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Abstract

A widely recognized limitation of molecular pre-
diction models is their reliance on structures ob-
served in the training data, resulting in poor gener-
alization to out-of-distribution compounds. Yet in
drug discovery, the compounds most critical for
advancing research often lie beyond the training
set, making the bias toward the training data par-
ticularly problematic. This mismatch introduces
substantial covariate shift, under which standard
deep learning models produce unstable and in-
accurate predictions. Furthermore, the scarcity
of labeled data—stemming from the onerous and
costly nature of experimental validation—further
exacerbates the difficulty of achieving reliable
generalization. To address these limitations, we
propose a novel meta-learning-based approach
that leverages unlabeled data to interpolate be-
tween in-distribution (ID) and out-of-distribution
(OOD) data, enabling the model to meta-learn
how to generalize beyond the training distribution.
We demonstrate significant performance gains on
challenging real-world datasets with substantial
covariate shift, supported by t-SNE visualizations
highlighting our interpolation method.

1. Introduction
Molecular property prediction plays a central role in drug
discovery pipelines, enabling researchers to prioritize com-
pounds for costly and time-consuming experimental valida-
tion. Accurate computational models have the potential to
dramatically accelerate early-stage discovery by predicting
critical attributes such as bioactivity, toxicity, and solubility
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Figure 1. Concept. We densify the train dataset using external
unlabeled data (context point) for robust generalization across
covariate shift. Notation details are provided in Section 4.

before synthesis (Schneider, 2018; Vamathevan et al., 2019).
However, building reliable predictive models generalizing to
novel, unseen compounds remains a fundamental challenge.

Standard molecular property prediction models tend to rely
heavily on patterns observed within the training distribution,
resulting in poor generalization to out-of-distribution com-
pounds (Klarner et al., 2023; Ovadia et al., 2019; Koh et al.,
2021). In drug discovery, this limitation is particularly prob-
lematic, since the compounds most crucial for advancing re-
search often lie far beyond the chemical spaces represented
during training (Lee et al., 2023). The resulting covariate
shift introduces significant obstacles to reliable prediction,
with models frequently producing unstable outputs when
extrapolating to new regions of chemical space. Further
compounding these challenges, experimental validation of
molecular properties is both costly and resource-intensive,
leading to a scarcity of labeled data and increasing reliance
on computational exploration (Altae-Tran et al., 2017). Also,
available labeled data is typically concentrated in narrow
regions of chemical space, introducing bias that hampers
generalization to unseen compounds (Klarner et al., 2023).

While vast collections of unlabeled molecular structures
are readily available (Sterling & Irwin, 2015; Kim et al.,
2021), offering rich information about the structure of
chemical space, existing methods often fail to fully ex-
ploit this resource to improve generalization (Klarner et al.,
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2023). Therefore, we propose a novel meta-learning based
method that leverages unlabeled data to densify the scarce
train dataset and guide the model toward sensible behav-
ior in unexplored regions of chemical space. Our code
can be found at https://github.com/JinA0218/
drugood-densify.

2. Methodology
Preliminaries. We consider the problem of molecular
property prediction under covariate shift. Given a small
labeled dataset Dtrain = {(xi, yi)}ni=1 and abundant unla-
beled molecules Dunlabeled = {xj}mj=1, the goal is to learn a
predictive model f : X → Y that reliably generalizes to a
distributionally shifted test set Dtest.

Scarce Data Densification with Unlabeled Data To ad-
dress this, we propose a meta-learning based framework that
interpolates the training distribution Dtrain with an exoge-
nous distribution Dunlabeled. Our objective is to leverage the
cheaper and more abundant distribution Dunlabeled to densify
the scarce labeled distribution Dtrain in a way that encour-
ages the model to generalize robustly under covariate shift,
particularly in out-of-distribution scenarios where we have
no label information and therefore high uncertainty. For this,
we utilize subsets of Dunlabeled as Dcontext and Dmvalid, where
Dcontext is a domain-informed external task distribution for
interpolating to Dtrain, and Dmvalid is a meta-validation set
used to guide the interpolation function. Inspired by (Lee
et al., 2024), we introduce a permutation invariant learnable
set function (Zaheer et al., 2017; Lee et al., 2019) µλ as a
mixer (interpolator), which learns to mix each point from
xi ∼ Dtrain with the context points {cij}mi

