats three distinct question classes “addition”,
“positive-answer subtraction" and ‘“negative-answer

5000 10000 15000 20000 25000 30000 35000
Training Steps

Figure 4: Each mixed model was initialized with the
weights from a known-good addition model, then was
trained on 80% subtraction and 20% addition batches.
A sample log loss graph (final loss 8.0e-9) is shown.

subtraction" differently. Ablation of nodes showed
that some nodes only help predict one question
class, some help predict two classes and some all
three classes. It also showed that the inserted ad-
dition nodes are heavily used and the majority be-
come polysemantic, performing both addition and
subtraction calculations. (Details in Tab.3.)

Used Inserted
Question class # Y% # Y0
All questions 96 48
Addition 61 64% | 42 88%
Positive-answer sub | 70 73% | 40 83%
Negative-answer sub | 53 55% | 29 60%

Table 3: Mixed models re-use most inserted addition-
model nodes. Many inserted nodes become polyse-
mantic during training - performing addition, positive-
answer subtraction and negative-answer subtraction sub-
tasks simultaneously. For a sample mixed model that
uses 96 nodes and had 48 nodes inserted, this table
shows inserted node reuse.

To investigate the subtraction algorithm, and par-
alleling addition algorithm subtasks, we defined
subtraction-specific sub-tasks Base Diff and Bor-
row One (see Tab. 4) and complexity measures (see
App. G and N).

We found that the inserted nodes that performed
SA in the addition model, perform SA, MD and ND
in the mixed model. (Refer Table 5.) These three



Name +ve  -ve Definition
Sub  Sub

Base Diff MD ND  D,-D,% 10

Borrow One MB NB  D,- D, <0

Table 4: We define 2 “positive-answer subtraction" and
2 “negative-answer subtraction" sub-tasks that parallel
the addition sub-tasks Base Add SA and Carry One SC

sub-tasks are similar in that each performs a map-
ping from 100 input cases (10 D,,x 10 D)) to 10
output cases (0..9). The mixed model “upgraded"
these nodes to be polysemantic during training.
Similarly, some SC addition nodes became pol-
ysemantic and now process SC, MB and/or NB .
An accurate subtraction model must answer
“cascading borrow one" questions like 100000-
000001=+0099999. We define the “essence of
borrow one" subtask M T used by both positive-
answer (M) and negative answer (N) subtraction
questions. M T is like addition’s ST subtask:

A,,.MT = TriCase =
——

(DnsD})

MTN ifD, <D, (5
MTO ifD, =D,

MT1 ifD, > D,

For M questions, MTN is a definite borrow one,
MTO is a possible borrow one (depending on the
results of other digit calculations) and MT1 is def-
initely not a borrow one. For N questions, the
interpretation is the opposite.

Paralleling addition’s “cascading carry one"
A,,.SV calculation, we define “cascading borrow
one" calculation sub-tasks A,,.MV for positive-
answer subtraction and A,.NV for negative-
answer subtraction. We posit the MLP imple-
ments TriAdd-like functions using bigrams and
trigrams to calculate A,,.MV and A,,.NV values
from A,,.MT values.

4.7 Mixed model question class detection

We posit that there is a specific circuit to detect
whether a question is in the S, M or N class. If the
question operator is “+" then the class is S, but if
the question operator is “-" then the model must
calculate if D >= D' to distinguish between the
M and N classes. For accuracy, it needs this answer
by the “=" token to predict the first answer token

won

(the answer sign) as “+" or “-".

D >= D’ can be derived from the A,,.M T data.
Alternatively, this calculation could be a distinct
circuit using a new sub-task we define as:

1 ifD, > D,

0 otherwise.

An.GT = { (6)

For a 4 digit question, D >= D’ can be cal-
culated as A3.GT=1 or (A3.GT=0 and (A2.GT=1
or (A2.GT=0 and (Al1.GT=1 or (Al.GT=0 and
A0.GT=1))). Our test for GT is that ablation causes
the answer to change sign. The MT calculation is
very similar.

We found A,,.MT and A,,.GT subtasks in all
mixed models. Usually (but not always) both sub-
tasks are calculated by the same node. (Table 2
shows an example.) As both the MT and GT
approaches are valid, models can learn valid al-
gorithm sub-task implementations that differ per
answer digit.

We further posit that a node that implements say
A2.5SA, A2.MD and A2.ND does not know whether
itis dealing with a S, M or N question, so it outputs
all three possible answers to the residual stream.
Another node must calculate the S, M or N distinc-
tion likely by attending to the question operator
(OPR) and the answer sign (SGN). We define atten-
tion sub-tasks OPR and SGN for these calculations.
Table 2 shows that for each answer digit one at-
tention head attends to both OPR and SGN. We
believe these heads transfer sufficient data to the
residual stream to allow the MLP layer(s) to calcu-
late the question class, and so select the appropriate
output from the polysemantic A2.SA/MD/ND node.

4.8 Mixed model summary

The 7 mixed experimental models achieve five or
six nines accuracy and contain the same sub-tasks,
implying a common algorithm. However, without
fully understanding this algorithm, we can’t con-
firm these models as known-good.

5 Conclusion

We successfully trained and verified known-good
5-, 6- and 10-digit, 2-layer, 3-head addition mod-
els implementing the same algorithm with minor
variations.

