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Abstract

Current pre-trained language models (PLM) are001
typically trained with static data, ignoring that002
in real-world scenarios, streaming data of var-003
ious sources may continuously grow. This re-004
quires PLMs to integrate the information from005
all the sources in a lifelong manner. Although006
this goal could be achieved by exhaustive pre-007
training on all the existing data, such a process008
is known to be computationally expensive. To009
this end, we propose ELLE, aiming at efficient010
lifelong pre-training for emerging data. Specif-011
ically, ELLE consists of (1) function preserved012
model expansion, which flexibly expands an013
existing PLM’s width and depth to improve the014
efficiency of knowledge acquisition; and (2)015
pre-trained domain prompts, which disentan-016
gle the versatile knowledge learned during pre-017
training and stimulate the proper knowledge for018
downstream tasks. We experiment ELLE with019
streaming data from 5 domains on BERT and020
GPT. The results show the superiority of ELLE021
over various lifelong learning baselines in both022
pre-training efficiency and downstream perfor-023
mances. All the data, model parameters and024
codes used will be available upon publication.025

1 Introduction026

Pre-trained language models (PLM) have broken027

the glass ceiling for various natural language pro-028

cessing (NLP) tasks (Radford et al., 2018; Devlin029

et al., 2019; Han et al., 2021). However, most030

of the existing PLMs are typically trained with031

a static snapshot of the web information, ignor-032

ing that in real-world scenarios, streaming data033

from various sources may continuously grow, e.g.,034

the gatherings of literary works (Zhu et al., 2015),035

news articles (Zellers et al., 2019) and science pa-036

pers (Lo et al., 2020). In addition, the distribution037

of incoming data may also vary over time. This038

requires PLMs to continually integrate the informa-039

tion from all the sources to grasp the versatile struc-040

tural and semantic knowledge comprehensively, so041

that PLMs could utilize the proper knowledge to 042

boost the performance in various downstream tasks. 043

A simple yet effective way to integrate all the 044

information is to pre-train PLMs on all the existing 045

data exhaustively. However, such a process is com- 046

putationally expensive (Schwartz et al., 2019), es- 047

pecially under the information explosion era when 048

tremendous data is continually collected. This 049

leaves us an important question: with limited com- 050

putational resources, how can we efficiently adapt 051

PLMs in a lifelong manner? We formulate it as the 052

efficient lifelong pre-training problem. Similar to 053

conventional lifelong learning, PLMs are expected 054

to continually abosrb knowledge from emerging 055

data, and in the meantime, mitigate the catastrophic 056

forgetting (McCloskey and Cohen, 1989) on previ- 057

ously learned knowledge. 058

In addition, efficient lifelong pre-training poses 059

two new challenges: (1) efficient knowledge 060

growth. When the overall data scale accumulates 061

to a certain magnitude, packing more knowledge 062

into a fixed-sized PLM becomes increasingly hard, 063

which significantly impacts the efficiency of PLM’s 064

knowledge growth. This is because larger PLMs 065

show superior sample efficiency and training ef- 066

ficiency over their smaller counterparts (Kaplan 067

et al., 2020; Li et al., 2020) due to overparameter- 068

ization (Arora et al., 2018). That is, larger PLMs 069

learn knowledge in a more efficient way. Therefore, 070

timely model expansions are essential for efficient 071

knowledge growth; (2) proper knowledge stim- 072

ulation. During pre-training, various knowledge 073

from all domains is packed into PLMs hastily. How- 074

ever, a certain downstream task may largely require 075

the knowledge from a specific domain. Thus it is 076

essential for PLMs to disentangle different kinds 077

of knowledge and properly stimulate the needed 078

knowledge for each task. 079

In this paper, we propose ELLE, targeting at 080

Efficient LifeLong pre-training for Emerging data. 081

Specifically, (1) to facilitate the efficiency of knowl- 082
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edge growth, we propose the function preserved083

model expansion to flexibly expand an existing084

PLM’s width and depth. In this way, we increase085

PLM’s model size and thus improve its training086

efficiency. Before being adapted to a new domain,087

the expanded PLM performs a function recovering088

warmup to regain the functionality of the original089

PLM; (2) for proper knowledge stimulation, we090

pre-implant domain prompts during pre-training091

to prime the PLM which kind of knowledge it is092

learning. Therefore, versatile knowledge from mul-093

tiple sources can be disentangled. During down-094

stream fine-tuning, we could further utilize these095

implanted prompts and manipulate the PLM to096

stimulate the proper knowledge for a specific task.097

To demonstrate the effectiveness of ELLE, we098

simulate the scenario where streaming data from 5099

domains sequentially comes. We pre-train two typi-100

cal PLMs (BERT and GPT) and expand their model101

sizes each time when the new data is available.102

We experiment when the number of parameters is103

sequentially grown from both 30M to 125M and104

125M to 355M. The experimental results show the105

superiority of ELLE over multiple lifelong learning106

baselines in both pre-training efficiency and down-107

stream task performances. In addition, we conduct108

sufficient experiments to verify the effectiveness of109

each component of ELLE. In general, we provide110

a promising research direction and hope this work111

could inspire more future attempts towards efficient112

lifelong pre-training.113

2 Related Work114

Lifelong Learning for PLMs. Lifelong learning115

aims at incrementally acquiring new knowledge,116

and in the meantime, mitigating the catastrophic117

forgetting issue. Numerous efforts have been spent118

towards this goal, including (1) memory-based119

methods (Rebuffi et al., 2017; Rolnick et al., 2019),120

which perform experience replay with authentic121

data (de Masson d’Autume et al., 2019), automat-122

ically generated data (Sun et al., 2020), or previ-123

ously computed gradients (Lopez-Paz and Ranzato,124

2017) conserved in the memory, (2) consolidation-125

based methods (Kirkpatrick et al., 2017; Aljundi126

et al., 2018), which introduce additional regulariza-127

tion terms to consolidate the model parameters that128

are important to previous tasks, and (3) dynamic129

architecture methods (Rusu et al., 2016; Yoon et al.,130

2018), which fix trained network architectures in131

old tasks and dynamically grow branches for new132

tasks. Lifelong learning is also a hot topic for 133

PLMs. Some target at domain adaptation through 134

continual pre-training (Gururangan et al., 2020), 135

parameter-efficient adapters (He et al., 2021) and 136

sparse expert models (Gururangan et al., 2021). 137

Others focus on the incremental acquisition of fac- 138

tual knowledge that changes over time (Dhingra 139

et al., 2021; Jang et al., 2021). However, the exist- 140

ing works seldom consider our lifelong learning set- 141

ting where streaming data from multiple sources is 142

sequentially gathered. A concurrent work (Jin et al., 143

2021) conducts empirical studies on conventional 144

continual learning algorithms for PLM adaptation. 145

However, they do not focus on PLM’s training effi- 146

ciency, which is different from our setting. More 147

detailed comparisons are left in appendix F. 148

Efficient Pre-training in NLP. Many attempts 149

have been made towards improving the efficiency 150

of pre-training, such as designing novel pre- 151

training tasks (Clark et al., 2020), model archi- 152

tectures (Zhang and He, 2020), optimization al- 153

gorithms (You et al., 2020) and parallel architec- 154

tures (Shoeybi et al., 2019; Shazeer et al., 2018). 155

Until recently, researchers propose to “back dis- 156

till” the knowledge from existing PLMs to accel- 157

erate large PLMs’ pre-training (Qin et al., 2021). 158

Another line of work proposes progressive train- 159

ing to dynamically expand an existing PLM’s size 160

through parameter recycling (Gong et al., 2019; Gu 161

et al., 2021; Chen et al., 2021). However, these 162

methods typically focus on training PLMs on one 163

static corpus, and thus cannot be directly applied 164

to our lifelong pre-training setting. 165

3 Methodology 166

3.1 Preliminaries 167

Background for PLM. A PLM M generally 168

consists of an embedding layer and L Trans- 169

former (Vaswani et al., 2017) layers. Given an 170

input x consisting of a series of tokens, i.e., 171

x = {w1, . . . , w|x|}, M first converts the in- 172

put into embeddings {h0
1, . . . ,h

0
|x|}, which are se- 173

quentially processed by each Transformer layer 174

into contextualized hidden representations Hl = 175

{hl
1, . . . ,h

l
|x|}, where 1≤ l≤L. 176

Task Definition. Assume a stream of corpus DN 177

from N domains (e.g., news articles, web content 178

and literary works) is sequentially gathered, i.e., 179

DN = {D1, . . . ,DN}, where Di = {xj
i}

|Di|
j=1. The 180
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Figure 1: Illustration of ELLE when adapting an existing PLM Mi−1 trained on previous data Di−1 to a new
corpus Di. We also visualize the mechanism of width / depth expansion and pre-trained domain prompts.

