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Abstract

The scaling laws of language models have
played a significant role in advancing large
language models. However, the scaling law
of document-level neural machine translation
remains unclear. In order to promote the de-
velopment of document-level neural machine
translation, we systematically examine the scal-
ing laws in this field. In this paper, we carry
out an in-depth analysis of the influence among
three factors on translation quality: model scale,
data scale, and maximum sequence length. Our
results indicate that all three factors have a
significant impact on model performance. In
particular, increasing the maximum sequence
length effectively reduces the context-related
errors and improves the overall translation qual-
ity. Nevertheless, the sequence length cannot
be increased indefinitely, as the number of pa-
rameters limits the optimal sequence length.
Specifically, we propose a formula describing
the empirical scaling law between the model
size and the optimal sequence length. Our fur-
ther analysis shows that the error accumulation
problem is the primary factor that hindering
further improvement in translation quality for
the document-level translation by extending the
sequence length.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2014) has made great progress in recent
years (Barrault et al., 2020; Guo et al., 2022).
However, as the input text exceeds a single sen-
tence, sentence-level NMT methods will fail to
capture discourse phenomena, such as pronomi-
nal anaphora, lexical consistency, and document
coherence. In contrast, document-level neural ma-
chine translation (DNMT) (Maruf et al., 2021) aims
to improve translation consistency and coherence
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Figure 1: The key factors affecting the translation qual-
ity of document-level neural machine translation.

by leveraging contextual information beyond the
sentence being translated. Different from previ-
ous sentence-by-sentence DNMT methods, which
employ an additional context encoder to capture
the discourse information (Chen et al., 2021; Mi-
culicich et al., 2018), recent studies have shown
that the Transformer (Vaswani et al., 2017) is able
to translate multiple sentences directly (Liu et al.,
2020; Bao et al., 2021; Sun et al., 2022), referred
to as document-by-document translation method.
These works demonstrated that increasing the gran-
ularity of translation from sentence to document is
able to further reduce the context-dependent errors
encountered by sentence-level translation methods,
such as misinterpretation of pronouns (Müller et al.,
2018) and lexical inconsistency (Jiang et al., 2021).

Although has been widely explored, the mecha-
nism of DNMT has not been fully investigated. For
example, previous document-by-document DNMT
methods are trained on a fixed maximum sequence
length, i.e. the document longer than the maximum
sequence will be split into smaller segments, and
whether further increasing the maximum sequence
length can continue to improve the performance of
the model still remains to be investigated. Addition-
ally, as the sequence length grows, the difficulty
of modeling the contextual information increases
further, and whether more training data is needed
remains to be explored. Furthermore, the scale of
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model parameters is among the most crucial fac-
tors affecting the quality of sentence-level NMT
methods and is widely studied by the scaling law of
neural machine translation (Ghorbani et al., 2021;
Ott et al., 2018), but how this factor affects the
performance of the DNMT model remains unclear.
Finally, it remains an open question whether these
factors will interact with each other.

To answer the questions above, we conduct mas-
sive experiments, specifically investigating the im-
pacts of three key factors: corpus size, model scale,
and maximum sequence length. In addition, we
explore the joint effect of these factors. Our find-
ings suggest that all three factors are closely related
to the performance of the DNMT model and en-
larging the maximum sequence length effectively
improves the ability of the DNMT model to capture
the contextual information. However, the sequence
length can not be increased infinitely as the trans-
lation quality begins to drop when the sequence
length exceeds a certain limit. Surprisingly, our
experimental result shows that this limitation is pro-
portional to the logarithm of the number of model
parameters. Our further analysis demonstrates that
determining the optimal maximum sequence length
requires striking a balance between capturing ad-
ditional contextual information and managing ac-
cumulated errors during auto-regressive decoding.
This finding highlights the importance of future
research in exploring effective solutions to mitigate
this challenge. Furthermore, we find that although
the DNMT model is initialized using a pretrained
sentence-level translation model, increasing the
document-level corpus size can further improve
the translation quality. Notably, this improvement
increases as the number of model parameters in-
creases. As Figure 1 concludes, our study indicates
that the number of model parameters affects the
translation quality of DNMT by affecting two key
factors: sample efficiency and optimal sequence
length. As the number of model parameters in-
creases, both the sample efficiency and the optimal
sequence length grow, leading to the performance
improvement of the DNMT model.