We demonstrated component reuse by integrat-
ing an existing addition model into a larger “mixed"
model for both addition and subtraction, achieving
six nines accuracy. This integration helped us un-
derstand the mixed model’s algorithm. The mixed



(P9) (P15) | (P16) | (P17) | (P18) | (P19) | (P20)
D’3 A6 A5 A4 A3 A2 A1
A4MT A2.SC| A1.SC| A0.SC| OPR
LOHO | A4.GT A4.SC| A3.SC| A2.NB| A1.MB| A0.MB| SGN
A1.NB| AO.NB
A5.SA
A4.ST | A2.MT
A4.SA | A3.SA| A2.SA| A1.SA| A0.SA
A4.MD| A3.MD| A2.MD| A1.MD| A0.MD
A4ND| A3.ND| A2.ND| A1.ND| AO.ND
OPR | OPR | OPR | OPR | OPR
SGN | SGN | SGN | SGN | SGN

Table 5: For mixed models, in later tokens, polysemantic attention heads simultaneously generate outputs for the
three question classes addition S, M and N. Other heads calculate the question class by attending to the question
operation (OPR) token and the answer sign (SGN) token. The MLP layers then select the output appropriate for the
class. In this sample map, from P16, the first 3 rows contain many polysemantic nodes, while the 4th row calculates

the question class.

model reuses most inserted addition nodes, upgrad-
ing many to become polysemantic - performing
both addition and subtraction subtasks simultane-
ously.

Our work supports Michaud et al. (2023)’s as-
sertion that many prediction problems can be bro-
ken into finite “quanta” computations essential for
loss minimization. It also aligns with the idea that
understanding a network’s functionality involves
identifying and comprehending its sub-quanta.

5.1 Future Work

In the future, we aim to develop a comprehensive,
known-good model for n-digit addition, subtrac-
tion, and multiplication. Our approach could also
be applied to create known-good models in logical
reasoning and planning.

Further exploration of using known-good mod-
els to improve LLMs is a promising direction for
enhancing LLM trustworthiness and capabilities.
This aligns with current research in the field, in-
cluding model composition (Bansal et al., 2024),
LM up-scaling which emulates fine-tuning a large
model using a small model (Mitchell et al., 2023),
and inserting accurate models into untrained ones
(as demonstrated in this paper). Additionally, re-
search on "spare" neurons in LLMs (Voita et al.,
2023; Hu et al., 2021) suggests potential for small-
scale modifications to fix erroneous circuits, further
supporting this approach.

Developing methods to incorporate compact
known-good models into LLMs could democratize

Al Safety research, allowing small teams to focus
on specific areas and create quality components to
improve LLMs.

6 Limitations

While we identify and test the role of each node
in the mixed model algorithm, we do not detail
the data representation of the polysemantic nodes,
SGN nodes, and OPR nodes output in the residual
stream. This limitation means we can not detail
the transformation of this data performed by MLP
layer nodes that support accurate answer digit pre-
diction.

Our automated framework for discovering algo-
rithm sub-tasks in models, while instrumental in
accelerating our research, has limitations. Some
aspects are specific to our math models and may
not be directly applicable to other domains.

Furthermore, while we have made progress on
a declarative language to describe algorithms in
terms of necessary sub-tasks and a framework to
test these descriptions against specific models, this
work is still in its early stages.

7 Impact Statement

Our work aims to explain the inner workings of
transformer-based language models, which may
have broad implications for a wide range of ap-
plications. A deeper understanding of generative
Al has dual usage. While the potential for misuse
exists, we discourage it. The knowledge gained
can be harnessed to safeguard systems, ensuring



they operate as intended. It is our sincere hope that
this research will be directed towards the greater
good, enriching our society and preventing detri-
mental effects. We encourage responsible use of
Al, aligning with ethical guidelines.
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A Appendix: Terminology

These terms and abbreviations are used in this pa-
per and the associated Colabs and python code:

e Pn : Model (input or output) token position.
Zero-based. e.g. P18, P1SL1HO

* Ln : Model layer n. Zero-based. e.g.
P18L1H2

* Hn : Attention head n. Zero-based. e.g.
P18L1H2

e Mn : MLP neuron n. Zero-based

* PnLnHn : Location / name of a single atten-
tion head, at a specified layer, at a specific
token position

e PnLLnMn : Location / name of a single MLP
neuron, at a specified layer, at a specific token
position

* D : First number of the pair question numbers

* Dn : nth numeric token in the first question
number. Zero-based. DO is the units value

* D’ : Second number of the pair question num-
bers

* D’n: nth token in the second question number.
Zero-based. DO is the units value

* A : Answer to the question (including answer
sign)

* An : nth token in the answer. Zero-based. AQ
is the units value. The highest token is the “+"
or "-" answer sign

e S : Prefix for Addition. Think S for Sum. Aka
ADD.
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e SA : Basic Add. An addition sub-task. An.SA

is defined as (Dn + D’n) % 10. e.g. 5+ 7
gives 2

SC : Carry One. An addition sub-task. An.SC
is defined as Dn + D’'n >=10. e.g. 5+ 7
gives True

SS : Make Sum 9. An addition sub-task.
An.SS is defined asDn+D’'n==9.e.g. 5+7
gives False

ST : TriCase. An addition sub-task. Refer
paper 2 for details

ST8, ST9, ST10 : Outputs of the ST TriCase
sub-task.

