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Abstract001

Recent Multi-Party Conversation (MPC) mod-002
els typically rely on graph-based approaches003
to capture dialogue structures. However, these004
methods have limitations, such as information005
loss during the projection of utterances into006
structural embeddings and constraints in lever-007
aging pre-trained language models directly. In008
this paper, we propose SS-MPC, a response009
generation model for MPC that eliminates the010
need for explicit graph structures. Unlike ex-011
isting models that depend on graphs to analyze012
conversation structures, SS-MPC internally en-013
codes the dialogue structure as a sequential in-014
put, enabling direct utilization of pre-trained015
language models. Experimental results show016
that SS-MPC achieves 15.60% BLEU-1 and017
12.44% ROUGE-L score, outperforming the018
current state-of-the-art MPC response genera-019
tion model by 3.91%p in BLEU-1 and 0.62%p020
in ROUGE-L. Additionally, human evaluation021
confirms that SS-MPC generates more fluent022
and accurate responses compared to existing023
MPC models.024

1 Introduction025

The rapid development of the Internet and the so-026

cial media platforms have changed the way peo-027

ple communicate with each other and created new028

forms of interaction. In particular, Multi-Party Con-029

versation (MPC), conversation in which multiple030

people freely exchanges opinions at the same time,031

is increasingly becoming common. MPC occurs032

on many platforms, such as group chats, online033

forums, and comment sections on social media.034

Recent research trends show that analysis and re-035

sponse generation on MPC is in its infancy, and036

the importance and need for them is increasingly037

being emphasized (Park and Lim, 2020; Anjum038

et al., 2020).039

MPC have flexibility to allow multiple speakers040

to participate in a conversation in no particular or-041

der or rule. These attributes of MPC complicate the042

Figure 1: An example of data in MPC Dataset (Ubuntu
IRC Benchmark Dataset). The dataset is constructed of
context and structural information. Context consists
of utterances, and structural information consists of
speaker information, target-utterance relation and ad-
dressee relation of each utterance.

flow and structure of the conversation compared 043

to one-on-one conversations, and create additional 044

challenges in understanding the context and intent 045

of the utterances and speakers. Each speaker brings 046

a unique context and intent to the conversation, and 047

he or she must understand and process the context 048

in which a particular utterance is being delivered 049

to whom. However, because the addressee of an 050

utterance is often unclear in MPC, predicting or 051

analyzing the structure of the dialogue is one of 052

the major challenges for MPC. In addition, because 053

multiple participants are simultaneously express- 054

ing their opinions and interacting, the topic and 055

flow of the conversation are likely to change fre- 056

quently. Unlike one-on-one conversations, these 057

characteristics create the additional challenge of 058

closely tracking and managing the context of each 059

utterance in MPC. For these reasons, developing 060

systems for generating responses to MPC is consid- 061

ered one of the most challenging areas of current 062
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dialogue system research.063