2 Related Work

2.1 Document-level Neural Machine
Translation

Document-level neural machine translation has wit-
nessed significant advancements in recent years
(Maruf et al., 2021). Miculicich et al. (2018) pro-

posed a hierarchical attention mechanism to cap-
ture the discourse information while Maruf et al.
(2019) employed a selective attention module to
select the most relevant information in the context.
Lupo et al. (2021) further improved these methods
by splitting the sentence into smaller segments to
overcome the training sparsity problem. Recently,
Tiedemann and Scherrer (2017); Ma et al. (2020)
suggest that Transformer has the ability to trans-
late multiple sentences directly, and this document-
by-document paradigm further reduce the context
related errors. However, the DNMT model may
fail to converge if the corpus size is limited and the
sequence length is long (Liu et al., 2020). Bao et al.
(2021); Zhang et al. (2020) proposed to employ
attention masks to prevent the overfitting problem,
while Sun et al. (2022) proposed a multi-resolution
training strategy to smooth the training difficulty of
the DNMT model. However, these methods are all
based on a fixed sequence length. Whether further
increasing the maximum sequence length can con-
tinue to improve the translation quality still remains
to be investigated.

2.2 Scaling Law

The Scaling law of language models has been
widely studied, and have played a significant role
in advancing large language models. Kaplan et al.
(2020) proposed that the perplexity of the language
model is inversely proportional to the logarithm
of the size of the training data and the number of
the model parameters. Hoffmann et al. (2022) fur-
ther optimized this scaling law by taking a larger
corpus size into consideration. Recently, Touvron
et al. (2023) proposed that the inference overhead
should also be considered by the scaling law. In
the field of neural machine translation, Ott et al.
(2018) proposed that enlarging the data size can
further improve the translation quality of NMT
models, while Ghorbani et al. (2021) further pro-
posed that the cross-entropy loss is also governed
by the power law of model size and data size. These
works have greatly accelerated the development of
large language models and neural machine trans-
lation (Wang and Komatsuzaki, 2021; Scao et al.,
2022; Costa-jussà et al., 2022). However, the ex-
isting scaling law of machine translation is based
on the cross-entropy loss of the model, which is
not directly related to the translation quality. In
addition, the effect of contextual information has
not been considered in the scaling law of machine



Architecture Params Params w/o Embedding MACs / Token MACs / Token

Transformer-small 48.32M 31.54M 48.7M 67.2M
Transformer-base 60.92M 44.14M 61.5M 79.8M
Transformer-big 209.92M 176.37M 210.9M 247.5M
Transformer-base-3 38.85M 22.07M 39.0M 48.2M
Transformer-base-9 82.99M 66.21M 83.7M 111.2M
Transformer-base-12 105.06M 88.28M 105.9M 142.6M

Table 1: The statistics of the used model. The first column is the model architecture. The second and the third
columns show the total number of parameters and the number of parameters without embedding. The fourth and
fifth columns show the number of MACs per token at sequence length equal to 32 and 1024, respectively.

translation. Therefore, it is necessary to explore
the scaling law of DNMT.

3 Experimental setup

3.1 Architecture
We use the Transformer (Vaswani et al., 2017) ar-
chitecture as our DNMT models. To bring our work
closer to cutting-edge research, we leverage several
improvements on the standard Transformer archi-
tecture, including the pre-norm layer normalization
(Xiong et al., 2020) and the Gaussian Error Lin-
ear Unit (GELU) activation function (Hendrycks
and Gimpel, 2016). To further investigate the im-
pact of different model structures on the quality of
document-level translation, we experimented with
various model widths and depths. Specifically, the
small, base, and big models have 6 layers in both
the encoder and decoder. In terms of model width,
the small and base models employ an embedding
dimension of 512, whereas the large model has an
embedding dimension of 1024. Additionally, we
employ dimensions of 1024, 2048, and 4096 for
the small, base, and big models, respectively, in the
feed-forward network. To investigate the model
depth on translation quality, we vary the number
of layers in the base model from 3 to 12. We use
deepspeed 1 to profile the number of parameters
and MACs per token for our model. The statistics
of our models are shown in Table 1.