M : Prefix for Subtraction with a positive an-
swer. Think M for Minus. Aka SUB

: Basic Difference. A subtraction sub-task.
An.MD is defined as (Dn - D’n) % 10. e.g. 3 -
7 gives 6

: Borrow One. A positive-answer subtraction
sub-task. An.MB is defined as Dn - D’'n < 0.
e.g. 5 -7 gives True

MZ : Make Zero. A positive-answer subtrac-
tion sub-task. An.MZ is defined as Dn - D’n
==0. e.g. 5-5 gives True

MT : TriCase. A positive-answer subtraction
sub-task.

MT1, MTO0, MT-1 : Outputs of the MT TriC-
ase sub-task.

N : Prefix for Subtraction with a negative an-
swer. Think N for Negative. Aka NEG

ND : Basic Difference. A negative-answer
subtraction sub-task. An.ND is defined as (Dn
-D’n) % 10. e.g. 3 -7 gives 6

NB : Borrow One. A negative-answer subtrac-
tion sub-task. An.NB is defined as Dn - D’n
< 0.e.g. 5-7 gives True

NZ : Make Zero. A negative-answer subtrac-
tion sub-task. An.NZ is defined as Dn - D’n
==0.e.g. 5-5 gives True

NT : TriCase. A negative-answer subtraction
sub-task.
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* GT : Greater Than. A (positive-answer or
negative-answer) subtraction sub-task. An.GT
is defined as Dn > D’n. e.g. 3 > 5 gives False

* OPR : Operator. A sub-task that attends to
the + or - token in the question (which de-
termines whether the question is addition or
subtraction).

* SGN : Sign. A sub-task that attends to the
first answer token, which is + or -

* PCA : Principal Component Analysis

* EVR : Explained Variance Ratio. In PCA,
EVR represents the percentage of variance
explained by each of the selected components.

B Appendix: Model Configuration

Addition, subtraction and mixed (addition and sub-
traction) training experiments were done in a Colab
notebook. The Colab runs on a T4 GPU. Each train-
ing run takes up to 60 mins. The key parameters
(and their common configurations) are:

* n_layers = 1, 2 or 3: Number of layers.
¢ n_heads = 3 or 4: Number of attention heads.

* n_digits =5, 6 or 10: Number of digits in the
question.

Each digit is represented as a separate token.
(Liu and Low, 2023) state that LLLaMa’s “remark-
able arithmetic ability ... is mainly atributed to
LLaMA’s consistent tokenization of numbers". The
model’s vocabulary contains 14 tokens (0, .., 9, +,
-, =, *, /) to enable this and planned future investi-
gations.

Training uses a new batch of data each step (aka
Infinite Training Data) to minimise memorisation.
Depending on the configuration, each training run
processes 1 to 4 million training datums. For the
5-digit addition problem there are 100,000 squared
(that is 10 billion) possible questions. So the train-
ing data is much less than 1% of the possible prob-
lems.

Addition and subtraction include rare edge
cases. For example, the SS cascades (e.g.
44445+55555=100000, 54321+45679=1000000,
44450+55550=10000, 1234+8769=10003) are ex-
ceedingly rare. The data generator was enhanced
to increase the frequency of all known edges cases.
This lead to lower model loss.

Validation test data covering all edge cases was
manually constructed. These test cases are not used
during training.

The Colabs will be made available on publica-
tion.

C Appendix: Model Loss

The model defaults to batch size = 64, learning
rate = 0.00008 and weight decay = 0.1. The loss
function is simple:

* Per Digit Loss: For “per digit” graphs and
analysis, for a given answer digit, the loss
used is negative log likelihood.

* All Digits Loss: For “all answer digits” graphs
and analysis, the loss used is the mean of the
“per digit” loss across all the answer digits.

In our experimental models, the number of digits
in the question varies from 5 to 10, the number of
layers varies from 1 to 4, the number of heads
varies from 3 to 4. Each experimental model’s loss
is detailed in Tab. 6.

D Appendix: Addition Model Shape

While we wanted a very low loss addition model,
we also wanted to keep the model compact - in-
tuiting that a smaller model would be easier to
understand than a large model. Here are the things
we tried to reduce loss that didn’t work:

* Increasing the frequency of hard (cascading
S§') examples in the training data so the model
has more hard examples to learn from. This
improved training speed but did not reduce
loss.

* Increasing the number of attention heads from
3to 4 or 5 (while still using 1 layer) to provide
more computing power.

* Changing the question format from
“12345+22222=" to “12345+22222equals”
giving the model more prediction steps after
the question is revealed before it needs to
state the first answer digit.

* With n_layers = 1 increasing the number of
attention heads from 3 to 4.

* Changing the n_layers to 2 and n_heads to 2.

The smallest model shape that did reduce loss
significantly was 2 layers with 3 attention heads.



E Appendix: Experimental models

Twenty-one models were trained and analyzed (re-
fer Tab. 6). The models and analysis output will be
made available on HuggingFace on publication to
support further research in Al Safety.

