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ABSTRACT

Tasks such as graph classification, require graph pooling to learn graph-level rep-
resentations from constituent node representations. In this work, we propose two
novel methods using fully connected neural network layers for graph pooling,
namely Neural Pooling Method 1 and 2. Our proposed methods have the ability to
handle variable number of nodes in different graphs, and are also invariant to the
isomorphic structures of graphs. In addition, compared to existing graph pooling
methods, our proposed methods are able to capture information from all nodes,
collect second-order statistics, and leverage the ability of neural networks to learn
relationships among node representations, making them more powerful. We per-
form experiments on graph classification tasks in the bio-informatics and social
network domains to determine the effectiveness of our proposed methods. Exper-
imental results show that our methods lead to an absolute increase of upto 1.2%
in classification accuracy over previous works and a general decrease in standard
deviation across multiple runs indicating greater reliability. Experimental results
also indicate that this improvement in performance is consistent across several
datasets.

1 INTRODUCTION

Over the past several years, there is a growing number of applications where data is generated from
non-Euclidean domains and is represented as graphs with complex relationships and interdepen-
dency between entities. Deep learning generalised from grid-like data to the graph domain has led
to the development of the remarkably successful Graph Neural Networks (GNNs) (Fan et al., 2019;
Gao et al., 2019; Ma et al., 2019a; Wang et al., 2019b) and its numerous variants such the Graph
Convolutional Network (GCN) (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), graph
attention network (GAT) (Veličković et al., 2018), jumping knowledge network (JK) (Xu et al.,
2018), and graph isomorphism networks (GINs) (Xu et al., 2019), etc.

Pooling is a common operation in deep learning on grid-like data, such as images. Pooling lay-
ers provide an approach to down sampling feature maps by summarizing the presence of features
in patches of the feature map. It reduces dimensionality and also provides local translational in-
variance. In the case of graph data, pooling is used to obtain a representation of a graph using its
constituent node representations. However, it is challenging to develop graph pooling methods due
to the some special properties of graph data such as the variable number of nodes in different graphs
and the isomorphic structures of graphs. Firstly, the number of nodes varies in different graphs,
while the graph representations are usually required to have the same fixed size to fit into other
downstream machine learning models where they are used for tasks such as classification. There-
fore, graph pooling should be capable of handling the variable number of node representations as
inputs and producing fixed-sized graph representations. Secondly, unlike images and texts where we
can order pixels and words according to the spatial structural information, there is no inherent order-
ing relationship among nodes in graphs. Therefore, isomorphic graphs should have the same graph
representation, and hence, graph pooling should give the same output by taking node representations
in any order as inputs.

Our main contributions in this work are two novel graph pooling methods, Neural Pooling Method
1 and 2. These new pooling methods allow us to do the following,i) produce the same dimensional
graph representation for graphs with variable number of nodes, ii) remain invariant to the isomorphic
structures of graphs, iii) collect second- order statistics, iv) leverage trainable parameters in the form
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of fully connected neural networks to learn relationships between underlying node representations
to generate high quality graph representations which are then used for graph classification tasks.

Experiments are performed on four benchmark bio-informatics datasets and five popular social net-
work datasets to demonstrate the effectiveness and superiority of our proposed graph pooling meth-
ods. Experimental results show that our methods lead to an improvement in classification accuracy
over existing methods and are also more reliable as compared to previous works.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

A graph can be represented by its adjacency matrix and node features. Formally, for a graph G
consisting of n nodes, its topology information can be represented by an adjacency matrix A ∈
{0, 1}n × n and the node features can be represented as X ∈ Rn × d, assuming each node has a
d-dimensional feature vector. GNNs learn feature representations for different nodes using these
matrices (Gilmer et al., 2017). Several approaches are proposed to investigate deep GNNs, and
they generally follow a neighborhood information aggregation scheme (Gilmer et al., 2017; Xu
et al., 2019; Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018). In each step,
the representation of a node is updated by aggregating the representations of its neighbors. Graph
Convolutional Networks (GCNs) are popular variants of GNNs and inspired by the first order graph
Laplacian methods (Kipf & Welling, 2017). Graph pooling is used to connect embedded graphs
outputted by GNN layers with classifiers for graph classification. Given a graph, GNN layers pro-
duce node representations, where each node is embedded as a vector. Graph pooling is applied after
GNN layers to process node representations into a single feature vector as the graph representation.
A classifier takes the graph representation and performs graph classification.

