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ABSTRACT

Graph convolutional networks have achieved great success on graph-structured
data. Many graph convolutional networks can be regarded as low-pass filters for
graph signals. In this paper, we propose a new model, BiGCN, which represents a
graph neural network as a bi-directional low-pass filter. Specifically, we not only
consider the original graph structure information but also the latent correlation
between features, thus BiGCN can filter the signals along with both the original
graph and a latent feature-connection graph. Our model outperforms previous
graph neural networks in the tasks of node classification and link prediction on
most of the benchmark datasets, especially when we add noise to the node features.

1 INTRODUCTION

Graphs are important research objects in the field of machine learning as they are good carriers
for structural data such as social networks and citation networks. Recently, graph neural networks
(GNNs) received extensive attention due to their great performances in graph representation learning.
A graph neural network takes node features and graph structure (e.g. adjacency matrix) as input, and
embeds the graph into a lower-dimensional space. With the success of GNNs (Kipf & Welling, 2017;
Veličković et al., 2017; Hamilton et al., 2017; Chen et al., 2018) in various domains, more and more
efforts are focused on the reasons why GNNs are so powerful (Xu et al., 2019).

Li et al (Li et al., 2018) re-examined graph convolutional networks (GCNs) and connected it with
Laplacian smoothing. NT and Maehara et al (NT & Maehara, 2019) revisited GCNs in terms of
graph signal processing and explained that many graph convolutions can be considered as low-pass
filters (e.g.(Kipf & Welling, 2017; Wu et al., 2019)) which can capture low-frequency components
and remove some feature noise by making connective nodes more similar. In fact, these findings
are not new. Since its first appearance in Bruna et al. (2014), spectral GCNs have been closely
related to graph signal processing and denoising. The spectral graph convolutional operation is
derived from Graph Fourier Transform, and the filter can be formulated as a function with respect
to the graph Laplacian matrix, denoted as g(L). In general spectral GCNs, the forward function is:
H(l+1) = σ(g(L)H(l)).

Kipf and Welling (Kipf & Welling, 2017) approximated g(L) using first-order Chebyshev polynomi-
als, which can be simplified as multiplying the augmented normalized adjacency matrix to the feature
matrix. Despite the efficiency, this first-order graph filter is found sensitive to changes in the graph
signals and the underlying graph structure (Isufi et al., 2016; Bianchi et al., 2019). For instance, on
isolated nodes or small single components of the graph, their denoising effect is quite limited due to
the lack of reliable neighbors. The potential incorrect structure information will also constrain the
power of GCNs and cause more negative impacts with deeper layers. As noisy/incorrect information
is inevitable in real-world graph data, more powerful and robust GCNs are needed to solve this
problem. In this work, we propose a new graph neural network with more powerful denoising effects
from the perspective of graph signal processing and higher fault tolerance to the graph structure.

Different from image data, graph data usually has high dimensional features, and there may be
some latent connection/correlation between each dimensions. Noting this, we take this connection
information into account to offset the efforts of certain unreliable structure information, and remove
extra noise by applying a smoothness assumption on such a ”feature graph”. Derived from the
additional Laplacian smoothing regularization in this feature graph, we obtain a novel variant of
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spectral GCNs, named BiGCN, which contains low-pass graph filters for both the original graph and
a latent feature connection graph in each convolution layer. Our model can extract low-frequency
components from both the graphs, so it is more expressive than the original spectral GCN; and it
removes the noise from two directions, so it is also more robust.

We evaluate our model on two tasks: node classification and link prediction. In addition to the
original graph data, in order to demonstrate the effectiveness of our model with respect to graph
signal denoising and fault tolerance, we design three cases with noise/structure mistakes: randomly
adding Gaussian noise with different variances to a certain percentage of nodes; adding different
levels of Gaussian noise to the whole graph feature; and changing a certain percentage of connections.
The remarkable performances of our model in these experiments verify our power and robustness on
both clean data and noisy data.

The main contributions of this work are summarized below.

• We propose a new framework for the representation learning of graphs with node features.
Instead of only considering the signals in the original graph, we take into account the feature
correlations and make the model more robust.

• We formulate our graph neural network based on Laplacian smoothing and derive a bi-
directional low-pass graph filter using the Alternating Direction Method of Multipliers
(ADMM) algorithm.

• We set three cases to demonstrate the powerful denoising capacity and high fault tolerance
of our model in tasks of node classification and link prediction.

2 RELATED WORK

We summarize the related work in the field of graph signal processing and denoising and recent work
on spectral graph convolutional networks as follows.

2.1 GRAPH SIGNAL PROCESSING AND DENOISING

Graph-structured data is ubiquitous in the world. Graph signal processing (GSP) (Ortega et al., 2018)
is intended for analyzing and processing the graph signals whose values are defined on the set of
graph vertices. It can be seen as a bridge between classical signal processing and spectral graph
theory. One line of the research in this area is the generalization of the Fourier transform to the graph
domain and the development of powerful graph filters (Zhu & Rabbat, 2012; Isufi et al., 2016). It can
be applied to various tasks, such as representation learning and denoising (Chen et al., 2014). More
recently, the tools of GSP have been successfully used for the definition of spectral graph neural
networks, making a strong connection between GSP and deep learning. In this work, we restart
with the concepts from graph signal processing and define a new smoothing model for deep graph
learning and graph denoising. It is worth mentioning that the concept of denoising/robustness in
GSP is different from the defense/robustness against adversarial attacks (e.g. (Zügner & Günnemann,
2019)), so we do not make comparisons with those models.