j=1 in a way that
densifies Dtrain, where

(xi, yi) ∼ Dtrain, {cij}mi
j=1 ∼ Dcontext, i ∈ {1, . . . , B}

and B denotes the minibatch size, mi ∼ Uint(0,M) where
M controls the maximum number of context samples drawn
from Dcontext for each minibatch. Given a feature dimen-
sion D, for each i, the input consists of, xi ∈ RB×1×D

and {cij}mi
j=1 ∈ RB×1×D, where the set {cij}mi

j=1 can be
organized into a tensor Ci ∈ RB×mi×D.

Overall, our model has two main components: (1) a meta-
learner fθl , which is a standard MLP at the lth layer, that
maps input data x

(l−1)
i ∈ RB×1×D to the feature space of

the (l + 1)th layer, producing x
(l)
i = fθl(x

(l−1)
i ), and (2) a

learnable set function µλ which mixes x(lmix)
i and C

(lmix)
i as

a set and outputs a single pooled representation x̃
(lmix)
i =

µλ({x(lmix)
i , C

(lmix)
i }) ∈ RB×1×H , where H is the hidden

dimension and lmix is the layer where the mixing happens.
The full model structure with L layers can be expressed as

f̂θ,λ := fθL ◦ · · · ◦ fθlmix+1
◦ µλ ◦ fθlmix−1

◦ · · · ◦ fθ1 .

We utilize bilevel optimization for training meta-learner fθl ,
and treat the set function parameter µλ as a hyperparameter
to be optimized in the outer loop (Lorraine et al., 2019). As
shown in Table 2 (w/o bilevel optimization), simply opti-
mizing the meta-learner parameters θ and the set function
parameters λ jointly can lead to overfitting to the task dis-
tribution and harms test-time generalization. Following the
setting of (Lorraine et al., 2019), during training, we only
update the parameter θ in the inner loop and we only update
the parameter λ in the outer loop (see Figure 9b for the
detailed model structure of the bilevel optimization).

In the inner loop, the model accepts xi ∈ RB×1×H

and Ci ∈ RB×mi×H and the set encoder µλ mixes
{x(lmix)

i , C
(lmix)
i } and outputs x̃

(lmix)
i ∈ RB×1×H . Since Ci

is used to introduce a domain-informed external context to
densify Dtrain, we utilize the original label yi from Dtrain to
train the task learner parameters fθl , with the mixed x̃

(lmix)
i .

In the outer loop, we train the set encoder using hypergra-
dient (Lorraine et al., 2019), which aims to minimize a
meta-validation loss LV (λ, θ

∗(λ)), where the model param-
eters θ∗(λ) are the solution to the inner training objective
θ∗(λ) = argminθ LT (θ, λ) and LT (θ, λ) denotes the train-
ing loss computed on a labeled dataset Dtrain, potentially
regularized or influenced by the hyperparameters λ. This
inner loss LT governs the optimization of model parame-
ters θ, while LV evaluates generalization performance on a
meta-validation set Dmvalid, and guides the update of λ. In
order for the hypergradient to train the set encoder µλ in a
way that guides the overall model f̂θ,λ toward robustness
under covariate shift, we construct Dmvalid as

{x(mvalid)
i,k }Kk=1 ∼ Dunlabeled, y

(mvalid)
i,k ∼ N (0, 1),

where K is a hyperparameter of the samples drawn from
Dunlabeled for each minibatch. In Table 2, we empirically
show that using a random y

(mvalid)
i,k ∼ N (0, 1) achieves bet-

ter or comparable performance to using a labeled y
(mvalid)
i,k ∼

Doracle corresponding to the real label for x
(mvalid)
i,k from

the unlabeled dataset which has been labeled by an ora-
cle. This setting aligns with the role of LV in guiding the
set function µλ to generalize to out-of-distribution data, as
sampling pseudo-labels from N (0, 1) introduces controlled
label noise that regularizes the model. The outer loop loss
LV can then be expressed as a function of two variables
LV (λ, θ