2.2 GRAPH POOLING

Early studies employ simple methods such as averaging and summation as graph pooling (Xu et al.,
2019; Duvenaud et al., 2015; Defferrard et al., 2016). However, averaging and summation do not
capture the feature correlation information, curtailing the overall model performance (Zhang et al.,
2018). Other studies have proposed advanced graph pooling methods, including DIFFPOOL (Ying
et al., 2018), SORT-POOL (Zhang et al., 2018), TOPKPOOL (Gao & Ji, 2019), SAGPOOL (Lee
et al., 2019), and EIGENPOOL (Ma et al., 2019b), and achieve great performance on multiple
benchmark datasets. EIGENPOOL involves the computation of eigenvectors, which is slow and
expensive. DIFFPOOL (Ying et al., 2018) treats the graph pooling as a node clustering problem. A
cluster of nodes from the original graph are merged to form a new node in the new graph. DIFF-
POOL (Ying et al., 2018) proposes to perform the graph convolution operation on node features to
obtain node clustering assignment matrix. Intuitively, the class assignment of a given node should
depend on the class assignments of other neighbouring nodes. However, DIFFPOOL does not ex-
plicitly consider high-order structural relationships, which we that are important for graph pooling.
SORTPOOL (Zhang et al., 2018), TOPKPOOL (Gao & Ji, 2019), and SAGPOOL (Lee et al., 2019)
learn to select important nodes from the original graph and use these nodes to build a new graph.
They share the similar idea to learn a sorting vector based on node representations, which indicates
the importance of different nodes. Then only the top k important nodes are selected to form a new
graph while the other nodes are ignored. However, the ignored nodes may contain important fea-
tures and this information is lost during pooling. It is worth noting that all the graph pooling methods
mentioned till now only collect first-order statistics (Boureau et al., 2010). A recent study has pro-
posed second order graph pooling methods SOPoolbimap and SOPoolattention (Wang & Ji, 2020).
In this work, we propose two novel methods using fully connected neural network layers for graph
pooling, namely Neural Pooling Method 1 and 2. Compared to existing graph pooling methods, our
proposed methods are able to capture information from all nodes, collect second-order statistics, and
leverage the ability of neural networks to learn relationships among node representations, making
them more powerful.
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3 METHODOLOGY

3.1 PROPERTIES OF GRAPH POOLING

Consider a graph G = (A, X) represented by its adjacency matrix A ∈ {0, 1}n × n and node feature
matrix X ∈ Rn × d, where n is the number of nodes in G and d is the dimension of node features.
The node features may come from node labels or node degrees. Graph neural networks are known
to be powerful in learning good node representation matrix H from A and X:

H = [h1, h2, ........., hn]T = GNN(A, X) ∈ Rn × f (1)

where rows of H , hi ∈ Rf , i = 1, 2, ..., n, are representations of n nodes, and f is the dimension of
the node representation obtained from the GNN and depends on the architecture of the GNN. The
task that we focus on in this work is to obtain a graph representation vector hG from H , which is
then fed into a classifier to perform graph classification:

hG = g([A], H) ∈ Rc (2)

where g(·) is the graph pooling function and c is the dimension of hG. Here, [A] means that the
information from A can be optionally used in graph pooling. For simplicity, we omit it in the
following discussion.

Note that the function g(·) must satisfy two requirements to serve as graph pooling. First, g(·) should
be able to take H with variable number of rows as the inputs and produce fixed-sized outputs.
Specifically, different graphs may have different number of nodes, which means that n is a variable.
On the other hand, c, which is the dimension of the graph representation hG is supposed to be
fixed to fit into the classifier. Second, g(·) should output the same hG when the order of rows of
H changes. This permutation invariance property is necessary to handle isomorphic graphs. To be
concrete, if two graph G1 = (A1, X1) and G2 = (A2, X2) are isomorphic, GNNs will output the
same multi set of node representations. That is, there exists a permutation matrix P ∈ {0, 1}n × n

such that H1 = PH2, for H1 = GNN(A1, X1) and H2 = GNN(A2, X2). However, the graph
representation computed by g(·) should be the same, i.e., g(H1) = g(H2) if H1 = PH2.

