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Abstract

Clustering is a popular unsupervised machine learning technique that groups similar
input elements into clusters. In many applications, sensitive information is clustered
that should not be leaked. Moreover, nowadays it is often required to combine data
from multiple sources to increase the quality of the analysis as well as to outsource
complex computation to powerful cloud servers. This calls for efficient privacy-
preserving clustering. In this work, we systematically analyze the state-of-the-art
in privacy-preserving clustering. We implement and benchmark today’s four most
efficient fully private clustering protocols by Cheon et al. (SAC’19), Meng et al.
(ArXiv’19), Mohassel et al. (PETS’20), and Bozdemir et al. (ASIACCS’21) with
respect to communication, computation, and clustering quality.

1 Introduction

Many large IT companies, including Microsoft, Facebook, Google, and Apple, collect massive
amounts of data to perform analyses for their commercial benefit [2]. Clustering is a popular
unsupervised learning technique and plays a crucial role in data processing and analysis. The
regulations like GDPR emphasize the need for privacy-preserving clustering to preserve the privacy of
data. Consequently, a series of efforts have been made through two paradigms for secure computation,
homomorphic encryption (HE) [3–5] and secure multi-party computation (MPC) [6, 7], that can also
be combined. However, these works only cover a few clustering algorithms so far: K-means, K-
medoid, Mean-shift, Gaussian Mixture Models Clustering (GMM), Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), hierarchical clustering (HC), Affinity Propagation, and
Mean-shift. Moreover, we found that only ten works (cf. [1, Tab. 1]) provide full privacy protection
according to the ideal functionality for private clustering, i.e., they leak nothing beyond the output.

Our Contributions. Our Systematization of Knowledge (SoK) paper provides the following core
contributions:
− The first comprehensive review and analysis of existing techniques used for privacy-preserving
clustering with respect to security models, privacy limitations, efficiency, and further aspects.
− An empirical evaluation of the four most efficient and fully private clustering schemes [8, 7, 5, 9].
− An open source implementation of the clustering protocol of [5] and [9] in C++17. Implementa-
tions of the remaining two protocols that we also evaluate [8, 7] are publicly available.

2 Existing Protocols

Tab. 1 contains on overview of all 59 works on privacy-preserving clustering with secure computation
techniques that we are currently aware of. It indicates the respective security model, used secure
computation techniques, common types of leakages of intermediate values, the type of output, which
and how many parties are involved in the protocol, the data partition, and other issues.

∗The full version of this paper published at PET’21 [1].



Algorithm Scheme Privacy Security PETs L1 L2 L3 L4 O1 O2 O3 Interactivity (Scenario) Data Other issues

K-means

[10, KDD’03] 7 HE+blinding 7 7 7 7 7 3 7 all data owners (≥ 3) v

[11, KDD’05] 7 HE+ASS+GC 3 3 7 7 3 3 7 2PC a wrong division
[12, ESORICS’05] 7 HE or OPE 7 3 3 7 7 3 7 2PC h

[13, CCS’07] 3 HE+ASS 3 3 3 7 7 3 7 2PC a

[14, SECRYPT’07] 7 blinding 7 3 7 7 3 3 7 all data owners v/h
[15, AINAW’07] 7 HE+ASS+OPE 3 7 7 7 3 3 7 2PC h

[16, PAIS’08] 7 ASS 3 3 7 7 3 3 7 all data owners (≥ 4) v

[17, WIFS’09] 7 HE 7 3 7 3 3 7 7 data owners + 1 server h

[18, KAIS’10] 7 HE+ASS 3 3 7 7 3 7 7 all data owners h

[19, PAISI’10] 7 SS 3 7 7 7 3 3 7 Outsourcing ≥ 3 servers a

[20, ISPA’10] 7 HE 3 3 7 7 7 3 7 all data owners v/h
[21, WIFS’11] 7 HE+GC 3 7 3 3 3 7 7 Outsourcing, 3 servers h

[22, ISI’11] 7 HE+ASS 7 7 7 7 3 7 7 2PC v

[23, TM’12] 7 SSS 7 7 3 7 7 3 7 all data owners h distance calculation unclear
[24, JIS’13] 7 HE 7 3 3 7 3 7 7 data owners + 2 servers h
[25, ICDCIT’13] 7 SSS+ZKP 7 7 3 7 7 3 7 all data owners h