whole training process can be partitioned into sev-181

eral stages. Initially, we have a PLM M1, which182

has been well trained on D1, and for the i-th stage183

(i > 1), we obtain a new collection of data Di.184

Assume in this stage, we only have limited compu-185

tational resources Ri, our goal is to continually pre-186

train the existing PLM Mi−1 to learn new knowl-187

edge on Di, and obtain a new PLM Mi. Mean-188

while, we expect the adapted PLM Mi should not189

forget the previously learned knowledge of Di−1.190

Overall Framework. As illustrated in Figure 1,191

starting from Mi−1, which is trained on previous192

data Di−1, we first expand Mi−1’s width and depth193

and construct an enlarged PLM MWD
i−1 to improve194

its training efficiency. Then we perform function195

recovering warmup and train MWD
i−1 to inherit the196

knowledge of Mi−1 to obtain MWD+
i−1 . The above197

procedures are dubbed as function preserved198

model expansion (§ 3.2). After that, we continu-199

ally pre-train MWD+
i−1 to gain new knowledge on Di.200

To mitigate the catastrophic forgetting on the pre-201

viously learned knowledge, we employ data-based202

memory replay on a subset of previously gath-203

ered data Dsub
i−1 = {Dsub

1 , . . . ,Dsub
i−1} conserved204

in the memory, where Dsub
k = {x1k, . . . , xBk } ∈ Dk205

(1 ≤ k ≤ i− 1) and B is the constrained memory206

size for each domain. To help PLMs disentangle207

the knowledge during pre-training and also stim-208

ulate the needed knowledge for each downstream209

task, we implant domain prompts into PLMs dur-210

ing the whole training process (§ 3.3).211

3.2 Function Preserved Model Expansion212

To accumulate knowledge more efficiently, each213

time when a new corpus Di comes, we expand214

both Mi−1’s width and depth to attain the superior215

sample efficiency and fast convergence brought by 216

larger model capacity (Li et al., 2020). 217

Width Expansion. For width expansion, we bor- 218

row the function preserving initialization (FPI) 219

from Chen et al. (2021). For a brief introduction, 220

FPI expands the matrices of all modules of a Trans- 221

former layer to arbitrary larger sizes and constructs 222

an enlarged PLM MW
i−1. MW

i−1 is initialized using 223

the corresponding matrices of the original Mi−1 224

through parameter replication. For example, as vi- 225

sualized in Figure 1, the core principle of FPI is to 226

divide the product of o×x1 into multiple partitions, 227

e.g. o
2 × x1 +

o
2 × x1. Formally, FPI expands a ma- 228

trix W ∈ Rh1×h2 of Mi−1 to an enlarged matrix 229

W ′ ∈ R(h1+∆h1
)×h2 of MW

i−1 as follows: 230

m(i) =

{
i i ∈ [1, h1]

U({1, . . . , h1}) i ∈ (h1, h1 +∆h1 ],

Ci =

h1+∆h1∑
i′=1

I(m(i′) = m(i)),

W ′
(i,∗) =

1

Ci
·W(m(i),∗) + I(Ci > 1) · δi,

(1) 231

where U(·) denotes a uniform sampling function, 232

m(·) denotes the mapping function between two 233

matrices, I(·) is an indicator function, Ci counts 234

how many partitions a specific neuron is splitted 235

and δi ∈ Rh2 is a random gaussian noise. FPI 236

ensures that both MW
i−1 and Mi−1 have approx- 237

imately the same functionality, i.e., both models 238

have almost the same output given the same input. 239

Besides function preservation, the initialized model 240

could serve as a good starting point for further op- 241

timization. We refer readers to Chen et al. (2021) 242

for more details about width expansion. Different 243

from Chen et al. (2021), we additionally introduce 244

random noises δi into the newly copied parameters 245
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of W ′ during initialization. These slight noises246

would break the symmetry after the replication and247

accelerate later pre-training.248

Depth Expansion. For depth expansion, previ-249

ous works generally resort to stacking all the origi-250

nal PLM layers into 2× layers through parameter251

replication (Gong et al., 2019). Such initialization252

is demonstrated to improve training efficiency.253

However, the above layer stacking method re-254

stricts the number of layers of the enlarged PLM255

MD
i−1 to be integer multiples of that of the original256

PLM Mi−1, which is not flexible for practical uses.257

To improve the expansion flexibility so that Mi−1258

could be expanded with arbitrary number of layers,259

we propose a novel layer insertion method to con-260

struct a new PLM MD
i−1 with L+L′ layers, where261

1 ≤ L′ ≤ L. Specifically, we randomly select L′262

layers from Mi−1, copy each layer’s parameters263

and insert the replication layer right before / after264

the original layer. We found empirically that in-265

serting the copied layer into other positions would266

cause a performance drop, and the reason is that267

it will violate the processing order of the original268

layer sequence and break the PLM’s original func-269

tionality. At each expansion stage when new data270

comes, since different layers have different func-271

tionalities, we always choose those layers that have272

not been copied before to help PLMs develop in273

an all-around way, instead of just developing a cer-274

tain kind of functionality. Since both width expan-275

sion and depth expansion are compatible with each276

other, we simultaneously expand both of them to277

construct an enlarged model MWD
i−1, which inherits278

Mi−1’s knowledge contained in the parameters.279

Function Recovering Warmup. Since the above280

model expansion cannot ensure exact function281

preservation and inevitably results in functional-282

ity loss and performance drops, we pre-train the283

initialized PLM MWD
i−1 on the previous corpora284

Dsub
i−1 conserved in the memory to recover the lan-285

guage abilities lost during model expansion, which286

is dubbed as function recovering warmup (FRW).287

After the warmup, we obtain MWD+
i−1 , which suc-288

cessfully inherits the knowledge from Mi−1 and289

is also well-prepared for the next training stage.290

3.3 Pre-trained Domain Prompt291

Instead of training a separate model for each do-292

main, we expect a single compact PLM to inte-293

grate the knowledge from all the sources. When294

confronted with a downstream task from a spe- 295

cific domain, the PLM needs to expose the proper 296

knowledge learned during pre-training. To facili- 297

tate both knowledge acquisition during pre-training 298

and knowledge exposure during fine-tuning, we re- 299

sort to prompts as domain indicators and condition 300

the PLM’s behavior on these prompts. 301

Specifically, during pre-training, to disentangle 302

the knowledge from different sources, we implant a 303

soft prompt token into the input to prime the PLM 304

which kind of knowledge it is learning. The prompt 305

of domain i is a tunable vector pi. We prepend 306

pi before the original token embeddings H0 = 307

{h0
1, . . . ,h

0
|x|} for an input x ∈ Di, resulting in the 308

modified input H0∗ = {pi;h
0
1, . . . ,h

0
|x|}, which is 309

then processed by all the Transformer layers. Each 310

pi is optimized together with other parameters of 311

the PLM during pre-training. During fine-tuning, 312

when applying the PLM on a similar domain of 313

data seen before, we could leverage the trained 314

domain prompt and prepend it before the input 315

of downstream data. In this way, we manually 316

manipulate the PLM to stimulate the most relevant 317

knowledge learned during pre-training. 318

4 Experiments 319

4.1 Experimental Setting 320

Data Streams. We simulate the scenario where 321

streaming data from 5 domains is gathered se- 322

quentially, i.e., the concatenation of WIKIPEDIA 323

and BOOKCORPUS (WB) (Zhu et al., 2015), 324

NEWS ARTICLES (NS) (Zellers et al., 2019), AMA- 325

ZON REVIEWS (REV) (He and McAuley, 2016), 326

BIOMEDICAL PAPERS (BIO) (Lo et al., 2020) and 327

COMPUTER SCIENCE PAPERS (CS) (Lo et al., 328

2020). For each corpus Di, we roughly sample 329

3, 400M tokens, and the quantity for each Di is 330

comparable to the pre-training data of BERT (De- 331

vlin et al., 2019). In addition, considering that in 332

practice, the expense of storage is far cheaper than 333

the computational resources for pre-training, we 334

maintain a relatively large memory compared with 335

conventional lifelong learning settings by randomly 336

sampling 200M tokens (Dsub
i ) for each corpus Di. 337

Evaluated Models. We mainly follow the model 338

architectures of BERT and GPT (Radford et al., 339

2018). We use byte-level BPE vocabulary (Rad- 340

ford et al., 2018) to ensure there are few un- 341

known tokens in each corpus. We experiment 342

with the initial PLM M1 of 6 layers and hid- 343
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Domain WB NS REV BIO CS
Metrics AP AP+ AP AP+ AP AP+ AP AP+ AP AP+