∗(λ)), and therefore, the hypergradient is given by,

dLV

dλ
=

∂LV

∂λ
+

∂LV

∂θ
· dθ

∗(λ)

dλ

and Implicit Function Theorem (IFT) is applied to compute
dθ∗(λ)

dλ without differentiating through the entire optimiza-
tion trajectory:

dθ∗(λ)

dλ
= −

(
∂2LT

∂θ2

)−1

· ∂
2LT

∂θ∂λ
.
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Table 1. Merck Molecular Activity Challenge. We report performance (MSE ↓) on datasets with the large test-time covariate shift
(HIVPROT, DPP4, NK1). All entries show the mean and standard errors calculated over 10 training runs. The best performing models are
highlighted in bold. ’outlier exposure’ indicates whether outlier exposure is enabled, and ’bilevel’ denotes the use of bilevel optimization.

Model HIVPROT DPP4 NK1
count vector bit vector count vector bit vector count vector bit vector

L1-Regression 1.137±.000 0.714±.000 1.611±.000 1.130±.000 0.482±.000 0.442±.000

L2-Regression 0.999±.000 0.723±.000 1.495±.000 1.143±.000 0.498±.000 0.436±.000

Random Forest 0.815±.009 0.834±.010 1.473±.008 1.461±.012 0.458±.002 0.438±.002

MLP 0.768±.014 2.118±.015 1.393±.024 1.094±.029 0.443±.007 0.399±.006

Mixup 0.764±0.008 0.691±0.022 1.439±0.021 1.212±0.012 0.481±0.002 0.479±0.003

Mixup (w/ outlier exposure) 0.748±0.01 0.677±0.015 1.384±0.012 1.224±0.016 0.442±0.005 0.443±0.005

Manifold Mixup 0.88±0.023 0.898±0.022 1.414±0.021 1.367±0.04 0.432±0.005 0.499±0.013

Manifold Mixup (w/ bilevel) 0.484±0.011 0.804±0.086 1.19±0.05 1.217±0.068 0.43±0.013 0.536±0.039

Q-SAVI 0.682±.019 0.664±.028 1.332±.017 1.028±.027 0.436±.007 0.387±.012

Ours (Deepsets) 0.555± 0.096 0.364± 0.018 0.984± 0.018 0.963± 0.017 0.455± 0.016 0.376± 0.008
Ours (Set Trans.) 0.39± 0.011 0.726± 0.159 1.121± 0.037 0.986± 0.021 0.429± 0.01 0.397± 0.015

Luckily, the inverse Hessian vector product can be approxi-
mated and computed efficiently using automatic differentia-
tion and Neuman series iterations (Lorraine et al., 2019). In
Section 4, we display how the model f̂θ,λ effectively uses
Dcontext to densify the data distribution around Dtrain.

As the mixing of Dtrain and Dcontext is meant to densify the
sparse training data, we only perform the mixing at train
time. At test time, the set function µλ receives an input as a
singleton set and performs no mixing with any exogeneous
distribution (see Figure 9a for train and test-time diagram).

3. Experiments
We evaluate on the Merck Molecular Activity Challenge
(Merck) dataset (Kulkarni et al., 2012), a benchmark for
molecular property prediction. The dataset contains bioac-
tivity measurements for therapeutic targets, with molecules
represented by high-dimensional chemical descriptors. It
comprises 15 distinct datasets with a regression target pre-
dicting a molecular activity measurement in (possibly) dif-
ferent units, enabling evaluation across multiple distribu-
tion shifts. The Merck dataset reflects real-world drug dis-
covery scenarios where promising candidates lie outside
known chemical spaces, making generalization challenging.
Molecular inputs are encoded either as bit vectors, indicating
the presence or absence of substructures, or count vectors,
which reflect the frequency of substructures—providing
varying granularity of chemical information.