To address this complexity, MPC datasets typ-064

ically include more structural conversation infor-065

mation for each utterance (Lowe et al., 2015). For066

example, as shown in Figure 1, each utterance con-067

tains the structural information such as speaker068

information, which tells us who is speaking, the ad-069

dressee information, which tells us to whom the ut-070

terance is addressed, and the target-utterance infor-071

mation, which indicates which utterance the current072

utterance is responding to. The target-utterance re-073

lationship is typically linked to only one previous074

utterance in the conversation history, and the ad-075

dressee is semantically the same as the speaker076

of the target-utterance. This structural informa-077

tion is critical for dialogue systems to understand078

and learn about the complexity of MPC, and it079

helps MPC response generation models generate080

responses that are appropriate for a given context.081

However, traditional language models using se-082

quential input have found that it is very difficult to083

express the structure of these conversations. Re-084

cent work (Gu et al., 2022, 2023b) has attempted to085

solve this problem using graphs. By representing086

utterances, speakers, and the relationships between087

utterances and speakers as graphs, and interpret-088

ing them through a graph encoder, it was possible089

to train a model to recognize the structure of a090

conversation and generate responses accordingly.091

But this still limits the use of pre-trained language092

models itself, since there are no such pre-trained093

graph-encoder models tuned properly to analyze094

the structure of conversations. If we partially em-095

ploy randomly initialized graph-encoder, it may096

break the embedding space of the entire pre-trained097

model.098

In this paper, we introduce Sequence-Structured099

MPC (SS-MPC), a response generation system100

for multi-party conversations that leverages the101

encoder-decoder architecture of the transformer102

while replacing the role of a graph encoder with103

a soft prompt. Instead of explicitly encoding con-104

versational structures using a graph encoder, SS-105

MPC effectively integrates structural information106

through well-designed soft prompts within the stan-107

dard encoder-decoder framework. This approach108

eliminates the need for additional model compo-109

nents, accelerates the training process, and achieves110

superior performance compared to existing models.111

Futhermore, unlike additinal models that re-112

quire MPC analysis for the response generation,113

SS-MPC has the advantage of being able to ana-114

lyze conversations and generate responses at once 115

by end-to-end, enabling immediate usage in real- 116

world MPC environments. By learning the conver- 117

sation structure such as the correct target-utterance 118

and addressee information for each utterance dur- 119

ing the training process, the model can make ap- 120

propriate inferences and generate the final response 121

even when some of the correct target-utterance and 122

addressee information is omitted during the actual 123

inference process. This can be done because the 124

SS-MPC contains the post-training process with 125

the way masking the information partially, which 126

means that the model itself is already trained for 127

the ability to predict the omitted target-utterance or 128

addressee information. 129

Our contributions are summarized as follows: 130

• We propose a novel method to train language 131

models for MPC response generation without 132

graph structures, which leverages sequence- 133

structured inputs to internally represent the 134

interaction flow in the dialogue. 135

• The proposed model can be used in real-world 136

MPC environments easily because the model 137

can simultaneously analyze conversations and 138

generate responses using an end-to-end frame- 139

work. 140

• Experimental results show that the proposed 141

model performs better than the previous SOTA 142

model. In addition, our various analysis re- 143

sults provide directions for future research in 144

multi-party dialogues. 145

2 Related Work 146

2.1 Multi-Party Dialogue Structural Analysis 147

The task of predicting relationships between speak- 148

ers to analyze the structure of MPC began in 2016. 149

Ouchi and Tsuboi (2016) first proposed the ad- 150

dressee prediction and utterance selection task. To 151

study this task, they first hand-created a dataset of 152

MPC using log transcripts from Ubuntu IRC chan- 153

nels, and then utilized RNNs to perform the pro- 154

posed task. Later, Zhang et al. (2018) proposed SI- 155

RNN, which updates speaker embeddings based on 156

roles for addressee prediction. Meng et al. (2017) 157

also proposed a speaker classification task to model 158

the relationships between speakers. Meanwhile, 159

for the MPC response selection task, Wang et al. 160

(2020) proposed to track dynamic topics, and then a 161

who-to-whom (W2W) model (Le et al., 2019) was 162
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proposed to predict the addressees of all utterances163