2.2 SPECTRAL GRAPH CONVOLUTIONAL NETWORKS

Inspired by the success of convolutional neural networks in images and other Euclidean domains,
the researcher also started to extend the power of deep learning to graphs. One of the earliest trends
for defining the convolutional operation on graphs is the use of the Graph Fourier Transform and its
definition in the spectral domain instead of the original spatial domain (Bruna et al., 2014). Defferrard
et al (Defferrard et al., 2016) proposed ChebyNet which defines a filter as Chebyshev polynomials of
the diagonal matrix of eigenvalues, which can be exactly localized in the k-hop neighborhood. Later
on, Kipf and Welling (Kipf & Welling, 2017) simplified the Chebyshev filters using the first-order
polynomial filter, which led to the well-known graph convolutional network. Recently, many new
spectral graph filters have been developed. For example, the rational auto-regressive moving average
graph filters (ARMA) (Isufi et al., 2016; Bianchi et al., 2019) are proposed to enhance the modeling
capacity of GNNs. Compared to the polynomial ones, ARMA filters are more robust and provide a
more flexible graph frequency response. Feedback-looped filters (Wijesinghe & Wang, 2019) further
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improved localization and computational efficiency. There is also another type of graph convolutional
networks that defines convolutional operations in the spatial domain by aggregating information from
neighbors. The spatial types are not closely related to our work, so it is beyond the scope of our
discussion. As we will discuss later, our model is closely related to spectral graph convolutional
networks. We define our graph filter from the perspective of Laplacian smoothing, and then extend it
not only to the original graph but also to a latent feature graph in order to improve the capacity and
robustness of the model.

3 BACKGROUND: GRAPH SIGNAL PROCESSING

In this section, we will briefly introduce some concepts of graph signal processing (GSP), including
graphs smoothness, graph Fourier Transform and graph filters, which will be used in later sections.

Graph Laplacian and Smoothness. A graph can be represented as G = (V,E), which consists
of a set of n nodes V = {1, . . . , n} and a set of edges E ⊆ V × V . In this paper, we only
consider undirected attributed graphs. We denote the adjacency matrix of G as A = (aij) ∈ Rn×n
and the degree matrix of G as D = diag(d(1), . . . , d(n)) ∈ Rn×n. In the degree matrix, d(i)
represents the degree of vertex i ∈ V . We consider that each vertex i ∈ V associates a scalar
x(i) ∈ R which is also called a graph signal. All graph signals can be represented by x ∈ Rn.
Some variants of graph Laplacian can be defined on graph G. We denote the graph Laplacian of
G as L = D − A ∈ Rn×n. It should be noted that the sum of rows of graph Laplacian L is zero.
The smoothness of a graph signal x can be measure through the quadratic form of graph Laplacian:
∆(x) = xTLx = Σi,j

1
2aij(x(i) − x(j))2. Due to the fact that xTLx ≥ 0, L is a semi-positive

definite and symmetric matrix.

Graph Fourier Transform and Graph Filters. Decomposing the Laplacian matrix with L =
UΛUT , we can get the orthogonal eigenvectors U as Fourier basis and eigenvalues Λ as graph
frequencies. The Graph Fourier Transform F : Rn → Rn is defined by Fx = x̂ := UTx. The
inverse Graph Fourier Transform is defined by F−1x̂ = x := Ux̂. It enables us to transfer the graph
signal to the spectral domain, and then define a graph filter g in the spectral domain for filtering the
graph signal x:

g(L)x = Ug(Λ)UTx = Ug(Λ)F(x)

where g(Λ) = diag(g(λ1), ...g(λN )) controls how the graph frequencies can be altered.

4 BIGCN

The Graph Fourier Transform has been successfully used to define various low-pass filters on graph
signals (column vectors of feature matrix) and derive spectral graph convolutional networks (Deffer-
rard et al., 2016; Bianchi et al., 2019; Wijesinghe & Wang, 2019). A spectral graph convolutional
operation can be formulated as a function g with respect to the Laplacian matrix L. Although it can
smooth the graph and remove certain feature-wise noise by assimilating neighbor nodes, it is sensitive
to node-wise noise and unreliable structure information. Notice that when the node features contain
rich information, there may exist correlations between different dimensions of features which can
be used to figure out the low-tolerance problem. Therefore, it is natural to define filters on ”feature
signals” (row vectors of graph feature matrix) based on the feature correlation. Inspired by this, we
propose a bi-directional spectral GCN, named BiGCN, with column filters and row filters derived
from the Laplacian smoothness assumption, as shown in Fig 1. In this way, we can enhance the
denoising capacity and fault tolerance to graph structure of spectral graph convolutions. To explain it
better, we start with the following simple case.

4.1 FROM LAPLACIAN SMOOTHING TO GRAPH CONVOLUTION

Assuming that f = y0 +η is an observation with noise η, to recover the true graph signal y0, a natural
optimization problem is given by:

min
y
‖ y − f ‖22 +λyTLy,
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Figure 1: Illustration of one BiGCN layer. In the feature graph, di indicates each dimension of
features with a row vector of the input feature matrix as its ”feature vector”. We use a learnable
matrix to capture feature correlations.

where λ is a hyper-parameter, L is the (normalized) Laplacian matrix. The optimal solution to this
problem is the true graph signal given by

y = (I + λL)−1f. (1)

If we generalize the noisy graph signal f to a noisy feature matrix F = Y0 +N , then the true graph
feature matrix Y0 can be estimated as follows:

Y0 = arg min
Y
‖ Y − F ‖2F +λtrace(Y TLY ) = (I + λL)−1F. (2)

Y TLY , the Laplacian regularization, achieves a smoothness assumption on the feature matrix.
(I + λL)−1 is equivalent to a low-pass filters in graph spectral domain which can remove feature-
wise/column-wise noise and can be used to defined a new graph convolutional operation. Specifically,
by multiplying a learnable matrix W (i.e. adding a linear layer for node feature transformation
beforehand, which is similar to (Wu et al., 2019; NT & Maehara, 2019)), we obtain a new graph
convolutional layer as follows:

H(l+1) = σ((I + λL)−1H(l)W (l)). (3)

In order to reduce the computational complexity, we can simplify the propagation formulation by
approximating (I + λL)−1 with its first-order Taylor expansion I − λL.

