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Abstract—The explosion of machine learning model size has
led to its execution on distributed clusters at a very large scale.
Many works have tried to optimize the process of producing
collective algorithm and running collective communication, which
acts as a bottleneck to distributed machine learning. However,
the lack of a standardized collective algorithm representation has
hindered interoperability between the workload representation,
collective algorithm producers, and consumers. The trend of
collective algorithm producers and consumers using their own
representation has pushed away from co-optimizing collective
communications and the rest of the workload. Additionally, tool-
specific conversions and modifications have to be made for each
pair of tools producing and consuming collective algorithms.

In this paper, we propose a standardized workflow leveraging a
common collective algorithm representation. Upstream producers
and downstream consumers converge to a common representation
format based on Chakra Execution Trace, which is being used to
represent distributed machine learning workloads. Such a com-
mon representation enables to view collective communications at
the same level as workload operations and decouple producer
and consumer tools, enhance interoperability, and relieve the
user from the burden of having to focus on downstream imple-
mentations. We provide a proof-of-concept of this standardized
workflow by simulating collective algorithms generated by MSC-
CLang domain-specific language through ASTRA-sim distributed
machine learning simulator using various network configurations.

I. INTRODUCTION

Recent trends in enormous machine learning (ML) mod-
els, such as recommendation models [1] or Large Language
Models (LLMs) [2], [3], have made it impractical to execute
them on a single Neural Processing Unit (NPU, such as GPU,
TPU, or custom ASIC) [4]. Consequently, ML execution has
evolved to distribute the job across multiple NPUs [5].

Within distributed ML, each of the participating NPUs
completes a portion of the overall compute task. They pe-
riodically transfer and synchronize their intermediate compute
results (e.g., weight or input gradients) in accordance with a
predefined schedule [6]. Such traffic patterns are collective in
nature. Therefore, collective communication primitives, such
as All-Reduce or All-Gather, have been the key building blocks
of distributed ML platforms [7].

The communication of intermediate data has become a
bottleneck to the overall distributed ML execution, and recent
studies have tried to optimize this [8]–[10]. Within the scope of
collectives, Collective Communication Libraries (CCLs) such
as NVIDIA’s NCCL [11] provide implementations of several
predefined collective algorithms (e.g., Ring [12] and Double
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Fig. 1: The proposed standardized workflow using Chakra Execution
Trace (Chakra ET) as a common representation for both distributed
ML workload and collective algorithm. Downstream tools receive
both workload and collective algorithms represented using a common
Chakra ET format. Sample Chakra ETs of the workload (left) and
that of the algorithm of a single collective (right) is also shown.

Binary Tree [13]). Several works have tried to further optimize
collective algorithms [14], [15], by automatically synthesizing
topology-aware algorithms [16], [17], or allowing users to
easily define and test their own [18].

The outcome of such optimizations is not limited to ac-
tual execution on real clusters. For example, distributed ML
simulators [19]–[21] allow users to swiftly compare the per-
formance of different collective algorithms or workload paral-
lelization strategies without running them on actual hardware.
This enables them to easily test new optimizations for current
systems and additionally allows the co-design and evaluation
of futuristic distributed ML platforms.

Unfortunately, these collective optimizations have been
done separately from distributed ML workload optimiza-
tion, due to a lack of common representation. Specifically,
distributed ML workload information does not contain details
on how each collective operation is implemented, and the
downstream tool must fill in the blank information on its own.
As such, downstream tools have their own implementation of
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collective algorithms and choose from these options as nec-
essary. To the best of our knowledge, there is no common
format that represents both the distributed ML workloads
and collective algorithms. Because of this, collective com-
munications and other operators within a workload (such as
compute or memory access) are also optimized separately.
Additionally, the absence of a common representation
between upstream producers and downstream consumers
limits interoperability. In order to evaluate custom collective
algorithms with a desired simulator, users have to manually
program the algorithm following simulator-specific rules. This
adds a layer of development burden to the search for collective
algorithm optimizations.

