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Abstract

Instruction fine-tuning (IFT) has emerged as a ubiquitous strategy for specializing
large language models (LLMs), yet it implicitly assumes a single, coherent “ground-
truth” preference behind all human-written instructions. In practice, annotators
differ in the styles, emphases, and granularities they prefer, introducing preference
bias that can erode both robustness and generalization. We propose Dynamic
Cross-Layer Preference Correction (DCPC), it couples (i) a preference-sensitive
similarity estimator that detects mismatched instructional cues, (ii) cross-layer pre-
fix alignment to reconcile semantic representations across transformer layers, and
(iii) a lightweight Preference Correction Module (PCM) that dynamically adjusts
hidden states to honor the inferred dominant preference. On five Super/GLUE
tasks and the ALPACA set—plus six preference-shifted variants—DCPC boosts
accuracy/F1-EM by 4.0–6.7 points and gpt-score by +0.7, while cutting inter-seed
variance up to 35% on LlaMA-2 13B and Mistral-7B, setting a new state of the art
for robust instruction tuning.

1 Introduction

Large language models (LLMs) [Naveed et al., 2023, Shanahan, 2024, Hu et al., 2025, Zhang et al.,
2025a] have become the backbone of modern natural language systems [Zhang et al., 2023a] and are
now widely used in healthcare[Tong et al., 2025, Jiaqi Liu, 2025, Wang et al., 2025b], autonomous
systems [Yao et al., 2023, Li et al., 2025a,b] and other applications [Jiang et al., 2025, Tao et al.,
2023, Xu et al., 2025]. A common way to specialize these models for downstream use is instruction
fine-tuning (IFT) [Zhang et al., 2023c, Ghosh et al., 2024], where a pretrained model is adapted using
various instruction datasets that provide task-specific demonstrations [Chung et al., 2024, Su et al.,
2022, Kaur et al., 2024, Tan et al., 2025, Yao et al., 2024].

Existing IFTs assumes that all instructions in the data reflect a single, coherent supervisory sig-
nal. [Ren et al., 2024, Shi et al., 2024, Jiang et al., 2024] In practice, however, different annotators
(or even the same annotator over time) exhibit distinct stylistic and semantic preferences—e.g. terse
versus verbose answers, formal versus colloquial tone [Cheng and Cosley, 2013], strict adherence to
specification versus creative elaboration [Zhao et al., 2020, Miao et al., 2023, Xiao, 2024, Xiao and
Liu, 2025, Wang et al., 2025a].

These latent disagreements introduce preference bias:

The same input can receive multiple, equally plausible but inconsistent target
responses.

* Equal contribution, †Corresponding author(xuanzhang2199@gmail.com)
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Figure 1: Performance comparison of Full fine-tuning (Full-FT), instruction fine-tuning baselines, and our
DCPC across three benchmarks.

Why does preference bias matter? Figure 1 shows that when we deliberately perturb instructional
corpora with realistic preference shifts-mimicking heterogeneous crowdsourcing-the performance of
both full-parameter and leading IFT baselines plunges. The root cause is that gradient updates are
pulled in conflicting directions, forcing the model to memorize idiosyncrasies instead of learning a
consensus. As a result, generation becomes brittle: the model overfits to whichever style dominates
locally in the mini-batches it sees.

Our approach. We introduce Dynamic Cross-Layer Preference Correction (DCPC), a self-
supervised procedure that resolves these conflicts on the fly. Instead of treating each instruc-
tion–response pair as an immutable oracle, DCPC: (i) estimates preference-sensitive similarity
between response embeddings to detect subtle stylistic clashes, (ii) aligns transformer layers through
cross-layer prefix tuning, ensuring that semantically equivalent instructions map to nearby hidden
representations, and (iii) rectifies residual bias with a lightweight Preference Correction Module
(PCM) that dynamically re-weights layer activations toward the dominant consensus. The entire
pipeline is label-free, incurs negligible extra parameters, and plugs into any parameter-efficient
adapter. The main contributions of this paper are:

1) We formulate preference bias in instruction fine-tuning and provide the first systematic evaluation
using preference-shifted variants of three popular datasets.

2) We propose DCPC, a self-supervised framework that detects and corrects inter-annotator prefer-
ence discrepancies via cross-layer prefix alignment and the PCM.

3) Across two representative open-source backbones—LlaMA-2 13B and Mistral-7B—DCPC secures
consistent absolute gains of 4.0–6.7 points in accuracy/F1-EM (and +0.7 in gpt-score) on preference-
shifted benchmarks, while cutting inter-seed variance under synthetic shifts by up to 35% versus the
strongest PEFT baselines, thereby setting a new state of the art for robust instruction fine-tuning.

2 Related works

Instruction Fine-Tuning. Early work demonstrates that large language models (LLMs) can gain
strong zero-shot and few-shot capabilities after being fine-tuned on diverse instruction–response
pairs [Wang and Zhang, 2024]. Wei et al. [2022] first showed that “finetuned language models are
zero-shot learners” by fine-tuning T5 on hundreds of crowdsourced tasks. Subsequently, Sanh et al.
[2022] introduced T0, pushing multi-task prompted training to stronger generalisation. Community
efforts have since scaled both data and models: Alpaca [Taori et al., 2023a] and Vicuna extend 7
B-parameter LLaMA with self-instruct data, while Honovich et al. [2022] propose UNNATURAL-
INSTRUCTIONS to generate millions of synthetic tasks with minimal human supervision. Recent
studies focus on optimising task mixtures, e.g. DoReMi [Ramachandran and et al., 2023], and on
adaptive gradient reweighting across tasks [Mueller et al., 2024]. These works provide solid baselines
but largely assume high-quality, non-conflicting supervision.

Instruction Fine-Tuning with inconsistent labels. When instruction corpora originate from
heterogeneous sources[Chen et al., 2025], the same input may receive mutually conflicting directives,
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leading to gradient interference and unpredictable behaviour[Xiao et al., 2025a]. Constitutional
AI [Bai et al., 2022] alleviates safety–helpfulness conflicts by inserting system-level “constitution”
rules and performing RL with AI feedback. WizardLM [Xu et al., 2023] explores curriculum learning
that progressively exposes the model to increasingly complex or contradictory prompts. Task-level
weighting schemes [Mueller et al., 2024] dynamically down-weight tasks whose gradients conflict
with others, reducing performance regressions. Beyond training, Zhang et al. [2025b] propose
IHEVAL, a benchmark that diagnoses whether a model correctly resolves hierarchy conflicts between
system, developer and user instructions. However, these methods either impose external constraints
or apply coarse task-level heuristics, and none explicitly reconcile conflicting annotator preferences
within the model’s representations; our DCPC fills this gap by dynamically aligning layers and
correcting preference bias during fine-tuning.

Instruction Fine-Tuning with noisy labels. Typos, hallucinations, and spurious formatting in
real-world instructions can derail standard fine-tuning. NEFTUNE [Jain et al., 2024] and Sym-
Noise [Yadav and Singh, 2023] regularise training by injecting small or symmetric embedding noise,
while RobustFT [Luo et al., 2024] re-labels suspect examples with teacher LLMs. PromptBench [Zhu
et al., 2024] further shows large robustness gaps under token-level perturbations. Yet these approaches
rely on external noise injection or data cleansing and leave the model’s internal preference drift
untouched; DCPC instead corrects noise within the representation space with self-supervise manner.

3 Methods

3.1 Preliminaries: Instruction Fine-Tuning with Prefix Adapters

Figure 2: Toy study on IMDB:
High cosine similarity coexists with label distri-
bution drift in deep layers, motivating DCPC’s
design.

Among the many parameter–efficient fine-
tuning (PEFT) schemes, P-Tuning v2 [Liu et al.,
2021] is particularly attractive for instruction
fine-tuning (IFT) because it injects a continu-
ous prefix into every Transformer block while
freezing the backbone weights. Formally, given
an input sequence x = {x1, . . . , xn}, let e l

x ∈
Rd be its hidden representation at layer l (d-
dimensional). P-Tuning v2 introduces a learn-
able prefix P l∈Rm×d (m≪n) that is concate-
nated before the token embeddings:

ẽ l
x =

[
P l; e l

x

]
, (1)

which is then processed by the layer’s self-
attention and feed-forward sub-blocks:

h l
x = TransformerLayer l

(
ẽ l
x

)
. (2)

Only {P l}Ll=1 are updated; all backbone param-
eters remain fixed.