For each model the ’VerifiedArithmeticTrain’
Colab notebook generates two files:

o A “XXXXXX.pth" file containing the model
weights

o A “XXXXXX_train.json" file containing con-
figuration information and training loss data

While, for each model the ’Verified Arithmetic-
Analysis’ Colab notebook generates two more files:

e A “XXXXXX_behavior.json" file contain-
ing generic “behavior" facts learnt about the
model by the Colab e.g. P18LOHO attends to
tokens D3 and D’3

e A “XXXXXX_maths.json" file containing
“maths-specific" facts learnt about the model
by the Colab e.g. P18LOHO performs the
A3.SC sub-task.

F Appendix: TriAdd Implementation

TriAdd transfers data from A,,_1to A, by integrat-
ing the values of A,,_1.S7T and A,,.ST . This func-
tion can be represented as nine bigram mappings
with three possible outputs. (Refer Tab.7.)

Note that in the case A,.ST = ST9 and
A,_1.8T = ST10, the answer is indeterminate.
The result could be ST8 or ST9 but importantly
it can not be ST10. We choose to use ST8 in our
definition, but ST9 would work just as well.

G Appendix: Complexity

To analyze question difficulty, we categorized ad-
dition questions by the complexity of the compu-
tation required to solve the question, as shown in
Tab. 8. The categories are arranged according to
the number of digits that a carry bit has to cascade
through.

H Appendix: Addition Hypothesis 1

Given the 2-layer attention pattern’s similarity to
1-layer attention pattern, and the above evidence,
our first (incorrect) hypothesis was that the 2-layer
algorithm:
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* Is based on the same SA, SC and SS operations
as the 1-layer.

 Uses the new early positions to (somehow) do
the SS calculations with higher accuracy than
the 1-layer model.

* The long double staircase still finalises each
answer digit’s calculation.

* The two attention nodes in the long double
staircase positions do the SA and SC calcula-
tions and pull in SS information calculated in
the early positions.

If this is correct then the 2-layer algorithm suc-
cessfully completes these calculations:

* A0O=A0.SA
* A1 =AI1.SA + A0.SC
* A2 = A2.SA + (A1.SC or (A1.SS & A0.SC))

* A3 =A3.SA + (A2.SC or (A2.SS & A1.SC)
or (A2.SS & A1.SS & A0.SC))

* A4 = A4.SA + (A3.SC or (A3.SS & A2.SC)
or (A3.SS & A2.SS & A1.SC) or (A3.SS &
A2.SS & A1.SS & A0.SC))

* A5 = A4.SC or (A4.SS & A3.SC) or (A4.SS
& A3.SS & A2.SC) or (A4.SS & A3.SS
& A2.SS & A1.SC) or (A4.SS & A3.SS &
A2.SS & A1.SS & A0.SC)

Our intuition is that there are not enough useful
nodes in positions 8 to 11 to complete the A5 calcu-
lation this way. So we abandoned this hypothesis.

I Appendix: Addition Hypothesis 2

Our second (incorrect) hypothesis was that the 2-
layer algorithm has a more compact data represen-
tation, so it can pack more calculations into each
node, allowing it to accurately predict AS in step
11.

We claimed the model stores the sum of each
digit-pair as a single token in the range “0” to “18”
(covering 0+0 to 9+9). We name this operator A,,.T,
where T stands for “token addition”:

« A, T=D,+ D),

The A,,.T operation does not understand math-
ematical addition. Tab. 9 shows how the model
implements the T operator as a bigram mapping.



Num | Num Num | Train Train Train | Addition | Subtract | Heads | MLPs
Digits | Layers | Heads | Steps Seed loss Fails/M | Fails/M | used | used
Addition models
5 1 3 30K 372001 9.4e-2 | 12621 N/A 15 6
5 2 3 15K 372001 1.6e-8 | O N/A 30 16
5 2 3 40K 372001 2.0e-9 | 0 N/A 22 15
6 2 3 15K 372001 1.7e-8 | 2 N/A 31 17
6 2 3 20K 173289 1.5¢-8 | 0 N/A 28 17
6 2 3 20K 572091 7.0e-9 | 0 N/A 35 17
6 2 3 40K 372001 2.0e-9 |0 N/A 29 17
10 2 3 40K 572091 7.0e-9 | 0 N/A 44 28
Subtraction models
6 2 3 30K 372001 5.8e-6 | N/A 0 40 21
10 2 3 75K 173289 | 2.0e-3 | N/A 6672 101 37
Mixed models
6 3 4 40K 372001 5.0e9 |1 0 54 26
10 3 4 75K 173289 l.le-6 | 2 295 143 53
Mixed models initialized with addition model
6 2 3 40K 572091 24e-8 | 0 5 57 21
6 3 3 40K 572091 1.8e-8 | 0 3 70 35
6 3 3 80K 572091 1.6e-8 | O 3 75 35
6 3 4 40K 372001 8.0e-9 | 0 0 72 26
6 3 4 40K 173289 1.4e-8 | 3 2 60 29
6 3 4 50K 572091 29e-8 | 0 4 79 29
10 3 3 50K 572091 6.3e-7 | 6 7 90 45
Mixed models initialized with add model. Reset useful heads every 100 steps
6 | 4 | 4 | 40K [372001 [ 1.7e-8 |3 | 8 |51 ]30
Mixed models initialized with add model. Reset useful heads & MLPs every 100 steps
6 | 4 |3 | 40K [ 372001 [ 3.0e4 |17 3120 [ 115 |53

Table 6: Main experimental models studied. The number of addition and subtraction failures per million questions
is shown. The best 5-, 6- and 10-digit models are bolded.