in a conversation. Gu et al. (2021) proposed the164

MPC-BERT model, which utilizes multiple MPC165

learning methods to learn the complex interactions166

between recent utterances and interlocutors, and it167

performs post-training for MPC tasks. In addition,168

Gu et al. (2023a) proposed the GIFT model to help169

fine-tuning for MPC tasks with only simple scalar170

parameters on the attentions.171

However, all the methodologies proposed in the172

above works have the limitation that they utilize173

the utterances to predict the addressee information174

of each utterance. This makes it difficult to uti-175

lize these methodologies for response generation176

models in real-world MPC environments.177

2.2 Multi-Party Dialogue Response178

Generation179

Along with these MPC tasks, there has been a par-180

allel research on MPC response generation, which181

is the task of generating responses to a multi-party182

dialog. Hu et al. (2019) proposed a graph structure183

network (GSN) to model the graphical information184

flow for response generation. Later, Heter-MPC185

(Gu et al., 2022) was proposed to model complex186

interactions between utterances and interlocutors187

as graphs. This paper used graphs with two types of188

nodes and six types of edges to model the structure189

of multi-party conversations. Li and Zhao (2023)190

utilized the Expectation-Maximization (EM) al-191

gorithm in pre-training to predict the missing ad-192

dressee information in the dataset. However, they193

still suffer from the drawback that the fine-tuning194

process only allows for an ideal setup where all195

addressees are labeled. To overcome this, MADnet196

(Gu et al., 2023b) utilizes the EM algorithm in the197

model of Gu et al. (2022) to directly predict and198

supplement the missing addressee information for199

training and response generation.200

3 Methodology201

In this paper, we propose SS-MPC, a novel MPC re-202

sponse generation model with the encoder-decoder203

structure of transformer. Here, we describe its in-204

put, output, and the training process.205

3.1 Preliminaries206

In a typical response generation task, the goal is to207

generate a final response r̄ for a given conversation208

history h. In addition, the traditional MPC response209

generation task utilizes not only the dialogue his-210

tory but also the dialogue structural information211

C. C consists of the speaker ci, addressee ai, and 212

target-utterance ui for each of the utterances. 213

C = {c1, c2, . . . , cn} (1) 214
215

ci = {si, ai, ui} (2) 216

where the number of the utterances is n and 1 ≤ 217

i ≤ n. 218

In general, the MPC datasets provide C, and the 219

MPC models perform the task of finding the most 220

appropriate response r̄ based on the given h and C 221

information. The response tokens are generated in 222

an auto-regressive way. This can be formulated as 223

follows: 224

r̄ = argmax
r

P (r|h,C; θ) 225

= argmax
r

|r|∏
t=1

P (rt|h,C, r<t; θ) (3) 226

where rt means the t-th token, and r<t means the 227

previous tokens of the final response r. 228

The existing MPC models have utilized graph- 229

based models to use C. In this process, there can be 230

a loss of information when aligning the embedding 231

space of h with C and using a graph encoder after 232

random initialization. 233

r̄ = argmax
r

PDec(r|GraphEnc(h,C); θ) (4) 234

where PDec means the probability of each to- 235

ken computed by the decoder of the model, and 236

GraphEnc(·) means the embedding created by 237

the graph encoder of the model. 238

In the case of SS-MPC, we use the sequence- 239

structured input of each utterance, so we can utilize 240

the full information of dialogue history and dia- 241

logue structural information without using a graph 242

encoder. 243

r̄ = argmax
r

PDec(r|Enc(h, s(C)); θ) (5) 244

where s(·) is the dialogue structuralization, which 245

means transforming original input as the sequence- 246

structured input containing the dialogue structure 247

information internally. 248

Furthermore, we should consider the situation 249

where the lack of structural information exists 250

in MPC. Graph-encoder needs a fully connected 251

graph since the lack of edges means that uncon- 252

nected nodes can confuse the model in encoding. 253

But SS-MPC does not need any change in model 254

3



Figure 2: The overview of the SS-MPC. The encoder part is expected to analyze the dialogue and predict the
structural information in dialogue. The decoder part is expected to generate the final response with using the
information analyzed in encoder.

structure or additional training in this situation be-255

cause the model is already trained with the way256

masking the information partially. The inference257

process of the SS-MPC is as follows:258

r̄, C̄ = argmax
r

P (r|h, s(Comit); θ) (6)259

where Comit is the partially omitted structural infor-260

mation in MPC, and C̄ means the predicted struc-261

tural information for Comit.262

3.2 Overview of SS-MPC263

Figure 2 shows the overview of the SS-MPC. It264

utilizes the encoder-decoder structure of the trans-265

former because the transformer encoder is com-266

monly used to analyze the structure of conversa-267

tions (Shen et al., 2020; Mehri et al., 2019), and we268

want to leverage the strengths of these encoders to269

analyze the structure of conversations while allow-270

ing the decoder to focus on generating the actual271

responses.272

The first step to utilize sequence-structured in-273

put instead of graph-structured input is to insert274

the conversation structure into a sequential form.275

To do this, we add three soft prompt tokens to the276

model tokenizer as MPC structure tokens to rep-277

resent the structure of the conversation by adding278

information about each utterance. The embeddings279

of new tokens act as soft prompts for each utter-280

ance, which reflect the structural information of the281

conversation.282

Then we post-train only the encoder with the 283

task of predicting dialogue structure to improve 284

the encoder’s ability to interpret the meaning of 285

the added structure tokens and analyze the context 286

with the dialogue structure. Through this process, 287

the model not only learns the meaning of the added 288

MPC structure tokens, but also learns to predict the 289

partially omitted dialogue structure information of 290

each utterance using the information of previous 291

utterances and speakers. 292

3.3 MPC Structure tokens 293

To represent the speaker, addressee, and target- 294

utterance for each utterance as a dialogue structure, 295

three kinds of soft prompt tokens are added to the 296

model tokenizer, called by MPC structure tokens; 297

their embeddings are randomly initialized before 298

training. The added MPC structure tokens are as 299

follows: 300

• Index structure token 301

• Speaker structure token 302

• Structure masking token 303

Index structure token These tokens are devel- 304

oped to distinguish the order of the conversa- 305

tion; they are designed by indicating the order of 306

the each utterance by number, such as "[IDX1]", 307

"[IDX2]", . . . ,"[IDXn]". The target-utterance can 308

be also represented by specifying the index of the 309

target-utterance. 310
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Figure 3: An example of the sequence-structure tem-
plate for an utterance. Two index structure tokens
which represents the utterance’s index and the target-
utterance’s index, and two speaker structure tokens
which represents speaker and addressee of the utterance
are added as prefix to the tokenized utterance tokens.