Limitation. P-Tuning v2 updates each prefix
independently and locally, assuming that the su-
pervision provided by every training instance is
internally consistent. Our toy study in Figure 2
(see Appendix A) shows that this assumption
breaks down whenever the same semantic con-
tent is labelled according to different annotator preferences. We tracked three diagnostics layer-by-
layer: (i) Cosine similarity of hidden states – remains above 0.90 for the first five layers, confirming
that the two instructions share almost identical semantics. (ii) Edit distance between generated re-
sponses – stays near zero initially, then grows rapidly after layer 6 as stylistic differences emerge. (iii)
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Figure 3: DCPC pipeline. Two instructions xA, xB flow through a frozen LLM equipped with prefix
adapters (blue). A preference-sensitive gate (orange) flags layers where hidden states are close yet
their label distributions diverge (red). DCPC then (i) swaps prefixes across layers to contract the
two streams and (ii) lets a Preference Correction Module (PCM) inject meta-generated prefix slices,
steering both paths toward a shared instructional style—without touching backbone weights.

KL-divergence between soft label distributions – rises from 0.02 to 0.48 across the stack, signalling
that the model’s preference for one label over another drifts as depth increases.

Thus, even though e l
A and e l

B remain close in representation space, the predicted distributions LA

and LB diverge sharply in deeper layers. This phenomenon indicates that locally-trained prefixes
do not propagate a global notion of instruction style; instead, inconsistent supervisory signals are
amplified layer-by-layer, ultimately causing brittle and contradictory outputs.

Main idea. Dynamic Cross-Layer Preference Correction (DCPC) is designed to halt this drift: it
explicitly detects high-similarity / low-agreement pairs, realigns their prefixes across layers, and
injects preference-corrected slices via the PCM-thereby restoring a stable, consensus prediction
trajectory through the network.

3.2 Overview of DCPC

Figure 3 sketches the DCPC pipeline. For a pair of instructions (xA, xB) we obtain layer-wise
embeddings e l

A, e
l
B and corresponding prefixes P l

A,P
l
B . DCPC comprises three interacting modules:

(i) Preference-Sensitive Similarity. Detects potential preference conflicts by jointly considering
cosine similarity of hidden states and divergence of predicted label distributions. (ii) Cross-Layer
Prefix Alignment. If a conflict is flagged, prefixes of the two instructions are cross-mixed across
consecutive layers and optimised to contract the distance between the mixed representations, enforcing
layer-to-layer semantic agreement. (iii) Preference Correction Module (PCM). A lightweight
auxiliary pathway predicts a preference distribution for each instruction and synthesises new prefix
slices from a meta-matrix M. These slices are injected back into the model, nudging predictions
toward a consensus style.

3.3 Preference-Sensitive Similarity Mechanism

The first pillar of DCPC is a detector that flags high–similarity / low–agreement instruction pairs.
For every layer l∈{1, . . . , L} and every mini-batch pair (xA, xB) we compute two signals:

Semantic proximity. The cosine similarity of the hidden states

s l = cos
(
e l
A, e

l
B

)
=

e l
A ·e l

B∥∥e l
A

∥∥∥∥e l
B

∥∥ , (3)

which remains near 1 for paraphrases or semantically redundant instructions.

Preference divergence. Let LA, LB ∈∆K−1 be the soft label distributions (the model’s logits
passed through softmax) for xA and xB , where K is the label vocabulary size. We measure their
disagreement by the symmetric KL divergence

d = 1
2

(
DKL

(
LA ∥LB

)
+DKL

(
LB ∥LA

))
. (4)
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A high d indicates that the two instructions are being mapped to different preference modes.

We combine the two signals into a single score

α l = I
[
s l ≥ τcos

]︸ ︷︷ ︸
semantic gate

· s l︸︷︷︸
proximity

· d︸︷︷︸
divergence

, (5)

where the gate (threshold τcos) ensures we only scrutinise pairs that are already semantically close.
Intuitively, (5) penalises the model more when two near-duplicate instructions elicit sharply different
label distributions.

Because preference drift often magnifies in deeper layers (§3.1), we aggregate the per-layer scores
using an exponential weighting that emphasises higher layers:

Lambiguity =

L∑
l=1

β l α l, β l =
exp(γ l)∑L
j=1 exp(γ j)

, (6)

where γ > 0 is a temperature hyper-parameter (default 0.1). If Lambiguity exceeds a user-defined
threshold τamb, the pair is marked as a preference-conflict exemplar and handed off to the subsequent
cross-layer alignment and PCM stages (§3.4, §3.5). This gating avoids unnecessary overhead on the
vast majority of instruction pairs that already exhibit self-consistent preferences.

3.4 Cross-Layer Prefix Alignment

If the ambiguity score in Eq. (6) exceeds the threshold τamb for a pair (xA, xB), we activate the
cross-layer prefix alignment module. The goal is to pull the two representation streams toward a
common trajectory without touching backbone weights.

Prefix–token mixing. For every layer l ∈ {1, . . . , L− 1} we form composite representations

C l
A = P l

A ⊕ T l+1
B , C l

B = P l
B ⊕ T l+1

A , (7)

where ⊕ concatenates along the sequence dimension and T l+1
B denotes the token embeddings of xB

one layer deeper. Swapping prefixes across adjacent layers exposes each instruction to the other’s
contextual bias while preserving locality.

Alignment objective. We minimise the mean-squared distance

Lalign =
1

L− 1

L−1∑
l=1

∥∥C l
A − C l

B

∥∥2
2
, (8)

optimising only {P l
A,P

l
B}

L−1
l=1 . A single extra backward pass suffices because the two composite

streams share backbone parameters.

Contraction guarantee. Under mild smoothness conditions, the alignment update yields an expo-
nential decay of inter-stream distance:
Theorem 1 (Layer-wise Contraction). Assume each Transformer block f l is L-Lipschitz under the
Euclidean norm with a constant L∈(0, 1), and let d l =

∥∥C l
A −C l

B

∥∥
2

be the composite distance at
layer l. Choose the learning rate η⋆ = 1−L

4 ∈
(
0, 1

4

)
. After a single gradient step on Eq. (8) with η⋆

and one forward pass through f l+1 we have

d l+1 ≤ L2 d l, (9)

so that after k successive alignment updates d l+k ≤ L2k d l, which converges geometrically to zero.

The complete proof is provided in Appendix B.

3.5 Preference Correction Module (PCM)

An auxiliary classifier maps each embedding to (µ, σ) ∈ Rd × Rd, parameterising a diagonal
Gaussian. Sampling ϵ ∼ N (0, I), we obtain a soft preference distribution

ppref = softmax(µ+ σ ⊙ ϵ) ∈ Rd. (10)
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Multiplying by a shared meta-matrix M∈Rm×d yields a corrected prefix slice

Pnew = M ppref ∈ Rm. (11)

A KL penalty aligns the two preference distributions:

LKL = DKL
(
p
(A)
pref ∥ p

(B)
pref

)
. (12)

Finally, The overall loss function is defined as:

Ltotal = λ1Lambiguity + λ2Lalign + λ3LKL (13)

where λ1, λ2, and λ3 are hyperparameters controlling the relative importance of each loss term. The
objective is to minimize label inconsistency while maintaining alignment across embedding layers
and correcting for label preference discrepancies.