Growing from BERTL6_D384 to BERTL12_D768
Naive (Lower Bound) 7.96 - 8.03 5.54 13.52 21.42 13.86 17.67 9.93 9.81
EWC 7.96 - 8.09 5.65 13.40 20.98 13.92 17.75 9.94 9.82
MAS 7.96 - 8.08 5.65 13.44 21.17 13.87 17.67 9.91 9.75
A-GEM 7.96 - 8.82 6.72 13.31 20.06 14.73 18.89 10.56 10.58
ER 7.96 - 6.85 1.59 6.99 4.09 6.66 3.62 6.39 3.16
Logit-KD 7.96 - 7.60 0.99 7.19 1.95 7.08 2.02 6.92 1.92
PNN 7.96 - 6.52 0.00 5.29 0.00 4.84 0.00 4.76 0.00
ELLE (ours) 7.92 - 5.62 -0.20 4.81 0.64 4.41 0.64 4.06 0.44
Growing from BERTL12_D768 to BERTL24_D1024
ER 4.54 - 4.33 1.31 4.02 1.46 3.73 1.15 3.82 1.28
ELLE (ours) 4.52 - 3.89 0.47 3.61 0.75 3.66 0.97 3.29 0.54
Growing from GPTL6_D384 to GPTL12_D768
Naive (Lower Bound) 46.54 - 52.91 37.96 81.28 177.22 94.44 160.51 60.64 80.48
MAS 46.54 - 53.12 38.44 81.23 177.20 93.21 157.93 60.62 80.28
ER 46.54 - 44.49 12.42 35.46 21.78 33.24 23.38 31.94 19.83
Logit-KD 46.54 - 48.93 5.41 37.60 9.97 34.60 11.74 33.67 11.19
PNN 46.54 - 39.90 0.00 26.84 0.00 22.19 0.00 21.43 0.00
ELLE (ours) 46.50 - 36.84 2.25 25.60 4.38 22.29 5.88 20.49 4.31

Table 1: Average perplexity (AP) and average increased perplexity (AP+) of PLMs trained by different lifelong
learning methods with the same train wall time. PLMs are trained with streaming data from WB, NS, REV, BIO
and CS domain sequentially. We evaluate the performance each time when PLMs finish training on one domain.

den size of 384 (around 30M parameters, denoted344

as BERTL6_D384 / GPTL6_D384), and linearly en-345

large the PLM’s number of parameters for 4 times,346

to the final PLM M5 of 12 layers and hidden347

size of 768 (around 125M parameters, denoted as348

BERTL12_D768 / GPTL12_D768). We also experiment349

on a larger model size, i.e., growing the PLM from350

BERTL12_D768 (125M) to BERTL24_D1024 (355M).351

Details of each Mi’s architecture are listed in ap-352

pendix C. We also discuss the effect of expanded353

model size at each stage in appendix B1.354

Training Details. We train our model for 62, 500355

steps for the first corpus. For the following domain356

i (i > 1), after the model expansion, we perform357

function recovering warmup for 5, 000 steps, then358

train the resulting PLM for 20, 000 steps on the359

new data together with memory replay. Following360

Chaudhry et al. (2019b), we jointly train PLMs361

on a mixture samples from both Di and Dsub
i−1 in362

each batch, and the sampling ratio of Di and Dsub
i−1363

is set to 9 : 1 in every batch. Adam (Kingma364

and Ba, 2015) is chosen as the optimizer. All the365

experiments are conducted under the same environ-366

ment of 8 V100 GPUs with a batch size of 2, 048.367

More training details of pre-training are left in ap-368

1Being the first work towards efficient lifelong pre-training,
this paper experiments on an ideal setting that the corpus size
of each domain is the same, and the number of parameters is
grown linearly. We encourage future work to explore the effect
of the size of streaming data and optimal expanded model size.

pendix C. We also experiment with fewer computa- 369

tional budgets and memory budgets in appendix I. 370

Evaluation Metrics. We deem one algorithm to 371

be more efficient if it could achieve the same per- 372

formance with other methods utilizing fewer com- 373

putations. For PLM, this is equivalent to achieving 374

better performance using the same computations 375

since pre-training with more computations almost 376

always results in better performance (Clark et al., 377

2020). We evaluate the PLM’s performance during 378

both pre-training and downstream fine-tuning. 379

Specifically, for pre-training, we propose two 380

metrics to evaluate how PLMs perform on the 381

learned domains following Chaudhry et al. (2019a): 382

(1) average perplexity (AP) and (2) average in- 383

creased perplexity (AP+). We record the train wall 384

time (Li et al., 2020) during pre-training. For a 385

model checkpoint at time step T when learning 386

the j-th domain, we measure the checkpoint’s per- 387

plexity PPLT,i on the validation set of each domain 388

i. Let PPLf
i,i be the perplexity on the i-th domain 389

when the PLM finishes training on the i-th domain, 390

the above metrics are calculated as follows: 391

AP = exp
(1
j

j∑
i=1

log PPLT,i

)
,

AP+ =
1

j − 1

j−1∑
i=1

(PPLT,i − PPLf
i,i),

(2) 392

where AP measures the average performance on all 393

the seen data {D1, . . . ,Dj}. Lower AP indicates 394
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Figure 2: Average perplexity (AP) of different lifelong
learning methods with BERTL6_D384 as the initial PLM.
The trend curves for AP+ and other PLMs are left in
appendix E.

the PLM generally learns more knowledge from395

existing domains; AP+ measures the influence of396

current data Dj on previous data Dj−1. Lower AP+397

means PLMs forget less knowledge learned before.398

To evaluate PLMs’ performance in downstream399

tasks, for each domain, we select a representative400

task that is relatively stable, i.e., MNLI (Williams401

et al., 2018), HYPERPARTISAN (Kiesel et al.,402

2019), HELPFULLNESS (McAuley et al., 2015),403

CHEMPROT (Kringelum et al., 2016) and ACL-404

ARC (Jurgens et al., 2018) for WB, NS, REV,405

BIO and CS, respectively. Training details for fine-406

tuning are left in appendix D.407

Baselines. Keeping most of the experimental set-408

tings the same, we choose the following baselines409

for comparison: (1) Naive, which is a naive ex-410

tension of Gururangan et al. (2020) to continu-411

ally adapt PLMs for each domain and can be seen412

as the lower bound; (2) EWC (Schwarz et al.,413

2018), which adopts elastic weight consolidation414

to add L2 regularization on parameter changes; (3)415

MAS (Aljundi et al., 2018), which estimates pa-416

rameter importance via the gradients of the model417

outputs; (4) ER (Chaudhry et al., 2019b), which418

alleviates forgetting by jointly training models on a419

mixture samples from new data Di and the memory420

Dsub
i−1. ELLE is based on ER and additionally intro-421

duces the model expansion and pre-trained domain422

prompts. For ER, we set the sampling ratio of Di423

and Dsub
i−1 to be 9 : 1 in every batch same as ELLE;424

(5) A-GEM (Chaudhry et al., 2019a), which con-425

strains the new parameter gradients to make sure426

that optimization directions do not conflict with427

gradients on old domains; (6) Logit-KD, which428

Domain WB NS REV BIO CS AVG
Growing from BERTL6_D384 to BERTL12_D768
Naive 77.2 72.8 60.6 77.1 64.8 70.5
EWC 77.4 72.8 61.6 77.5 59.6 69.8
MAS 77.1 73.7 60.7 77.5 68.2 71.5
A-GEM 76.6 71.4 61.5 76.9 67.5 70.8
ER 77.6 72.2 61.9 78.3 63.5 70.7
Logit-KD 77.2 69.5 63.9 76.8 58.9 69.2
PNN 76.0 64.9 64.2 55.1 30.5 58.1
ELLE 83.2 81.8 68.5 82.9 72.7 77.8
Growing from BERTL12_D768 to BERTL24_D1024
ER 84.7 83.3 68.0 82.7 71.4 78.0
ELLE 86.3 90.4 70.5 84.2 73.8 81.0