4.2 BI-DIRECTIONAL SMOOTHING AND FILTERING

Considering the latent correlation between different dimensions of features, similar to the graph
adjacency matrix, we can define a ”feature adjacency matrix” A′ to indicate such feature connections.
For instance, if i − th, j − th, k − th dimension feature refer to “height”,“weight” and “age”
respectively, then “weight” may have very strong correlation with “height” but weak correlation with
“age”, so it is reasonable to assign A′ji = 1 while A′jk = 0 (if we assume A′ is a 0− 1 matrix). With
a given ”feature adjacency matrix”, we can construct a corresponding ”feature graph” in which nodes
indicate each dimension of features and edges indicate the correlation relationship. In addition, if
Yn×d is the feature matrix of graph G, then Y Td×n would be the ”feature matrix of the feature graph”.
That is, the column vectors of Yn×d are the feature vectors of those original nodes while the row
vectors are exactly the feature vectors of ”feature nodes”. Analogously, we can derive the Laplacian
matrix L′ of this feature graph.

When noise is not only feature-wise but also node-wise, or when graph structure information is not
completely reliable, it is beneficial to consider feature correlation information in order to recover the
clean feature matrix better. Thus we add a Laplacian smoothness regularization on feature graph to
the optimization problem indicated above:

L = min
Y
‖ Y − F ‖2F +λ1trace(Y

TL1Y ) + λ2trace(Y L2Y
T ). (4)

Here L1 and L2 are the normalized Laplacian matrix of the original graph and feature graph, λ1 and
λ2 are hyper-parameters of the two Laplacian regularization. Y L′Y T is the Laplacian regularization
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on feature graph or row vectors of the original feature matrix. The solution of this optimization
problem is equal to the solution of differential equation:

∂L
∂Y

= 2Y − 2F + 2λ1L1Y + 2λ2Y L2 = 0. (5)

This equation, equivalent to λ1L1Y + λ2Y L2 = F − Y , is a Sylvester equation. The numerical solu-
tion of Sylvester equations can be calculated using some classical algorithm such as Bartels–Stewart
algorithm (Bartels, 1972), Hessenberg-Schur method (Golub et al., 1979) and LAPACK algorithm
(Anderson et al., 1999). However, all of them require Schur decomposition which including House-
holder transforms and QR iteration with O(n3) computational cost. Consequently, we transform the
original problem to a bi-criteria optimization problem with equality constraint instead of solving the
Sylvester equation directly:

L = min
Y1

f (Y1 ) + min
Y2

g(Y2 ) s.t Y2 − Y1 = 0,

f (Y1 ) =
1

2
‖ Y1 − F ‖2F +λ1trace(Y T1 L1Y1),

g(Y2 ) =
1

2
‖ Y2 − F ‖2F +λ2trace(Y2L2Y

T
2 ). (6)

We adopt the ADMM algorithm (Boyd et al., 2011) to solve this constrain convex optimization
problem. The augmented Lagrangian function of L is:

Lp(Y1, Y2, Z) =f(Y1) + g(Y2) + trace(ZT (Y2 − Y1)) +
p

2
‖ Y2 − Y1 ‖2F . (7)

The update iteration form of ADMM algorithm is:

Y
(k+1)
1 := arg min

Y1

Lp(Y1, Y (k)
2 , Z(k))

= arg min
Y1

1

2
‖ Y1 − F ‖2F +λ1trace(Y T1 L1Y1) + trace(Z(k)T (Y

(k)
2 − Y1)) +

p

2
‖ Y (k)

2 − Y1 ‖2F ,

Y
(k+1)
2 := arg min

Y2

Lp(Y (k+1)
1 , Y2, Z

(k))

= arg min
Y2

1

2
‖ Y2 − F ‖2F +λ2trace(Y2L2Y

T
2 ) + trace(Z(k)T (Y2 − Y (k+1)

1 ))

+
p

2
‖ Y2 − Y (k+1)

1 ‖2F ,

Z(k+1) = Z(k) + p(Y
(k+1)
2 − Y (k+1)

1 ). (8)

We obtain Y1 and Y2 iteration formulation by computing the stationary points of Lp(Y1, Y (k)
2 , Z(k))

and Lp(Y (k+1)
1 , Y2, Z

(k)):

Y
(k+1)
1 =

1

1 + p
(I +

2λ1
1 + p

L1)−1(F + pY
(k)
2 + Z(k)),

Y
(k+1)
2 =

1

1 + p
(F + pY

(k+1)
1 − Z(k))(I +

2λ2
1 + p

L2)−1. (9)

To decrease the complexity of computation, we can use first-order Taylor approximation to simplify
the iteration formulations by choosing appropriate hyper-parameters p and λ1, λ2 such that the
eigenvalues of 2λ1

1+pL1 and 2λ2

1+pL2 all fall into [−1, 1]:

Y
(k+1)
1 =

1

1 + p
(I − 2λ1

1 + p
L1)(F + pY

(k)
2 + Z(k)),

Y
(k+1)
2 =

1

1 + p
(F + pY

(k+1)
1 − Z(k))(I − 2λ2

1 + p
L2),

Z(k+1) = Z(k) + p(Y
(k+1)
2 − Y (k+1)

1 ). (10)
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In each iteration, as shown in Fig 1, we update Y1 by appling the column low-pass filter I− 2λ1

1+pL1 to
the previous Y2, then update Y2 by appling the row low-pass filter I − 2λ2

1+pL2 to the new Y1. To some
extent, the new Y1 is the low-frequency column components of the original Y2 and the new Y2 is the
low-frequency row components of the new Y1. After k iteration (in our experiments, k = 2), we take
the mean of Y (k)

1 and Y (k)
2 as the approximate solution Y , denote it as Y = ADMM(F,L1, L2). In

this way, the output of ADMM contains two kinds of low-frequency components. Moreover, we can
generalize L2 to a learnable symmetric matrix based on the original feature matrix F (or some prior
knowledge), since it is hard to give a quantitative description on feature correlations.

In (l+ 1)th propagation layer, F = H(l) is the output of lth layer, L2 is a learnable symmetric matrix
depending on H(l), for this we denote L2 as L(l)

2 . The entire formulation is:

H(l+1) = σ(ADMM(H(l), L1, L
(l)
2 )W (l)). (11)

Discussion about over-smoothing Since our algorithm is derived from a bidirectional smoothing,
some may worry about the over-smoothing problem. The over-smoothing issue of GCN is explored in
(Li et al., 2018; Oono & Suzuki, 2020), where the main claim is that when the GCN model goes very
deep, it will encounter over-smoothing problem and lose its expressive power. From this perspective,
our model will also be faced with the same problem when we stack many layers. However, a
single BiGCN layer is just a more expressive and robust filter than a normal GCN layer. Actually,
compared with the single-direction low-pass filtering GCN with a general forward function: H(l+1) =

σ(g(L1)H(l)W (l)), ADMM(H(l), L1, L
(l)
2 ), combining low-frequency components of both column

and row vectors of H(l), is more informative than g(L1)H(l) since the latter can be regarded as one
part of the former to some extent. It also explains that BiGCN is more expressive that single-direction
low-pass filtering GCNs. Furthermore, when we take L2 as an identity matrix (in equation 5), BiGCN
degenerates to a single-directional GCN with low-pass filter: ((1+λ2)I+λ1L1)−1. It also illustrates
that BiGCN has more general model capacity. More technical details are added in Appendix.

In practice, we can also mix the BiGCN layer with original GCN layers or use jumping knowledge (Xu
et al., 2018) to alleviate the over-smoothing problem: for example, we can use BiGCN at the bottom
and then stack other GCN layers above. As we will show in experiments, the adding smoothing
term in the BiGCN layers does not lead to over-smoothing; instead, it improves the performance on
various datasets.

5 EXPERIMENT

We test BiGCN on two graph-based tasks: semi-supervised node classification and link prediction
on several benchmarks. As these datasets are usually observed and carefully collected through a
rigid screening, noise can be negligible. However, in many real-world data, noise is everywhere and
cannot be ignored. To highlight the denoising capacity of the bi-directional filters, we design three
cases and conduct extensive experiments on artificial noisy data. In noise level case, we add different
levels of noise to the whole graph. In noise rate case, we randomly add noise to a part of nodes.
Considering the potential unreliable connection on the graph, to fully verify the fault tolerance to
structure information, we set structure mistakes case in which we will change graph structure. We
compare our performance with several baselines including original GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2017), GIN (Xu et al., 2019), and GDC
(Klicpera et al., 2019).

5.1 BENCHMARK DATASETS

We conduct link prediction experiments on Citation networks and node classification experiments
both on Citation networks and Co-purchase networks.

Citation. A citation network dataset consists of documents as nodes and citation links as directed
edges. We use three undirected citation graph datasets: Cora (Sen et al., 2008), CiteSeer (Rossi &
Ahmed, 2015) , and PubMed (Namata et al., 2012) for both node classification and link prediction
tasks as they are common in all baseline approaches. In addition, we add another citation network
DBLP (Pang et al., 2015) to link prediction tasks.
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Co-purchase. We also use two Co-purchase networks Amazon Computers (McAuley et al., 2015)
and Amazon Photos (Shchur et al., 2018), which take goods as nodes, to predict the respective
product category of goods. The features are bag-of-words node features and the edges represent that
two goods are frequently bought together.

5.2 EXPERIMENTAL SETUP

We train a two-layer BiGCN as the same as other baselines. Details of the hyperparameters setting
and noise cases setting are contained in the appendix.

Learnable L2. We introduce a completely learnable L2 in our experiments. In detail, we define
L2 = I −D−1/22 A2D

−1/2
2 , A2 = W2 +WT

2 where W2 = sigmoid(W ) and W is an uppertriangle
matrix parameter to be optimized. To make it sparse, we also add L1 regularization to L2. For each
layer, L2 is defined differently. Note that our framework is general and in practice there may be other
reasonable choices for L2 (e.g. as we discussed in Appendix).

5.3 BASELINE MODELS

We compare our BiGCN with several state-of-the-art GNN models: GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2017), GIN (Xu et al., 2019): Graph
Isomorphism Network, GDC (Klicpera et al., 2019): Graph diffusion convolution based on gen-
eralized graph diffusion. We compare one of the variants of GDC which leverages personalized
PageRank graph diffusion to improve the original GCN and adapt GCN into link prediction tasks is
consistent with the implementation in P-GNN.