In order to bridge this gap, we propose a common
representation format for both workload and collective
algorithms across different tools. We draw attention to the
Chakra Execution Trace (Chakra ET) [22] format. Chakra
ET is a standard graph-based representation of execution
traces for distributed ML workloads, and is currently being
developed by MLCommons [23]. In this work, we propose to
extend Chakra ET to also encode collective algorithms. Fig. 1
summarizes the standardization proposal, where (i) both the
distributed ML workload and collective algorithm (produced
by the upstream tools) are represented in a common Chakra ET
format and (ii) downstream tools can directly ingest a single
Chakra ET representation for simulation or execution. We
develop a proof-of-concept workflow allowing users to write
custom collective algorithms using the MSCCLang Domain
Specific Language [18], represent them in Chakra ET format,
and compare the custom algorithms using the ASTRA-sim
distributed ML system simulator [19]. Similar workflows with
different tools can be easily built leveraging this standard
representation format.

There are three key benefits to employing Chakra ET
as a common collective algorithm representation. First, we
envision to co-optimize collective communication with other
operations in the workload via leveraging a streamlined
workflow encapsulating both the workload and collective
algorithms. Second, the decoupling between upstream and
downstream tools helps reduce the effort to develop and
implement collective algorithms for each downstream tool.
For example, distributed ML simulators like ASTRA-sim [19]
could ingest the common representation instead of users hav-
ing to implement the collective algorithm within its codebase,
which requires simulator-specific knowledge. Finally, inter-
operability across different downstream tools is another
benefit, where users can leverage a single representation to test
the same collective algorithm on both simulators like ASTRA-
sim and real systems like MSCCL-Runtime [18].

To summarize, our contributions are as follows:
• We motivate and propose a standard workflow that uses

a common collective algorithm representation to bridge
distributed ML workload information, upstream collective
algorithm producers, and downstream tools.

• As proof-of-concept, we provide a case study showing inter-
operability with MSCCLang and the ASTRA-sim simulator.

II. BACKGROUND

A. Chakra Execution Trace

Chakra ET [22] aims to provide a standard graph-based
representation to capture the trace of distributed ML workload
execution. Chakra ET represents a distributed workload using
a directed acyclic graph whose vertex denotes ML opera-
tions and edge indicates inter-operation dependency. Each
node can be of type COMP, MEM, or COMM COLL (ei-
ther collective communication or single COMM SEND and
COMM RECV). Chakra ET can be fed into and consumed
by distinct downstream tools, such as distributed ML simula-
tors or benchmarking tools. These downstream tools leverage
Chakra ET by traversing through the graph and issuing the
operations whose dependencies are resolved and are ready to
be dispatched. Chakra ET graphs can be collected in multiple
ways, for instance, through profiling actual PyTorch executions
or via synthetic generations.

Note that a collective communication node in Chakra ET
merely indicates that a collective communication has taken
place. However, it does not encode the actual collective
algorithm. In other words, Chakra ET itself is oblivious to
exactly how the messages are orchestrated and transferred.
Consequently, the downstream tools exploit their internal, tool-
specific implementations of collective algorithms.

B. Upstream Collective Algorithm Producers

Given the significance of collective communication in dis-
tributed ML, numerous studies have focused on optimizing
collective algorithms. Primarily, they have pursued two main
threads: (i) developing domain-specific languages (DSLs) to
enable users to define their own collective algorithms and
(ii) implementing synthesizers to autonomously generate them.

One notable example is MSCCLang [18], which introduces
a Python-based DSL for collective algorithms. This enables
users to easily construct NCCL-based collective algorithms.
MSCCLang compiles these algorithms into an XML-based
representation (MSCCL-IR), which is then executed on real
clusters via the NCCL-based MSCCL-Runtime. Meanwhile,
synthesizers like TACCL [17] and TACOS [24] generate
collective algorithms tailored to the network topology. TACCL
employs Integer Linear Programming (ILP) to identify optimal
collective algorithms, while TACOS utilizes a Time-expanded
Network (TEN) approach.