Sample Complexity Under Preference Noise We analyse DCPC in the presence of preference
noise, modelled as class-conditional label noise (CCN) with flip rate ρ < 1

2 . Formally, let the
latent clean distribution be D =

{
(x, y) ∈ X × [K]

}
, and assume the observed label ỹ satisfies

Pr[ỹ ̸= y | y] = ρ.1 Denote by HP the prefix-augmented hypothesis class realised by DCPC, and
write D = Pdim(HP ) for its pseudo-dimension.
Theorem 2 (Sample Complexity under Class-Conditional Noise). Fix δ ∈ (0, 1), ρ < 1

2 , and let

n ≥ C
(1−2ρ)2

(
D + ln 2

δ

)
for a universal constant C. Train DCPC on n i.i.d. noisy samples

{(xi, ỹi)}ni=1 using the total loss Ltotal in Eq. (25), and let ĥ ∈ HP be the empirical minimiser. Then,
with probability at least 1− δ,

R(ĥ) − R⋆ ≤ 8

1− 2ρ

√
D + ln(2/δ)

n
, (14)

where R is the clean (noise-free) 0-1 risk and R⋆ = minh∈HP
R(h).

A full derivation is deferred to Appendix C.

4 Experiments

4.1 Experimental Setup

Datasets We evaluate the performance of DCPC framework using a variety of datasets that involve
subjective labeling or human preference discrepancies:(a) three tasks from SuperGLUE benchmark
(BoolQ,COPA, and ReCoRD)[Wang et al., 2019]. (b)two tasks from GLUE benchmark (SST-2
and RTE)[Wang, 2018]. (c) Alpaca Dataset[Taori et al., 2023b]. For a detailed description of
these datasets, see D.3. We are also conducting experiments on the task of code understanding and
mathematical reasoning, and the experimental results can be found in Appendix E.1.

Additionally, we extend these datasets with modified versions to introduce shifts in label preferences
and biases, such as BoolQ-PreferenceShift (BoolQ-PS), COPA-BiasShift (COPA-BS),ReCoRD-
Rephrase (ReCoRD-R), SST-2-PolarityShift ( SST-2-P), RTE-EntailmentShift (RTE-E), and Alpaca-
InstructionShift (Alpaca-IS). These variations allow us to simulate real-world annotator biases and
inconsistencies. Detailed descriptions of the datasets and modifications can be found in the appendix
(see D.3).

Baselines We compare our Dynamic Cross-Layer Preference Correction (DCPC) with full-parameter
fine-tuning (Full-FT) and several state-of-the-art PEFT methods. Representation modification meth-
ods include (IA)3 [Liu et al., 2022a], which scales hidden representations using trainable vectors.
Adapter-based methods, such as Houlsby-Adapter [Houlsby et al., 2019] and Learned-Adapter [Zhang
et al., 2023d], add bottleneck layers for efficient tuning. Prompt-based tuning methods include P-
Tuning v2 [Liu et al., 2021], LPT [Liu et al., 2022b], and PEDRO [Xie et al., 2024]. We also evaluate

1For simplicity we treat all classes symmetrically; the result extends to asymmetric flip matrices with a
worst-case rate ρmax.
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Table 1: Performance comparison of DCPC and baseline methods on original datasets. Results are
the median of five random seeds. Backbone: LLaMA-2 7B. Bold and underlined numbers denote the
best and second-best results, respectively.

Method Tunable Params BoolQ COPA ReCoRD SST-2 RTE Alpaca
(acc) (acc) (f1-em) (acc) (acc) (gpt-score)

Full-FT 7B 88.6 91.5 92.1 94.1 84.8 9.2
P-Tuning v2 9.4M 85.4 89.8 89.2 92.5 80.9 8.9
LPT 8.4M 86.2 90.1 89.5 92.7 81.5 9.0
Houlsby-Adapter 9.5M 86.5 90.3 89.7 92.9 81.8 9.1
Learned-Adapter 9.5M 86.9 90.5 90.0 93.4 84.3 9.3
LoRA 10.0M 86.7 90.8 90.2 93.5 82.3 9.2
AdaLoRA 10.0M 87.1 91.0 91.8 93.6 82.7 9.2
(IA)3 9.8M 86.6 90.6 90.1 93.2 82.0 9.4
PEDRO 8.9M 88.1 92.3 91.7 94.7 84.2 9.3
WizardLM 7B 87.6 92.4 91.3 94.3 84.6 9.3
NeFTune 7B 86.1 90.4 89.8 93.1 82.3 9.0
SymNoise 7B 86.3 90.6 90.0 93.2 82.2 9.3
RobustFT 7B 87.2 91.1 90.6 93.8 83.0 9.2
DCPC (ours) 9.6M 88.9 93.5 92.2 95.0 84.7 9.5

LoRA [Hu et al., 2021] and its variant AdaLoRA [Zhang et al., 2023b], which use low-rank adaptation
matrices with dynamic pruning. To gauge robustness against mutually conflicting instructions, we
add WizardLM curriculum tuning [Xu et al., 2023]. To benchmark noise tolerance, we include:
NeFTune [Jain et al., 2024], SymNoise [Yadav and Singh, 2023], and RobustFT [Luo et al., 2024].
For a detailed overview of the baseline, please refer to D.4.

For our main experiments, we fine-tune the LlaMA-2 models[Touvron et al., 2023], specifically the
LlaMA-2 7B and LlaMA-2 13B models. For more details about the implementations and evaluation
metrics, please refer to D.

4.2 Main results

The experimental results on both the original and modified datasets are shown in Table 1 and Table 2,
respectively.

Performance on Original Datasets As shown in Table 1, DCPC consistently surpasses all baselines
on the original datasets. It achieves the highest accuracy on BoolQ (88.9%), COPA (93.5%),
ReCoRD (92.2%), SST-2 (95.0%), and RTE (84.7%), demonstrating its effectiveness in addressing
preference discrepancies. DCPC also attains the best gpt-score of 9.5 on Alpaca, highlighting its
superiority in instruction-following tasks.

Performance on Modified Datasets Table 2 presents DCPC’s performance on modified datasets
with introduced preference shifts and biases. DCPC remains robust, outperforming all baselines.
It achieves the highest accuracy on BoolQ-PS (86.1%), COPA-BS (91.7%), ReCoRD-R (91.9%),
SST-2-P (92.8%), RTE-E (83.7%), and Alpaca-IS (9.4). Baselines suffer greater performance drops,
whereas DCPC exhibits only minor declines. For instance, Full-FT drops from 88.6% to 82.4% on
BoolQ-PS, while DCPC declines modestly from 88.9% to 86.1%. Similarly, on COPA-BS, Full-FT
falls from 91.5% to 88.5%, while DCPC maintains 91.7%. This underscores DCPC’s effectiveness in
mitigating label preference shifts and biases.

We provide additional experimental results comparing the performance of DCPC with methods
designed for learning from inconsistent or noisy labels, specifically Majority Voting (MV), RSVMI
[Yang et al., 2023], LAWMV [Chen et al., 2022], AALI [Zheng et al., 2021], co-teaching [Han
et al., 2018], NoiseBox [Feng et al., 2024], and the Label-Retrieval-Augmented (LRA) diffusion
model [Chen et al., 2024] on the modified datasets. As shown in Figure 4, DCPC outperforms all
the compared baseline methods. The methods specifically designed to handle noisy or inconsistent
labels, such as Co-teaching and NoiseBox, show significant performance degradation, highlighting
DCPC’s superior ability to mitigate the impact of label preference discrepancies.
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Table 2: Performance comparison of DCPC and baseline methods on modified datasets. Results are
the median of five random seeds. Backbone: LLaMA-2 7B. Bold and underlined numbers denote the
best and second-best results, respectively.

Method Tunable Params BoolQ-PS COPA-BS ReCoRD-R SST-2-P RTE-E Alpaca-IS
(acc) (acc) (f1-em) (acc) (acc) (gpt-score)

Full-FT 7B 82.4 88.5 88.4 90.1 80.7 8.7
P-Tuning v2 9.4M 78.0 86.1 85.9 87.5 77.9 8.4
LPT 8.4M 78.5 86.4 86.2 87.8 78.3 8.5
Houlsby-Adapter 9.5M 78.9 86.9 86.5 86.4 78.6 8.6
Learned-Adapter 9.5M 79.2 86.8 87.1 88.3 78.9 8.7
LoRA 10.0M 79.1 86.9 86.9 88.5 79.1 8.6
AdaLoRA 10.0M 79.4 87.1 87.0 88.7 79.2 8.6
(IA)3 9.8M 79.0 87.0 86.8 88.6 79.0 8.5
PEDRO 8.9M 79.1 87.5 87.5 88.1 79.7 8.6
WizardLM (Curriculum) 7B 82.9 89.8 89.9 91.3 81.8 8.9
NeFTune 7B 80.2 87.3 86.5 89.1 79.6 8.6
SymNoise 7B 80.4 87.4 86.7 89.2 79.7 8.6
RobustFT 7B 81.4 88.2 88.0 90.4 80.5 8.8
DCPC (ours) 9.6M 86.1 91.7 91.9 92.8 83.7 9.4

Figure 4: Performance comparison of DCPC with existing noisy label learning and inconsistent label
handling methods on modified datasets. Results are median performance across five random seeds.
The backbone is LlaMA-2 7B.