Speaker structure token These tokens are to dis-311

tinguish speakers in a conversation based on the312

order in which they appear; they are designed to313

distinguish between speakers, such as "[SPK1]",314

"[SPK2]", . . . , "[SPKm]". The addressee infor-315

mation for each utterance can be expressed by spec-316

ifying the speaker information via the correspond-317

ing token.318

Structure masking token "[MaskIDX]" and319

"[MaskSPK]" tokens are added to mask MPC struc-320

ture information. The "[MaskIDX]" token masks321

the index and the target-utterance information, and322

the "[MaskSPK]" token masks the speaker and the323

addressee information in a given utterance.324

Since there is not a target-utterance and ad-325

dressee for the first utterance, we add "[IDXNone]"326

token and "[SPKNone]" token to indicate that it has327

no target-utterance or addressee information.328

3.4 Dialogue Structuralization329

Dialogues are sequence-structured using MPC330

structure tokens that are added to express the struc-331

ture of the conversation in a sequential form. The332

entire conversation can be broken down into utter-333

ances, and each of the utterances consists of the334

structure tokens and utterance tokens. Note that,335

for the final response, the utterance tokens are omit-336

ted because it is the answer which the model should337

generate.338

In Figure 3, an example is shown for the i-th339

utterance of the entire conversation. The token340

that indicates that the i-th utterance is labeled by341

"[IDXi]". This i-th utterance is responding to the342

j-th utterance, which labeled by the second token343

"[IDXj ]". Furthermore, the i-th utterance is be-344

ing uttered by the speaker-k and is being answered345

to the speaker-l, which is represented by the to- 346

kens "[SPKk]" and "[SPKl]" in the following se- 347

quence. Thus we can set the sequence-structure 348

template of i-th utterance as follows: 349

Si = (

structure tokens︷ ︸︸ ︷
[IDXi]; [IDXj ]; [SPKk]; [SPKl]; 350

utterance tokens︷ ︸︸ ︷
[token1]; [token2]...) (7) 351

where 1 ≤ i ≤ n for dialogue with n utterances. 352

Then the model should generate the final re- 353

sponse, so its structure information is inputted. The 354

sequence-structure template is set as follows: 355

Sr = (

response structure tokens︷ ︸︸ ︷
[IDXr]; [IDXt]; [SPKs]; [SPKa]) (8) 356

where "[IDXr]","[IDXt]","[SPKs]", and 357

"[SPKa]" tokens means the index, target- 358

utterance index, speaker, and addressee of the 359

current response utterance. 360

The sequence-structure templates of whole utter- 361

ances in a dialogue are concatenated as a sequence- 362

structured input S = (S1;S2; ...;Sn−1;Sn;Sr). 363

In addition, the structural information of the in- 364

put can be masked using the "[MaskIDX]" and 365

"[MaskSPK]" tokens. This masking approach is 366

performed when target-utterance and addressee in- 367

formation has to be predicted in the conversation. 368

In particular, the encoder is post-trained using the 369

masking approach. 370

3.5 Post-training for Encoder 371

SS-MPC with the addition of soft prompt tokens 372

needs to carry out post-training to obtain better 373

embeddings of soft prompt tokens containing se- 374

mantic and contextual information from context 375

tokens. In particular, masking is performed with a 376

probability of hyper-parameter p% for the structure 377

tokens of each utterances, and the encoder predicts 378

the correct answer for the masked structure tokens. 379

To predict the structure token, the LM head of post- 380

training for encoder shares the parameter with the 381

LM head in decoder since they generate the same 382

type of tokens; For the utterance tokens, we train 383

the encoder to generate the tokens itself. The for- 384

mulation of the loss function for post-training is as 385

follows: 386

Lpost = −
∑
i

logP (xi|Xmasked;ϕ) (9) 387
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where i means each position of the input, xi de-388