Table 2: Final downstream performance (F1) of BERT
on each domain after finishing pre-training on all do-
mains. Experiments of NS domain are repeated for 10
times with different seeds and others are repeated for
5 times. More detailed results at different pre-training
stages are illustrated in appendix D.

prevents forgetting by distilling knowledge from 429

the previous model Mi−1 using the old data in the 430

memory; (7) PNN (Rusu et al., 2016), which fixes 431

the old PLM Mi−1 to completely avoid knowledge 432

forgetting and grows new branches for learning new 433

knowledge. For a fair comparison, we control the 434

total train wall time of ELLE and all the baselines 435

to be the same at each training stage, so that each 436

method consumes the same computational costs. 437

4.2 Main Results 438

Table 1 summarizes the pre-training performance 439

each time when the PLM finishes training on a spe- 440

cific domain. Figure 2 depicts the trend of AP for 441

BERT w.r.t. train wall time, other trend curves are 442

illustrated in appendix E. We also report the final 443

downstream performance for discriminative PLMs 444

(BERT) on each domain after finishing the whole 445

pre-training in Table 2. The intermediate down- 446

stream performance each time when the PLM fin- 447

ishes training on one domain is left in appendix D. 448

Superiority of ELLE. (1) From the results in Ta- 449

ble 1, we observe that, compared with all the base- 450

lines, ELLE achieves the lowest AP and satisfying 451

AP+ after finishing training on each domain. This 452

demonstrates that, given limited computational re- 453

sources, ELLE could acquire more knowledge and 454

in the meantime, mitigate the knowledge forgetting 455

problem. (2) We also observe from Figure 2 that 456

the AP of ELLE descends the fastest, showing the 457

superior training efficiency of ELLE over all base- 458

lines. (3) Besides, ELLE performs the best on all 459

downstream tasks, indicating that the knowledge 460
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Domain WB NS REV BIO CS
WE DE FRW δN PT AP AP+ AP AP+ AP AP+ AP AP+ AP AP+

7.96 - 6.85 1.59 6.99 4.09 6.66 3.62 6.39 3.16

! ! 7.96 - 6.23 0.78 5.34 1.42 4.98 1.20 4.48 0.89

! ! 7.96 - 5.81 0.03 5.49 1.43 5.16 1.32 4.79 0.94

! ! ! 7.96 - 5.78 0.02 4.91 0.76 4.49 0.73 4.13 0.52

! ! 7.96 - 5.79 0.09 5.09 1.13 4.58 0.88 4.22 0.65

! ! ! ! 7.96 - 5.69 −0.13 4.85 0.67 4.45 0.69 4.09 0.47

! ! ! ! ! 7.92 - 5.62 -0.20 4.81 0.64 4.41 0.64 4.06 0.44

Table 3: AP and AP+ of different combinations of strategies when growing BERTL6_D384 to BERTL12_D768.

learned during pre-training could be properly stim-461

ulated and leveraged for each downstream task. (4)462

The superiority of ELLE is consistently observed463

on the larger model size, i.e., BERTL24_D1024 and464

other model architectures, i.e., GPTL12_D768. This465

shows that ELLE is agnostic to both the model size466

and the specific PLM model architecture chosen.467

We expect future work to apply ELLE on other468

PLM architectures and extremely large PLMs.469

Comparisons with Baselines. (1) First of all,470

consolidation-based methods (EWC and MAS) per-471

form almost comparable with the naive baseline472

in either pre-training or downstream tasks. This473

means that parameter regularization may not be474

beneficial for PLMs’ knowledge acquisition. (2)475

Among memory-based methods, gradient-based476

reaply (A-GEM) exhibits poorer performance in477

pre-training, on the contrary, data-based replay (ER478

and Logit-KD) achieve lower AP and AP+ than479

the naive baseline, demonstrating that replaying480

real data points could more efficiently mitigate the481

knowledge forgetting problem. Meanwhile, all of482

the memory-based methods perform comparable483

or worse than the naive baseline in downstream484

performance. (3) Although PNN achieves signifi-485

cantly lower AP than other baselines, and is also486

immune to knowledge forgetting (AP+=0), it per-487

forms extremely poorly on downstream tasks. This488

indicates that although PNN acquires much knowl-489

edge during pre-training, such knowledge is not490

stimulated and leveraged during fine-tuning.491

5 Analysis492

In this section, we conduct analyses to investi-493

gate the effect of ELLE’s components. We fol-494

low the setting in § 4 by choosing BERTL6_D384495

as the initial model and continually growing it to496

BERTL12_D768. Specifically, we investigate the ef-497

fect of (1) width expansion (WE), (2) depth expan-498

sion (DE), (3) function recovering warmup (FRW),499

(4) the random noises added into the newly con- 500

structed parameters during model expansion (δN ) 501

and (5) the pre-trained domain prompts (PT). We 502

test ELLE under different combinations of the 503

above components and compare the results. The ex- 504

perimental results of pre-training and downstream 505

tasks are summarized in Table 3 and Table 4, re- 506

spectively. Detailed trend curves for AP and AP+ 507

are illustrated in appendix E. We also show in ap- 508

pendix A that the expanded PLM by ELLE exhibits 509

similar functionality to the original PLM. 510

Effect of Width / Depth Expansion. First, 511

we compare the differences of conducting only 512

width expansion (WE+FRW), only depth expan- 513

sion (DE+FRW) and expansion on both width and 514

depth (WE+DE+FRW) before function preserving 515

warmup. For a fair comparison, we keep the to- 516

tal number of Mi’s increased parameters for the 517

above three strategies almost the same at each stage 518

i. The specific model architectures are listed in ap- 519

pendix H. The results show that: (1) compared 520

with the non-expanding baseline, all these three 521

strategies achieve better pre-training and down- 522

stream performance, showing that with the growth 523

of model size, the sample efficiency and train- 524

ing efficiency are extensively increased. There- 525

fore, PLMs could gain more knowledge with lim- 526

ited computational resources and perform better in 527

downstream tasks; (2) compared with expanding 528

only width or depth, expanding both of them is 529

more efficient and can also achieve better down- 530

stream performance on almost all domains, except 531

the NS domain. This is also aligned with previ- 532

ous findings that PLM’s growth favors compound 533

scaling (Gu et al., 2021). We also conclude from 534

the trend curves in appendix E that only expanding 535

depth will make the training process unstable. 536

Effect of Function Recovering Warmup. We 537

compare the performance of the model expansion 538
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WE DE FRW δN PT WB NS REV BIO CS AVG
77.6 72.2 61.9 78.3 63.5 70.7

! ! 81.9 77.5 64.9 80.3 70.7 75.1

! ! 82.4 79.9 66.2 80.4 71.0 75.9

! ! ! 83.4 74.7 67.4 82.4 72.2 76.0

! ! 82.6 75.7 67.4 82.3 71.4 75.9

! ! ! ! 83.5 77.1 66.9 83.3 71.3 76.4

! ! ! ! ! 83.2 81.8 68.5 82.9 72.7 77.8

Table 4: BERTL12_D768’s downstream performance (F1)
on each domain after being continually pre-trained on
all domains with different combinations of strategies.