3.2 Dataset
Compared to sentence-level bilingual corpus,
document-level bilingual datasets are limited in
size (Chen et al., 2021). To maximize the cor-
pus size, we combine data from 5 high-quality
document-level English-German datasets, includ-
ing EUbookshop (Skadin, š et al., 2014), Open-

1https://github.com/microsoft/DeepSpeed

Subtitles (Lison and Tiedemann, 2016), Europarl
(Koehn, 2005), NewsCommentary, and Tilde-
MODEL (Rozis and Skadin, š, 2017), from OPUS2.
The only pre-processing step we take is tokenizing
the dataset using SentencePiece 3 with a joint 32k
vocabulary. To perform early stopping and deter-
mine the hyperparameters, we randomly extracted
100 documents from the dataset as the validation
set. For the test set, we utilize newstest2020 from
the WMT competition. The statistics of the com-
bined dataset are shown in Table 2. In order to
further investigate the impact of data scale on the
performance of DNMT, we randomly sampled sub-
sets of different sizes from the combined dataset
to serve as our training sets. The details of the
sampled subsets are shown in Appendix A. In our
experiments, we segment the document into dif-
ferent lengths, ranging from 32 to 1024 tokens,
to investigate the impact of maximum sequence
length on the performance of DNMT. The length
distribution of our segmented datasets is shown in
Appendix B.

Subset #Words #Sents #Docs

EUbookshop 172M 9.3M 14k
OpenSubtitles 136M 23M 29k

Europarl 42M 1.8M 10k
NewsCommentary 8.8M 0.4M 9.7k

TildeMODEL 23M 1.6M 52k
Combined 382M 36M 115k

Table 2: The statistical results of the datasets used in
our experiments in terms of word count, sentence count
and document count.

2https://opus.nlpl.eu
3https://github.com/google/sentencepiece



3.3 Training
Previous researches indicate that training a
document-level model based on a sentence-level
model yields better results compared to training
a document-level model from scratch (Bao et al.,
2021; Miculicich et al., 2018). Therefore, we
adopt a two-step training strategy. First, we train
a sentence-level model by splitting the documents
in the corpus into sentences. Then, we finetune the
sentence-level model into a DNMT model using
the document-level corpus. During training, we
use the Adam optimizer (Kingma and Ba, 2014)
with β1 = 0.9, β2 = 0.98, ϵ = 10−9, and
the learning rate is scheduled using the inverse
square root method (Vaswani et al., 2017) with
warmup steps of 4000. We use the label smoothed
cross-entropy loss (Szegedy et al., 2016) with the
smoothing value of 0.1. We conduct all experi-
ments on 8 NVIDIA A100 GPUs with a maximum
of 4096 tokens per GPU. We use half-precision
float (fp16) to accelerate the training process (Ott
et al., 2018). The dropout and the attention dropout
are tuned for every model from {0.1, 0.2, 0.3} and
{0.0, 0.1, 0.2, 0.3}, respectively. We conduct our
experiments using the fairseq toolkit (Ott et al.,
2019).

3.4 Evaluation
In order to make the number of generated sentences
matches that of the source document, we add an
EOS token at the end of each sentence. We use
beam-search with beam size 5 for all our experi-
ments. Following previous study (Liu et al., 2020;
Bao et al., 2021), we employ document BLEU
(d-BLEU) as our document-level metrics, while
sentence BLEU (s-BLEU) as our sentence-level
metrics. SacreBLEU4 (Post, 2018) was used to
calculate the above metrics. In addition, we also
employ COMET-22 (Rei et al., 2022) and chrF
(Popović, 2015) to evaluate the quality of gener-
ated sentences. We conduct each experiment three
times with different random seeds, and present the
average score for analysis.

4 Experiments

In this section we present the results of our experi-
ments. First, we analyze the effect of single factor
on the translation quality of DNMT in Section 4.1.
Then we investigate the joint effect of multiple fac-
tors in Section 4.2.

4https://github.com/mjpost/sacrebleu
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Figure 2: The effect of model shape on the performance
of DNMT.

4.1 Effect of Single Factor

We first investigated the independent impact of two
factors, the model and the data, on the performance
of DNMT.

Effect of model size. To figure out the most im-
portant factor affecting translation quality, we train
DNMT systems with different model sizes on the
combined dataset with a maximum sequence length
of 512. As shown in Figure 2, the performance of
DNMT increases as the model size increases. How-
ever, the d-BLEU score does not increase linearly
with the model depth or the model width. Similar
to the previous study (Kaplan et al., 2020), observe
an approximately linear relationship between the
model’s performance and the logarithm of the pa-
rameter count. Furthermore, this linearity is more
closely related to the number of non-embedding pa-
rameters rather than the total number of parameters.
These findings suggest that compared to the model
width and depth, non-embedding parameters better
reflects the translation quality of the DNMT model.