notes the original encoder input token of the i-th389

position, for the masked encoder input Xmasked.390

And the ϕ is the parameter of the SS-MPC encoder.391

3.6 Fine-Tuning Model392

SS-MPC is fine-tuned after post-training to per-393

form the task of generating the final response.394

Fine-tuning is same as the learning process of a395

typical transformer encoder-decoder model. The396

difference is that the SS-MPC utilizes sequence-397

structured input.398

L = −
n∑

i=1

logP (ri|r<i, X; θ) (10)399

where ri is the i-th final response token, X is the400

sequence-structured encoder input, and θ is the401

parameter of the SS-MPC.402

4 Experiments403

Dataset To evaluate the performance of the pro-404

posed SS-MPC model, we utilize the Ubuntu IRC405

benchmark dataset, which has originally released406

by Ouchi and Tsuboi (2016) and Hu et al. (2019),407

and has been widely using for various MPC tasks.408

This dataset comprises user conversations from the409

Internet Relay Chat (IRC) channel of the Ubuntu410

homepage.411

Two Ubuntu IRC Benchmark datasets are used412

in the experiments as follows:413

Ubuntu IRC (2016): The dataset released by414

Ouchi and Tsuboi (2016)1 has some missing struc-415

tural information in the dataset. We construct the416

sequence-structured input with masking those miss-417

ing information. This dataset is categorized into418

three subsets based on session length (Len-5, Len-419

10, and Len-15). We employ the Len-5 subset,420

following the settings of preivious studies.421

Ubuntu IRC (2019): The dataset released by422

Hu et al. (2019)2 includes all structure information423

for every utterances. The dataset is used for post-424

training SS-MPC both in Ubuntu IRC (2016) and425

Ubuntu IRC (2019). Further details on the datasets426

can be found in the Appendix A.427

1We adopt the refined version provided by Le et al. (2019),
which is released on https://github.com/lxchtan/
HeterMPC (Gu et al., 2022)

2We adopt the re-emplemnted processed version of (Gu
et al., 2022), which is released on https://github.com/
lxchtan/HeterMPC

Evaluation Metrics To evaluate SS-MPC, we 428

just follow previous research and measure its per- 429

formance using BLEU-1 through BLEU-4, ME- 430

TEOR, and ROUGE-L score for the final response. 431

All metrics are computed using the Hugging Face 432

evaluate library3 (Wolf et al., 2020). 433

Baselines For the backbone model, we use 434

BART (Lewis et al., 2020) as a widely recognized 435

transformer-based encoder-decoder model. BART 436

leverages the encoder-decoder architecture that are 437

well-suited for response generation as well as other 438

generative tasks such as summarization and ma- 439

chine translation. 440

We compare our approach against the following 441

models: (1) GSN (Hu et al., 2019). GSN’s core 442

architecture consists of an utterance-level graph- 443

structured encoder. (2) GPT-2 (Radford et al., 444

2019), a unidirectional pre-trained language model. 445

Following its original setup, all context utterances 446

and response are concatenated by using a special to- 447

ken "[SEP ]" as input. We also compare ConvMPC 448

with the (3) HeterMPC (Gu et al., 2022) and (4) 449

MADnet (Gu et al., 2023b), which are known as 450

SOTA models among the current MPC response 451

generation models. The HeterMPC model struc- 452

tures the speaker, target utterance, and addressee 453

relationships in the form of a heterogeneous graph 454

to model complex MPC. To analyze the structured 455

data, it utilizes a heterogeneous graph encoder 456

structure that utilizes Graph Attention (GAT) op- 457

erations. In the case of the MADnet model, it is 458

a model that slightly modifies the graph input of 459

the existing HeterMPC model and adds the EM- 460

algorithm methodology to generate a response by 461

inferring the missing data from the existing data 462

through the EM-algorithm. 463

We further evaluate our approach on decoder 464

based Large Language Model (LLM) in appendix 465

C. 466

Implementation Details Model parameters are 467

initialized with BART-large (Lewis et al., 2020), 468

which were implemented in Hugging Face’s 469

Transformers library 4 (Wolf et al., 2020). We 470

use AdamW (Loshchilov and Hutter, 2017) for op- 471

timization, with an initial learning rate of 1e-5 that 472

decayed linearly. The model is trained on the two 473

Ubuntu IRC benchmark training sets, with a maxi- 474

mum of 10 epochs for post-training and fine-tuning 475

3https://huggingface.co/docs/evaluate/index
4https://huggingface.co/facebook/bart-large
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Dataset Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Ubuntu IRC (2016)

GSN† (Hu et al., 2019) 10.23 3.57 1.70 0.97 4.10 9.91
GPT-2 (Radford et al., 2019) 8.86 2.69 1.11 0.61 7.40 8.53
BART (Lewis et al., 2020) 11.76 4.86 2.97 2.21 8.91 9.86
MADNet (Gu et al., 2023b) 11.82 4.58 2.65 1.91 9.78 10.61
SS-MPC 13.40 5.87 3.60 2.65 10.15 11.14

Ubuntu IRC (2019)

GSN† (Hu et al., 2019) 6.32 2.28 1.10 0.61 3.27 7.39
GPT-2 (Radford et al., 2019) 10.85 3.76 1.61 0.84 9.00 7.24
BART (Lewis et al., 2020) 12.71 4.52 2.13 1.25 8.75 10.01
HeterMPC (Gu et al., 2022) 10.29 3.68 1.71 0.96 8.79 11.22
MADNet (Gu et al., 2023b) 11.69 4.57 2.33 1.45 9.48 11.82
SS-MPC (Ours) 15.60 6.62 3.67 2.44 10.92 12.44

Table 1: Performance comparison of different models on two Ubuntu IRC Benchmark datasets (Ouchi and Tsuboi,
2016; Hu et al., 2019) with various metrics. The performance result of GSN† is cited from Gu et al. (2023b).