Ap ST A ST An.ST e A,.SC = (A,.T // 10) where // is the integer
Ap1.5T =ST8 =ST9 =STIO division operator
ST8 ST8 ST9 ST10
ST9 ST8 ST9 ST10 * A,.85=(A,.T ==9) where == is the equality
ST10 STS * ST10 ST10 operator

The AO.T value is accurate. But the other A4,,.T
values are not accurate because each is constrained
to information from just one digit. We define an-
other more accurate operator A,,.T2 that has “two-
digit accuracy”. A,.T2 is the pair sum for the nth
digit plus the carry bit (if any) from the n-1th digit
T:

Table 7: A,,.TriAdd can be calculated from A,,.ST and
Aj—1.5T through nine bigram mappings and yielding
the three distinct outputs ST8, ST9 and ST10

A,.T is a compact way to store data. Tab. 10
show how, if it needs to, the model can convert a
A,,.T value into a one-digit-accuracy SA, SC or SS
value.)

Our notation shorthand for one-digit-accuracy
these “conversion” bigram mappings is:

° An.TZ = An.T + Anfl.SC

A,,. T2 is more accurate than A,,.T. The A,,. T2
value is always in the range “0” to “19” (covering
0+0+0 to 9+9+CarryOne). Tab. 11 show how the
model can implement the T2 operator as a mapping.

e A,.SA=(A,.T % 10) where % is the modulus
operator

13



A, T A,SA A,SC A,SS

Name Contains Example Freq
S0 SA 11111+412345=23456 ~5%
S1 SA,SC  1111149=22230 ~21%
S2 SA,SCx2 11111+89=22300 ~34%
S3 SA,SCx3 11111+889=23000 ~28%
S4 SA,SCx4 11111+8889=30000 ~11%
S5 SA,SCx5 11111+88889=100000 ~2%

Table 8: We categorise addition questions into non-
overlapping “calculation complexity" quanta, ordered
by increased computational difficulty (and decreasing
occurrence frequency). Five-digit addition questions
quanta are SO to S5. Ten-digit addition question quanta
are SO to S10. SI10’s frequency is ~ 3e — 4 showing the
need to enrich training data for rare edge cases.

Dy,vsD, 0 1 4 5 8§ 9
0 0 1 4 5 8 9
1 1 2 5 6 9 10
4 4 5 8 9 12 13
5 5 6 9 10 13 14
8 8 9 12 13 16 17
9 9 10 13 14 17 18

Table 9: Implementing the T operator as a bigram map-
ping from 2 input tokens to 1 result token.

Following this pattern, we define operators
A, T3, A,. T4 and A,.T5 with 3, 4 and 5 digit
accuracy respectively:

¢ A, T3= A, T+ (A,_1.T2//10) aka A,,.T
+A,_1.8C2

e A, T4=A, T+ (A,-1.T3//10) aka A,,.T
+ A;—1.SC3

e A, T5=A, T+ (A,-1.T4//10) aka A,,.T
+ A,—1.5C4

The value A4.T5 is accurate as it integrates SC
and cascading SS data all the way back to and in-
cluding AO.T. The values A1.T2, A2.T3, A3.T4 are
also all accurate. If the model knows these values
it can calculate answer digits accurately:

* A1=A1.T2% 10
* A2=A2.T3 % 10
* A3=A3.T4 % 10
* A4=A4.T5% 10
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0 0 0 0
1 1 0 0
8 8 0 0
9 9 0 1
10 0 1 0
17 7 1 0
18 8 1 0

Table 10: Converting a A,,.T value into a SA , SC or SS
value.

Ap T Ap T2 if A,.T2 if
Ap—1.8C==0 Ap—1.5C==1

0 0 1

1 1 2

9 10

10 10 11

17 17 18

18 18 19

Table 11: Calculating A,,.T2 from A,,.T and A,,_1.T

* A5=A4.T5//10

In this hypothesis, all the answer digits are ac-
curately calculated using the nodes in positions 8
to 11. This hypothesis 2 is feasible, elegant and
compact - reflecting the authors (human) values for
good code.

Experimenation shows the model does not imple-
ment this hypothesis. It retains the long staircase
SA calculations in positions 11 to 16. Why? Two
reasons suggest themselves:

* Hypothesis 2 is too compact. The model is
not optimising for compactness. The long
staircase is discovered early in training, and it
works for simple questions. Once the overall
algorithm gives low loss consistently it stops
optimising.

Hypothesis 2 accurately predicts all answer
digits in step 11 - reflecting the authors (hu-
man) values for good code. The model is not
motivated to do this. It just needs to accurately
predict AS as 1 or O in step 11 and A4 in step
12 - nothing more.

We abandoned this hypothesis.