Effect of Data Scale. To investigate the effect of
the data scale on the performance of DNMT, we
conduct experiments on different sized subsets of
the combined dataset with a maximum sequence
length of 512. As shown in Figure 3, the perfor-
mance of DNMT increases as the data scale in-
creases. Surprisingly, the evaluation shows that
regardless of how the model changes, when the
number of sentence pairs exceeds 4 million, the
performance of the DNMT model will surpass the
corresponding sentence-level model. This finding
gives us a new understanding of the relationship
between data scale and model performance. In ad-
dition, the overall trend is consistent with previous
studies that there is a power law between model
performance and data size (Ghorbani et al., 2021).
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Figure 3: Document BLEU versus the number of pa-
rameters. The solid lines represent the performance of
document-level models at different data scales, which
is measured by the number of sentence pairs, while
the black dotted line represents the performance of the
sentence-level model.

4.2 Effect of Multiple Factors

To study the interactions between factors, we keep
the data scale, model scale, and sequence length
fixed separately and investigate the joint impact
of the other two factors on translation quality.
Specifically, we used the entire dataset to exam-
ine the relationship between model scale and max-
imum sequence length, fixed the model scale as
the Transformer-base to study the impact of data
scale and maximum sequence length on translation
quality, and held the maximum sequence length at
512 to investigate the relationship between model
scale and data scale.
Joint Effect of Maximum Sequence Length and
Model Scale. As shown in Figure 4, the BLEU
score generally increases with the sequence length
for various model shapes. However, we observe
that there is an upper limit to this performance im-
provement as the length increases. For example,
when the sequence length is 512, the BLEU score
of the transformer-base is 31.55. However, when
the sequence length reaches 1024, the BLEU score
decreases to 30.59. This indicates that there ex-
ists an optimal maximum sequence length for the
DNMT model. In addition, we find that this opti-
mal sequence length is closely related to the model
size. To illustrate this relationship more clearly, we
estimate the location of the optimal sequence length
for different model sizes. As the star marker shown
in Figure 4, the optimal sequence length and the
model scale are positively correlated. This finding
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Figure 4: The joint effect of maximum sequence length
and model shape on the performance of DNMT. Differ-
ent colors represent different model shapes, while the
star marker represents the estimated optimal sequence
length for different model shapes.

differs from the previous studies (Press et al., 2021;
Beltagy et al., 2020), as they demonstrate that the
model’s performance consistently increases with an
expanding context. We proposed that this is due to
the model being influenced by erroneous context in
the generation process, i.e. the error accumulation
problem, and we further analyze this phenomenon
in Section 5.2. In addition, we find that the rela-
tionship between optimal sequence length L and
the parameters of the model can be expressed by
the following equation:

L = a log(N) + b. (1)

where N is the number of parameters, a and b are
constants. We estimate the value of a and b by
fitting the data in Figure 4. The estimated value of
a is 111, while the estimated value of b is -1399.
This indicates that for every increase of 77 tokens in
the optimal sequence length, the model parameter
size needs to be doubled. This finding is consistent
with the previous studies, indicating that a suitable
sequence length for the transformer-base model is
approximately 512.
Joint Effect of Maximum Sequence Length and
Data Scale. To figure out whether the data scale
affects the ability of the transformer model to han-
dle long text, we conduct experiments on different
subsets of the combined dataset with different max-
imum sequence lengths. As shown in Figure 5,
under different data scales, the performance of the
model generally increases and then decreases with
the increase in sequence length. Similar to our find-
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Figure 5: The joint effect of maximum sequence length
and data scale on the performance of DNMT. The solid
lines represent the performance of document-level mod-
els at different maximum sequence length, while the
black dotted line represents the performance of the
sentence-level model.