3.2 NEURAL POOLING METHOD 1

Our first proposed method is called Neural Pooling Method 1. Consider a node representation matrix
H obtained following Equation 1 in Section 3.1.

Figure 1: Illustration of our proposed Neural Pooling Method 1. This is an example for a graph
G with 8 nodes. GNNs can learn representations for each node and graph pooling processes node
representations into a graph representation vector.

H is passed through a Fully Connected Neural Network Layer (FCL1) to obtain H ′ as:

H ′ = FCL1(H) ∈ Rn × f ′
where f ′ < f (4)

After this H ′ is again passed through a second Fully Connected Neural Network Layer (FCL2) to
obtain Q as:
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Q = FCL2(H ′) ∈ Rn × 1 (5)

Finally the graph representation hG is obtained as:

hG = H ′TQ ∈ Rf ′ × 1 (6)

where H ′T denotes the transpose of H ′.

Neural Pooling Method 1 always outputs an f ′-dimensional graph representation for H ∈ Rn × f ,
regardless of the value of n. It is also invariant to permutation so that it outputs the same graph
representation, even when the order of rows of H changes.

Intuition: The FCL1 performs the role of reducing the dimensionality of the input node represen-
tations. The trainable parameters of this FCL1 can be thought of as learning a mapping from the
f to the f ′-dimensional space. The FCL2 reduces the f ′-dimensional node representations to a 1
dimensional representation, Q. H ′ ∈ Rn × f ′

can be viewed as H ′ = [l1, l2, . . . , lf ′ ], where lj
∈ Rn, j=1, 2, ..., f ′. The vector lj encodes the spatial distribution of the j-th feature in the graph.
Based on this view, H ′TQ is able to capture the topology information and Q can be thought of as
roughly encoding the position of nodes by learning the weights according to which the j-th feature
is aggregated across the nodes.

Neural Pooling Method 1 hence, leverages the ability of neural networks to learn the topological
structure as well as correlation among the node representations in H . It captures the essential
features and connections between underlying data. It also reduces the dimensionality of H , and
results in an accurate representation of the input graph.

3.3 NEURAL POOLING METHOD 2

Our second proposed method is called Neural Pooling Method 2. Consider a node representation
matrix H obtained following Equation 1 in Section 3.1.

Figure 2: Illustration of our proposed Neural Pooling Method 2. This is an example for a graph
G with 8 nodes. GNNs can learn representations for each node and graph pooling processes node
representations into a graph representation vector.

H is passed through a Fully Connected Neural Network Layer (FCL1) to obtain H ′′ as:

H ′′ = FCL1(H) ∈ Rn × f ′′
where f ′′ < f (8)

After this H ′′ is again passed through a second Fully Connected Neural Network Layer (FCL2) to
obtain H ′ as:

H ′ = FCL2(H ′′) ∈ Rn × f ′
where f ′ < f ′′ (9)

Finally the graph representation hG is obtained as:

hG = Flatten(H ′TH ′) ∈ Rf ′2 × 1 (10)

where H ′T denotes the transpose of H ′.
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Intuition: The FCL1 performs the role of reducing the dimensionality of the input node represen-
tations. The trainable parameters of this FCL1 can be thought of as learning a mapping from the f
to the f ′′-dimensional space. The FCL2 further reduces the f ′′-dimensional node representations
to a f ′ dimensional representation. H ′ ∈ Rn × f ′

can be viewed as H ′ = [l1, l2, . . . , lf ′ ], where
lj ∈ Rn, j=1, 2, ..., f ′. The vector lj encodes the spatial distribution of the j-th feature in the graph.
Based on this view, H ′TH ′ is able to capture the topology information.

Similar to the previous method, Neural Pooling Method 2 satisfies both the conditions of graph
pooling which is that it always outputs an f ′2-dimensional graph representation for H ∈ Rn × f ,
regardless of the value of n. It is also invariant to permutation so that it outputs the same graph
representation when the order of rows of H changes.

4 EXPERIMENTAL SETUP

We perform experiments on graph classification tasks in the bio-informatics and social network
domains to demonstrate the effectiveness and superiority of our proposed methods, namely Neural
Pooling Methods 1 and 2. Details of datasets and parameter settings are described below.