w/ and w/o FRW, i.e., WE+DE and WE+DE+FRW.539

For a fair comparison, we keep the total train wall540

time for either strategy the same, in other words, for541

WE+DE, PLMs can be trained for more steps on542

the new domain due to the removal of FRW. How-543

ever, the results show that WE+DE achieves worse544

AP and AP+, indicating that without FRW, PLM545

would learn new knowledge slower and also for-546

get more previous knowledge. The trend curve in547

appendix E also shows that AP and AP+ decrease548

faster with FRW. This demonstrates the necessity549

of the warmup after model expansion, i.e., PLMs550

could better recover the knowledge lost during551

model expansion and also get prepared for learning552

new knowledge. Meanwhile, WE+DE+FRW per-553

forms slightly better than WE+DE in most of the554

downstream tasks, except the NS domain.555

Effect of Random Noises. Different from the556

original FPI (Chen et al., 2021), ELLE addition-557

ally adds random noises into the newly copied pa-558

rameters after expanding the width of PLMs as559

mentioned in § 3.2. By comparing the model per-560

formance w/ and w/o this trick, i.e., WE+DE+FRW561

and WE+DE+FRW+δN , we can see that the added562

noises significantly speed up pre-training and also563

conduce to improving PLM’s overall downstream564

performance. This validates our hypothesis that565

random noises are useful for breaking the symme-566

try of the copied parameters, thus providing a better567

initialization that further optimization favors.568

Effect of Pre-trained Domain Prompts. To569

investigate the effect of pre-trained domain570

prompts, we first compare the performance w/571

and w/o them, i.e., WE+DE+FRW+δN and572

WE+DE+FRW+δN+PT. From the results we can573

conclude that when aided with domain prompts,574

PLMs achieve lower AP and AP+ during pre-575

training, showing that domain prompts could accel-576

Domain WB NS REV BIO CS AVG
ELLE − PTfine-tune 82.9 79.9 67.0 82.1 67.7 75.9

ELLE + ¬PTfine-tune 83.1 80.6 68.1 81.7 70.8 76.9
ELLE 83.2 81.8 68.5 82.9 72.7 77.8

Table 5: BERTL12_D768’s downstream performance (F1)
on each domain when no prompt / a wrong prompt is
prepended in the input.

erate pre-training and alleviate catastrophic forget- 577

ting by disentangling the knowledge from different 578

sources. Furthermore, domain prompts generally 579

improve downstream performance by stimulating 580

the proper knowledge needed for each task. 581

To rigorously investigate how domain prompts 582

stimulate the knowledge during fine-tuning, for 583

a PLM pre-implanted with prompts during pre- 584

training, we test its downstream performance when 585

(1) no prompt is prepended in the input (i.e., ELLE- 586

PTfine-tune) during fine-tuning and (2) a prompt 587

from a random wrong domain is prepended in the 588

input (i.e., ELLE + ¬PTfine-tune). The results in Ta- 589

ble 5 show that both of the above strategies have 590

lower downstream performance than prepending 591

the right prompt (ELLE). We hypothesize the rea- 592

sons are two-fold: (1) firstly, for ELLE- PTfine-tune, 593

there exists a great gap between the formats of in- 594

put during pre-training and fine-tuning, and such a 595

gap would hinder the successful knowledge trans- 596

fer; (2) secondly, for ELLE + ¬PTfine-tune, although 597

the above gap disappears, the PLM is primed with 598

a wrong domain prompt, and thus cannot properly 599

stimulate the knowledge that is most relevant to 600

the downstream task. Although manually decid- 601

ing the most relevant domain prompt for a specific 602

downstream task is relatively easy and fast, such a 603

process can also be automated by training a domain 604

discriminator, which is left as future work. 605

6 Conclusion 606

In this paper, we present the efficient lifelong pre- 607

training problem, which requires PLMs to continu- 608

ally integrate the information from emerging data 609

efficiently. To achieve our goal, we propose ELLE 610

and progressively expand PLMs to acquire knowl- 611

edge efficiently and mitigate the knowledge forget- 612

ting. We also pre-implant domain prompts during 613

pre-training and use them to stimulate the needed 614

knowledge for downstream tasks. The experimen- 615

tal results show the superiority of ELLE over vari- 616

ous lifelong learning baselines in both pre-training 617

efficiency and downstream performances. 618
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Appendices922

A Attention Pattern Visualization of a923

Stream of PLMs924

Through the function preserved model expansion,925

PLMs inherit the knowledge of their “ancestors”926

contained in the parameters. Intuitively, the de-927

scendant PLM (the expanded larger PLM) should928

have similar functionalities to the ancestor PLM929

(the original PLM before model expansion). In this930

section, we investigate such functionality similar-931

ity through the lens of attention patterns of each932

attention head in the Transformer layer.933

Specifically, we visualize the attention pat-934

terns of a stream of PLMs ({M1, . . . ,M5})935

trained by ELLE when growing BERTL6_D384 to936

BERTL12_D768. We checkpoint each PLM Mi937

when it finishes training on the emerging data Di.938

We input the same data into these checkpoints to939

derive the attention patterns.940

The results are illustrated in Figure 3, from941

which we observe that the attention patterns of a942

head in a descendant PLM are surprisingly similar943

to those of its “ancestors”, even if the descendant944

PLM is further trained on the new data and enlarged945

many times. This indicates that the expanded PLM946

by ELLE successfully inherits the knowledge from947

its “ancestor”, and thus exhibits similar functional-948

ity to some extent.949

B Additional Analysis on Function950

Preserved Model Expansion951

In addition to the analyses of function preserved952

model expansion conducted in our main paper, in953

this section, we further analyze the effect of (1)954

the expanded model size at each training stage955

and (2) the choice of copied layer during depth956

expansion. We experiment on the combination of957

WE+DE+FRW as mentioned in § 5 and choose958

BERTL6_D384 as the initial PLM M1. Other set-959

tings are kept the same as § 5.960

Effect of Expanded Model Size. In our main961

experiments, we assume that the data size of each962

emerging corpus is the same and linearly enlarge963

the model size when conducting model expansion.964

In this section, we explore the effect of expanded965

model size given limited computational resources.966

We conduct experiments on a stream of data from 3967

domains, i.e., WB, NS and REV domain. We start968

from the initial PLM BERTL6_D384 and continually969

adapt it to new corpora. Under the same training970

environment, we control the computational costs 971

(train wall time) of each domain to be 7200 seconds. 972

We compare the performances when the PLM ex- 973

pands 0, 2, 4, and 6 layers and heads for each do- 974

main, respectively. Note the PLMs expanded with 975

a larger size would be trained with fewer steps to 976

control the train wall time. 977

The results are shown in Table 6, from which 978

we can conclude that the best performance is ob- 979

tained when the model expands 2 layers and heads 980

at each expansion stage, and expanding more or 981

fewer parameters leads to a performance drop. The 982

reasons are two-fold: (1) firstly, as mentioned be- 983

fore, expanding the model size improves the sam- 984

ple efficiency (Kaplan et al., 2020; Li et al., 2020), 985

which is beneficial for PLMs’ knowledge acquisi- 986

tion; (2) secondly, when increasing the expanded 987

model size, the benefits from inheriting the knowl- 988

edge of a small PLM would become less and less 989

evident. To sum up, expanding with an interme- 990

diate size strikes the best trade-off between the 991

above two reasons, and there may exist an optimal 992

expanded size when performing model expansion. 993

Intuitively, the optimal expanded model size may 994

be influenced by many factors, e.g., the computa- 995

tional budgets, the amount of emerging data, the 996

PLM’s model architecture, etc. And systematically 997

analyzing the effects of all these factors is beyond 998

the scope of this paper, thus we expect future works 999

to design algorithms to accurately estimate the op- 1000

timal expanded size for model expansion. 1001

Choice of Copied Layer. As mentioned in § 3.2, 1002

each time when we conduct width expansion, we 1003

choose those layers that have not been copied be- 1004

fore. To demonstrate the benefit of this trick, we 1005

compare three expansion strategies: (1) always 1006

replicating those layers that have not been copied 1007

before (WE+DE+FRW); (2) always replicating the 1008

first layer (WE+DEfirst+FRW) and (3) always repli- 1009

cating the last layer (WE+DElast+FRW). 1010

The results in Figure 4 show that AP and AP+ 1011

descend the fastest when we always replicate 1012

those layers that have not been copied before (i.e., 1013

WE+DE+FRW). This demonstrates that, since dif- 1014

ferent layers have different functionalities, choos- 1015

ing those layers that have not been expanded be- 1016

fore would help PLMs develop in an all-around 1017

way, instead of just developing a certain kind of 1018

functionality. Furthermore, we find empirically 1019

that when pre-training PLMs continually on mul- 1020

tiple domains, if we always choose those layers 1021
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Figure 3: The visualization of the attention patterns of different attention heads in M1 (BERTL6_D384), M2

(BERTL8_D512), M3 (BERTL10_D640), M4 (BERTL11_D708) and M5 (BERTL12_D768) after finishing training on the
new corpus Di. Note that in this figure, all the attention heads of a PLM Mi are expanded from all its ancestors
{M1, . . . ,Mi−1} in the same column. We observe similar attention patterns between the descendant PLM and the
ancestor PLM, demonstrating the descendant PLM successfully preserves the functionality of its ancestors.