[26, ASIACCS’14] 7 HE 7 7 7 7 3 3 7 outsourcing, 1 data owner + 1 server − insecure HE [27]
[28, MSN’15] 7 HE 7 7 7 3 7 7 7 outsourcing, data owners + 1 server h insecure HE [27]
[29, IJNS’15] 7 HE 7 7 7 7 7 3 7 all data owners h

[30, CIC’15] 3 HE 3 3 3 7 7 3 7 Outsourcing, 2 servers h
[31, ICACCI’16] 7 N/A SS 7 7 7 7 3 7 7 arbitrary number of servers a

[32, ISPA’16] 7 blinding 7 7 7 3 7 3 7 all data owners (≥ 3) h

[33, SecComm’17] 7 HE 3 7 7 3 7 3 7 outsourcing, ≥ 4 servers h

[34, TII’17] 7 HE 7 7 7 7 7 7 7 data owners + 1 server h

[35, SAC’18] 3 HE 3 3 3 3 7 3 7 Outsourcing, 1 server −
[36, CLOUD’18] 3 HE 3 3 3 7 7 3 7 Outsourcing, 2 servers − distance calculation unclear
[37, CCPE’19] 7 N/A HE 7 7 7 7 7 3 7 Outsourcing, 2 data owners + 1 server h insecure HE [27]
[38, TCC’19] 7 HE 3 7 7 3 3 7 7 Outsourcing −
[39, Inf. Sci.’20] 7 / HE+GC 7 7 7 7 7 3 7 Outsourcing, 2 data owners + 1 server h

[40, SCN’20] 7 HE+SKC 3 7 7 3 7 3 7 Outsourcing, 3 servers h

[7, PETS’20] 3 GC 3 3 3 7 7 3 7 2PC/Outsourcing h

[4, TKDE’20] 7 HE 3 7 3 7 7 3 7 Outsourcing, 2 servers a
Kernel
K-means

[41, KAIS’16] 7 N/A PKC 3 7 7 7 3 7 7 Outsourcing, 1 server − security model

Possibilistic
C-means

[42, TBD’17] 7 N/A HE 7 7 7 7 3 3 7 Outsourcing, 1 data owner + 1 server −

K-medoids [43, SMC’07] 7 N/A HE+blinding 3 7 7 3 7 7 7 all data owners v exhaustive search
[44, CCSEIT’12] 7 N/A HE+blinding 3 7 7 3 7 7 7 all data owners v exhaustive search

GMM [45, KAIS’05] 7 blinding 3 3 7 7 3 7 7 all data owners h

[46, DCAI’19] 7 ASS 3 3 7 7 3 7 7 all data owners (> 2) v/h
Affinity
Propagation

[47, INCoS’12] 7 HE + blinding 3 3 7 3 3 7 7 all data owners v

[48, SECRYPT’21] 3 / ASS+GC 3 3 3 3 3 7 7 all data owners/Outsourcing a

Mean-shift [5, SAC’19] 3 HE 3 3 3 3 3 7 7 Outsourcing, 1 server −

DBSCAN

[49, ISI’06] 7 blinding 3 3 7 3 7 7 7 all data owners v lack of complete protocol
[50, ADMA’07] 7 HE+blinding 3 7 7 3 3 7 7 2PC v/h
[51, IJSIA’07] 7 PKC+blinding 3 3 7 3 3 7 7 all data owners v

[52, ITME’08] 7 HE+blinding 3 7 7 3 3 7 7 data owners + 1 server h

[53, TDP’13] 7 HE+blinding 3 7 7 3 3 7 7 2PC a

[54, S&P’12] 3 / GC 3 3 3 3 3 3 7 2PC h

[55, SIBCON’17] 7 HE+PKC 3 3 7 3 3 7 7 all data owners v cluster expansion missing
[56, PRDC’17] 7 HE 3 7 7 3 7 7 7 all data owners + 1 server h

[57, AI’18] 7 HE 3 7 7 3 3 7 7 data owners + 1 server a uses absolute distance
[8, ASIACCS’21] 3 ASS+GC 3 3 3 3 3 3 7 2PC/Outsourcing a