5.4 RESULTS

We set three types of noise cases in terms of noise level, noise rate and structure mistake to evaluate
each model on node classification and link prediction tasks (excluding structure mistakes). ”Noise
level” and ”noise rate” add different types of noise to node features; ”structure mistake” indicates
we randomly remove or add edges in the original graph. For noise on node features, we expect our
BiGCN show its ability as graph filters. For structural errors, we expect the latent feature graph can
help with the correction of structural errors in original graphs. The detailed settings of these cases as
well as some additional experimental results can be found in the Appendix.
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Figure 2: Node classification (Top) and link prediction (Bottom) results of models in noise level case.

Noise level case. In this case, we add Gaussian noise with a fixed variance (from 0.1 to 0.9, called
the noise level) to the feature matrix. As Fig 2 shows, BiGCN outperforms other baselines and
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shows flatter declines with increasing noise levels, demonstrating better robustness in both node
classification and link prediction tasks.

Noise rate case. Here, we randomly choose a part of nodes at a fixed percentage (from 0.1 to 0.9,
called the noise rate) to add different Gaussian noise. From Fig 3 we can see that, on the two tasks,
BiGCN performs much better than baselines on all benchmarks apart from Cora. Especially on the
PubMed dataset, BiGCN improves node classification accuracy by more than 10%.
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Figure 3: Node classification (Top) and link prediction (Bottom) results of models in noise rate case.

Structure mistakes case. Structure mistakes refer to the incorrect interaction relationship among
nodes. In this setting, we artificially remove or add a certain percentage of edges of graphs at random
and conduct experiments on node classification. Fig 4 illustrates the outstanding robustness of BiGCN
that is superior to all baselines, demonstrating that our bi-directional filters can effectively utilize
information from the latent feature graph and drastically reduce the negative impact of the incorrect
structural information. At last, we would like to mention that our model also outperform other
models in most cases on clean data without noise. This can attribute to BiGCN’s ability to efficiently
extract graph features through its bidirectional filters. The detailed values in the figures are listed in
Appendix.
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Figure 4: Node classification accuracy of models in structure mistakes case.

6 CONCLUSION

We proposed bidirectional low-pass filtering GCN, a more powerful and robust network than general
spectral GCNs. The bidirectional filter of BiGCN can capture more informative graph signal
components than the single-directional one. With the help of latent feature correlation, BiGCN also
enhances the network’s tolerance to noisy graph signals and unreliable edge connections. Extensive
experiments show that our model achieves remarkable performance improvement on noisy graphs.
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Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE, 106
(5):808–828, 2018.

Jiahao Pang, Gene Cheung, Antonio Ortega, and Oscar C Au. Optimal graph laplacian regularization
for natural image denoising. In 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 2294–2298. IEEE, 2015.

Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph analytics and
visualization. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
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A MODEL EXPRESSIVENESS

In this section, we add more details about the our discussion of over-smoothing in Section 4.

As a bi-directional low-pass filter, our model can extract more informative features from the spectral
domain. To simplify the analysis, let us take just one step of ADMM (k=1). Since Z0 = 0, Y 0

1 =
Y 0
2 = F , we have the final solution from Equation (10) as follows

Y1 = (I − 2λ1
1 + p

L1)F,

Y2 = (I − 2pλ1
(1 + p)2

L1)F (I − 2λ2
1 + p

L2) =

(
(I − 2λ2

1 + p
L2)FT (I − 2pλ1

(1 + p)2
L1)

)T
.

From this solution, we can see that Y1 is a low-pass filter which extracts low-frequency features
from the original graph via L1; Y2 is a low-pass filter which extracts low-frequency features from the
feature graph via L2 and then do some transformation. Since we take the average of Y1 and Y2 as the
output of ADMM(H,L1, L2), the BiGCN layer will extract low-frequency features from both the
graphs. That means, our model adds new information from the latent feature graph while not losing
any features in the original graph. Compared to the original single-directional GCN, our model has
more informative features and is more powerful in representation.

When we take more than one step of ADMM, from Equation (10) we know that the additive component
(I − 2λ1

1+pL1)F is always in Y1 (with a scaling coefficient), and the component F (I − 2λ2

1+pL2) is
always in Y2. So, the output of the BiGCN layer will always contain the low-frequency features from
the original graph and the feature graph with some additional features with transformation, which can
give us the same conclusion as the one step case.

B SENSITIVITY ANALYSIS

To demonstrate how hyper-parameters (iterations of ADMM, λ2, p and λ) influence BiGCN, we take
Cora as an example and present the results on node classification under certain settings of artificial
noise.

First, we investigate the influence of iteration and λ2 on clean data and three noise cases with 0.2
noise rate, 0.2 noise level and 0.1% structure mistakes respectively. Fig 5(a) shows that ADMM
with 2 iterations is good enough and the choice of λ2 has very little impact on results since it can be
absorbed into the learnable L2. Then we take a particular case in which noise rate equals to 0.2 as
an example to illustrate how much the performance of BiGCN depends on p and λ. Fig 5(b) shows
that p guarantees relatively stable performance over a wide range values and only λ has comparable
larger impact.

C FLEXIBLE SELECTION OF L2

In our paper, we assume the latent feature graph L2 as a learnable matrix and automatically optimize
it. However, in practice it can also be defined as other fixed forms. For example, a common way to
deal with the latent correlation is to use a correlation graph Li et al. (2017). Another special case
is if we define L2 as an identity matrix, our model will degenerate to a normal (single-directional)
low-pass filtering GCN. When we take L2 = I in Equation (5), the solution becomes

Y = ((1 + λ2)I + λ1L1)−1F

which is similar to the single-directional low pass filter (Equation (2)). Then the BiGCN layer will
degenerate to the GCN layer as follows:

H(l+1) = σ(((1 + λ2)I + λ1L1)−1H(l)W (l)).