4.1 DATASETS

We use nine graph classification datasets from (Yanardag & Vishwanathan, 2015), including four
bioinformatics datasets and five social network datasets. Only bioinformatics datasets come with
node labels. For the social network datasets, we use one-hot encoding of node degrees as features.
The details of the datasets are summarized in Table 1 and Table 2.

• MUTAG (Debnath et al., 1991) is a bioinformatics dataset of 188 graphs representing nitro
compounds. The task is to classify each graph by determining whether the compound is
mutagenic aromatic or heteroaromatic.

• PTC (Toivonen et al., 2003) is a bioinformatics dataset of 344 graphs representing chemical
compounds. Each node comes with one of 19 discrete node labels. The task is to predict
the rodent carcinogenicity for each graph.

• PROTEINS (Borgwardt et al., 2005) is a bioinformatics dataset of 1,113 graph structures
of proteins. Nodes in the graphs refer to secondary structure elements (SSEs) and have
discrete node labels indicating whether they represent a helix, sheet or turn. And edges
mean that two nodes are neighbors along the amino-acid sequence or in space. The task is
to predict the protein function for each graph.

• NCI1 (Wale et al., 2008) is a bioinformatics dataset of 4,110 graphs representing chemical
compounds. The graph classification label is decided by anti-cancer screens for ability to
suppress or inhibit the growth of a panel of human tumor cell lines.

• COLLAB is a scientific collaboration dataset of 5,000 graphs corresponding to ego-
networks.The dataset is derived from 3 public collaboration datasets (Leskovec et al.,
2005). Each ego-network contains different researchers from each field and is labeled
by the corresponding field. The three fields are High Energy Physics, Condensed Matter
Physics, and Astro Physics.

• IMDB-BINARY is a movie collaboration dataset of 1,000 graphs representing ego-
networks for actors/actresses. The dataset is derived from collaboration graphs on Action
and Romance genres. In each graph, nodes represent actors/actresses and edges simply
mean they collaborate the same movie. The graphs are labeled by the corresponding genre
and the task is to identify the genre for each graph.

• IMDB-MULTI is multi-class version of IMDB-BINARY. It contains 1,500 ego-networks
and has three extra genres, namely, Comedy, Romance and Sci-Fi.

• REDDIT-BINARY is a dataset of 2,000 graphs where each graph represents an online dis-
cussion thread. Nodes in a graph correspond to users appearing in the corresponding dis-
cussion thread and an edge means that one user responded to another. TrollXChromosomes
and atheism are discussion-based subreddits, forming two classes to be classified.
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Table 1: Details of bioinformatics datasets

Name MUTAG PTC PROTEINS NCI1

# graphs 188 344 1113 4110

# classes 2 2 2 2

# nodes(max) 28 109 620 111

# nodes(avg.) 18.0 25.6 39.1 29.9

Table 2: Details of social network datasets

Name COLLAB IMDB-B IMDB-M RDT-B RDT-M5K

# graphs 5000 1000 1500 2000 5000

# classes 3 2 3 2 5

# nodes(max) 492 136 89 3783 3783

# nodes(avg.) 74.5 19.8 13.0 429.6 508.5

• REDDIT-MULTI5K is a similar dataset as REDDIT- BINARY, which contains 5,000
graphs. The difference lies in that REDDIT-MULTI5K crawled data from five different
subreddits, namely, worldnews, videos, AdviceAnimals, aww and mildlyinteresting. And
the task is to identify the subreddit of each graph instead of determining the type of sub-
reddits.

4.2 TRAINING AND EVALUATION

Following (Yanardag & Vishwanathan, 2015; Niepert et al., 2016), model performance is evaluated
using 10-fold cross-validation and reported as the average and standard deviation of validation ac-
curacies across the 10 folds. For GNNs, we follow the same training process in (Xu et al., 2019).
The GNN has 5 layers. Each multi-layer perceptron (MLP) has 2 layers with batch normalization
(Ioffe & Szegedy, 2015). Dropout (Srivastava et al., 2014) is applied in the classifiers. The Adam
(Kingma & Ba, 2015) optimizer is used with the learning rate initialized as 0.01 and decayed by
0.5 every 50 epochs. The number of total epochs is selected according to the best cross-validation
accuracy. We tune the number of hidden units (16, 32, 64) and the batch size (32, 128) using grid
search.

