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Cramming Protein Language Model Training in 24 GPU Hours
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Abstract
Protein language models (pLMs) are ubiquitous
across biological machine learning research, but
state-of-the-art models like ESM2 take hundreds
of thousands of GPU hours to pre-train on the vast
protein universe. Resource requirements for scal-
ing up pLMs prevent fundamental investigations
into how optimal modeling choices might differ
from those used in natural language. Here, we de-
fine a “cramming” challenge for pLMs and train
performant models in 24 hours on a single GPU.
By re-examining many aspects of pLM training,
we are able to train a 67 million parameter model
in a single day that achieves comparable perfor-
mance on downstream protein fitness landscape
inference tasks to ESM-3B, a model trained for
over 15, 000× more GPU hours than ours. All
code, including training code, will be made avail-
able upon acceptance.

1. Introduction
Protein Language Models (pLMs) are a powerful frame-
work for representation learning across the large, diverse
protein universe that have become critical components for
predicting protein structure and function (Lin et al., 2023;
Chen et al., 2023; Elnaggar et al., 2022; Xu et al., 2023).
Current SOTA pLMs require enormous compute budgets
to scale up model size and training time. Expensive and
time-consuming pre-training, however, makes it infeasible
for most practitioners to rapidly experiment and understand
pLM performance. To enable greater exploration, rapid pre-
training of performant pLMs is essential. To this end, in
this paper we introduce a “cramming” challenge for pLMs
- where the objective is to train a pLM in a single day on a
single GPU - and we propose new architectural and train-
ing choices that maximize performance of “scaled down”
pLMs. These “crammed” pLMs perform competitively with
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Figure 1. Protein Language model cramming setup.

SOTA ESM2 models on downstream functional prediction
tasks from FLIP (Dallago et al., 2021) and protein-protein
interaction (PPI) (Mei & Zhang, 2019) classification. We
envision that others will build on our work to propose even
better cramming strategies for pLMs, and that our work
will enable more rapid progress on pre-trained models for
biology.

2. Training a protein language model on a
single GPU in a single day

2.1. Defining the cramming challenge setting

We first define the settings for our challenge, which are
mostly borrowed from (Geiping & Goldstein, 2023). The
rules for pLM cramming are:

• A transformer-based language model is trained from
scratch with a masked-language modeling objective.

• Training may not exceed 24 hours on a single GPU.

• No existing pre-trained models are used at any point.

• The training, validation, and test data splits are from
UniRef50 and these are pre-specified. The training
data can be sampled in any way that does not involve
a pre-trained model, hence speedups may be achieved
by careful choices of how and when to sample training
data.

• The downloading of raw data in FASTA format is ex-
empt from the overall compute budget. All preparation
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Table 1. pLM cramming learning dynamics.

Learning rate Number of warmup steps Validation perplexity ↓
0.001 1000 13.72
0.0004 1000 13.92
0.01 10000 13.96
0.001 100 14.10
0.001 10000 14.31
0.001 40000 14.88
0.004 1000 17.42
0.004 100 20.49

of raw FASTA inputs for training (e.g., tokenization, fil-
tering, sorting, etc.) happens on-the-fly during training
and is included in the training budget.

• Downstream performance is evaluated on tasks from
the FLIP (Dallago et al., 2021) and PPI (Mei & Zhang,
2019) benchmarks. Hyperparameters are set globally
for all downstream tasks. Any aggregation method can
be used to pool embeddings from the crammed model
and any architecture can be used for the prediction head
for downstream tasks, but these choices must be set
globally for all downstream tasks. Downstream fine-
tuning is not included in the 24 GPU hour cramming
compute budget.

Our goals and therefore experimental settings are different
from those in (Geiping & Goldstein, 2023). The goals of
pLM cramming are to 1) enable rapid experimentation and
training of “production” pLMs to re-examine fundamental
assumptions about how language modeling is applied to bi-
ological sequence data; 2) apply interpretability techniques
that require intervening on model training (and therefore
the ability to retrain models often); and 3) better understand
“scaling down” and what really matters for downstream pLM
performance (architecture, model size, optimizer, dataset
construction, etc.). With these goals in mind, we have
constructed the pLM cramming rules to make our setup
as simple as possible to replicate (fixing the dataset and
train/val/test splits, no data pre-processing steps outside of
training, global hyperparameters for downstream evaluation,
etc.).