Human Evaluation Score Kappa
Gold Label 1.91 0.51
GPT-2 (Hu et al., 2019) 0.6 0.50
BART (Lewis et al., 2020) 1.50 0.48
MADNet (Gu et al., 2023b) 1.57 0.46
SS-MPC (Ours) 1.84 0.55

Table 2: Human Evaluation results on Ubuntu IRC
Benchmark test set of Ubuntu IRC (2019) Hu et al.
(2019) with several MPC response generation models.

individually. We use a batch size of 8 with 2 gra-476

dient accumulation steps and select the best model477

based on validation performance for testing. The478

maximum length of the generated output is set to479

50 tokens just following previous studies.480

4.1 Main Results481

Table 1 shows model performances on two Ubuntu482

IRC Benchmark datasets, Ubuntu IRC (2016)483

(Ouchi and Tsuboi, 2016) and Ubuntu IRC (2019)484

(Hu et al., 2019). SS-MPC achieves a significant485

performance improvement on both datasets com-486

pared to previous models. On the Ubuntu IRC487

(2016) dataset, SS-MPC outperforms the previ-488

ous state-of-the-art (SOTA) model, MADNet, by489

1.58%p in BLEU-1, 1.29%p in BLEU-2, 0.95%p490

in BLEU-3, 0.74%p in BLEU-4, 0.37%p in ME-491

TEOR, and 0.53%p in ROUGE-L.492

Similarly, on the Ubuntu IRC (2019) dataset,493

SS-MPC also surpasses MADNet by 3.91%p in494

BLEU-1, 2.05%p in BLEU-2, 1.34%p in BLEU-495

3, 0.99%p in BLEU-4, 1.44%p in METEOR, and496

0.62%p in ROUGE-L. You can see the response497

examples generated by each model in Appendix B.498

4.2 Human Evaluation499

Since quantitative metrics alone may not fully cap-500

ture the quality of generated responses, we also501

conduct a human evaluation. Specifically, we ran-502

Masking Rates BLEU-1 METEOR ROUGE-L
w/o post-training 14.22 9.87 11.84
p=25% (SS-MPC) 15.60 10.92 12.44
p=50% 14.30 9.87 12.04
p=75% 13.54 9.20 11.15
p=100% 13.81 9.45 11.24

Table 3: Ablation Study of the SS-MPC based on mask-
ing rate during post-training.

Model Target Utt. Adr.
BERT (Devlin et al., 2019) - 82.88%
SA-BERT (Sun et al., 2019) - 86.98%
MPC-BERT (Gu et al., 2021) - 89.54%
GIFT (Gu et al., 2023a) - 90.18%
SS-MPCEncoder 76.38% 89.92%

Table 4: Performance (precision@1) of predicting
target-utterance and addressee on the test set of Ubuntu
IRC (2019) (Hu et al., 2019).

domly sampled 100 conversations from the Ubuntu 503

IRC benchmark dataset and asked three graduate 504

students to evaluate the quality of the generated 505

responses. The evaluation focuses on three inde- 506

pendent aspects: (1) relevance, (2) fluency, and 507

(3) informativeness. Each judge assigned binary 508

scores for each aspect, with the final score rang- 509

ing from 0 to 3. Table 2 presents the average fi- 510

nal score of human evaluation results comparing 511

GPT-2, BART, MADNet, and SS-MPC against the 512

ground truth (Gold Label). In addition, Fleiss’s 513

Kappa (Fleiss, 1971) is calculated to measure inter- 514

annotator agreement. The result indicates that SS- 515

MPC produces more relevant, fluent, and informa- 516

tive responses than any other model. 517

4.3 Ablation Study 518

Post-Training and Masking Probability Table 519

3 shows the performance of the model as a function 520

of the probability p of masking the target-utterance 521
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Models Structural Info. BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
MADNet (Gu et al., 2023b)

fully given
11.69 4.57 2.33 1.45 9.48 11.82

SS-MPC 15.60 6.62 3.67 2.44 10.92 12.44
SS-MPCreal-world -last utt. 13.59 5.47 3.10 2.14 9.15 11.03

Table 5: Performance of SS-MPC without structural information of last utterance.