C. Downstream Distributed Machine Learning Tools

Downstream tools receive distributed ML workloads or
collective algorithm representations to execute meaningful
tasks. Collective communication runtimes and distributed ML
simulators are notable instances of such downstream tools.
For instance, the MSCCL-Runtime orchestrates a collective
communication by taking the collective algorithm in MSCCL-
IR format (compiled from MSCCLang) and executing it on
real GPU clusters via an NCCL-based runtime. Conversely,
ASTRA-sim is a notable example of simulation infrastructure.
Its Workload Layer can receive and simulate a distributed ML
workload represented in Chakra ET format, while its System
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TABLE I: A list of Chakra ET node types used to represent
collective algorithms and their description.

Chakra ET Node Type Description
COMM SEND (Pt-to-pt) Message send to a destination.
COMM RECV (Pt-to-pt) Wait for a message from a source.

COMP Execute a compute task on a given hardware
(e.g., Reduction operation)

Layer implements collective algorithms to fill in the gaps of
the workload Chakra ET. The Network Layer captures requests
from these layers and simulating the actual network transfers
over a network simulator of user choice.

III. COLLECTIVE ALGORITHM REPRESENTATION

A. Motivation: Needs for Standardization

Currently, upstream collective algorithm producers employ
unique representations to describe their results. For example,
MSCCLang utilizes a NCCL-based, low-level XML interpre-
tation, while TACOS relies on its own TEN representation.

This lack of standardization often leads downstream tools
to rely on their unique internal implementation. Consequently,
the format and pipeline that downstream tools use to fetch col-
lective information diverge from those used to inject workload
information. As a result, users are constrained to optimizing
either collective operations or other workload operations, not
both.

Moreover, the absence of a standard format means that
executing an upstream producer’s algorithm with a specific
downstream tool requires users to comprehend the internal
details of both tools and implement the algorithm themselves.
This task is not only highly prohibitive but also implies that it
must be repeated for every pair of upstream and downstream
tools. Consequently, upstream and downstream processes be-
come disjointed and lack plug-and-play functionality.

B. Solution: Using Chakra Execution Trace

We standardize the collective algorithm representation by
utilizing the Chakra ET format that is already employed
for distributed ML workloads. It readily offers mechanisms
to capture point-to-point message transfers between arbitrary
NPUs as well as compute operations necessary for collectives.

By representing both distributed ML workloads and collec-
tive algorithms in Chakra ET, we cleanly resolve the issue
of separation among workloads, upstream, and downstream
tools. Fig. 1 depicts the proposed standardized workflow. Both
distributed ML workloads and collective algorithms are in
Chakra ET format and passed on to the downstream. The
downstream tool then traverses the workload ET and executes
operations as their dependencies are resolved. During the
process, since collective communication nodes lack the exact
mechanism to execute collectives, the downstream tools must
decide the algorithm. Previously, they selected a collective
algorithm from a range of native implementations or custom
algorithms tailored to their specifications. However, with the
capability to receive any collective algorithm in Chakra ET,
the downstream tools can easily expand the collective commu-
nication node with the provided algorithm. Users can rapidly
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Fig. 2: Snippets of the Chakra ET used to represent the
workload and Ring collective algorithm used in the evaluation.

test new collective algorithms by simply switching out the
Chakra ET files without having to create new tool-specific
implementations.

By representing collective algorithms with the same format
as the workload, we elevate the send and receive messages of a
collective algorithm to the same level as other operators in the
workload. This opens up opportunities for co-optimizing col-
lective communication and other operators such as compute.
For example, it is much simpler to test a scheduling feature
that reorders a compute node and a send node (assuming the
reorder respects inter-node dependencies) as the compute and
send node now use a common Chakra ET format.

Note that real-world systems such as MSCCL-Runtime do
not take workload information as input. Even in this case,
having the Chakra ET as a common collective algorithm
representation helps bridge the gap with upstream producers.
For example, a user may want to simulate multiple prospec-
tive algorithms using ASTRA-sim, then validate the best-
performing candidates by actually using the MSCCL-Runtime.
The user in this workflow can reuse the same Chakra ET
format across both tools without modification. This is achieved
by the fact that the common representation abstracts away the
details of the downstream tools.

C. Collective Algorithm in Chakra ET

Table I lists the types of Chakra ET operator nodes that are
used to represent collective algorithms and their definition.
Leveraging these nodes, Chakra ET can represent point-to-
point network transfer between two NPUs as well as com-
pute operations. Arbitrary collective algorithms can then be
described as a combination of network message transfers and
reductions.