Historically, pLM architectures and training setups hew very
close to the original work of (Devlin et al., 2018), going so
far as to keep everything identical except the vocabulary and
dataset. Following (Geiping & Goldstein, 2023), we seek
to maximize per-token efficiency of training, and propose
architectural and training modifications intended to achieve
this goal. The scaling literature (Geiping & Goldstein, 2023;
Kaplan et al., 2020) indicates that per-token efficiency de-
pends strongly on model size but is largely invariant to

model shape. Smaller models learn less efficiently, so the
most impactful changes speed up gradient computation for
a fixed model size.

All hyperparameters, pooling, and architectures choices
must be set globally for all downstream tasks. To ensure that
downstream finetuning remains a negligible compute cost
compared to the cramming pre-training, we limit finetuning
on a single task to 10% (2.4 hours) of the overall cramming
compute budget. We also evaluate finetuning performance
with no time limit to measure the performance of large
models, which train more slowly but may also reach better
performance if given unlimited compute. These limitations
are in line with our goals of enabling rapid experimentation,
while also providing flexibility to find the best cramming +
finetuning setup for downstream performance.

All the experiments reported in this paper are conducted
on NVIDIA A100-SXM4-80GB GPUs, with Python 3.10.9,
pytorch 2.0.1, cudatoolkit 11.7, transformers 4.30.2, and
lightning 1.9.5.

2.2. pLM modifications

Architecture modifications We adapt the HuggingFace
implementation of the ESM2 architecture (Lin et al., 2023)
as a starting point for cramming. To maximize per-token
training efficiency, we remove all query, key, and value
biases in all attention blocks (Dayma et al., 2021). This
reduces computation without greatly affecting overall pa-
rameter account. Similarly, we remove all bias terms in
intermediate linear layers (Dayma et al., 2021).

Training modifications To achieve a large effective batch
size despite the cramming constraints, we accumulate gradi-
ents and perform updates every 16 forward/backward passes.
We use a batch size of 128 and a maximum length of 512
(large enough to accommodate most single proteins in the
training dataset), for a total effective batch size of 2048
sequences or 1,048,576 tokens.

We adjust the masking rate from the standard 15% used in
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the BERT (Devlin et al., 2018) and ESM2 (Lin et al., 2023)
setups to 25%, as 15% leads to awkward tensor shapes
and 25% of the sequence length is 128 = 27. We also
hypothesize that, due to evolutionary relationships among
protein sequences, 15% is far too low a masking rate and we
can train better pLMs more efficiently by making the pre-
training denoising task more difficult. We use the AdamW
(Loshchilov & Hutter, 2017) optimizer with β1 = 0.99,
β2 = 0.98, and ε = 10−12. A gradient clipping value of
0.5 is used to stabilize training. Training is performed with
automated mixed precision (Micikevicius et al., 2017).

We find that the learning rate and learning rate schedule
are by far the most important hyperparameters for pLM
cramming. We thoroughly ablate these hyperparameters
and present the results below in Section 4. Tuning the
learning rate schedule to achieve the maximum learning
rate possible without causing training instabilities is vital
to pLM cramming performance. To anneal the learning
rate to near zero within the allotted 24 GPU hours, we first
estimate the total training budget and set the maximum
number of steps to 50,000. In our experiments, we found
the best performance with a maximum learning rate of 1×
10−3 and a linear learning rate decay with a warmup period
of 1,000 steps. This corresponds to a fast warmup and
slow cooldown, which interestingly is the exact opposite
of the optimal learning rate schedule found in (Geiping &
Goldstein, 2023).

Opportunities for further optimization There are a
few obvious opportunities for further training efficiency
increases that we leave for future work. We perform vali-
dation loss checks throughout training to monitor training
performance and stability; these could be disabled to avoid
the unnecessary compute cost. There are other logging and
profiling capabilities in Lightning that can be disabled as
well. Using 8-bit floating point mixed precision training and
other recent advances in efficient transformer training are
also promising avenues for future work.