Following the prior work (Klarner et al., 2023), for Dtrain,
we focus on the three subsets (HIVPORT, DPP4, NK1)
that exhibit the greatest distributional shift from and treat
the remaining 12 datasets as Dunlabeled and exclude their
labels from the training process. For fair comparison with
baselines, we randomly select some portion (K for each
minibatch) of Dunlabeled as Dmvalid and sample Dcontext from
Dunlabeled (mi for each minibatch). As Dmvalid is randomly
labeled, we ensure that all baselines see the same amount of
labeled data.

In addition to the baselines presented in (Klarner et al.,
2023), we further implement and evaluate two related
state-of-the-art interpolation methods—Mixup (Zhang et al.,
2017) and Manifold Mixup (Verma et al., 2019)—to empiri-
cally demonstrate the capability of our set function µλ. As
mixup performs the mixing procedure in the input space,
there are no parameters to train for bilevel optimization. We
therefore report two variants of mixup (plain and outlier
exposure) where outlier exposure is exposed to the same
Dmvalid with random labels as described above. Manifold
mixup performs the mixup procedure in the feature space be-
tween layers, therefore we can straightforwardly apply our
bilevel optimization procedure to manifold mixup. There-
fore, we report two variants of manifold mixup (plain and
bilevel optimization).

For Mixup, we set lmix = 1 so we mix {x(l1)
i , C

(l1)
i }

and for Manifold Mixup, we set lmix > 1, so we mix
{x(lmix)

i , C
(lmix)
i } after passing at least one layer fθl (For

further implementation details, please see Appendix A.1).
When evaluating with bilevel optimization, we follow our
setting and update θ and λ separately in each loop using
hypergrad (Lorraine et al., 2019), and for the setting with-
out bilevel optimization, we jointly update θ and λ using a
single optimizer. As shown in Table 1, when either lever-
aging Deepsets (Zaheer et al., 2017) or Set Transformer
(Lee et al., 2019) as the mixer µλ, our method significantly
improves MSE compared to the baselines, demonstrating
greater robustness of our model toward covariate shift.

Furthermore, we present a series of ablation studies in Ta-
ble 2 to analyze the contributions of each component of
our method (Implementation details can be found in Ap-
pendix A.2). Specifically, to validate the effectiveness of
Dcontext and our bilevel optimization (Lorraine et al., 2019)
under y(mvalid)

i,k ∼ N (0, 1), we compare our approach against
the following variants: (1) using Dcontext without bilevel op-
timization, (2) excluding both Dcontext and bilevel optimiza-
tion, and (3) using the real label for y(mvalid)

i,k . The results
indicate that, in order to achieve robust generalization across
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Table 2. Ablation study of Ours. ’ctx’ indicates the use of context points, while ’bilevel’ denotes the application of bilevel optimization.
For y(mvalid), ’rand’ refers to sampling from a standard normal distribution, whereas ’real’ refers to sampling from the oracle distribution.

Model w/ ctx. w/ bilevel y(mvalid) HIVPROT DPP4 NK1
count vector bit vector count vector bit vector count vector bit vector

Ours (Deepsets) ✓ ✗ rand 1.147± 0.055 1.012± 0.025 1.342± 0.019 1.344± 0.039 0.45± 0.01 0.494± 0.006
Ours (Set Trans.) ✓ ✗ rand 1.193± 0.038 1.008± 0.03 1.34± 0.026 1.359± 0.013 0.482± 0.002 0.487± 0.009
Ours (MLP) ✗ ✗ rand 1.043± 0.013 1.049± 0.013 1.42± 0.009 1.269± 0.017 0.435± 0.002 0.466± 0.004
Ours (Deepsets) ✓ ✓ real 0.506± 0.061 0.381± 0.018 0.970± 0.012 0.964± 0.024 0.495± 0.037 0.395± 0.014
Ours (Set Trans.) ✓ ✓ real 0.401± 0.02 0.811± 0.111 1.123± 0.024 0.975± 0.016 0.449± 0.021 0.401± 0.017

Ours (Deepsets) ✓ ✓ rand 0.555± 0.096 0.364± 0.018 0.984± 0.018 0.963± 0.017 0.455± 0.016 0.376± 0.008
Ours (Set Trans.) ✓ ✓ rand 0.39± 0.011 0.726± 0.159 1.121± 0.037 0.986± 0.021 0.429± 0.01 0.397± 0.015

ours
ours (w/o context)
ours (context)
OOD

(a) Ours

mixup
mixup (w/o context)
mixup (context)
OOD

(b) Mixup (w/ outlier exposure)

manifold mixup
manifold mixup (w/o context)
manifold mixup (context)
OOD

(c) Manifold Mixup (w/ bilevel optim.)