4.3 BASELINES

We compare our methods with various other graph pooling methods on the graph classification task,
including DIFFPOOL (Ying et al., 2018), SORT-POOL (Zhang et al., 2018), TOPKPOOL (Gao &
Ji, 2019), SAGPOOL (Lee et al., 2019), and EIGEN-POOL (Ma et al., 2019b). DIFFPOOL maps
nodes to a pre-defined number of clusters but is hard to train. EIGENPOOL involves the computa-
tion of eigenvectors, which is slow and expensive. SORTPOOL, SAGPOOL and TOPKPOOL rely
on the top-K sorting to select a fixed number (K) of nodes and order them, during which the infor-
mation from unselected nodes is discarded. We also compare with some recent methods including
COVPOOL (Wang et al., 2019a), ATTNPOOL (Girdhar & Ramanan, 2017) as well as second order
pooling methods SOPoolbimap and SOPoolattention (Wang & Ji, 2020).

5 RESULTS & DISCUSSION

The results of our experiments are summarized in Table 3 and Table 4 .From the results we can
see that our methods lead to an improvement in classification accuracy over existing methods and
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Table 3: Comparison results of our proposed methods with other graph pooling methods on bioin-
formatics datasets. Results shown are the average classification accuracy and standard deviation
across 10-fold cross-validation.

PTC PROTEINS MUTAG NCI1

SUM/AVG(Xu et al., 2019) 64.6 ± 7.0 76.2 ± 2.8 89.4 ± 5.6 82.7 ± 1.7

DIFFPOOL(Ying et al., 2018) 66.1 ± 7.7 78.8 ± 3.1 94.8 ± 4.8 76.6 ± 1.3

SORTPOOL(Zhang et al., 2018) 69.5 ± 6.3 79.2 ± 3.0 95.2 ± 3.9 78.9 ± 2.7

TOPKPOOL(Gao & Ji, 2019) 68.4 ± 6.4 79.1 ± 2.2 94.7 ± 3.5 79.6 ± 1.7

SAGPOOL(Lee et al., 2019) 69.0 ± 6.6 78.4 ± 3.1 93.9 ± 3.3 79.0 ± 2.8

ATTNPOOL(Girdhar & Ramanan, 2017) 71.2 ± 8.0 77.5 ± 3.3 93.2 ± 5.8 80.6 ± 2.1

EIGENPOOL(Ma et al., 2019b) - 76.6 ± 2.3 80.6 ± 4.3 77.0 ± 2.3

COVPOOL(Wang et al., 2019a) 73.3 ± 5.1 80.1 ± 2.2 95.3 ± 3.7 83.5 ± 1.9

SOPOOLattn(Wang & Ji, 2020) 72.9 ± 6.2 79.4 ± 3.2 93.6 ± 4.1 82.8 ± 1.4

SOPOOLbimap(Wang & Ji, 2020) 75.0 ± 4.3 80.1 ± 2.7 95.3 ± 4.4 83.6 ± 1.4

Neural Pooling 1(ours) 74.5 ± 3.7 80.6 ± 2.7 94.0 ± 2.3 83.1 ± 1.2

Neural Pooling 2(ours) 76.2 ± 4.2 79.6 ± 3.0 95.5 ± 2.4 83.4 ± 1.9

Table 4: Comparison results of our proposed methods with other graph pooling methods on social
network datsets. Results shown are the average classification accuracy and standard deviation across
10-fold cross-validation.