3. Related work
3.1. Efficient transformers

The most closely related work to ours is (Geiping & Gold-
stein, 2023). However, due to the fundamental differences
between biological sequence data and natural language
noted above, the goals, implementations, and results of our
work differ substantially. (Izsak et al., 2021) trained BERT
models on a full server node of 8 GPUs in a single day.
Much recent work is focused on improving the efficiency
of training transformers (Treviso et al., 2023), but most
architectural changes do not show persistent performance
improvements over many orders of magnitude of model
and dataset sizes (Kaplan et al., 2020). More discussion of

related work is included in the Appendix.

4. Experiments
4.1. Learning rate dynamics

The results of the hyperparameter sweep over learning rates
and number of warmup steps are presented in Table 1. We
sweep over a range of learning rates ∈ [1×10−2, 4×10−4]
and number of warmup steps ∈ [100, 40000]. We find that
the choice of learning rate and warmup steps has a huge
impact on the validation perplexity, which ranges from 13.72
for the best model and 20.49 for the worst with a vocabulary
size of 33. The optimal hyperparameter choices allow for a
maximally high learning rate, with a schedule that prevents
training instabilities and anneals the learning rate close to
zero by the end of training. In our experiments, the best
model reaches a maximum learning rate of 0.001 after 1000
warmup steps, and then does a slow annealing of the learning
rate over the remaining 49000 steps.

4.2. Downstream task evaluation

The results of downstream task evaluation are shown in
Tables 4, 2 and 3. We evaluate our crammed models on
four tasks including three protein fitness landscape infer-
ence tasks from the FLIP (Dallago et al., 2021) benchmark –
GB1, AAV, and Meltome – and one protein-protein interac-
tion (PPI) task from (Mei & Zhang, 2019). The FLIP bench-
mark contains many train/test splits based on edit distance
and sequence similarity to provide a detailed evaluation of a
model’s ability to “generalize” in different realistic protein
engineering settings. First, as is typical in the machine learn-
ing literature, we evaluate downstream performance using
IID splits for the GB1 and AAV tasks. As noted in (Dallago
et al., 2021), random splits are not particularly interesting to
biologists, but they greatly simplify evaluation. We take the
train/test splits from (Dallago et al., 2021), and as in that
work, we randomly sample 10% of the training set as the
validation set. We also evaluate OOD generalization using
the 2-vs-rest splits for both GB1 and AAV. The Meltome
dataset does not provide an IID split, so we use only the
“mixed split” based on cluster components.

The PPI benchmark is to classify pairs of protein sequences
as interacting or non-interacting. We use the Neglog dataset
(Mei & Zhang, 2019), which consists of positive, interacting
pairs as well as negative, non-interacting pairs augmented
from Negatome 2.0 (Blohm et al.). We create an IID split
by randomly sampling 10% as the test set with 70% used
for training and 20% for validation.

In Tables 4 and 2, we report the validation set performance,
as we have performed no hyperparameter tuning for down-
stream evaluation. We additionally report the test set perfor-
mance in Table 3 for all OOD splits. We freeze the encoders
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Table 2. Downstream task evaluation with no time limit. The FLIP (Dallago et al., 2021) tasks (GB1, AAV, and Meltome) results are
reported in Spearman correlation and PPI are reported in AUPRC.

Model GB1 AAV Meltome PPI

Crammed pLM-67M (Ours) 0.63 0.79 0.51 0.78
ESM2-8M 0.59 0.83 0.59 0.86
ESM2-150M 0.58 0.82 0.63 0.88
ESM2-3B 0.66 0.81 0.54 0.88

Table 3. FLIP downstream task evaluation with no time limit on OOD test splits. Each model is compared with its randomly-initialized
baseline to highlight gains from pre-training.

Pre-trained Baseline (no pre-training)
Model GB1 AAV Meltome GB1 AAV Meltome
Crammed pLM-67M (Ours) 0.42 0.12 0.41 0.33 -0.03 0.48
ESM2-8M 0.16 0.29 0.29 -0.02 -0.10 -0.19
ESM2-150M 0.16 0.38 0.44 0.17 -0.13 -0.21
ESM2-3B 0.19 0.20 0.36 0.30 -0.10 -0.23

and train a simple two layer multi-layer perceptron (MLP)
with a feed-forward dimension of 256 for each task and a
constant learning rate of 4 × 10−5 and batch size of 128.
Token embeddings are aggregated using mean pooling prior
to the MLP.