HC

[58, SDM’06] 7 HE+ASS+GC 3 3 7 3 7 3 7 2PC h

[59, TKDE’07] 7 SKC 3 3 7 3 3 7 7 data owners + 1 server h SKC not semantically secure
[60, TDP’10] 7 HE+GC 3 3 7 3 3 3 7 2PC h
[61, ISI’14] 7 N/A HE 3 7 7 3 3 3 7 2PC v

[62, ISCC’17] 7 HE 3 3 7 3 7 7 3 2PC v/h
[9, ArXiv’19] 3 HE & GC 3 3 3 3 7 3 3 2PC h

BIRCH [63, SDM’06] 7 HE+ASS 3 3 7 3 7 7 7 2PC v

[64, ADMA’07] 7 HE+ASS 3 3 7 3 7 7 7 2PC a

Table 1: History overview of privacy-preserving clustering using secure computation techniques.
Privacy indicates if fully privacy protection according to the ideal functionality for privacy-preserving
clustering is provided (7: leakage; 3: no leakage). is the semi-honest security model, is the
malicious security model, N/A indicates that no security model was defined. HE is homomorphic
encryption, ASS additive secret sharing, SSS Shamir’s secret sharing, GC garbled circuits, OPE
oblivious polynomial evaluation, PKC public-key cryptography, SKC symmetric-key cryptography,
ZKP zero-knowledge proof, blinding is the use of random values for blinding, and other types of secret
sharing are summarized by SS. v indicates that the data that shall be clustered is vertically distributed,
i.e., the data owners hold the values for a subset of parameters from all data records. h indicates
horizontally partitioned data where the data owners hold complete data records with all parameters,
and a is arbitrary data partitioning. L1 leaks intermediate centroids, L2 intermediate cluster sizes, L3
other intermediate values (e.g., intermediate cluster assignments or distance comparison results), and
L4 the number of clustering iterations. O1 outputs the final cluster labels/assignments, O2 outputs the
final centroids, and O3 outputs the final dendogram/tree structure. The schemes with the best privacy
guarantees are marked in bold (we do not consider the number of clustering iterations as a severe
leakage as it can be easily avoided. The efficient and fully private schemes that we implemented and
benchmarked are [5, 9, 8, 7].
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3 Evaluation

Software Details. We implemented all four protocols in C++17 and instantiate all cryptographic
building blocks with a security level of 128 bits.

Datasets. We use nine datasets from the well-known FCPS [65] and Graves [66] collections designed
for benchmarking clustering algorithms. They also include the ground truth separation [67].

Discussion. ppDBSCAN consistently achieves the highest scores and is able handle different shapes,
and non-linear clusters well. PCA and OPT achieve a relatively good clustering quality on eight
out of nine datasets, but they (completely) fail on the Dense dataset. The K-Means and Mean-shift
protocols have comparable clustering quality that heavily varies between different datasets. The
K-means-based protocols can only cluster very specific datasets that do not contain non-convexly
shaped and non linearly-separable clusters. HE-Meanshift tends to have large standard deviations
which indicate a strong dependency on dust initialization. However, the highest score achieved by
HE-Meanshift is comparable to that of plaintext Mean-shift which indicates that the modifications
introduced for its HE-friendly computation do not decrease accuracy. In contrast, MPC-KMeans has
a small standard deviation and achieves a similar clustering quality to KMeans++, which shows that
the randomness used for centroid initialization has a smaller impact on final output.

Security Model w.r.t Scenario. All four works are in the static semi-honest security model i.e., the
adversary can corrupt some of the parties at the onset of the computation and correctly follows the
protocol description, but attempts to learn information about the private inputs of the honest parties.
MPC-KMeans, PCA/OPT, and ppDBSCAN consider the outsourced two-party computation setting
where multiple data owners secret share their input among two non-colluding servers to privately
cluster the dataset. In contrast, in HE-Meanshift, a single data owner outsources its computation to a
single server.

MPC-KMeans [7] and PCA/OPT [9] provide a formal proof of security by using a simulator which
generates a view that is indistinguishable from a real protocol execution given the party’s input
and output. The security of HE-Meanshift [5] follows directly from the security of the used CKKS
encryption scheme since only the input and final output are sent. We note that the recent attack on the
CKKS scheme by Li and Micciancio [68] does not affect the security of HE-Meanshift, as discussed
by Cheon et al. [69]. Similarly, the security of ppDBSCAN [8] follows directly from the security of
the employed secure two-party computation techniques, specifically garbled circuit [70] and secret
sharing [71].