COLLAB RDT-B IMDB-B IMDB-M RDT-M5K

SUM/AVG 80.2 ± 1.9 92.4 ± 2.5 75.1 ± 5.1 52.3 ± 2.8 57.5 ± 1.5

DIFFPOOL 75.3 ± 2.2 - 74.4 ± 4.0 50.1 ± 3.2 -

SORTPOOL 78.2 ± 1.6 81.6 ± 4.6 77.5 ± 2.7 53.1 ± 2.9 48.4 ± 4.8

TOPKPOOL 79.6 ± 2.1 - 77.8 ± 5.1 53.7 ± 2.8 -

SAGPOOL 78.9 ± 1.7 - 77.8 ± 2.9 53.1 ± 2.8 -

ATTNPOOL 81.8 ± 2.2 92.5 ± 2.3 77.1 ± 4.4 53.8 ± 2.5 57.9 ± 1.7

COVPOOL 79.3 ± 1.8 90.3 ± 3.6 72.1 ± 5.1 47.8 ± 2.7 58.4 ± 1.7

SOPOOLattn 81.1 ± 1.8 91.7 ± 2.7 78.1 ± 4.0 54.3 ± 2.6 58.3 ± 1.4

SOPOOLbimap 79.9 ± 1.9 89.6 ± 3.3 78.4 ± 4.7 54.6 ± 3.6 58.4 ± 1.6

Neural Pooling 1(ours) 80.5 ± 1.5 90.6 ± 2.3 79.0 ± 2.3 55.1 ± 2.2 58.5 ± 1.8

Neural Pooling 2(ours) 81.0 ± 1.7 91.5 ± 3.0 78.5 ± 2.4 54.4 ± 1.9 59.1 ± 1.4

are also more reliable as compared previous works as observed from the lower values of standard
deviation.This enhancement in performance is consistent across all the datasets. The results may be
attributed to the fact that compared to existing graph pooling methods, our pooling methods are able
to use information from all nodes, collect second-order statistics, and leverage the ability of neural
networks to learn from underlying data, making them more powerful. The Neural Pooling methods
utilize the ability of neural networks to learn the topological structure as well as correlation among
the node representations in, capturing essential features and connections between underlying data.
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6 COMPLEXITY

Consider a graph G = (A, X) represented by its adjacency matrix A ∈ {0, 1}n × n and node feature
matrix X ∈ Rn × d, where n is the number of nodes in G and d is the dimension of node features.
Consider, H = [h1, h2, ........., hn]T = GNN(A, X) ∈ Rn × f where rows of H , hi ∈ Rf , i
= 1, 2, ..., n, are representations of n nodes. Consider a direct application of second-order graph
pooling to obtain the graph representation hG as:

hG = Flatten(HTH) ∈ Rf2 × 1 (11)

where HT denotes the transpose of H .

However, it causes an explosion in the number of training parameters in the following classifier when
f is large, making the learning process harder to converge and easier to overfit. While each layer in
a GNN usually has outputs with a small number of hidden units (e.g. 16, 32, 64), it has been pointed
out that graph representation learning benefits from using information from outputs of all layers,
obtaining better performance and generalization ability. It is usually achieved by concatenating
outputs across all layers in a GNN. In this case, H has a large final f , making direct use of second-
order pooling infeasible. For example, if a GNN has 5 layers and each layer’s outputs have 32 hidden
units, f becomes 32 × 5 = 160. Suppose hG is sent into a 1-layer fully-connected classifier for c
graph categories in a graph classification task. It results in 1602c = 25, 600c training parameters,
which is excessive. We omit the bias term for simplicity. On the other hand, both of our proposed
novel graph pooling methods significantly reduce the number of training parameters. In the case
of Neural Pooling Method 1, considering the previous example if f ′ is chosen to be 64, and f is
160, then the total number of trainable parameters in the 2 FCLs and a 1-layer fully-connected c
class classifier will be (160 × 64) + 64 + 64c = 10, 304 + 64c notably reducing the number of
parameters as compared to 25, 600c. In the case of Neural Pooling Method 2, if f ′′ is chosen to be
64, f ′ as 32 and f is 160, then the total number of trainable parameters in the 2 FCLs and a 1-layer
fully-connected c class classifier will be (160 × 64) + (64 × 32) + 322c = 12, 288 + 1024c again
reducing the number of parameters when compared to 25, 600c.

7 CONCLUSION

In this work, we propose to perform graph representation learning with Neural Pooling, by pointing
out that Neural Pooling can naturally solve the challenges of graph pooling. Neural Pooling is more
powerful than existing graph pooling methods, since it is capable of using all node information, col-
lecting second-order statistics that encode feature correlations and topology information and lever-
age the ability of neural networks to learn from underlying data, making them more powerful. Our
proposed methods solve the practical problems incurred by directly using second-order pooling with
GNNs. To demonstrate the effectiveness and superiority of our methods, we perform experiments
on graph classification tasks in the bio-informatics and social network domains to demonstrate the
effectiveness and superiority of our proposed methods. Experimental results show that our methods
improve the performance significantly and consistently. An interesting future work direction could
be to extend our methods for hierarchical graph pooling, where the output is a is a pseudo graph with
fewer nodes than the input graph. It is used to build hierarchical GNNs, where hierarchical graph
pooling is used several times between GNN layers to gradually decrease the number of nodes.
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