To meet the standardization requirement, upstream tools
need to convert resulting collective algorithms from their
default representation to the common Chakra ET format when
producing collective algorithms. We highlight that implement-
ing this conversion is a one-time task such that, once devel-
oped, can be reused across multiple downstream frameworks.
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IV. METHODOLOGY

As a case study and proof-of-concept, we construct an end-
to-end workflow using MSCCLang and ASTRA-sim. Here,
we describe the extensions made to the two tools for the case
study. We expect similar extensions would apply to other tools.

A. Representing MSCCLang Output in Chakra ET

We developed a converter that bridges the MSCCL-IR
format into Chakra ET. The converter creates a vertex (i.e.,
Chakra ET node) for each operation in the MSCCL-IR format.
The converter then creates edges by extracting inter-operator
dependency information encoded in the MSCCL-IR format.
To showcase the update, we described a 1D Ring algorithm
of All-Reduce using MSCCLang and compiled the result in
the standard Chakra ET format. Fig. 2(b) shows part of the
Chakra ET-based 1D Ring algorithm representation.

B. Updating ASTRA-sim to Run Algorithms in Chakra ET

Fig. 3 shows the workflow of ASTRA-sim simulator and our
extensions to it. ASTRA-sim includes its implementation of
collective algorithms found in NCCL, such as Ring or Double
Binary Tree, out of the box as part of the program.

At each run, the user will choose which algorithm to use for
each collective. Whenever a collective communication node
is issued, ASTRA-sim will run the corresponding algorithm
code. We extend ASTRA-sim by adding an input parameter
for the user to refer to the collective algorithm in Chakra
ET format. The simulator will parse the provided Chakra ET
and simulate the point-to-point sends and receives following
the dependencies, rather than using its own implementation.
This process is depicted in dashed boxes in Fig. 3. Since
ASTRA-sim readily supports the execution of ML workloads
in Chakra ET, reusing the components in the workload layer
has made it easy to add the extension for the common
collective representations as well.

V. EVALUATION

We showcase our case study of bridging MSCCLang and
ASTRA-sim as described in Sec. IV. We use an All-Reduce
collective followed by an All-Gather collective for the work-
load and use MSCCLang to generate a 1D Ring algorithm
for both collectives. Fig. 2 shows a snippet of the Chakra
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Fig. 4: The collective duration for a 1D Ring algorithm across
different topologies of 64 NPUs.

ET represented as a graph. Note how we are able to represent
both the workload and the collective algorithm using the same
Chakra ET format. The resulting Chakra ET representation is
then provided to the ASTRA-sim simulator to be tested across
different topologies with varying physical connectivity.

We use the Analytical network simulator to model the mes-
sage transfer. The topologies consist of 64 NPUs with varying
connectivity. We observe the workload duration as we differ
the size of the collective. Fig. 4 shows the simulation results,
using the slowdown of the different topologies compared to a
1D Ring. Note that such an experiment was made possible
thanks to the streamlined workflow via standardization of
the collective algorithm representation. It is natural that other
topologies show slowdowns as we use a simple Ring algorithm
for both All-Reduce and All-Gather. While this evaluation
showcases a simplistic workload, it is possible to expand
the evaluation to include complex workloads and collective
algorithms. We leave this to future work.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a standardized common representation
for collective algorithms. We reuse the Chakra ET format,
which already captures distributed ML workload traces, as
the collective representation. Representing both workloads and
collective algorithms with the same format will allow us to
explore the co-optimization of workload operators and collec-
tive communication operators. We showcase such a common
representation with a case study using collective algorithms
produced by MSCCLang on the ASTRA-sim simulator.

Our work opens up several future research directions. One
important future work is to leverage the proposed standard
representation to explore collective optimizations in the con-
text of an actual workload. We anticipate that a common
representation across a workload and a collective algorithm
will allow us to study the co-optimization of compute and
communication operations. This allows researchers to further
study the overlapping of compute and communication oper-
ations. Another potential direction would be to expand other
tools to produce and consume Chakra ET format, to further
expand the ecosystem and scope of our proposed workflow.
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