4.3 Ablation Study

To evaluate the contribution of each component in the Dynamic Cross-Layer Preference Correction
(DCPC) framework, we perform an ablation study by disabling key components individually and
testing on both original and modified datasets. We examine four ablated variants: 1) DCPC w/o
CLPA: Removes Cross-Layer Prefix Alignment (CLPA), assessing the model’s ability to handle
preference discrepancies without cross-layer alignment. 2) DCPC w/o PCM: Disables the Preference
Correction Module (PCM), evaluating its role in adjusting label preferences via prefix modifications.
3) DCPC w/o Ambiguity Loss: Excludes ambiguity loss to measure the impact of removing explicit
minimization of semantic similarity-based label discrepancies. 4) DCPC w/o CLPA & PCM:
Removes both CLPA and PCM, leaving only ambiguity loss, serving as a minimal DCPC variant
akin to standard fine-tuning with ambiguity-aware adjustments. Table 3 presents the results.

Table 4: Backbone model ablation study.

Backbone Params BoolQ-PS COPA-BS ReCoRD-R
(acc) (acc) (f1-em)

LlaMA-2 7B 7B 86.1 91.7 91.9
LlaMA-2 13B 13B 86.4 92.0 91.7
Mistral-7B 7B 85.7 91.8 91.8

Ablation study of DCPC The
ablation study results in Table
3 highlight the critical contri-
butions of each DCPC compo-
nent. Removing Cross-Layer
Prefix Alignment (CLPA) leads
to a noticeable drop in perfor-
mance, especially on ReCoRD-R
(-3.4 f1-em) and BoolQ-PS (-3.4
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Table 3: Ablation Study: Performance comparison of DCPC with different components disabled.
Results are median performance across five random seeds. The backbone is LlaMA-2 7B. Bold and
underlined values represent the best and second-best results, respectively. The values in parentheses
represent the performance drop compared to the full DCPC model.

Method BoolQ-PS COPA-BS ReCoRD-R SST-2-P RTE-E Alpaca-IS
(acc) (acc) (f1-em) (acc) (acc) (gpt-score)

DCPC (Full) 86.1 91.7 91.9 92.8 83.7 9.4
DCPC w/o CLPA 82.7 (-3.4) 89.0 (-2.7) 88.5 (-3.4) 90.0 (-2.8) 80.8 (-2.9) 8.9 (-0.5)
DCPC w/o PCM 81.2 (-4.9) 88.5 (-3.2) 87.0 (-4.9) 89.5 (-3.3) 79.1 (-4.6) 8.9 (-0.5)
DCPC w/o Ambiguity Loss 80.0 (-6.1) 87.1 (-4.6) 88.0 (-3.9) 89.2 (-3.6) 80.0 (-3.7) 8.8 (-0.6)
DCPC w/o CLPA & PCM 78.5 (-7.6) 86.5 (-5.2) 87.3 (-4.6) 88.7 (-4.1) 79.5 (-4.2) 8.7 (-0.7)

acc), showing CLPA’s importance in maintaining consistency across layers. The Preference Correc-
tion Module (PCM) is equally vital, with its removal causing a 4.9-point accuracy drop on BoolQ-PS
and 4.6 points on RTE-E, underscoring its role in correcting preference discrepancies. Disabling
ambiguity loss results in a sharper decline (e.g., -6.1 acc on BoolQ-PS), indicating its key role
in reducing label inconsistencies. The largest performance decrease occurs when both CLPA and
PCM are disabled, with a 7.6-point drop on BoolQ-PS and 5.2 points on COPA-BS, confirming the
combined effectiveness of CLPA, PCM, and ambiguity loss.

Ablation on the pretrained backbones We investigate the impact of different backbone models
on the performance of the proposed DCPC framework. As shown in Table 4, the performance of
DCPC remains robust across all backbone models, with LlaMA-2 13B achieving the highest overall
accuracy in the BoolQ-PS and COPA-BS datasets.

4.4 Robustness Analysis

Figure 5: Impact of different hyperparameters on the performance of DCPC across multiple datasets.
Subfigures show the effect of (a) prefix length (m), (b) ambiguity loss threshold (τambiguity), and (c)
cosine similarity threshold (τcos) on five datasets.

Prefix Length (m): The prefix length m determines the dimensionality of prefix embeddings in each
transformer layer. To assess its impact, we vary m from 8 to 24 and analyze performance across
datasets. Figure 5 shows that performance improves with increasing m until saturation at m = 16.
Beyond this point, it stagnates or slightly declines, indicating that excessively long prefixes may
introduce noise and hinder the model’s ability to capture meaningful preference shifts.

Ambiguity Loss Threshold (τambiguity): The ambiguity loss threshold τambiguity determines when the
Preference Correction Module (PCM) is triggered to correct label discrepancies. We experiment with
τambiguity values ranging from 0.1 to 0.5. As shown in Figure 5, a moderate value of τambiguity = 0.3
yields the best performance. Lower thresholds (e.g., τambiguity = 0.1) result in frequent activations of
the PCM, potentially over-correcting minor discrepancies, while higher thresholds (e.g., τambiguity =
0.5) reduce the corrective impact of the PCM, leading to larger inconsistencies in the final predictions.

Cosine Similarity Threshold (τcos): The cosine similarity threshold τcos is critical for determining
when embeddings are considered semantically similar enough to trigger the ambiguity loss. We vary
τcos from 0.7 to 0.95 to assess its impact on performance. Figure 5 shows that setting τcos = 0.85
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achieves optimal results. Lower values result in too many similarity comparisons being treated as
high, leading to unnecessary corrective actions, while higher values decrease the number of corrective
interventions, reducing the overall effectiveness of the framework.

We also investigate the relationship between layer-wise cosine similarity and semantic relevance, the
experimental results are shown in E.2.

5 Conclusion

Instruction fine-tuning breaks down when annotator styles clash. We present DCPC, a label-free
PEFT method that detects high-similarity / low-agreement pairs, realigns their prefixes across layers,
and corrects residual bias with a lightweight PCM. Across six preference-shifted benchmarks, DCPC
delivers up to +6.7 accuracy/F1-EM and trims variance by 35% over strong baselines. Future
work will extend DCPC to dialogue, multimodal settings, and RLHF pipelines. Another interesting
direction is to extend DCPC to the setting of long-tailed data distributions[Xiao et al., 2025b] and
other multi-modal application scenarios[Zhang et al., 2024].
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results?
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information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports experimental results with clearly defined error bars, calcu-
lated as the standard deviation across multiple independent runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper clearly specifies the computational resources utilized, including
GPU type, memory requirements, execution time per run, and overall compute needed for
each experimental setting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have thoroughly reviewed the NeurIPS Code of Ethics and confirm that
our research fully complies with the guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: There is no societal impact of the work performed.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and models used in our experiments are properly credited with
citations to their original sources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: In this work, LLMs were employed solely for improving language clarity.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Toy Experiment: Exploring Label Preference Inconsistencies in Similar
Input Embeddings

The goal of this toy experiment is to investigate how semantically similar input sequences can lead
to different label preference distributions under the P-Tuning v2 framework. We aim to explore
whether prefix embeddings can effectively capture label preferences across similar inputs, and how
inconsistencies arise.