J Appendix: Addition Hypothesis 3

The hypothesis 3 pseudo-code was derived itera-
tively by obtaining experimental results and map-
ping them to mathematical operations. Some of the
experiments and mappings were:

 Ablation experiments show that the A5 value
is accurately calculated in prediction step 11
using 5 attention heads and 5 MLP layers. The
pseudo-code accurately calculates A5 while
constraining itself to this many steps.

» Ablating the nodes one by one shows which
answer digit(s) are reliant on each node
(Ref Table 1). Most interestingly, ablating
P10.L0.H1 impacts the answer digits AS, A4,
A3, A2 (but not A1 and A0). This node is
used in the calculation of A5, A4, A3, A2 in
prediction steps 11, 12, 13 and 14. These re-
lationships are constraints that are all obeyed
by the pseudo-code.

e The pseudo-code has 4 instances where
A,.ST is calculated using TriCase. PCA
of the corresponding nodes (PS8.LO.HI,
P9.L0.H1, P11.L0.H2 and P14.L0.H1) shows
tri-state output for the specified D,,. (see Fig-
ure 8).

* The pseudo-code has 4 instances where com-
pound functions using TriCase and TriAdd to
generate tri-state outputs. PCA of the corre-
sponding nodes (P11.L0.H1, P12.L0.H1 and
P13.L0.H1) shows tri-state output for the spec-
ified D,,. (see Figure 8).

* Activation patching (aka interchange interven-
tion) experiments at attention head level con-
firmed some aspects of the calculations (see
§ K for details.

* The pseudo code includes calculations like
A1.ST which it says is calculated in P9.L0.H1
and P9.L0O.MLP. Ablation tells us both nodes
are necessary. For the attention head we use
the PCA results for insights. We didn’t imple-
ment a similar investigative tool for the MLP
layer, so in the pseudo-code we attribute the
calculation of A1.ST to both nodes.

e For P10.L0.H1, the attention head PCA could
represent either a bi-state or tri-state output
(see Figure 9). The MLP layer at P10.LO.MLP
could map the attention head output to either

a bi-state or tri-state. We cannot see which.
The pseudo-code shows a tri-state calculation
at P10.LO.MLP, but with small alterations the
pseudo-code would work with a bi-state out-
put.

* For P15.L0.H1 the attention head PCA could
represent either a bi-state or tri-state output
(see Figure 9). The pseudo-code shows a
bi-state calculation A0.SC at P15.L.0.H1, but
with small alterations the pseudo-code would
work with a tri-state output.

* The calculation of A1.ST2 in P14.L0.H1 is
a interesting case. The model needs A1.ST2
for A2 accuracy. The model could simply
reuse the accurate A1.ST2 value calculated in
P10. Activation patching shows that it does
not. Instead the P14 attention heads calcu-
late A1.ST1 from D1 and D’1 directly, and
only relies on the P10.D1.ST2 value in the
case where A1.ST2 != A1.ST. That is, the cal-
culation is “use P14.A1.ST1 value else use
A1.ST2 values". This aligns with the model
learning the P10.A1.ST calculation early in
training (for 90% accuracy) and later learning
that P10.A1.ST?2 contains additional informa-
tion it can use to get to six nines accuracy.

D'4 D'1 D'0 = + A5 A4 A3 A2 Al

LOHO S1 S1 S1 S1

LOH1 S0 S0 S3 S0 S0 S0 S0 S0 S0 ‘
LOH2 S2

Sl S2 S

LOMLP S0 S0 S0 S0 S0 S0 ‘

L1HO S3

L1H2 S1 S4 53 S2

LIMLP S0 S0 S0 S0 S0 S0 ‘

P6 P9 P10 P11 P12 P13 P14 P15 P16 P17

Figure 5: For a sample 5-digit 2-layer 3-head addition
model, this map shows a compacted view of all useful
token positions (horizontally) and all useful attention
heads and MLP layers (vertically) used in predictions as
green cells. Each cell shows the simpliest (lowest com-
plexity) quanta SO, S1, etc impacted when we ablate
each node. To answer SO questions, only the SO nodes
are used. To answer S1 questions, SO and S1 nodes
are used, etc. The model only uses nodes in nine token
positions.



LOH1
LOH2
LOMLP
L1HO

L1H2

L1IMLP

A

P6 P9 P10 P11 P12 P13 P14 P15 P16 P17

Figure 6: This map shows the % of enriched questions
that fail when we ablate each node in a 5-digit 2-layer
3-head addition model. The model only uses nodes in
token positions P8 to P16 (i.e. tokens D’2 to A1). Lower
percentages correspond to rarer edge cases. The grey
space represents nodes that are not used by the model.

D'4 D'1 D'o = + A5 A4 A3 A2 Al
D'0

D'4

LOHO

LOH1

LOH2

L1HO

L1H2

P6 P9 P10 P11 P12 P13 P14 P15 P16 P17

Figure 7: This map shows the input tokens each atten-
tion head attends to at each token position in a 5-digit
2-layer 3-head addition model. At token position P11
the model predicts the first answer digit A5. All digit
pairs (e.g. D2 D’2) are attended to by P11.

K Appendix: Addition Interchange
Interventions

To test the hypothesis 3 mapping of the mathemati-
cal framework (casual abstraction) to the model at-
tention heads, various “interchange interventions"
(aka activation patching) experiments were per-
formed on the model, where

* A particular claim about an attention head has
selected for testing.