Model Utt. Info. Target Utt. Adr.
GIFT (Gu et al., 2023a) - 90.18%
SS-MPCEncoder 76.38% 89.92%
SS-MPCreal-world -last utt. 62.90% 78.40%

Table 6: Performance of predicting target-utterance of
addressee in other MPC model. Unlike other models,
SS-MPC Encoder does not utilize final response.

and addressee information during post-training of522

the encoder. From Table 3, we can see that the post-523

trained model with 25% of masking probability524

effects impressively on final performance of gener-525

ation, while 50% of masking probability achieves526

almost same performance as the model only fine-527

tuned without post-training. The post-trained mod-528

els with 75% and 100% of masking probability529

shows even lower performances than the model530

only fine-tuned without post-training, which can531

be interpreted as excessive masking degrades the532

model’s analytical capability. This results provides533

the partial criteria of required masking probability534

when re-learning newly added token embeddings535

using the Masked Language Modeling (MLM) ap-536

proach.537

Addressee prediction The SS-MPC is trained538

to understand structures through structure tokens539

via post-training process. We hypothesize that this540

approach could be applied to the task of addressee541

prediction. To verify this, we train the model by542

masking only the addressee and predicting it. Table543

4 shows the comparison of the addressee prediction544

tasks with other MPC analysis models, in terms545

of Precision@1. It shows that SS-MPC achieves546

89.92% in addressee prediction, which is very close547

to the previous SOTA model, GIFT.548

4.4 Response Generation in Real-World MPC549

Scenario550

SS-MPC can generate responses even when partial551

structural information is missing by simply mask-552

ing the absent tokens as Equation 6. Here, we553

assume the real-world MPC scenario, where the554

model should continuously generate the MPC. In555

this scenario, the target-utterance and addressee556

information of the response is missing. And the557

model has to predict the missing target-utterance 558

and addressee while generating the following re- 559

sponse. Our method can accumulate the pre- 560

dicted structure information to generate the next 561

response continuously in this scenario. "[IDXt]" 562

and "[SPKa]" are masked with structure mask- 563

ing tokens to construct sequence-structured input 564

(Equation 8). 565

Table 5 presents the performance of SS-MPC 566

without target-utterance and addressee informa- 567

tion for the final response, which is marked as SS- 568

MPCreal-world in this table. While its performance 569

is slightly lower than SS-MPC with full structural 570

information, it still outperforms the previous SOTA 571

model, MADnet, in BLEU and maintains compa- 572

rable scores in METEOR and ROUGE-L. Unlike 573

existing SOTA models that require all the target- 574

utterance and addressee information for each utter- 575

ance, SS-MPC can generate the response with pre- 576

dicting the most appropriate target-utterance and 577

addressee to answer itself. 578

In addition, Table 6 demonstrates SS-MPC’s 579

ability to predict the target-utterance and addressee 580

of the last utterance in the real-world scenario. Al- 581

though the performance is inevitably lower than 582

in an environment where responses are present, 583

SS-MPC still appears to maintain a reasonable per- 584

formance on the target-utterance and addressee pre- 585

diction in this scenario. 586

5 Conclusions 587

We introduce SS-MPC, a model optimized for gen- 588

erating responses in multi-party conversations. Un- 589

like traditional graph-based approaches, SS-MPC 590

employs the encoder-decoder architecture of trans- 591

former to fully leverage the pre-trained knowledge 592

of language models. For this, we propose a novel 593

method to encode dialogue structure sequentially 594

within the input, allowing the model to capture the 595

interaction flow in the dialogue without relying on 596

explicit graph representations. SS-MPC outper- 597

forms the existing SOTA MPC response generation 598

model and has the distinct advantage of easily ap- 599

plication to real-world MPC scenarios depending 600

on not requiring any additional module. 601
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Limitations602

The SS-MPC proposed in this paper has shown603

good performance compared to existing MPC re-604

sponse generation models, but it is limited by the605

fact that both training and inference are performed606

only on the Ubuntu IRC benchmark dataset, which607

makes it less generalizable. This is due to the ab-608

solute lack of MPC datasets, and it is necessary to609

apply the model to a wider variety of topics and610

conversations between different speakers to main-611

tain generality. There is another room for further612

development of the model. For example, the model613

can be trained by initializing the initial embeddings614

of the added soft prompt tokens to specific values615

(e.g., [CLS] or [SEP] embeddings), or by initial-616

izing the embeddings to follow a specific distri-617

bution. Acquiring additional MPC datasets and618

further developing Multi-MPC will be part of our619

future work.620
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A Data Statistics772

Datasets Train Valid Test
Ouchi and Tsuboi (2016) 461,120 28,570 32,668
Hu et al. (2019) 311,725 5,000 5,000

Table 7: Statistics of the two benchmarks evaluated in
this paper.