Figure 2. t-SNE visualization of DPP4 (bit) dataset from the penultimate layer across different methods. All models were trained on
Dtrain, Dcontext, and Dmvalid. At test time, we evaluate each model on four input variants (orange, blue, green, purple) to analyze how the
model utilizes Dcontext to achieve robustness under covariate shift and how it behaves on out-of-distribution (OOD) data.

all datasets, it is crucial to leverage bilevel optimization with
Dcontext. Especially, the dataset HIVPROT, which has the
highest degree of label and covariate shift compared to oth-
ers (Klarner et al., 2023) (Table 3), showed a detrimental
performance drop (62.6%–67.3% for the count vector, and
63.8%–65.3% for the bit vector) in settings (1,2). Moreover,
using y

(mvalid)
i,k ∼ N (0, 1) in LV for training the set function

µλ resulted in comparable or better performance than using
the true label associated with x

(mvalid)
i,k , validating our choice

of LV and its contribution to improved robustness under
covariate shift.

4. Analysis
To visually assess how our model leverages Dcontext to den-
sify Dtrain, and to compare model behaviors on out-of-
distribution (OOD) inputs, we visualize the penultimate-
layer embeddings zi = x

(L−1)
i , using t-SNE (Van der

Maaten & Hinton, 2008) across three models that interpolate
Dtrain with Dcontext: Ours, Mixup (w/ outlier exposure), and
Manifold Mixup (w/ bilevel optim.), all trained on the DPP4
bit-vector dataset. We randomly sample xi, yi ∼ Dtrain,
Ci = {cij}100j=1 ∼ Dcontext, xood

i ∼ Dood, where Dood signi-
fies an out-of-distribution dataset which was never seen dur-
ing training. In Figure 2, each color indicates a penultimate-
layer embedding z ∈ Z under different input configurations.
We denote the embeddings as follows: Zjoint for orange
({xi, Ci}), Zinput for blue (xi alone), Zcontext for green (Ci

alone), and Zood for purple (OOD samples xood
i ). Addi-

tional t-SNE results and details are in Appendix B.

Effect of interpolating Dtrain with Dcontext. In Figure 2a,
we can see that our model successfully uses Ci to densify
each train input xi, based on the fact that Zjoint is concen-
trated in the vicinity of Zinput and is located in a completely
separate cluster from both Zcontext and Zood. On the other
hand, as shown in Figures 2b and 2c, both Mixup (w/ outlier
exposure) and Mandifold Mixup (w/ bilevel optim.) show
extensive overlap between Zjoint, Zcontext, and Zood.

Unlike Mixup (w/ outlier exposure) and Manifold Mixup
(w/ bilevel optimization), our method shows much clearer
separation between data distributions. This shows that our
model effectively distinguishes seen from unseen distribu-
tions while learning structured, robust latent representations
that enhance generalization under covariate shift, consistent
with the results in Table 1.

5. Conclusion
To overcome the challenge of test-time covariate shift, we
propose a novel meta-learning based method that densifies
the training distribution using domain-informed unlabeled
datasets via a learnable set function. During training, we
utilize bilevel optimization which leverages noisy unlabeled
data to guide our model towards robustness under covariate
shift. We validate our method on challenging real-world
molecular property prediction with large covariate shifts,
and visually demonstrate the effectiveness of interpolation
method which shows well defined separation between data
distributions. Our code is available at https://github.
com/JinA0218/drugood-densify.
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A. Experimental Details
All code and experiments are publicly available at https://github.com/JinA0218/drugood-densify.