ings in Section 4.1, when the data scale is large
enough, the performance of DNMT will surpass
the corresponding sentence-level model. However,
although the DNMT models are initialized using a
pretrained sentence-level model, the d-BLEU score
is lower than the sentence-level NMT model if the
data size is limited. In addition, we find that the
d-BLEU score is below the sentence-level baseline
when the maximum sequence length is 64, even
with an adequate amount of data. This is due to the
early stopping mechanism terminating the training
prematurely when the sequence length is too short.
When the maximum sequence length is equal to
128, the BLEU score rises. Surprisingly, the max-
imum sequence length of 256 is a turning point,
where the BLEU score reaches the maximum when
the data scale is limited. This indicates that when
the document-level corpus size is scarce, we can
set the maximum sequence length to 256 in order
to maximize the translation quality. In addition,
when the maximum sequence length exceeds 512,
we observed that the BLEU score shows a declin-
ing trend even with further increases in the data
scale. This finding further confirms our previous
conclusion that there exists an optimal maximum
sequence length for a given model.
Joint Effect of Data Scale and Model Scale. As
shown in Figure 6, we train DNMT models with
different data scales and model sizes with a max-
imum sequence length of 512. The performance
of DNMT increases consistently as the data scale
increases. In addition, when the number of sen-
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Figure 6: The joint effect of data scale and model shape
on the performance of DNMT. The solid lines represent
the performance of document-level models at different
data scales, while the dotted line represents the perfor-
mance of the sentence-level model.

tence pairs exceeds 4 million, the performance of
the DNMT model outperforms the corresponding
sentence-level model, which is consistent with our
findings in Section 4.1. In contrast, when the data
scale is limited, the models with more layers out-
perform the models with wider widths. For ex-
ample, the 12-layer transformer-base model per-
forms better than the transformer-large model with
6 layers when the sentence pairs are less than 4
million, even though the number of parameters in
the transformer-large model is twice that of the
12-layer transformer-base model. We believe that
this is because when the document-level data is
limited, the performance of the DNMT model de-
pends more on the parameter initialization, which
is dominated by the sentence-level model. This is
consistent with previous studies that sentence-level
NMT models are more dependent on the model
depth rather than width (Mehta et al., 2020; Wang
et al., 2022). However, when the data is sufficient,
a model with a larger number of parameters will
benefit more than a model with more layers. This
indicates that the model’s ability to capture context
is also related to the model width.

5 Discussion

5.1 The Correlation Between BLEU Score
and Cross-Entropy Loss

As mentioned by Post and Junczys-Dowmunt
(2023), The quality assessment of document trans-
lation is challenging. In this paper, we demonstrate
that the cross-entropy (CE) loss of DNMT model
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does not adequately capture the quality of trans-
lation. To further investigate the relationship be-
tween the CE loss and the translation quality, we
plot the CE loss and the d-BLEU score of DNMT
model on the validation set. As shown in Figure
7, the CE loss and the d-BLEU score of DNMT
model are weakly correlated, indicating that the
loss alone fails to fully depict the translation quality.
This finding is inconsistent with the previous study
(Ghorbani et al., 2021), which has indicated a sub-
stantial association between CE loss and translation
quality. In addition, we calculate the coefficient of
determination (R2) of the linear regression model.
The R2 decreases as the maximum sequence length
grows. We suppose that this is because document-
by-document DNMT requires generating longer
text, which is more prone to the error accumulation
problem, which will be discussed in Section 5.2.

5.2 The Error Accumulation Problem

To gain a more comprehensive understanding of the
underlying reasons for the existence of the optimal
maximum sequence length and the failure of CE
loss to adequately reflect the translation quality, we
analyze the translation quality of sentences in differ-
ent positions in the documents. We selectively ex-
tract a subset from the validation set, where DNMT
models under-perform the sentence-level counter-
parts. Then we employ both sentence-level mod-
els and document-level models to translate those
documents. We split the translated segments into
sentences, and gather them into a subset by there

position in the document. Then we evaluate each
subsets via COMET-22 (Rei et al., 2022). The
distribution of the number of sentences in differ-
ent locations is shown in Figure 10. As shown in
Figure 8, with the help of contextual information,
the translation quality of DNMT model is slightly
better than that of the sentence-level model at the
beginning of each documents. However, this advan-
tage soon diminishes as the translation proceeds.
From the fifth sentence on wards, there has been
a growing gap in translation quality between the
DNMT model and the sentence-level translation
model, which clearly indicates the error accumu-
lation process. This finding demonstrate that the
optimal sequence length is actually the trade-off
between extra contextual information and the ac-
cumulated errors. Interestingly, the gap between
the sentence-level model and the document-level
model is larger when the model size is smaller, in-
dicating that larger model has a stronger ability to
resist the error accumulation problem.

Context Length Accuracy

0 50.06
60 67.75
120 81.89
250 82.26
500 82.38
750 82.49

1000 81.96

Table 3: The accuracy of DNMT model on ContraPro
test suite. Context length is the number of tokens in the
context. Zero context length indicates that the result is
from the sentence-level model.