To show the difference between different definitions of L2, we design a simple approach using
a thresholded correlation matrix for L2 to compare with the method used in our main paper. In
particular, we define an edge weight Aij as follows.
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Figure 5: Sensitivity analysis of iteration, λ2, λ and p on node classification. For iteration and λ2, we
conduct experiments on clean data and three noise cases with 0.2 noise rate, 0.2 noise level and 0.1%
structure mistakes respectively. For p and λ, we provide the performance of BiGCN on Cora with 0.2
noise rate.

(Pij)j∈N (i)∪i = softmax([
xTi xj

‖ xi ‖‖ xj ‖
]j∈N (i)∪i),

Aij =

{
0, Pij ≤ mean(P )

1, Pij > mean(P )
.

Then we compute L2 as the normalized Laplacian obtained from A, i.e. L2 = D̃−
1
2 ÃD̃−

1
2 . For a

simple demonstration, we only compare the two models on Cora with node feature noises. From
Table 1 and Table 2, we can see that our learnable L2 is overall better. However, a fixed L2 can still
give us decent results. When the node feature dimension is large, fixing L2 may be more efficient.

Table 1: Node classification accuracy in noise rate case on Cora dataset of two types of L2.
Noise rate 0.200 0.400 0.600 0.800 1.000

Fixed L2 0.807 0.774 0.756 0.733 0.726
Learnable L2 0.802 0.785 0.770 0.745 0.734

Table 2: Node classification accuracy in noise level case on Cora dataset of two types of L2.
Noise level 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

Fixed L2 0.823 0.804 0.777 0.753 0.725 0.713 0.702 0.696 0.691
Learnable L2 0.825 0.804 0.785 0.768 0.749 0.732 0.725 0.714 0.709
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D EXPERIMENTAL DETAILS

We train a two-layer BiGCN as the same as other baselines using Adam as the optimization method
with 0.01 learning rate, 5× 10−4 weight decay, and 0.5 dropout rate for all benchmarks and baselines.
In the node classification task, we use early stopping with patience 100 to early stop the model
training process and select the best performing models based on validation set accuracy. In the link
prediction task, we use the maximum 100 epochs to train each classifier and report the test ROCAUC
selected based on the best validation set ROCAUC every 10 epochs. In addition, we follow the
experimental setting from P-GNN (position-aware GNN) and the approach that we adapt GCN into
link prediction tasks is consistent with the implementation in P-GNN. We set the random seed for
each run and we take mean test results for 10 runs to report the performances.

All the experimental datasets are taken from PyTorch Geometric and we test BiGCN and other
baselines on the whole graph while in GDC, only the largest connected component of the graph is
selected. Thus, the experimental results we reported of GDC maybe not completely consistent with
that reported by GDC. We found that the Citation datasets in PyTorch Geometric are a little different
from those used in GCN, GraphSAGE, and GAT. It may be the reason why their accuracy results on
Citeseer and Pubmed in node classification tasks are a little lower than the original papers reported.

To highlight the denoising capacity of the bi-directional filters, we design the following three cases
and conduct extensive experiments on artificial noisy data. The noise level case and noise rate cases
are adding noise on node features and the structure mistake case adds noise to graph structures.

Noise level case. In this case, we add different Gaussian noise with zero mean to all the node features
in the graph, i.e. to the feature matrix and use the variance of Gaussian (from 0.1 to 0.9) as the
quantitative indexes of noise level.

Noise rate case. In this case, we add Gaussian noise with the same distribution to different proportions
of nodes, i.e. some rows of the feature matrix, at a random and quantitatively study how the percentage
(from 10% to 100%) of nodes with noisy features impacts the model performances.

Structure mistakes case. In practice, it is common and inevitable to observe wrong or interference
link information in real-world data, especially in a large-scale network, such as a social network.
Therefore, we artificially make random changes in the graph structure, such as removing edges or
adding false edges by directly reversing the value of the original adjacency matrix (from 0 to 1 or
from 1 to 0) symmetrically to obtain an error adjacency matrix. We choose different scales of errors
to decide how many values would be reversed randomly. For example, assigning a 0.01% error rate
to a graph consisting of 300 vertices means that 0.01 × 10−2 × 3002 = 9 values symmetrically
distributed in the adjacency matrix will be changed.

We conduct all of the above cases on five benchmarks in node classification tasks and the two previous
cases on four benchmarks in link prediction tasks.

For more experimental details please refer to our codes: https://anonymous.4open.
science/r/4fefefed-4d59-4214-a324-832ac0ef1e96/.

D.1 DATASETS

We use three Citation networks (Cora, Citeseer, and Pubmed) and two Co-purchase networks for
node classification tasks and all the Citation datasets for link prediction.

Table 3: Bechmark Dataset.
Dataset Type Nodes Edges Features Classes Label Rate

Cora Citation 2,708 5,278 1,433 7 0.052
Citeseer Citation 3,327 4,552 3,703 6 0.036
Pubmed Citation 19,717 44,324 500 3 0.003
DBLP Citation 17716 105734 1639 4 /
AMZ Comp Co-purchase 13,752 245,861 767 10 0.015
AMZ Photos Co-purchase 7,650 119,081 745 8 0.021
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D.2 EXPERIMENTAL RESULTS ON CLEAN DATA

The performances of models on clean benchmarks in node classification and link prediction are
shown in Table 4 and 5 respectively. These results correspond to the values with noise level 0 in the
figures of Section 5.