A.1. Implementation details of the baselines (Table 1)

In Table 1, we report the performance of L1-Regression, L2-Regression, Random Forest, MLP, and Q-SAVI by referring to
the results from (Klarner et al., 2023). For Mixup (plain and with outlier exposure) and Manifold Mixup (plain and with
bilevel optimization), we replace only our set function µλ with the linear interpolation µlin

α and reduction function, defined as

x̃
(lmix)
i = freduce (αxi + (1− α)Ci) , α ∼ U(0, 1), α ∈ RB×1×1, freduce ∈ {mean, sum,max},

while keeping all other components unchanged. We apply the function freduce since Ci ∈ RB×mi×1, and therefore a final
reduction must be applied in order to reduce the set dimension mi to 1. We us max for freduce in Table 1 as a sensible default.

Mixup and Manifold Mixup. For the plain Mixup and Manifold Mixup (without bilevel or outlier exposure), we perform
the mixing only utilizing (xi, yi) ∼ Dtrain and {cij}mi

j=1 ∼ Dcontext without using Dmvalid, without any outlier exposure.
Since this impelementation doesn’t include bilevel optimization, we train each Mixup and Manifold Mixup with a single
optimizer.

Mixup (w/ outlier exposure). To compare Mixup with outlier exposure, we implemented a variant of Mixup which is
trained with (xi, yi) ∼ Dtrain, {cij}mi

j=1 ∼ Dcontext and {x(mvalid)
i,k }Kk=1 ∼ Dunlabeled, y

(mvalid)
i,k ∼ N (0, 1). As explained in

Section 3, since it peforms the mixing proceduce in the input space there are no parameters to train, it is impossible to apply
bilevel optimization. Therefore, when computing the loss, we do not follow the operation held in hypergradient (Lorraine
et al., 2019) but instead add train loss and LV , and update the model parameter with a single optimizer.

Manifold Mixup (w/ bilevel optim.). As described in Section 3, unlike Mixup, in Manifold Mixup, linear layers are
included in µlin

α , so it is possible to straightforwardly apply bilevel optimization. Therefore, we follow the same procedure
described in Section 2, and train using Dcontext and {x(mvalid)

i,k }Kk=1 ∼ Dunlabeled, with pseudo-labels y(mvalid)
i,k ∼ N (0, 1). Like

our method, we also employ a separate optimizer for training µlin
α .

A.2. Implementation details of the ablation study (Table 2)

In Table 2, we perform three types ablation study of ours :

1. Using Dcontext without bilevel optimization.

2. Excluding both Dcontext and bilevel optimization.

3. Using the real label for y(mvalid)
i,k .

Since ablation studies (1) and (3) include the set function µλ, we report the performance of each using both DeepSets (Zaheer
et al., 2017) and Set Transformer (Lee et al., 2019) as implementations of µλ.

For ablation study (1), we train the model with (xi, yi) ∼ Dtrain, {cij}mi
j=1 ∼ Dcontext and {x(mvalid)

i,k }Kk=1 ∼
Dunlabeled, y

(mvalid)
i,k ∼ N (0, 1), and sum the inner loop train loss LT and outer loop loss LV to get the final loss for

each iteration. Since there is no bilevel optimization in this setting, we update the model parameter of fθ and µλ together
using a single optimizer.

For ablation study (2), we train the model with (xi, yi) ∼ Dtrain and {x(mvalid)
i,k }Kk=1 ∼ Dunlabeled, y

(mvalid)
i,k ∼ N (0, 1), and

add the inner loop train loss LT and the outer loop LV to get the final loss for each iteration. Since there is no context points,
there is no interpolation with external distributions in this setting. Additionally, we update the model parameter of fθ and
µλ together using a single optimizer, so the effect of the outer loop loss LV does not result in any bilevel optimization.

For ablation study (3), we replace y
(mvalid)
i,k ∼ N (0, 1) to a labeled y

(mvalid)
i,k ∼ Doracle and perform the same process as our

standard setting described in Section 2.
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A.3. Hyperparameter tuning details

For hyperparameter settings, all methods (including ours, Mixup, Manifold Mixup, Mixup with outlier exposure, and
Manifold Mixup with bilevel optimization) reported in Table 1 used a learning rate of 1 × 10−3 for fθ, and a learning
rate of 1 × 10−5 for the mixers µλ and µlin

α , where the learning rate of µlin
α is only used for Manifold Mixup (w/ bilevel

optim.). The number of layers (L) was set to 3, the hidden dimension (H) to 64, the dropout rate to 0.5, and the optimizer to
adamwschedulefree (Defazio et al., 2024). For methods utilizing bilevel optimization, we set the number of inner-loop
iterations to 10 and outer-loop iterations to 50. We furthure perform hyperparameter search for all the models with the same
hyperparameter search space as shown in Table 3. Since Mixup, Manifold Mixup do not utilize Dmvalid, the hyperparameter
search was conducted only over M .