* The model predicted answers for sample test
questions, and the attention head activations
were recorded (stored).

* The model then predicted answers for more
questions, but this time we intervened during
the prediction to override the selected atten-
tion head activations with the activations from
the previous run.

P8.L0O.H1, A2 P9.L0.H1, Al
o | [J
@ | 9 e %
1 1 ®
v 3 57
O'p 0_‘: @ ..
[ [ J
”® ) o ®
-14 . ’_ [ [ ]
-10 0 10 -10 0 10
P11.LO.H1, A3 P11.L0.H2, A4
10 1 &
14 o ®
1 2 s{ »
o %o é L )
ey T oag (BT .
®
°
—1".3 . 1‘— -10 . ‘.. . .
-10 0 10 -5 0 5 10
P12.L0.H1, A3 , P13.L0.H1, A2
_—
11 ’ '{ ° o
Y [ ] 1A
®
o-t g
“ * {38 w8
° °
SR b o/ [T o e
-10 0 10 -10 0 10
P14.L0.H1, Al
[
Py e T8:0-8
11 @ oo :t e T9
(1 .! e T10:10-18
() o®
{R%
° t‘ o0 0. °
o o -

-10 0 10

Figure 8: For 5-digit addition, for these attention heads,
for exactly 1 answer digit A,each, PCA shows these
interpretable results. The dot colours show the TriCase
value of each question. The PCA data and TriCase
quanta are both tri-state and strongly correlated.

Using this approach we obtained the findings in
Tab. 12.

L Appendix: N-Digit Addition

The addition models perform addition accurately.
Visualizations that provided insights into the behav-
ior of the model, aiding our interpretation of the
algorithm, are below:

Some notes about the models:

* The models selected different attention heads
in the early positions to use to do the same
logical calculations.

* Some models use 2 attention heads per digit to
do the SA calculation, whereas some models
only uses one (and so are more compact).

* The PCA trigrams have difference appear-
ances in different models (but the same in-
terpretable clusters). Refer Figures 8



Nodes Claim: Attention head(s) perform ... Finding: Attention head(s) perform a
function that ...

P8.LO.HI and A2.ST =TriCase( D2, D’2 ) impacting Based on D2 and D’2. Triggers on a A2

MLP A4 and A5 accuracy carry value. Provides carry bit used in A5
and A4 calculation.

P9.LO.HI and A1.ST =TriCase( D1, D’1 ) impacting Based on D1 and D’1. Triggers on a Al

MLP A5, A4 and A3 accuracy carry value. Provides carry bit used in A5,
A4 and A3 calculation.

P10.LO.H1 A1.ST2 =TriAdd( A1.ST, TriCase(D0O, Based on DO and D’0. Triggers on a AO
and MLP D’0) ) impacting A5, A4, A3 and A2 carry value. Provides carry bit used in AS5,
accuracy A4, A3 and A2 calculation.

P11.LO.H1 A3.ST4 = TriAdd( TriCase( D3, D’3 ), Based on D3 and D’3. Triggers on a A3
and MLP TriAdd( A2.ST, A1.ST2)) impacting A5  carry value. Provides carry bit used in AS

accuracy calculations.
P11.L0.H2 A4.ST = TriCase(D4, D’4) impacting Based on D4 and D’4. Triggers on a A4
and MLP A5 accuracy A4 carry value. Provides carry bit used in A5
calculation.
P12.L0.HO+H2 A4.SA = (D4 + D’4) % 10 impacting Sums D4 and D’4. Impacts A4.
and MLP A4 accuracy A4
P13.LO.HO+H2 A3.SA = (D3 + D’3) % 10 impacting Sums D3 and D’3. Impacts A3.
and MLP A3 accuracy
P14.L0.HO+H2 A2.SA = (D2 + D’2) % 10 impacting Sums D2 and D’2. Impacts A2.
and MLP A2 accuracy
P14.L0.H1 (D1+D’1)/10+ P10.A1.ST2 info im- Calculates P10.A1.ST1 but add P10.A1.ST2
and MLP pacting A2 accuracy info when A1.ST != A1.ST2. Impacts A2
P15.LO.HO+H2 A1.SA = (D1 + D’1) % 10 impacting Sums D1 and D’1. Impacts Al.
and MLP Al accuracy
P15.L0.H1 A0.SC = (D0 +D’0) / 10 impacting A1 Triggers when DO + D’0 >10. Impacts Al
and MLP accuracy digit by 1
P16.L0.HO+H2 AO0.SA = (DO + D’0) % 10 impacting Sums DO and D’0. Impacts AO.
and MLP AOQ accuracy

Table 12: Interchange Interventions experiments used activation patching to test the claims addition hypothesis 3
made for each attention head in a sample mixed model. Experimental results are consistent with hypothesis 3 for all

nodes.