5.3 The Contrastive Experiment
In addition to evaluating the overall translation
quality, we also conduct experiments on ContraPro
(Müller et al., 2018), a large contrastive test suite
extracted from OpenSubtitles 2018 (Lison and
Tiedemann, 2016), to evaluate the accuracy of
translating the English word "it". As shown in
Table 3, all the DNMT models outperform their
sentence-level counterparts, clearly indicating that
the DNMT model is able to capture contextual in-
formation. As the available context increases, the
accuracy of the test suite increases in fluctuation.
When the context length exceeds 500, the accuracy
of the DNMT model stops increasing, and remains
at a high level. This tendency is not completely con-
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sistent with the trend of d-BLEU score, showing
that the overall translation quality is also influenced
by factors other than the discourse context.

5.4 The Generalization Ability

In practice, the lengths of input and output sen-
tences may differ from those encountered during
the training phase. Therefore, a proficient DNMT
model should be capable of handling documents
of various lengths and produce accurate translation
results. To investigate this, we segment the doc-
uments in the test set into different lengths, and
evaluate the DNMT models on the segmented test
sets. According to Figure 9, when the sequence
length during inference is shorter than that during
training, the d-BLEU score of DNMT model de-
creases mildly. This observation shows that Trans-
former (Vaswani et al., 2017) is capable of handling
documents of various lengths within the maximum

sequence length when finetuned on document-level
corpus. Thus it is possible to apply DNMT model
to both document-level and sentence-level trans-
lation tasks. However, when the inference length
exceeds the training length, the performance expe-
riences a sharp drop. We considered that this is
because vanilla Transformer lacks length extrapo-
lation ability (Press et al., 2021), which needs to be
further investigated in the field of document-level
translation.

5.5 The computation overhead of DNMT

As the quadratic computational complexity of the
attention mechanisms, the computational require-
ments of the DNMT models are higher than those
of sentence-level models. We report the MACs
(Multiply–Accumulate Operations) per token re-
quired by the DNMT models in Table 1. Interest-
ingly, we find that even though the sequence length
increases from 32 to 1024, which is much longer
than the optimal sequence length of transformer-
big, the MACs per token increase by only 40 per-
cent. This finding indicates that the computation
overhead of the DNMT models during inference
is not much higher than the sentence-level models,
but the errors encounter by sentence-level transla-
tion reduced significantly. Thus it is efficient to
employ the DNMT model in practice. We have
placed a more detailed derivation in Appendix C.

6 Conclusion

In this paper, we explore the scaling law of
document-level neural machine translation. Our
findings suggest that the corpus size, model scale
and the maximum sequence length all have sig-
nificant impacts on the translation quality of the



model. Different from the scaling law of sentence-
level neural machine translation, we find that their
exists an optimal maximum sequence length for
a given DNMT model, and the optimal maximum
sequence length is strongly correlated with the num-
ber of non-embedding parameters of the DNMT
model. We further formulate this correlation with a
simple power law. Our additional analysis indicates
that the error accumulation problem is the primary
factor that hindering further improvement in trans-
lation quality for the document-level translation. In
future work, we will investigate how to overcome
the error accumulation problem, and extend the op-
timal sequence length of document-by-document
translation.
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Limitations

Although we have conduct massive experiments to
explore the scaling law of document-level neural
machine translation, there are still some limitations
in our work: (1) over four hundred models were
trained, resulting in high energy consumption; (2)
due to the limitation of the data size, we are unable
to conduct a larger scale experiments.
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A The Statistics of Sampled Datasets

To explore the relationship between translation
quality and the data size in Section 4, we sampled
the combined dataset with different sizes. The size
of the subset is determined by the number of doc-
uments, and to ensure experiment reproducibility,
each size was sampled three times for averaging
the results. The statistics of the sampled datasets
are shown in Table 4.
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Figure 10: The distribution of the number of sentences
in different locations.

B The Length Distribution of The Split
Dataset

To conduct experiments with different maximum
sequence length, we split the documents into seg-
ments with different segment lengths. However,
due to the document boundary restrictions, we can-
not ensure that all segments have the same length.
As shown in Figure 11, the length distribution of
the training set becomes more even as the maxi-
mum sequence length increases, which allows the
model to translate the sentences of arbitrary length
within the maximum sequence length.