For Table 2, all ablation studies used the same hyperparameter search space as in Table 1.The hyperparameter search space
is presented in Table 3.

Table 3. Hyperparameter search space.

Hyperparameter Search Space

maximum number of context per batch (M ) 1, 4, 8
number of mvalid per batch (K) 1, 6, 8

A.4. Computing resources

All experiments are conducted on GPUs including the GeForce RTX 2080 Ti, RTX 3090, and RTX 4090.

B. t-SNE Visualization Details
B.1. Embedding generation procedure

Table 4. OOD datasets for t-SNE visualiza-
tions.

Train dataset OOD Datasets

HIVPROT DPP4, NK1
DPP4 HIVPROT, NK1
NK1 DPP4, HIVPROT

In Figure 2, we visualize the penultimate-layer embeddings zi = x
(L−1)
i using

t-SNE (Van der Maaten & Hinton, 2008), across three models that interpo-
late Dtrain with Dcontext. For each trained model, we generate the following
embeddings: Zjoint: obtained by passing both xi and Ci to the model; Zinput:
obtained by passing only xi; Zcontext: obtained by passing only Ci. This allows
us to observe how the model handles each type of input. To add an additional
qualitative (OOD) evaluation, we utilize one of the Merck datasets (Kulkarni
et al., 2012) that was not used during training (see Table 4). Using this OOD dataset, we generate the embeddings of Zood,
by only passing xood

i to the model. In addition to Figure 2, we also provide extra examples in Figures 3 to 8.

B.2. t-SNE plots across all datasets

Here, we present the t-SNE plots for all datasets used in our experiments, as listed in Table 1. For each in-distribution model,
we visualize the corresponding two out-of-distribution datasets. For our method, among the DeepSets (Zaheer et al., 2017)
and Set Transformer (Lee et al., 2019) variants, we visualize the model that achieved the highest performance in Table 1.
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ours (context)
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OOD (nk1)

(a) Ours
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mixup (w/o context)
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OOD (dpp4)
OOD (nk1)

(b) Mixup (w/ outlier exposure)

manifold mixup
manifold mixup (w/o context)
manifold mixup (context)
OOD (dpp4)
OOD (nk1)

(c) Manifold Mixup (w/ bilevel optim.)

Figure 3. t-SNE visualization of the model trained on the HIVPROT (count) dataset
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OOD (dpp4)
OOD (nk1)

(c) Manifold Mixup (w/ bilevel optim.)

Figure 4. t-SNE visualization of the model trained on the HIVPROT (bit) dataset
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(c) Manifold Mixup (w/ bilevel optim.)

Figure 5. t-SNE visualization of the model trained on the DPP4 (count) dataset
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(c) Manifold Mixup (w/ bilevel optim.)

Figure 6. t-SNE visualization of the model trained on the DPP4 (bit) dataset
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(c) Manifold Mixup (w/ bilevel optim.)

Figure 7. t-SNE visualization of the model trained on the NK1 (count) dataset
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Figure 8. t-SNE visualization of the model trained on the NK1 (bit) dataset
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C. Model Structure Overview
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(a) Training and Test-time Framework
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(b) Bilevel Optim. during Training

Figure 9. Overview of our proposed model. (a) During training, the model interpolates between a labeled train point (xi, yi) and context
point Ci to learn robust representations. At test time, the model predicts on an OOD input using the learned meta learner fθ and set
function µλ. (b) The model is trained via bilevel optimization, where the inner loop updates θ using the inner loss Linner, while the outer
loop updates λ using the hypergradient computed from LT and LV .
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