Table 4: BiGCN compared to GNNs on node classification tasks, measured in accuracy (%). Standard
deviation errors are given.

Cora Citeseer PubMed Comp Photo
GCN 81.8 ± 0.6 71.0 ± 0.6 78.9 ± 0.6 82.7 ± 4.6 90.8 ± 1.3
SAGE 82.3 ± 0.5 70.5 ± 0.7 78.5 ± 0.5 83.1 ± 4.2 90.8 ± 1.1
GAT 83.1 ± 0.5 71.7 ± 0.5 78.5 ± 0.5 76.3 ± 3.5 88.2 ± 1.3
GIN 79.4 ± 0.8 62.7 ± 1.2 77.7 ± 0.7 41.4 ± 3.6 37.1 ± 12.0
GDC 83.0 ± 0.6 70.7 ± 0.7 77.5 ± 0.6 84.5 ± 0.8 89.7 ± 0.4

BiGCN 83.1 ± 0.7 71.0 ± 0.6 80.0 ± 0.3 87.0 ± 0.6 92.6 ± 0.3

Table 5: BiGCN compared to GNNs on link prediction tasks, measured in ROC AUC (%). Standard
deviation errors are given.

Cora Citeseer PubMed DBLP
GCN 89.2 ± 0.8 87.3 ± 1.7 91.7 ± 0.8 92.9 ± 0.4
SAGE 90.4 ± 0.7 89.7 ± 0.7 91.8 ± 0.3 92.6 ± 0.2
GAT 88.6 ± 0.8 87.3 ± 1.1 92.6 ± 0.4 93.1 ± 0.3
GIN 87.7 ± 0.7 90.1 ± 1.3 84.7 ± 0.6 91.1 ± 0.4
GDC 89.5 ± 0.4 88.5 ± 1.1 91.6 ± 0.7 92.6 ± 0.4

BiGCN 91.5 ± 0.5 90.5 ± 0.7 91.6 ± 0.3 93.1 ± 0.3

D.3 EXPERIMENTAL RESULTS ON AMZ COMP

The node classification performances of models on AMZ Comp dataset are shown in Fig 6.
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Figure 6: Node classification accuracy of models on AMZ Comp dataset.

E NUMERICAL RESULTS AND HYPERPARAMETERS

In order to facilitate future research to compare with our results, we share the accurate numeric results
here in addition to the curves shown in the pictures of the Experimental section. We also share the
experimental environment and the optimal hyperparameters we used to get the results in B.2.

E.1 NUMERICAL RESULTS

E.1.1 NOISE RATE (NR)

Node Classification (NC)
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Table 6: Cora - NR - NC
0.200 0.400 0.600 0.800 1.000

GCN 0.751 0.706 0.662 0.631 0.606
SAGE 0.768 0.717 0.685 0.656 0.645
GAT 0.713 0.668 0.626 0.605 0.603
GIN 0.712 0.654 0.621 0.607 0.601
GDC 0.814 0.806 0.799 0.784 0.783
BiGCN 0.802 0.785 0.770 0.745 0.734

Table 7: Citeseer - NR - NC
0.200 0.400 0.600 0.800 1.000

GCN 0.597 0.553 0.483 0.442 0.404
SAGE 0.612 0.543 0.497 0.450 0.427
GAT 0.564 0.457 0.405 0.371 0.346
GIN 0.535 0.468 0.432 0.405 0.401
GDC 0.617 0.575 0.548 0.520 0.511
BiGCN 0.626 0.580 0.561 0.531 0.516

Table 8: PubMed - NR - NC
0.200 0.400 0.600 0.800 1.000

GCN 0.550 0.466 0.434 0.422 0.385
SAGE 0.579 0.489 0.439 0.438 0.420
GAT 0.491 0.477 0.467 0.465 0.449
GIN 0.568 0.505 0.482 0.490 0.478
GDC 0.560 0.474 0.427 0.412 0.404
BiGCN 0.665 0.619 0.604 0.567 0.547

Table 9: Computers - NR - NC
0.200 0.400 0.600 0.800 1.000

GCN 0.837 0.832 0.810 0.839 0.830
SAGE 0.846 0.831 0.836 0.840 0.838
GAT 0.770 0.800 0.769 0.766 0.750
GIN 0.420 0.402 0.402 0.394 0.406
GDC 0.840 0.837 0.832 0.838 0.832
BiGCN 0.856 0.855 0.855 0.853 0.853

Table 10: Photos - NR - NC
0.200 0.400 0.600 0.800 1.000

GCN 0.913 0.908 0.907 0.905 0.894
SAGE 0.910 0.903 0.900 0.901 0.904
GAT 0.873 0.874 0.867 0.848 0.855
GIN 0.342 0.315 0.333 0.304 0.306
GDC 0.901 0.896 0.890 0.883 0.881
BiGCN 0.922 0.921 0.920 0.917 0.916

Link Prediction (LP)

Table 11: Cora - NR - LP
0.200 0.400 0.600 0.800 1.000

GCN 0.850 0.817 0.795 0.792 0.785
SAGE 0.846 0.826 0.786 0.785 0.774
GAT 0.848 0.817 0.781 0.785 0.767
GIN 0.827 0.799 0.799 0.785 0.780
GDC 0.872 0.860 0.853 0.847 0.840
BiGCN 0.887 0.875 0.851 0.845 0.843