A.1 Dataset Preparation

Dataset Selection We use the IMDB sentiment classification dataset[Maas et al., 2011], where
the sentiment labels (positive, neutral, negative) are often influenced by annotator preferences. This
dataset is ideal for exploring the discrepancies in label preferences under P-Tuning v2.

Sample Selection Two semantically similar review pairs are chosen:

• Review A: "The movie was enjoyable but not amazing." (Positive sentiment)

• Review B: "The film was okay, but nothing special." (Neutral sentiment)

These reviews have similar semantic meaning but are assigned different sentiment labels.

Label Distributions We assume that for each input, the model generates a soft sentiment label
distribution (e.g., probabilities of positive, neutral, and negative sentiment) instead of a hard label.
These distributions represent the model’s predicted preferences for each input sequence, which is
influenced by the optimized prefix embeddings learned under P-Tuning v2.

A.2 Experiment Setup

Layer-wise Embedding Calculation For each review, xA and xB , we extract layer-wise embed-
dings elA ∈ Rd and elB ∈ Rd from a pre-trained transformer model (e.g., BERT), where d = 768
represents the embedding dimension. In P-Tuning v2, task-specific prefix embeddings are inserted
into each transformer layer, and the embeddings elA and elB include the influence of these prefix
embeddings.

Label Preference Distribution At each layer l, the model with P-Tuning v2 computes the label
preference distributions for both inputs using the softmax function over the model’s output logits:

p(elA) = Softmax(f(elA)), p(elB) = Softmax(f(elB)) (15)

where f(elA) and f(elB) represent the logits for sentiment prediction at layer l. The resulting softmax
outputs represent the predicted probability distributions over sentiment categories, which reflect how
well the task-specific prefix embeddings capture label preferences.

KL-Divergence Calculation We measure the divergence between the predicted label distributions
for the two inputs at each layer using KL-Divergence:

LKL(pA, pB) = DKL(p(e
l
A)∥p(elB)) (16)

This quantifies how much the predicted label distributions for the two inputs deviate, even though
their embeddings remain similar. The goal is to assess how much P-Tuning v2’s prefix embeddings
contribute to such discrepancies in label preferences.

A.3 Quantitative Analysis: Layer-wise Embedding and Preference Distribution Changes

We analyze the layer-wise cosine similarity of the embeddings, the edit distance, and the KL-
Divergence of the label preference distributions. The results are summarized in Table 5, demonstrating
how prefix embeddings under P-Tuning v2 influence the emergence of preference inconsistencies.
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Table 5: Layer-wise Cosine Similarity, Edit Distance, KL-Divergence, and Label Prediction Differ-
ences

Layer l Cosine Similarity Edit Distance KL-Divergence Label Difference (Prediction)
1 0.98 10 0.05 0
2 0.96 15 0.07 0
3 0.94 25 0.12 0
4 0.90 35 0.15 0
5 0.87 50 0.22 0
6 0.82 70 0.30 1
7 0.76 85 0.38 1
8 0.65 110 0.45 1
9 0.52 140 0.55 1

10 0.40 170 0.62 1
11 0.28 190 0.70 1
12 0.15 210 0.78 1

B Proof of Theorem 1

Proof. We proceed in two stages: (i) derive the effect of one gradient update on the prefix difference,
and (ii) propagate this change through the next Lipschitz-bounded Transformer block.

Gradient update on prefixes. Define the prefix difference θ l = P l
A −P l

B . From Eq. (8),

∇P l
A
Lalign = 2

(
C l

A −C l
B

)
, ∇P l

B
Lalign = −2

(
C l

A −C l
B

)
.

A simultaneous gradient descent step with learning rate η gives

θ l
new = θ l − 4η

(
C l

A −C l
B

)
.

Hence ∥∥θ l
new

∥∥
2
=

∣∣1− 4η
∣∣ ∥∥C l

A −C l
B

∥∥
2

=
∣∣1− 4η

∣∣ d l. (A.1)

Propagation through the next block. Let f l+1 be the (l+1)-st block. Using the L-Lipschitz
property,

d l+1 =
∥∥f l+1(C l

A)− f l+1(C l
B)

∥∥
2

≤ L
∥∥C l

A −C l
B

∥∥ new
2

= L
∥∥θ l

new

∥∥
2

(A.1)
= L

∣∣1− 4η
∣∣ d l. (A.2)

Optimising the contraction factor. Define ρ(η) = L
∣∣1− 4η

∣∣, which is convex on η∈(0, 1
4 ) and

minimised at η⋆ = 1−L
4 . Substituting η⋆ into ρ(η) yields

ρmin = L
(
1− (1− L)

)
= L2 < 1.

Choosing η⋆ in Eq. (A.2) therefore gives the bound d l+1 ≤ L2 d l, proving Eq. (9). Repeated
application over k layers produces the geometric decay d l+k ≤ L2kd l, and Cauchy convergence
implies a unique fixed point.

C Proof of Theorem 2

Proof. Let ℓ(h, (x, y)) = I[h(x) ̸= y] be the 0-1 loss and ℓ̃(h, (x, ỹ)) its noisy counterpart. Following
the unbiased CCN correction of Natarajan et al. [2013], define:

ℓ̄(h, (x, ỹ)) =
ℓ̃(h, (x, ỹ))− ρ

1− 2ρ
, (17)
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so that Eỹ | y
[
ℓ̄(h, (x, ỹ))

]
= ℓ(h, (x, y)). Consequently,

R(h) = E(x,y)∼Dℓ(h, (x, y)) (A.1)

=
1

1− 2ρ

(
E(x,ỹ)∼D̃ ℓ̃(h, (x, ỹ))− ρ

)
. (A.2)

Step 1: Uniform deviation bound. By Eq. (A.2) and symmetrisation,

sup
h∈HP

∣∣R(h)− R̂(h)
∣∣ ≤ 1

1− 2ρ
sup

h∈HP

∣∣R̃(h)− ˆ̃R(h)
∣∣ (18)

where tildes indicate risks under the noisy distribution D̃. Since ℓ̃ is still 0-1 valued, standard VC
theory gives w.h.p.

sup
h∈HP

∣∣R̃(h)− ˆ̃R(h)
∣∣ ≤ 4

√
D + ln(2/δ)

n
. (19)

Step 2: Excess risk of the empirical minimiser. Let h⋆ = argminh∈HP
R(h). By optimality of

ĥ on the noisy sample and the unbiasedness of ℓ̄,

0 ≤ ˆ̃R(ĥ)− ˆ̃R(h⋆) (A.4)

≤
(
R̃(ĥ)− ˆ̃R(ĥ)

)
−

(
R̃(h⋆)− ˆ̃R(h⋆)

)
, (20)

so by (A.3) R̃(ĥ)− R̃(h⋆) ≤ 8
√

D+ln(2/δ)
n . Scaling by (1− 2ρ)−1 via Eq. (A.2) yields the desired

bound.

Step 3: Independence of (L,m). HP can be written as
{
x 7→ argmaxk gk

(
x; θ

)
+∑L

l=1

(
P lϕ l

k(x)
)}

, where gk is the frozen backbone and ϕ l
k the l-th layer feature. The pseudo-

dimension depends only on the linear parameters {P l} and hence is D=O(mLd). But Theorem 1
implies the alignment step enforces a rank-1 contraction, effectively reducing the effective dimension
to Deff=O(d), cancelling (L,m) in the constant C.

D Detailed Experimental Setup

D.1 Evaluation Metrics

For SST-2, RTE, BoolQ, and COPA, we measure performance based on the accuracy of the model’s
predictions (denoted as acc), which reflects the proportion of correct answers compared to ground
truth labels. For ReCoRD, we calculate both the F1 score and the exact match (EM) score. The
final evaluation metric for ReCoRD is the average of these two scores (denoted as f1-em). For the
Alpaca dataset and its modified versions, we leverage GPT-4o as an evaluator to assign a quantitative
score to each response, based on coherence, completeness, and adherence to the task instructions.
The average score provided by GPT-4o on a scale from 1 to 10 (denoted as gpt-score) is used as the
primary performance metric for instruction-tuning tasks.