B Case Study773

Case 1774

SPK1: e : could not open lock file775

FILEPATH - open ( 13 permission776

denied ) e : unable to lock the adminis-777

tration directory ( FILEPATH are you778

root ?779

SPK2: you need to be using sudo780

SPK3: ah , ok , so it ’s not just me781

SPK4: you can read all about782

FILEPATH issues on URL783

SPK2: you can edit off the us . part of784

the url and that should fix you up785

786

target-utterance: e : could not787

open lock file FILEPATH - open ( 13788

permission denied ) e : unable to lock the789

administration directory ( FILEPATH790

are you root ?791

answer speaker: SPK5792

answer adressee: SPK1793

794

Generated Responses:795

Models Response
Gold Label well , you are n’t root , are n’t you

? EMOJI
Bart are you using sudo or gksudo ?
HeterMPC please don’t flood, use url to paste,

do nix, do not use enter as punctu-
ation.

MADNet please don’t flood, use URL to
paste, do nt use enter as punctu-
ation.

SS-MPC you need to be able to open it as
root

Case 2 796

SPK1: many iconpacks may be for the 797

older kde3 798

SPK2: i have run checkdisk from 799

windows and i have many errors in 800

partition 801

SPK3: sure , ai n’t there a way to filter 802

out 4.1 packs ? 803

SPK1: thats not a good sign . 804

SPK3: i ’m using kde to do that 805

806

target-utterance: sure , ai n’t there a 807

way to filter out 4.1 packs ? 808

answer speaker: SPK1 809

answer adressee: SPK3 810

811

Generated Responses: 812

Models Response
Gold Label i imagine it depends on

FILEPATH you are looking
Bart i ’m not sure , but i guess it ’s filter

by version
HeterMPC i don’t know, i’m not sure how to

do it
MADNet i don’t know, i’ve never used kde.
SS-MPC there is a way , but i do n’t remem-

ber the kde3 way
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Case 3813

SPK1: shaft : not now , only with the814

ubuntu cd i can see the disk unpartitioned815

SPK2: see when i stopped a linucx816

distro during install a while back817

everything refused to boot from cd until818

i sorted it out819

SPK1: i gues is domething like that .820

how do i do that ?821

SPK2: well its just a guess from822

previous experience ,823

SPK2: id try installing ubuntu , with it824

using all your hdd , then try installing825

windows over it , thats what i had to do826

SPK1: you mean , i will format the827

disk again with windows , errasing the828

previous ubuntu installing ?829

830

target-utterance: you mean , i will831

format the disk again with windows ,832

errasing the previous ubuntu installing ?833

answer speaker: SPK2834

answer adressee: SPK1835

836

Generated Responses:837

Models Response
Gold Label going off my experience with

what seemed the same problem
yes , unless you can ask someone
else that may have a technical so-
lution for you EMOJI

Bart i will format the disk again with
windows , and erase the previous
ubuntu install

HeterMPC i think you can do that with the
ubuntu cd

MADNet i dont know, i dont use windows,
so i dont know

SS-MPC you should be able to use the en-
tire drive again , but i dont know
if it will work

C Adaptation on Large Language Models 838

Models BLEU-1 METEOR ROUGE-L
Qwen2.5-3B 33.62 31.89 33.09
SS-MPCQwen2.5−3B 34.62 34.20 33.33

Table 8: Applied result on LLM. We use Qwen2.5-3B
model for training and inference.

The concept of dialogue structuralization is also 839

applicable to Large Language Model (LLM). In Ta- 840

ble 8, we compare the effects of dialogue structural- 841

ization in LLMs. We adopt sequence-structured 842

input in Qwen2.5-3B. The results demonstrate that 843

sequence-structured input significantly impacts per- 844

formance. Especially, Qwen achieved an improve- 845

ment of nearly 1%p in BLEU-4 and 2.5%p in ME- 846

TEOR solely by utilizing sequence-structured input. 847

This highlights the importance of incorporating 848

conversational structure into the input representa- 849

tion. 850

D License 851

The data used in this paper can be found on 852

https://github.com/ryanzhumich/sirnn 853

(Ubuntu IRC (2016)) and https://github.com/ 854

morning-dews/GSN-Dialogues (Ubuntu IRC 855

(2019)) We utilize parts of the code provided by 856

HeterMPC5, which is licensed under the Apache 857

2.0 License. 858

5https://github.com/lxchtan/HeterMPC
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