Domain WB NEWS REVIEW

Metrics AP AP+ AP AP+ AP AP+

Expand 0 layers and heads per domain 13.09 - 8.99 −0.49 8.24 2.80
Expand 2 layers and heads per domain 13.09 - 8.28 -1.44 7.25 1.11
Expand 4 layers and heads per domain 13.09 - 8.62 −0.95 7.53 1.30
Expand 6 layers and heads per domain 13.09 - 9.08 −0.24 7.92 1.49

Table 6: AP and AP+ of PLMs trained with ELLE that expands 0, 2, 4 and 6 layers and heads during model
expansion, respectively. AP and AP+ are evaluated when each PLM finishes training on each domain.

that have not been expanded before at each depth1022

expansion stage, then the final performance is not1023

sensitive to choosing which layers to expand first.1024

C Pre-training Hyper-parameters1025

In Table 7, we list the architectures and the hyper-1026

parameters for the PLMs we pre-trained with1027

ELLE in this paper, including the total number1028

of trainable parameters (nparams), the number of1029

layers (nlayers), the number of units in each bottle-1030

neck layer (dmodel), the number of attention heads1031

(nheads), the inner hidden size of FFN layer (dFFN),1032

the learning rate (lr), the training steps of FRW1033

(SF), the training steps of adaptation after FRW1034

(STF) when learning the new corpus, the ratio of1035

learning rate warmup (RW), and the total train wall1036

time (TWT). We set the dropout rate for each model1037

to 0.1, weight decay to 0.01 and use linear learning1038

rate decay for BERT and inverse square root decay 1039

for GPT. We adopt Adam (Kingma and Ba, 2015) 1040

as the optimizer. The hyper-parameters for the opti- 1041

mizer is set to 1× 10−6, 0.9, 0.98 for ϵ, β1, β2, re- 1042

spectively. We reset the optimizer and the learning 1043

rate scheduler each time when the PLM finishes 1044

FRW or the training on new corpus. All experi- 1045

ments are conducted under the same computation 1046

environment with 8 NVIDIA 32GB V100 GPUs. 1047

All the pre-training implementations are based on 1048

fairseq2 (Ott et al., 2019) (MIT-license). 1049

D Implementation Details and Additional 1050

Experiments for Downstream 1051

Fine-tuning 1052

Implementation Details. Table 8 describes the 1053

hyper-parameters for fine-tuning PLMs on down- 1054

2https://github.com/pytorch/fairseq
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Figure 4: AP and AP+ of PLMs trained by ELLE using different depth expansion strategies: WE+DE+FRW,
WE+DEfirst+FRW and WE+DElast+FRW w.r.t train wall time.

Model nparams nlayers dmodel nheads dFFN lr SF STF RW TWT(s)
Growing from BERTL6_D384 to BERTL12_D768

M1 30.3M 6 384 6 1536 5.0× 10−4 - 62.5k 8% 6.0× 104

M2 51.5M 8 512 8 2048 5.0× 10−4 5k 20k 8% 2.4× 104

M3 82.2M 10 640 10 2560 5.0× 10−4 5k 20k 8% 5.0× 104

M4 102M 11 704 11 2816 5.0× 10−4 5k 20k 8% 5.8× 104

M5 125M 12 768 12 3072 5.0× 10−4 5k 20k 8% 6.8× 104

Growing from BERTL12_D768 to BERTL24_D1024

M1 125M 12 768 12 3072 5.0× 10−4 - 62.5k 8% 1.9× 105

M2 216M 15 960 15 3840 2.5× 10−4 1k 20k 20% 6.5× 104

M3 280M 18 1024 16 4096 2.5× 10−4 1k 20k 20% 1.4× 105

M4 318M 21 1024 16 4096 2.5× 10−4 1k 20k 20% 1.7× 105

M5 355M 24 1024 16 4096 2.5× 10−4 1k 20k 20% 2.2× 105

Growing from GPTL6_D384 to GPTL12_D768

M1 29.9M 6 384 6 1536 5.0× 10−4 - 62.5k 16% 6.7× 104

M2 51.0M 8 512 8 2048 5.0× 10−4 5k 20k 16% 3.9× 104

M3 81.4M 10 640 10 2560 5.0× 10−4 5k 20k 16% 5.6× 104

M4 101M 11 704 11 2816 5.0× 10−4 5k 20k 16% 6.8× 104

M5 124M 12 768 12 3072 5.0× 10−4 5k 20k 16% 7.8× 104

Table 7: Model architectures, learning rate (lr), steps of FRW (SF), steps of training after FRW (STF), the ratio of
steps for learning rate warmup (for both FRW and pre-training) (RW), and train wall time (TWT) for all the models
pre-trained with ELLE in this paper. We list the details when growing BERTL6_D384 to BERTL12_D768, BERTL12_D768
to BERTL24_D1024 and GPTL6_D384 to GPTL12_D768, respectively. The total train wall time consumed by the above
three settings is 2.57× 105 seconds, 7.79× 105 seconds, and 3.08× 105 seconds, respectively.

stream tasks of each domain. The implementa-1055

tions of MNLI are based on fairseq3 (Ott et al.,1056

2019) (MIT-license). The implementations of HY-1057

PERPARTISAN, HELPFULNESS CHEMPROT, and1058

ACL-ARC are based on (Gururangan et al., 2020)4.1059

Additional Experiments. Figure 5 visualizes the1060

average F1 on all downstream tasks of seen do-1061

mains {1, . . . , i} of PLMs trained with MAS, ER,1062

Logit-KD, PNN and ELLE after finishing training1063

on each domain i when we choose BERTL6_D3841064

as the initial PLM M1. The average F1 when fin-1065

3https://github.com/pytorch/fairseq
4https://github.com/allenai/

dont-stop-pretraining

ishing training on the i-th domain is calculated as 1066

follows: 1067

F1iavg =
1

i

i∑
j=1

F1j (3) 1068

where F1j is the F1 score on the downstream task 1069

of the j-th domain. In addition to the overall perfor- 1070

mance in Figure 5, we also list the detailed results 1071

for each task in Table 9, covering all PLMs trained 1072

by each lifelong learning method. 1073

The results in both Figure 5 and Table 9 show 1074

that ELLE outperforms all the lifelong learning 1075

baselines after finishing training on each domain, 1076

demonstrating that ELLE could properly stimu- 1077

late the learned knowledge during pre-training and 1078
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HyperParam MNLI HYPERPARTISAN HELPFULNESS CHEMPROT ACL-ARC

Learning Rate 1× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5

Batch Size 32 256 256 256 256
Weight Decay 0.1 0.1 0.1 0.1 0.1
Max Epochs 10 10 10 10 10
Learning Rate Decay Linear Linear Linear Linear Linear
Warmup Ratio 0.06 0.06 0.06 0.06 0.06

Table 8: Hyper-parameters for fine-tuning on downstream tasks of each domain. As mentioned in the main
paper, for each domain, we select a representative task that is relatively stable, i.e., MNLI (Williams et al., 2018),
HYPERPARTISAN (Kiesel et al., 2019), HELPFULLNESS (McAuley et al., 2015), CHEMPROT (Kringelum et al.,
2016) and ACL-ARC (Jurgens et al., 2018) for WB, NS, REV, BIO and CS, respectively.