Leakage from Outputs. The information leaked from the clustering output is not captured in the
security definition. HE-Meanshift outputs the cluster labels for every record in the dataset. However,
this is not a privacy concern since the protocol is intended to be used in the outsourced single-server
computation setting where the entire dataset is known to the client. MPC-KMeans and ppDBSCAN
can be adapted to output either the cluster centroids or cluster labels. MPC-KMeans also outputs
the number of iterations for the clustering to converge which is related to the distribution of the
underlying dataset. The PCA/OPT algorithms output a point-agnostic dendrogram in addition to the
cluster centroids. The point-agnostic dendrogram is intended to be a privacy-preserving variant of the
dendrogram output by a plaintext HC algorithm since the latter provides the complete merging history
which leaks information in a setting with multiple data owners. The point-agnostic dendrogram
is computed by first applying a random and private permutation on the input records to fuzz the
merging history and by retaining the metadata of only sufficiently large clusters. Intuitively, this
allows obtaining useful metadata akin to the plaintext computation while still preserving privacy.

3.1 Efficiency

Asymptotic Analysis. First, we compare the asymptotic runtime, communication, and round com-
plexity of the four investigated private clustering protocols and depict the results in Tab. 2. Asymptot-
ically, MPC-KMeans is the most efficient with respect to communication and runtime in terms of
dataset size N , input records’ dimension d and number of clusters K.
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Protocol Runtime Communication Rounds

MPC-KMeans [7] Θ(NK(d+ `)t) Θ
(
NK(d`2 + `κ)t

)
Θ(dlogKet)

HE-Meanshift [5] Θ
(
(NKdd

2t)/(Nc log d)
)

Θ(NdKdκ) 2
PCA [9] Θ(N3λ) Θ(N3λκ) Θ(N2)
OPT [9] Θ(N2(λ+ d)) Θ(N2(λκ+ κpub)) Θ(N2)

ppDBSCAN [8] Θ(N2(N + d)) Θ(N2`κ) O(N3)

Table 2: Asymptotic complexity of the private clustering protocols. N is the dataset size, d is the
dimension, ` is the bitlength of the data records, K is the number of clusters, Kd is the number
of dusts used in HE-Meanshift, κ = 128 , λ = 40, Nc is the number of plaintext slots in CKKS,
κpub = 2048.
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Figure 1: LAN runtimes in seconds (top row) and communication in MiB (bottom row) of the
fully-private clustering protocols for varying dataset size N , input records’ dimension d, number of
clusters K, and bitlength ` = 32. In (a) and (d) d = 8 and K = 10, in (b) and (e) N = 200 and
K = 10, and in (c) and (f) N = 200 and d = 8

.Communication. We plot the communication costs in the bottom rows of Fig. 1. The communication
cost for HE-Meanshift is identical across different datasets (Fig. 1) because the entire dataset can be
encrypted in one ciphertext. The communication cost of PCA is 6× higher than that of ppDBSCAN
on average while the communication of ppDBSCAN is 2× higher than that of OPT on average. While
the communication cost increases linearly in the input records’ dimension d for HE-Meanshift, d
does not have a significant effect on the communication of MPC-KMeans since the communication
during the assignment of input records to clusters is independent of d. This phase has the highest
communication complexity and dominates the overall communication cost. The communication costs
of PCA/OPT are independent of the input records’ dimension d while the communication costs of
PCA/OPT and ppDBSCAN are independent of the number of clusters K.

Runtimes. We plot the LAN runtimes in the top row of Fig. 1, all averaged over 10 runs. MPC-
KMeans has the lowest runtime and is up to 700× faster than HE-Meanshift over LAN. On the other
hand, the runtime of HE-Meanshift is linear in d since it directly affects the number of ciphertexts and
the efficiency of the bootstrapping operation. ppDBSCAN’s average runtime is 14× higher. However,
since ppDBSCAN’s runtime is independent of the number of clusters, this gap in runtime diminishes
with the increase in number of clusters. OPT and PCA have similar runtimes wich are 15× higher
than that of ppDBSCAN on average over LAN, even though OPT has less communication.
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