We consider three baselines, which are ESM2 (Lin et al.,
2023) models of size 8M, 150M, and 3B parameters. These
models are trained on over 60M unique protein sequences
from UniRef50 and UniRef90, with an effective batch size
of 2M tokens. The learning rate was warmed up over 2,000
steps to a peak value of 4× 10−4 and then linearly decayed
to 4 × 10−5 over 90% of the training duration, for a total
of 500K training steps. Crucially, the 3B parameter model
was trained on 512 NVIDIA V100 GPUs over 30 days, or
368,640 GPU hours. In contrast, our crammed models were
trained in 24 GPU hours, representing 0.0065% of the total
training time of ESM2-3B, or a 15, 000× speedup.

In Table 4, we show results for all four tasks where finetun-
ing is limited to 10% of the cramming time limit (2.4 GPU
hours). In this regime, we find that downstream performance
is inversely correlated with model size. Smaller models train
faster and in the 2.4 GPU hour time limit, model capacity
(size) does not compensate for this. In Table 2 we show
results for finetuning with no time limit; models are trained
to convergence with early stopping to prevent overfitting.
Our crammed model achieves comparable performance on
the FLIP and PPI downstream task evaluations to the signif-
icantly larger ESM2 models, but finetuning is completed in
a small fraction of the time it takes for larger models.

Table 3 reports results on the OOD test splits. The crammed
model outperforms ESM baselines on the GB1 and Meltome

tasks, suggesting that 24 hrs of pre-training can effectively
produce representations that generalize to OOD data. We ad-
ditionally compare each pre-trained encoder to its randomly
initialized baseline to highlight the gains only explained by
pre-training. In several cases, the pre-trained model does
worse than its randomly initialized counterpart, likely be-
cause the trainable MLP is driving performance more than
the pre-training, a phenomenon seen in both crammed and
non-crammed pLMs. Many models do not generalize OOD
regardless of the amount of pre-training time.

5. Conclusions
In this paper we introduced the “cramming” challenge for
protein language models - wherein the challenge is to train
a performant pLM in 24 hours on a single GPU. To cram
pLMs, we re-examine many parts of the original BERT
model and training setup that, until now, pLMs have largely
followed to the letter. By making architectural and training
modifications to maximize per-token training efficiency, we
are able to efficiently train pLMs in 24 GPU hours. The
peak learning rate and learning rate schedule (number of
warmup steps) are found to be by far the most important
hyperparameters to minimize validation perplexity during
pre-training. We evaluate our best crammed model against
three ESM2 baselines on three protein fitness landscape
inference tasks and a protein-protein interaction task and
find that, using only 0.0065% of the total training time of
ESM2-3B, our crammed model is largely competitive with
the SOTA ESM2 baselines.
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A. Further Experiments

Table 4. Downstream task evaluation with a 10% cramming time limit. The FLIP (Dallago et al., 2021) tasks (GB1, AAV, and Meltome)
results are reported in Spearman correlation and PPI are reported in AUPRC.

Model GB1 AAV Meltome PPI

Crammed pLM-67M (Ours) 0.53 0.76 0.34 0.78
ESM2-8M 0.59 0.81 0.42 0.86
ESM2-150M 0.55 0.78 0.29 0.88
ESM2-3B 0.40 0.62 0.20 0.85

B. Further Related Work
B.1. Efficient protein language models

(Elnaggar et al., 2023) sought to achieve state-of-the-art pLM performance while reducing the overall model size compared
to ESM2 (Lin et al., 2023), by ablating architectural and dataset construction choices, but with no restrictions on compute
budget. (Serrano et al., 2023) introduced “Small-Scale Protein Language Model (SS-pLM)”, a 14.8M parameter model for
rapid experimentation. We do not put any restrictions on model size, and instead focus on architectural and training choices
that maximize token throughput and speed up convergence. (Yang et al., 2022) did away with transformers altogether and
showed that pre-trained convolution-based architectures are significantly cheaper and competitive with transformer-based
pLMs. Since the first appearance of our work, (Li et al., 2024) showed in a thorough evaluation of 370 pLM transfer learning
experiments that almost all downstream task evaluations benefit from using pLM representations, but performance on the
majority of public benchmark tasks does not scale with pre-training. This reliance on low-level features learned early in
pre-training agrees with our findings.
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