C Estimation of Computational
Complexity for Transformer Models

To gain a clearer understanding of how sequence
length affects the computational cost of the model,
we take the Transformer base as an example and
provide a detailed derivation of the computational
requirements for its forward propagation process.
To simplify the derivation, we ignore the compu-
tational cost of Layer Norm, residual connection,
bias, and the softmax. The embedding dimension
of the base model is 512 and the hidden state di-

mension is 512. There are 8 attention heads, and
each attention head has a dimension of 64. The
feed-forward layer dimension is 2048, and there
are 6 encoder layers and 6 decoder layers. We as-
sume that the sequence length of the source and
target document is both n and the vocabulary size
is 32768. Then we can estimate the computational
cost of the model in Table 5.

As shown in the Table 5, the total computational
cost of the Transformer base is n2 ∗ 18432 + n ∗
60819456, and the coefficient of the first-order
term regarding n is much larger than the coefficient
of the second-order term. Therefore, the growth
of computational cost is approximately linear with
respect to n when n is small. When substituting
sequence lengths n = 32 and n = 1024 into the
above equation, the total computational cost and
per-token computational cost are shown in Table
6. As demonstrated in Table 6, although the se-
quence length has increased significantly, the com-
putational cost per token have not increased signifi-
cantly. Furthermore, for larger-scale models, due
to their expanded hidden state dimensions, the con-
tribution of the linear term will be more significant,
which further reduce the impact of sequence length
on the computational cost per token.

D The Experimental results on Chinese to
English dataset.

To further validate our experimental findings, we
collected over 10 million parallel sentences from
Chinese to English and conducted a repeat of our
experiments on this dataset. The composition and
scale of this dataset are presented in Table 7. The
experimental results, as shown in Figure 12, demon-
strate that the overall trends in Chinese-English
dataset are consistent with the conclusions we ob-
tained in the English-German dataset. However,
there is one significant difference: the optimal se-
quence length in this dataset is considerably shorter
than in the English-German dataset. We believe
that the optimal sequence length is also correlated
with the data quality, language characteristics, and
domain of the dataset. We will leave this issue for
future research.



Subset Number
#Lines #Tokens

1 2 3 1 2 3

1 0.28 0.29 0.27 4.29 4.27 4.08
2 0.52 0.49 0.48 8.13 8.05 7.62
3 0.82 0.86 0.85 13.12 13.92 12.85
4 1.39 1.42 1.40 21.77 22.28 21.48
5 2.37 2.41 2.30 37.70 39.21 36.30
6 4.00 4.06 3.99 62.64 64.93 62.83
7 6.81 6.88 6.87 109.17 111.99 109.54
8 11.47 11.39 11.51 183.84 181.83 182.84
9 19.53 19.66 19.58 312.61 313.62 310.31

Table 4: The statistics of the sampled datasets in millions. Subset number indicates the number of subsets in the
sampled dataset. #Lines and #Tokens indicate the number of lines and tokens in the sampled dataset, respectively.

Module Computational Cost Number of the Module Corresponding Operation

Embedding n ∗ 512 4 The embedding and positional encoding layers in both encoder and decoder
Output Projection n ∗ 512 ∗ 32768 1 The output projection layer for generating the final output probabilities
Feed Forward n ∗ 512 ∗ 2048 ∗ 2 12 The feed forward layers in both encoder and decoder layers
Attention Project n ∗ 512 ∗ 64 ∗ 8 ∗ 4 18 The query, key, value, and output projection in the multi-head attention
Dot Product n2 ∗ 64 ∗ 8 ∗ 2 18 The dot product between key and query as well as attention weight and value
Total n2 ∗ 18432 + n ∗ 60819456 1 Total computation cost of the Transformer base

Table 5: The estimation of computational complexity for Transformer base model. We assume that the sequence
length of the source and target document is both n and the vocabulary size is 32768.

n Computational Cost Computational Cost / token

32 1965096960 61409280
1024 81606475776 79693824

Table 6: The computational cost for Transformer base
model when n = 32 and n = 1024.

Subset #Words #Sents #Docs

UNPC 417.2M 17.4M 94.7k
NewsCommentary 5.3M 0.1M 7.8k

Combined 422.5M 17.5M 102.5k

Table 7: The statistical results of the Chinese→English
datasets used in our experiments in terms of word count,
sentence count and document count.
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Figure 11: The length distribution of the segmented dataset.
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Figure 12: The experimental result on Chinese→English dataset.