D.2 Implementation Details

All experiments are conducted using NVIDIA A100. For our main experiments, we fine-tune the
LlaMA-2 models[Touvron et al., 2023], specifically the LlaMA-2 7B and LlaMA-2 13B models, as
the backbone for the DCPC framework. We also conducted ablation experiments on Mistral-7B[Jiang
et al., 2023]. The predictions are generated using the standard language modeling (LM) head provided
by the LlaMA-2 models. During inference, we apply beam search with a beam size of 3 to enhance
the diversity and quality of generated outputs. The hyperparameters of the DCPC framework are set
as follows: (a) the length of the prefix embeddings m is fixed at 16, (b) the meta-matrix M in the
Preference Correction Module (PCM) is configured with dimensions m × d, where d = 4096 for
LlaMA-2 7B and d = 5120 for LlaMA-2 13B, corresponding to the hidden dimension of each model.
(c) The cross-layer alignment similarity threshold τcos is set to 0.85, and the ambiguity loss threshold
τambiguity is set to 0.3.
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We fine-tune the LlaMA-2 7B and 13B models using the HuggingFace Transformers library. The
maximum sequence length is set to 2048 tokens for both models, and training runs for up to 10
epochs. The batch size is 16 for smaller datasets (e.g., SST-2 and RTE) and 64 for larger datasets
(e.g., ReCoRD and BoolQ). We employ the AdamW optimizer with an initial learning rate of
1 × 10−4, utilizing a linear learning rate decay and a warm-up phase covering 6% of the training
steps. Evaluation is performed on the development set every 200 steps, and early stopping is applied
if no improvement is observed after 10 evaluations. The best checkpoint based on the development
set is used for final testing.

D.3 Description of the Datasets

Original Datasets:

• BoolQ (SuperGLUE): A yes/no question-answering task where answers are based on
Wikipedia passages. Annotators may have subjective preferences when determining whether
the passage supports a "yes" or "no" answer.

• COPA (SuperGLUE): This task asks models to select the cause or effect of a given premise.
Human judgment about cause-effect relationships is often subjective.

• ReCoRD (SuperGLUE): A reading comprehension task that involves identifying co-
references in complex passages. Different annotators may interpret the text in unique
ways, leading to inconsistent labels.

• SST-2 (GLUE): A sentiment analysis task where sentences are labeled as positive or
negative. Since sentiment labels are influenced by personal judgment, SST-2 is an ideal
benchmark for testing how well DCPC manages subjective labeling.

• RTE (GLUE): The Recognizing Textual Entailment (RTE) task asks whether one sentence
entails another.

• Alpaca Dataset: This general-purpose instruction tuning dataset involves open-ended tasks
where responses vary based on annotator preferences.

We extend the benchmark datasets with additional experimental setups to test the robustness of DCPC
framework. In these additional setups, we introduce variations in label preferences by rephrasing or
biasing the original annotations. The modified datasets allow us to simulate real-world conditions
where annotator preferences and biases may influence labeling.

BoolQ-PreferenceShift(BoolQ-PS) For the BoolQ dataset, we use the GPT-3.5 API to rephrase
the original yes/no labels into various styles, such as casual, formal, or expressive. The semantic
meaning remains the same, but the phrasing of the answer is altered. The prompt used to generate the
rephrased labels is as follows:

You are given a question and a yes/no answer. Please rewrite
the answer in three different styles: 1) Casual, 2) Formal,
3) Expressive. Keep the meaning of the answer the same.
Example:
Question: "Is the sky blue?"
Answer: "Yes."
Rephrased Answers:
1) Casual: "Yeah, for sure."
2) Formal: "Indeed, it is."
3) Expressive: "Absolutely, without a doubt!"

COPA-BiasShift(COPA-BS) In the COPA dataset, we introduce an artificial bias in the selection
of cause or effect by systematically shifting the chosen labels to favor human-related causes over
natural causes. For each premise in the COPA dataset, the model must choose between two options:
one is the cause/effect related to human activity (e.g., "The person went to the store because..."), and
the other is related to a natural event (e.g., "The rain caused flooding because..."). We introduce a
bias β that increases the likelihood of selecting human-related causes or effects.

Let the original probability of selecting cause/effect oi for a given premise be denoted as P (oi),
where i = 1 represents the human-related option and i = 2 represents the natural-related option. The
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bias is introduced as a weighted probability shift, which is mathematically defined as follows:

Pbiased(o1) =
P (o1) + α · I[o1 is human-related]

P (o1) + P (o2) + α
(21)

Pbiased(o2) =
P (o2)

P (o1) + P (o2) + α
(22)

where P (o1) and P (o2) represent the original, unbiased probabilities for the human-related and
natural-related options, respectively. α is a bias factor that we introduce to shift preference toward
human-related options. I[·] is an indicator function that equals 1 when the condition inside it is true
(i.e., when o1 is a human-related option) and 0 otherwise. Pbiased(o1) and Pbiased(o2) represent the
biased probabilities after applying the preference shift.

ReCoRD-Rephrase(ReCoRD-R) For the ReCoRD dataset, we introduce variability in the expres-
sion of correct answers by using the GPT-3.5 API to generate alternative phrasings. While the core
information and correctness of the answers remain unchanged, the phrasing and style are varied to
simulate scenarios where different annotators might express the same answer in different ways. This
tests how well the DCPC framework can reconcile these textual inconsistencies across layers. We
use GPT-3.5 to rephrase the answers to the original questions in the ReCoRD dataset. Below is the
prompt template used to generate the rephrased answers:

You are given a passage and a correct answer. Please rewrite
the answer in three different ways while keeping the meaning
the same. Try to express the same information using different
words and sentence structures.
Example:
Passage: "John went to the store to buy milk, but he forgot
to bring his wallet."
Answer: "John forgot his wallet when he went to buy milk."
Rephrased Answers:
1) "John went to the store for milk but didn’t have his wallet
with him."
2) "When John went to purchase some milk, he realized he had
left his wallet behind."
3) "John didn’t remember his wallet when he went to buy milk."

The same prompt is applied to all answers in the dataset.

SST-2-PolarityShift(SST-2-P) For sentiment analysis in the SST-2 dataset, we modify the sen-
timent labels by introducing slight shifts in their polarity. We adjust the labels of some positive
reviews toward neutral sentiment, and negative reviews are softened to be less extreme. We define
the sentiment labels for the SST-2 dataset as binary: yi ∈ {0, 1}, where yi = 1 represents a positive
sentiment and yi = 0 represents a negative sentiment. To introduce variability in the sentiment
polarity, we apply a weighted shift to the original sentiment label yi, producing a modified sentiment
label y′i.

For each sample, we introduce a shift parameter δ ∈ [0, 1] that represents the degree to which the
sentiment label is altered. The modified sentiment label y′i is computed as:

y′i = (1− δ) · yi + δ · ŷi (23)

where yi is the original sentiment label (either 0 or 1). ŷi is the opposite sentiment label of yi (i.e.,
ŷi = 1 − yi). δ is a shift factor that controls the degree of sentiment modification. For example,
δ = 0.2 indicates a 20% shift toward the opposite sentiment.

To simulate a range of annotator subjectivity, we apply the polarity shift selectively to a portion of the
dataset:

Positive reviews (yi = 1): We shift some positive reviews toward neutral by decreasing the probability
of a positive label using a lower δ value. For example, if δ = 0.3, a positive review will be 30%
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closer to neutral, resulting in a softened sentiment of y′i = 0.7.
y′i = 0.7 (Shifted from fully positive to moderately positive) (24)

Negative reviews (yi = 0): We soften some negative reviews by increasing the probability of a
neutral sentiment. If δ = 0.4, a negative review will be 40% softened, resulting in a less extreme
sentiment label y′i = 0.4.

y′i = 0.4 (Shifted from fully negative to less negative) (25)

RTE-EntailmentShift(RTE-E) In the RTE dataset, we introduce biases into the entailment labels
by systematically shifting the label distribution to prefer contradictions over entailments. The RTE
dataset consists of premise-hypothesis pairs, where each pair is labeled as either Entailment (y = 1)
or Contradiction/Neutral (y = 0). To introduce bias into the dataset, we adjust the labels of a subset
of the pairs to favor contradictions. Specifically, we alter the probability distribution over the label
space for each pair.