+ve Contains -ve Contains Like M
Sub Sub

MO MD N/A N/A S0

Ml MD,MB NI ND,NB S1

M?2 MD,MBx2 N2 ND,NBx2 §2

M3 MD,MBx3 N3 ND,NBx3 S3

M4  MDMBx4 N4  ND,NBx4 S4 )

Table 13: We define “positive-answer subtraction" and
“negative-answer subtraction" calculation complexity
quanta that parallel the addition quanta. d

* Per answer digit, some models use the SC
calculation, whereas some models optimize it
out and rely solely on the ST value (and so .
are more compact).
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Appendix: Mixed Model Initialization

We experimented with three approaches to re-using
the trained addition model in the “mixed" (addition
and subtraction) model:

Initialize Only: Initialize the untrained mixed
model with the addition model weights before
training begins.

Freeze Attention: As per “Initialize Only",
but also every 100 training steps recopy the at-
tention head weights from the addition model
into the partially-trained mixed model.

Freeze All: As per “Initialize Only", but also
every 100 training steps recopy the entire ad-
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Figure 9: For 5-digit addition, for these attention heads,
for exactly 1 digit A,each, PCA shows these inter-
pretable results. The dot colours show the TriCase value
of each question. The PCA and TriCase data are strongly
correlated, but the PCA data has 2 states.
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Figure 10: This map shows the simpliest (lowest com-
plexity) quanta SO, S1, etc impacted when we ablate
each node in the 5-digit 2-layer 3-head addition model.
To answer SO questions, only the SO nodes are used. To
answer S1 questions, SO and S1 nodes are used, etc.

dition model (attention heads and MLP layers)
into the partially-trained mixed model.

Our intuition was that “Initialize Only" would
give the mixed model the most freedom to learn
new algorithms, but that the “Freeze Attention" and
“Freeze All" approaches would make the resulting
trained mixed model easier to interpret (as we could
reuse our addition model insights).

After experimentation we found that the “Initial-
ize Only" approach was the only one that quickly
trained to be able to do both addition and subtrac-
tion accurately. We concluded that the other two
methods constrainws the model’s ability to learn
new algorithms too much.

We also experimented with “where" in the model
we inserted the addition (6-digit, 2-layer, 3-head)
model into the slightly larger (6-digit, 3-layer, 4-
head) mixed model. That is, do we initialize the
first 2 layers or the last 2 layers of the mixed model?
Also do we initialize the first 3 attention heads or
the last 3 attention heads of the mixed model? Our
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Figure 11: This map shows the % of questions that fail
when we ablate each node in the 6-digit 2-layer 3-head
addition model. The model only uses nodes in token
positions P11 to P20. Lower percentages correspond to
rarer edge cases. The grey space represents nodes that
are not useful.

intuition was that initializing the first layers and
heads would be more likely to cause the model to
re-use the addition circuits adding interpretability,
so we used this approach.

N Appendix: N-Digit Subtraction

The mixed models perform addition and subtrac-
tion accurately. Visualizations that provided in-
sights into the behavior of the model, aiding our
interpretation of the algorithm, are below:

D5 OPR D3 D2 D1 DO = A7 A6 AS A4 A3 A2 AL

LOHO MN  SMN SN S SMN SM SN SM s SM  sM  sM

LOH1 s SN SMN  SMN  SMN  SMN SMN

LOH2 SMN  SMN  SMN  SMN SMN

LOH3 MN MN MN  MN M MN  MN  MN  MN  MN

LOMLP SMN  SMN

SMN SMN SMN SN SMN SMN SMN  SMN SMN

L1HO M M M M M M
L1H1 M M M MN M M
L1H2 N s sM s s s

L1H3 N s s s B s

LIMLP N B SM  SM  SM  SMN SM  SMN
L2HO N N N

L2H2 MN

L2MLP sm M SM sm M M

PO P6 P9 PO P11 P12 P13 P19 P20

Figure 12: This map of a sample 6-digit mixed model
shows the 98 nodes used to predict answers to addition
(S), positive-answer subtraction (M) and/or negative-
answer subtraction (N) questions. Before training the
mixed model, 48 nodes were initalized pre-training with
a smaller addition model’s weights. These are have
a red border. During mixed model training, 39 of 48
of the initalized monosemantic nodes were generalized
(become poly-semantic) and now help predict two or
three question classes.

Some notes about the mixed models:
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1158
1159
1160

LOHO

LOH1

LOH2

LOMLP

L1H2

L1H3

L1MLP

L2MLP

Figure 13: This map shows the simplest complexity
quanta SO, S1, etc used in each useful node of the 6-
digit 3-layer 4-head mixed model when doing addition
questions.

OPR D3 D2
LOHO
LOH1
LOH2
LOH3
LomLpP
L1HO
L1H1
L1H2
LiMLP
L2H2

L2MmLP

PO P6 P9 PO P11 P12 P13 P4 P15 P16 P17 P18 P19 P20

Figure 14: This map shows the simpliest complexity
quanta MO, M1, etc used in each useful node of the
6-digit 3-layer 4-head mixed model for subtraction
questions with positive answers.

¢ All the notes about the addition model (above)
also apply to the mixed model.

* The model contains a new sub-task that stands
out: The algorithm relies on calculations done
at token position PO, when the model has only
seen one question token! What information
can the model gather from just the first token?
Intuitively, if the first token is a “8" or “9" then
the first answer token is more likely to be a “+"
(and not a “-"). The model uses this heuristic
even though this probabilistic information is
sometimes incorrect and so will work against
the model achieving very low loss.
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