boost the performance in downstream tasks.1079

E Trend Curves for AP and AP+
1080

For the experiments in § 4, the trend curves1081

of average perplexity (AP) and average in-1082

creased perplexity (AP+) w.r.t train wall time are1083

shown in Figure 7 (growing from BERTL6_D3841084

to BERTL12_D768), Figure 8 (growing from1085

BERTL12_D768 to BERTL24_D1024), and Figure 91086

(growing from GPTL6_D384 to GPTL12_D768). Each1087

figure illustrates the performance of different life-1088

long learning methods. The above results reflect1089

that, compared with all the baselines, AP and AP+1090

of ELLE descend with the fastest speed, demon-1091

strating that ELLE could acquire knowledge and1092

mitigate the knowledge forgetting on previous do-1093

mains more efficiently. Thus given limited compu-1094

tational resources, PLMs trained by ELLE could1095

integrate more information from different domains.1096

For the analysis in § 5, we visualize the trend1097

curves of AP and AP+ when choosing different1098

combinations of strategies. Specifically, we inves-1099

tigate (1) the effect of width / depth expansion in1100

Figure 10 (comparing WE+FRW, DE+FRW and1101

WE+DE+FRW); (2) the effect of function recover-1102

ing warmup in Figure 11 (comparing WE+DE and1103

WE+DE+FRW); (3) the effect of random noises1104

added into the newly initialized parameters dur-1105

ing model expansion in Figure 11 (comparing1106

WE+DE+FRW and WE+DE+FRW+δN ) and (4)1107

the effect of pre-trained domain prompts in Fig-1108

ure 12 (comparing ELLE and ELLE-PT). All of1109

the above results again demonstrate the effective-1110

ness of ELLE’s each component.1111

F Comparison between ELLE and Jin1112

et al. (2021)1113

Since for PLMs, pre-training with more com-1114

putations almost always results in better perfor-1115
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Figure 5: Average F1 on downstream tasks of seen
domains of different lifelong learning methods. For
example, when the PLM finishes training on the i-th
domain, the average performance of downstream tasks
from domain {1, · · · , i} are reported. The initial PLM
is chosen as BERTL6_D384. The score is evaluated after
each model finishes training on each domain.

mance (Clark et al., 2020; Li et al., 2020; Kaplan 1116

et al., 2020), a simple yet effective method to inte- 1117

grate the information from all domains is to con- 1118

tinually pre-train existing PLMs on all the existing 1119

data exhaustively. In this regard, the most impor- 1120

tant consideration for lifelong pre-training should 1121

be the training efficiency. Therefore, when compar- 1122

ing different lifelong learning methods, it is impor- 1123

tant to equalize the computational costs consumed 1124

by each method. Conforming to this rule, we con- 1125

trol the computational costs (estimated by train wall 1126

time (Li et al., 2020)) for all the methods in our 1127

experiments the same, and find that ELLE tends to 1128

be the most training efficient and could help PLMs 1129

acquire more knowledge. 1130

Different from our setting, a concurrent 1131

work (Jin et al., 2021) conducts sufficient empiri- 1132

cal studies on conventional lifelong learning algo- 1133

rithms for incrementally adapting PLMs to emerg- 1134

ing data, including (1) adapter-based methods, (2) 1135

memory replay approaches and (3) distillation- 1136

based methods. They find distillation-based meth- 1137

ods tend to perform the best. When comparing 1138

these methods, they control the total training steps 1139
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Domain WB NS REV BIO CS AVG
MAS
M1 77.11 77.11
M2 78.13 76.75 77.44
M3 76.60 73.79 64.04 71.48
M4 76.09 71.90 61.83 80.62 72.61
M5 77.14 73.70 60.69 77.53 68.23 71.46
ER
M1 77.11 77.11
M2 78.40 79.13 78.77
M3 78.18 78.04 63.98 73.40
M4 77.47 72.40 62.19 80.44 73.13
M5 77.57 72.15 61.92 78.25 63.49 70.68
PNN
M1 76.04 76.04
M2 76.04 64.91 70.48
M3 76.04 64.91 64.20 68.38
M4 76.04 64.91 64.20 55.13 65.07
M5 76.04 64.91 64.20 55.13 30.45 58.15
Logit-KD
M1 77.11 77.11
M2 76.33 69.77 73.05
M3 76.63 71.32 64.97 70.97
M4 76.84 69.12 64.30 76.96 71.81
M5 77.21 69.48 63.86 76.82 58.87 69.25
ELLE
M1 77.12 77.12
M2 79.67 78.48 79.08
M3 81.99 86.75 69.32 79.35
M4 82.55 81.18 69.19 83.27 79.05
M5 83.17 81.83 68.47 82.87 72.69 77.81

Table 9: Specific F1 scores on downstream tasks from
each domain. We evaluate PLMs trained with different
lifelong learning methods that choose BERTŁ6_D384 as
the initial model M1. For example, when the PLM
finishes training on the i-th domain, the specific perfor-
mances of downstream tasks from domain {1, · · · , i}
are reported.

to be the same. However, reporting training steps1140

does not account for the the computations con-1141

sumed by (1) the newly introduced model param-1142

eters in adapters and (2) the teacher model’s for-1143

ward during knowledge distillation. The above1144

reasons would make the consumed FLOPs or train1145

wall time of the evaluated methods different5. As1146

mentioned before, in our experiments, by control-1147

ling the train wall time to be the same, we find1148

distillation-based methods (Logit-KD) tend to per-1149

form worse than the memory replay algorithms1150

(ER) in AP and downstream performances, which1151

is different from Jin et al. (2021)’s conclusion.1152

Besides, our work mainly focuses on the domain-1153

incremental data stream for PLM adaptation. Dif-1154

ferent from our work, Jin et al. (2021) also ex-1155

periment on the PLM lifelong adaptation towards1156

5We refer to Li et al. (2020) for the comparison among
training steps, FLOPs and train wall time.
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Figure 6: Average representational similarity (ARS) of
a stream of PLMs comparing different lifelong learning
algorithms. We choose BERTL6_D384 as the initial PLM
M1.

chronologically-ordered tweet stream and discuss 1157

the data distribution shift. In general, we believe 1158

lifelong learning for PLMs is an interesting topic 1159

to explore and hope both Jin et al. (2021) and our 1160

work could inspire more future research attempts 1161

towards this field. 1162

G Representational Similarity of a 1163

Stream of PLMs 1164

We investigate the representational similarity (Ab- 1165

nar et al., 2019) of a descendant PLM and its an- 1166

cestors. Representational similarity measures how 1167

similar two PLMs represent the data. Specifically, 1168

we experiment on a stream of PLMs when grow- 1169

ing BERTL6_D384 to BERTL12_D768. For a model 1170

Mj and its ancestor Mi (1 ≤ i ≤ j − 1), we 1171

randomly sample n [MASK] tokens from the raw 1172

corpus Dj , and get the probability distributions 1173

pi
k and pj

k output by the LM head of Mi and 1174

Mj , respectively for each [MASK] token k, where 1175

1 ≤ k ≤ n. We calculate the average represen- 1176

tational similarity (ARS) between Mj and all its 1177

ancestors {M1, · · · ,Mj−1} as follows: 1178

ARSj =
−1

(j − 1)× n

j−1∑
i=1

n∑
k=1

KL(pi
k,p

j
k), (4) 1179

where KL denotes the Kullback-Leibler divergence 1180

between two probability distributions. Higher 1181

ARSj means the representations of Mj and its 1182

ancestors are more similar. To some extent, ARSj 1183

could reflect how much knowledge / functionality 1184

of the ancestors is preserved by Mj . 1185

We compare ARS of PLMs trained by Naive, 1186

MAS, ER, Logit-KD and ELLE and illustrate the 1187

results in Figure 6, from which we observe that 1188

Logit-KD has the highest ARS. This is because 1189

the training objective of knowledge distillation in 1190
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Domain WB NS REV BIO CS
Metrics AP AP+ AP AP+ AP AP+ AP AP+ AP AP+

Half train wall time
MAS 7.96 - 8.50 6.22 12.85 18.88 13.99 17.52 10.31 10.22
ER 7.96 - 7.12 1.98 7.11 4.14 6.83 3.77 6.53 3.78
Logit-KD 7.96 - 7.72 1.12 7.27 1.94 7.17 2.08 7.06 1.99
PNN 7.96 - 6.75 0.00 5.53 0.00 5.09 0.00 5.03 0.00
ELLE (ours) 7.92 - 6.05 0.26 5.21 1.04 4.83 0.96 4.42 0.68
Smaller memory
MAS 7.96 - 8.08 5.65 13.44 21.17 13.87 17.67 9.91 9.75
ER 7.96 - 6.99 2.09 7.15 4.53 6.86 4.09 6.49 3.42
Logit-KD 7.96 - 7.68 1.15 7.24 2.06 7.21 2.27 7.05 2.16
PNN 7.96 - 6.52 0.00 5.29 0.00 4.84 0.00 4.76 0.00
ELLE (ours) 7.92 - 5.85 0.39 5.04 1.13 4.58 0.98 4.20 0.70
Full train wall time & memory (the main results in § 4)
ELLE (ours) 7.92 - 5.62 −0.20 4.81 0.64 4.41 0.64 4.06 0.44

Table 10: Average perplexity (AP) and average increased perplexity (AP+) of PLMs trained by different lifelong
learning methods with half train wall time on Ns, Rev, Bio, CS domains and smaller memory containing 34M tokens
for each domain. We evaluate the performance each time when PLMs finish training on one domain.