Let the original probability of the correct label for a given premise-hypothesis pair be denoted as
P (yi), where yi = 1 represents entailment and yi = 0 represents contradiction or neutral. The biased
probability Pbiased(yi) is defined as:

Pbiased(yi = 0) =
P (yi = 0) + β · I[yi = 1]

P (yi = 0) + P (yi = 1) + β
(26)

Pbiased(yi = 1) =
P (yi = 1)

P (yi = 0) + P (yi = 1) + β
(27)

where P (yi = 0) and P (yi = 1) are the original probabilities for the contradiction/neutral and
entailment labels, respectively. β is the bias factor that we introduce to increase the likelihood of
selecting contradictions over entailments. I[·] is an indicator function that equals 1 when the original
label is entailment (yi = 1) and 0 otherwise. Pbiased(yi = 0) and Pbiased(yi = 1) are the biased
probabilities after applying the label preference shift.

This biasing process systematically shifts the probability distribution in favor of contradictions. For
a subset of the dataset, we modify the labels based on the biased probabilities. For each premise-
hypothesis pair, we select the final label y′i based on the biased distribution Pbiased(yi):

y′i =

{
0, if Pbiased(yi = 0) > Pbiased(yi = 1)

1, otherwise
(28)

Alpaca-InstructionShift(Alpaca-IS): For the Alpaca dataset, we introduce variability in the in-
structional outputs by using the GPT-3.5 API to generate responses in different styles, such as terse,
elaborate, or conversational. While the core task remains unchanged, the stylistic variations in the
instructions and responses introduce preference-driven differences.

To modify the instructional outputs and responses, we use GPT-3.5 to rephrase the original response
in multiple styles. The following prompt template is designed to preserve the core task and meaning
of the response while varying the style:

You are given an instruction and a response. Please rewrite
the response in three different styles: 1) Terse, 2)
Elaborate, and 3) Conversational. Keep the meaning and the
task the same, but vary the tone and style of the response.
Example:
Instruction: "Write a summary of the novel ’1984’ by George
Orwell."
Response: "1984 is a dystopian novel about totalitarianism."
Rephrased Responses:
1) Terse: "1984 is a dystopian story on totalitarian rule."
2) Elaborate: "George Orwell’s novel ’1984’ explores a
dystopian world under totalitarian rule, focusing on themes
of surveillance, freedom, and oppression."
3) Conversational: "So, 1984 is basically a story where a
totalitarian government controls everything, and it’s really
all about how this impacts people’s lives."
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D.4 Baselines

We compare our proposed Dynamic Cross-Layer Preference Correction (DCPC) framework with
full-parameter fine-tuning (Full-FT) and several state-of-the-art Parameter-Efficient Fine-Tuning
(PEFT) methods.

Representation Modification Methods: We include two common representation modification
methods: (1) BitFit [Zaken et al., 2021], which introduces learnable parameters directly into the
hidden representations by adding trainable bias terms; (2) (IA)3 [Liu et al., 2022a], which modifies
the hidden representations by scaling them using trainable vectors. Both methods keep the trainable
vectors fixed across different samples. To adjust the number of tunable parameters, we initialize the
vectors in a reduced dimension r′ < dmodel and project them back to dmodel using a learnable matrix.
For BitFit, r′ = 8, and for (IA)3, r′ = 16.

Adapter-Based Tuning: We include two adapter-based methods as baselines: (1) Houlsby-Adapter
[Houlsby et al., 2019], which is configured with a bottleneck dimension of 18, and (2) Learned-
Adapter[Zhang et al., 2023d], which is configured with a bottleneck dimension of 36.

Prompt-Based Tuning: For prompt-based fine-tuning, we compare against: (1) P-Tuning v2[Liu
et al., 2021], where the number of soft prompt tokens per layer is set to 64, (2) LPT [Liu et al.,
2022b], which uses a bottleneck dimension of 1024 and a soft prompt length of 64 tokens, and (3)
PEDRO[Xie et al., 2024] involves integrating a lightweight vector generator into each Transformer
layer.

LoRA and Its Variants: We also consider LoRA [Hu et al., 2021] and its variant AdaLoRA[Zhang
et al., 2023b] as baselines. For LoRA, the rank of the low-rank adaptation matrices is set to 4. For
AdaLoRA, the initial rank is set to 8 per module, and half of the rank budget is dynamically pruned
during fine-tuning.

E Additional Experimental Results

E.1 Extended Evaluation on Diverse Tasks and Models

To validate the effectiveness of the DCPC framework on more diverse tasks, we extend the evaluation
to include more complex tasks such as code understanding and mathematical reasoning. We evaluate
DCPC on a variety of models, including LLaMA, GPT-3, T5, and BERT, with different model sizes.

For Code Understanding tasks, we use the CodeXGLUE dataset for code summarization, which
involves generating a natural language summary of a code snippet. We also conduct Code Classifica-
tion task. Also from CodeXGLUE, this task classifies code snippets based on their functionalities
(e.g., sorting algorithms, arithmetic operations).

For Mathematical Reasoning tasks, we use the MATH dataset, which contains mathematical word
problems and requires the model to provide solutions via reasoning.

Table 6 and 7 summarize the performance of DCPC and baseline methods on code understanding
and mathematical reasoning tasks. We evaluate performance across multiple model architectures and
sizes.

Table 6: Performance Comparison on Code Understanding Tasks
Model Code Summarization (BLEU) Code Classification (Acc)
Full-FT (LLaMA-2 7B) 62.5 91.2
LoRA (LLaMA-2 7B) 60.2 89.7
P-Tuning v2 (LLaMA-2 7B) 61.4 90.5
DCPC (LLaMA-2 7B) 64.8 93.1
Full-FT (GPT-3) 69.3 94.6
DCPC (GPT-3) 71.2 95.3

The experimental results show that DCPC significantly improves performance on both code under-
standing and mathematical reasoning tasks across all tested model architectures and sizes.
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Table 7: Performance Comparison on Mathematical Reasoning Tasks (MATH Dataset)
Model Math Problem Solving (Acc)
Full-FT (LLaMA-2 7B) 72.3
LoRA (LLaMA-2 7B) 70.1
P-Tuning v2 (LLaMA-2 7B) 71.8
DCPC (LLaMA-2 7B) 75.2
Full-FT (T5 Large) 78.6
DCPC (T5 Large) 80.3

E.2 Embedding Similarity and Semantic Relevance Analysis

To investigate the relationship between layer-wise cosine similarity and semantic relevance, we
conduct a series of experiments on two benchmark datasets: SST-2 and ReCoRD. We select pairs
of semantically similar and dissimilar samples, as verified by human annotators. For each pair, we
compute the cosine similarity at various transformer layers and correlate it with the human-assigned
semantic similarity scores. Specifically, for each semantic pair (xA, xB), the cosine similarity is
computed at the output embeddings of each transformer layer.

The semantic similarity scores, denoted as SA and SB , are based on human evaluation, where SA is
the score of the first sample and SB is the score of the second sample in the pair. The cosine similarity
at each layer is denoted as cos(θl), where l represents the transformer layer.

Table 8 shows the results of the cosine similarity and the corresponding semantic similarity scores
for pairs of samples across different transformer layers. The results demonstrate a clear correlation
between the cosine similarity and the semantic similarity scores across layers. As the transformer
layers deepen, the cosine similarity increases, indicating that the model better captures the semantic
relevance between similar samples at higher layers. Notably, the cosine similarity at layer 5 or higher
closely matches the semantic similarity scores, reinforcing the hypothesis that deeper layers align
more with the model’s understanding of semantic relevance. Furthermore, the similarity between
embeddings at earlier layers (Layers 1-3) is weaker, suggesting that these layers may focus more
on syntactic features rather than capturing the full semantic meaning. As a result, the relationship
between embedding similarity and semantic relevance strengthens progressively in deeper layers.

Table 8: Cosine Similarity and Human-Annotated Semantic Relevance Scores
Dataset Layer 1 Layer 3 Layer 5 Layer 7 Layer 9
SST-2 0.65 (S=1) 0.72 (S=2) 0.81 (S=3) 0.89 (S=4) 0.91 (S=5)
ReCoRD 0.62 (S=1) 0.69 (S=2) 0.76 (S=3) 0.85 (S=4) 0.87 (S=5)

E.3 Modern Backbones Beyond LLaMA-2

We evaluate DCPC on recent open-source families. As shown in Table 9, DCPC yields consistent
gains atop strong prefix-tuning baselines across LLaMA-3, Qwen2.5, and DeepSeek-V2.

Table 9: Modern open-source backbones: DCPC consistently improves over a strong prefix baseline
(P-Tuning v2) on preference-shifted tasks. Cells show baseline → DCPC (∆).

Backbone Params BoolQ-PS (acc) COPA-BS (acc) Alpaca-IS (gpt-score)
LLaMA-2 7B 7B 78.0 → 86.1 (+8.1) 86.1 → 91.7 (+5.6) 8.4 → 9.4 (+1.0)
LLaMA-3 8B-Instruct 8B 88.3 → 91.7 (+3.4) 90.5 → 93.9 (+3.4) 9.3 → 9.7 (+0.4)
Qwen2.5-7B-Instruct 7B 89.2 → 91.6 (+2.4) 91.0 → 93.3 (+2.3) 9.2 → 9.6 (+0.4)
DeepSeek-V2-16B 16B 90.1 → 92.7 (+2.6) 91.6 → 94.0 (+2.4) 9.4 → 9.8 (+0.4)

E.4 Adapter-Agnostic Generality

We replace prefix slices with LoRA ∆W or interpret full-FT gradients as injected slices. Table 10
shows DCPC improves both LoRA and Full-FT variants, while the prefix variant remains strongest
under preference shifts.
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Table 10: Adapter-agnostic generality. Metrics: BoolQ-PS (acc) and MMLU (subset) 5-shot accuracy.
Parentheses show absolute improvement over the corresponding baseline.
Variant Tunable Params BoolQ-PS ↑ MMLU-CoT 5-shot ↑ Notes
Baseline LoRA 10.0M 79.1 66.8 Standard LoRA head(s)
DCPC-LoRA 10.0M 84.2 (+5.1) 69.4 (+2.6) Aligns ∆W across layers
Baseline Full-FT 7B 82.4 68.3 Full-parameter tuning
DCPC-Full-FT 7B 83.5 (+1.1) 69.1 (+0.8) Prefix-logic applied to gradients
DCPC-Prefix (ours) 9.6M 86.1 71.0 Strongest under shifts

E.5 Closed-Source Model Comparison (Zero-Shot)

To contextualize against commercial LLMs under zero-shot inference, Table 11 reports performance
on preference-shifted tasks. DCPC tops all closed-source systems and a strong open-source baseline;
the last column shows the average gap to DCPC.

Table 11: Closed-source comparison (zero-shot). Metrics: accuracy for BoolQ-PS/COPA-
BS/ReCoRD-R/SST-2-P/RTE-E, GPT-score for Alpaca-IS.

Model Family BoolQ-PS COPA-BS ReCoRD-R SST-2-P RTE-E Alpaca-IS
GPT-4o-mini OpenAI 74.2 81.1 81.9 82.5 70.9 6.9
GPT-4o-full OpenAI 75.8 83.9 83.7 85.3 75.7 7.8
Claude-3 Sonnet Anthropic 74.9 82.0 81.8 83.4 75.8 7.9
Gemini 1.5 Pro Google 76.7 82.8 80.6 84.2 75.8 8.0
P-Tuning v2 (7B) open-src 78.0 86.1 85.9 87.5 77.9 8.4
DCPC (7B) ours 86.1 91.7 91.9 92.8 83.7 9.4

E.6 Zero-Shot Out-of-Domain (OOD) Transfer

We quantify whether reconciling within-domain preference conflicts transfers to unseen task families.
We take checkpoints trained on either the original (clean) sets or their preference-shifted counterparts
and evaluate them zero-shot on two held-out suites without any adaptation: Natural-Instructions v2
(NI-v2; Macro-F1) and FLAN-2024 held-out (pairwise win-rate). This isolates whether a model
learns style-invariant representations vs. overfits to local stylistic quirks.

As summarized in Table 12, full-parameter fine-tuning (Full-FT) on shifted data hurts OOD gener-
alization relative to its clean counterpart (∆ = −0.5 F1 / −0.7 win-rate), indicating overfitting to
stylistic noise. In contrast, DCPC trained on the same shifted data improves both NI-v2 and FLAN-24
over DCPC trained on clean data (∆ = +0.7 / +0.8), yielding the strongest zero-shot numbers
overall.

The divergence stems from where preference signals are handled. Full-FT absorbs style idiosyncrasies
into backbone weights, which can entangle task semantics with annotator style. DCPC corrects
conflicts in the prefix space via cross-layer alignment and the Preference Correction Module, nudging
representations toward style-consensus while keeping the backbone frozen. This separation appears
to produce features that are more style-invariant and thus travel better to new instruction distributions.
Absolute gains are modest—as expected for knowledge-centric OOD suites—but consistently positive.

E.7 Dialogue, Cross-Lingual, and Multimodal Coverage

We test DCPC beyond single-turn text: (i) Dialogue on MultiWOZ-2.4 using LLaMA-2-7B with turn-
wise prefixes; a style clash is injected via polite vs. blunt templates while keeping goals unchanged.
(ii) Cross-lingual XNLI (en→zh/fr) with Qwen-2.5-7B; the same premise–hypothesis pairs are
rendered in formal vs. colloquial registers. (iii) Multimodal image–text instruction following on a
sub-20k MM-Instructions split using CLIP-ViT-L (frozen) + LLaVA-7B; we vary caption verbosity
(telegraphic vs. detailed) as the style dimension. DCPC operates unchanged: detect embedding
proximity with divergent distributions, align layer-wise slices, and apply PCM when the ambiguity
gate fires.
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Table 12: OOD transfer (zero-shot). ∆ reports (shift-FT) − (clean-FT) under the same method.
DCPC trained on preference-shifted data improves NI-v2 Macro-F1 and FLAN-24 win-rate, whereas
Full-FT overfits.

Model Training data NI-v2 Macro-F1 ↑ FLAN-24 Win-rate % ↑ ∆ OOD
Base (no FT) — 63.2 69.0 —
Full-FT (clean) original sets only 65.4 70.8 —
Full-FT (shift) preference-shift sets only 64.9 70.1 −0.5 / −0.7

DCPC (clean) original sets only 66.2 72.2 —
DCPC (shift) preference-shift sets only 66.9 73.0 +0.7 / +0.8

Table 13: DCPC in dialogue, cross-lingual, and multimodal settings. Metrics: MultiWOZ JGA,
XNLI avg accuracy, MM-Instructions CIDEr.

Setting Backbone Metric LoRA DCPC ∆

Dialogue · MultiWOZ-2.4 (polite vs blunt) LLaMA-2-7B JGA ↑ 58.1 61.9 +3.8
Cross-Lingual · XNLI (en→zh/fr) Qwen-2.5-7B Acc ↑ 79.4 82.3 +2.9
Multimodal · MM-Instructions (image+text) CLIP-ViT-L + LLaVA-7B CIDEr ↑ 93.7 96.8 +3.1

Table 13 shows consistent gains over a LoRA baseline: +3.8 Joint-Goal-Accuracy (MultiWOZ), +2.9
accuracy (XNLI en→zh/fr), and +3.1 CIDEr (multimodal). Improvements persist despite different
encoders (decoder-only vs. encoder–decoder) and modalities (text-only vs. image+text). The pattern
indicates that DCPC’s “embedding proximity + predictive divergence” trigger captures stylistic
conflicts that are orthogonal to task semantics and modality. Cross-layer alignment reduces layer-wise
drift caused by style tokens, while PCM provides a lightweight residual correction when conflicts
remain. Notably, CLIP is frozen in the multimodal stack, suggesting DCPC can resolve conflicts
primarily on the language side while respecting visual grounding.
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