Domain WB NS REV BIO CS AVG
Half train wall time
MAS 76.7 72.3 61.6 77.4 64.3 70.5
ER 78.0 71.0 61.1 77.4 65.8 70.7
Logit-KD 77.0 72.6 63.8 76.2 58.4 69.6
PNN 76.0 55.9 62.6 53.1 28.0 55.1
ELLE 82.0 78.4 68.7 81.7 74.0 77.0
Smaller memory
MAS 77.1 73.7 60.7 77.5 68.2 71.5
ER 77.9 72.0 61.5 76.3 63.6 70.3
Logit-KD 77.0 73.1 63.3 75.9 57.4 69.3
PNN 76.0 64.9 64.2 55.1 30.5 58.1
ELLE 82.9 80.5 68.9 82.6 74.2 77.8
Full train wall time & memory (the main results in § 4)
ELLE 83.2 81.8 68.5 82.9 72.7 77.8

Table 11: Final downstream performance (F1) of BERT
on each domain after finishing pre-training on all do-
mains with half train wall time on Ns, Rev, Bio, CS
domains and smaller memory containing 34M tokens
for each domain. Experiments of NS domain are re-
peated for 10 times with different seeds and others are
repeated for 5 times.

Logit-KD is highly correlated with ARS. In addi-1191

tion, ELLE takes second place. We also find that,1192

with PLMs continually absorbing new knowledge,1193

the ASR generally decreases.1194

H Model Architectures for the Analysis of1195

Model Expansion1196

In Table 12, we list the model architectures of all1197

the investigated PLMs when conducting analysis1198

of model expansion in § 5. Specifically, three1199

strategies are investigated, including WE+FRW,1200

DE+FRW and WE+DE+FRW. As mentioned in1201

our main paper, for a fair comparison, we keep the1202

total number of Mi’s increased parameters for the1203

above three strategies almost the same at each stage 1204

i. 1205

I Performance of ELLE with Fewer 1206

Computational Budgets and Storage 1207

Budgets 1208

To investigate the performance of ELLE under lim- 1209

ited (1) computational budgets and (2) storage bud- 1210

gets, in this section, we take an initial step to in- 1211

vestigate the effect of (1) training resources (train 1212

wall time) and (2) memory size for ELLE. Follow- 1213

ing the experimental setting in § 4, we continually 1214

grow BERTL6_D384 to BERTL12_D768 on a stream 1215

of data from 5 domains. We test the performance 1216

of ELLE and a series of lifelong learning baselines 1217

(MAS, ER, Logit-KD and PNN), by (1) reducing 1218

the train wall time by half (for NS, REV, BIO and 1219

CS domain) and (2) randomly sample only 34M 1220

tokens (1% of the full corpus) as the memory Dsub
i 1221

for each corpus i, compared with the memory size 1222

200M in § 4. 1223

The experimental results for the above two set- 1224

tings are listed in Table 10 (pre-training) and Ta- 1225

ble 11 (fine-tuning), respectively. We also illus- 1226

trate the trend curves of AP and AP+ in Figure 13 1227

and Figure 14. From the above results, we find 1228

that: (1) when given fewer computational budgets 1229

and storage budgets, ELLE still outperforms all 1230

the lifelong learning baselines in both pre-training 1231

and downstream performance, which demonstrates 1232

the superiority of ELLE; (2) for ELLE, when 1233

PLMs are trained with fewer computational bud- 1234

gets, we observe significant performance drops 1235

in both pre-training (higher AP and AP+) and 1236

17



downstream tasks (lower average F1). This shows1237

that pre-training with fewer computations would1238

harm PLMs’ knowledge acquisition; (3) for ELLE,1239

when there are fewer memory budgets, although1240

we also observe slight performance drops in pre-1241

training (higher AP and AP+), the performance1242

in downstream tasks is generally not influenced,1243

with the average F1 score keeping almost the same1244

(77.8). This shows the data-efficiency of PLMs,1245

i.e., PLMs could easily recall the learned knowl-1246

edge by reviewing small-scale data conserved in1247

the memory (as few as 1%). As mentioned before,1248

considering that for pre-training, the expense of1249

storage (e.g., hard disks) is far cheaper than the1250

computational resources (e.g., GPUs), the storage1251

space problem for memory seldom needs to be con-1252

sidered.1253
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Model nparams nlayers dmodel nheads dFFN lr
WE + FRW
M1 30.3M 6 384 6 1536 5.0× 10−4

M2 53.6M 6 576 9 2304 5.0× 10−4

M3 82.2M 6 768 12 3072 5.0× 10−4

M4 104M 6 896 14 3584 5.0× 10−4

M5 129M 6 1024 16 4096 5.0× 10−4

DE + FRW
M1 30.3M 12 768 12 3072 5.0× 10−4

M2 51.6M 18 768 12 3072 2.5× 10−4

M3 83.6M 36 768 12 3072 2.5× 10−4

M4 105M 48 768 12 3072 2.5× 10−4

M5 126M 60 768 12 3072 2.5× 10−4

WE + DE + FRW
M1 30.3M 6 384 6 1536 5.0× 10−4

M2 51.5M 8 512 8 2048 5.0× 10−4

M3 82.2M 10 640 10 2560 5.0× 10−4

M4 102M 11 704 11 2816 5.0× 10−4

M5 125M 12 768 12 3072 5.0× 10−4

Table 12: Model architectures the investigated PLMs of WE+FRW, DE+FRW, WE+DE+FRW. We keep the total
number of Mi’s increased parameters for the above three strategies almost the same at each stage i.
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Figure 7: AP and AP+ of different lifelong learning methods with BERTL6_D384 as the initial PLM w.r.t train wall
time. ELLE continually grows BERTL6_D384 to BERTL12_D768.
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Figure 8: AP and AP+ of ELLE when growing BERTL12_D768 to BERTL24_D1024.
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Figure 9: AP and AP+ of different lifelong learning methods with GPTL6_D384 as the initial PLM w.r.t train wall
time. ELLE continually grows GPTL6_D384 to GPTL12_D768.
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Figure 10: AP and AP+ of PLMs trained with different model expansion strategies: expanding width only
(WE+FRW), expanding depth only (DE+FRW) and expanding width and depth together (WE+DE+FRW) w.r.t train
wall time.
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Figure 11: AP and AP+ of PLMs trained by WE+DE, WE+DE+FRW, WE+DE+FRW+δN w.r.t train wall time.
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Figure 12: AP and AP+ of PLMs trained by ELLE with and without domain prompts w.r.t train wall time.
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Figure 13: AP and AP+ of different lifelong learning methods with BERTL6_D384 as the initial PLM w.r.t train wall
time. The train wall time on News, Review, Bio, CS domains is half of the original experiment in Section 4. ELLE
continually grows BERTL6_D384 to BERTL12_D768.
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Figure 14: AP and AP+ of different lifelong learning methods with BERTL6_D384 as the initial with smaller memory
PLM w.r.t train wall time. For domain i, we randomly sample only about 34M tokens as memory Dsub

i , which is
1% of training corpus Di . ELLE continually grows BERTL6_D384 to BERTL12_D768.
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