Table 12: Citeseer - NR - LP
0.200 0.400 0.600 0.800 1.000

GCN 0.812 0.773 0.754 0.739 0.726
SAGE 0.824 0.787 0.749 0.740 0.732
GAT 0.807 0.765 0.747 0.738 0.741
GIN 0.819 0.772 0.758 0.757 0.747
DGC 0.808 0.779 0.758 0.764 0.756
BiGCN 0.867 0.836 0.812 0.800 0.804

Table 13: Pubmed - NR - LP
0.200 0.400 0.600 0.800 1.000

GCN 0.838 0.767 0.745 0.743 0.741
SAGE 0.844 0.797 0.770 0.763 0.755
GAT 0.840 0.789 0.775 0.777 0.778
GIN 0.802 0.771 0.766 0.769 0.771
GDC 0.839 0.801 0.780 0.769 0.760
BiGCN 0.875 0.846 0.825 0.811 0.803

Table 14: DBLP - NR - LP
0.200 0.400 0.600 0.800 1.000

GCN 0.901 0.879 0.868 0.860 0.854
SAGE 0.899 0.879 0.868 0.857 0.856
GAT 0.897 0.877 0.865 0.862 0.857
GIN 0.890 0.879 0.875 0.872 0.872
GDC 0.898 0.885 0.873 0.866 0.862
BiGCN 0.914 0.902 0.895 0.890 0.884
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E.1.2 NOISE LEVEL (NL)

Node Classification (NC)

Table 15: Cora - NL - NC
0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

GCN 0.792 0.749 0.704 0.643 0.606 0.585 0.572 0.558 0.530
SAGE 0.791 0.758 0.720 0.677 0.646 0.628 0.616 0.603 0.599
GAT 0.782 0.737 0.688 0.644 0.622 0.608 0.601 0.584 0.579
GIN 0.734 0.686 0.659 0.617 0.610 0.580 0.595 0.581 0.577
GDC 0.828 0.819 0.805 0.792 0.784 0.772 0.763 0.754 0.758
BiGCN 0.825 0.804 0.785 0.768 0.749 0.732 0.725 0.714 0.709

Table 16: Citeseer - NL - NC
0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

GCN 0.671 0.598 0.500 0.443 0.418 0.403 0.382 0.382 0.367
SAGE 0.670 0.605 0.492 0.464 0.429 0.423 0.408 0.408 0.398
GAT 0.620 0.534 0.476 0.436 0.405 0.374 0.333 0.309 0.293
GIN 0.557 0.497 0.430 0.410 0.392 0.392 0.381 0.385 0.376
GDC 0.656 0.613 0.555 0.523 0.515 0.506 0.497 0.489 0.486
BiGCN 0.677 0.619 0.552 0.524 0.521 0.514 0.482 0.489 0.476

Table 17: PubMed - NL - NC
0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

GCN 0.530 0.433 0.406 0.379 0.373 0.382 0.381 0.377 0.383
SAGE 0.565 0.455 0.432 0.422 0.431 0.414 0.411 0.412 0.405
GAT 0.537 0.445 0.434 0.430 0.435 0.436 0.426 0.434 0.433
GIN 0.643 0.542 0.498 0.493 0.476 0.477 0.473 0.477 0.484
GDC 0.550 0.440 0.415 0.409 0.388 0.389 0.400 0.393 0.389
BiGCN 0.688 0.593 0.554 0.530 0.526 0.512 0.517 0.505 0.506

Table 18: Computers - NL - NC
0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

GCN 0.844 0.846 0.845 0.846 0.825 0.805 0.836 0.831 0.829
SAGE 0.838 0.845 0.837 0.837 0.827 0.826 0.836 0.825 0.825
GAT 0.776 0.757 0.760 0.771 0.747 0.763 0.770 0.754 0.769
GIN 0.409 0.388 0.411 0.399 0.400 0.404 0.413 0.424 0.410
GDC 0.847 0.838 0.841 0.833 0.832 0.827 0.816 0.810 0.799
BiGCN 0.856 0.856 0.856 0.853 0.855 0.852 0.851 0.847 0.851
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Table 19: Photos - NL - NC
0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

GCN 0.915 0.907 0.904 0.903 0.906 0.901 0.899 0.894 0.893
SAGE 0.903 0.904 0.909 0.904 0.905 0.901 0.902 0.901 0.896
GAT 0.879 0.881 0.871 0.868 0.849 0.845 0.840 0.770 0.740
GIN 0.336 0.337 0.327 0.332 0.317 0.345 0.351 0.314 0.330
GDC 0.901 0.896 0.896 0.887 0.885 0.877 0.876 0.863 0.859
BiGCN 0.925 0.923 0.920 0.919 0.919 0.916 0.908 0.906 0.902

Link Prediction (LP)

Table 20: Cora - NL - LP
0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

GCN 0.857 0.814 0.795 0.779 0.780 0.774 0.764 0.770 0.763
SAGE 0.864 0.819 0.792 0.774 0.769 0.770 0.770 0.770 0.761
GAT 0.850 0.814 0.790 0.785 0.775 0.763 0.768 0.765 0.767
GIN 0.854 0.815 0.796 0.786 0.782 0.787 0.775 0.772 0.770
GDC 0.877 0.862 0.845 0.844 0.833 0.839 0.839 0.832 0.833
BiGCN 0.892 0.865 0.860 0.844 0.836 0.837 0.830 0.827 0.833

Table 21: Citeseer - NL - LP
0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

GCN 0.807 0.760 0.743 0.736 0.725 0.726 0.713 0.714 0.713
SAGE 0.815 0.762 0.730 0.737 0.734 0.723 0.715 0.719 0.718
GAT 0.799 0.760 0.746 0.736 0.726 0.740 0.725 0.724 0.722
GIN 0.838 0.780 0.748 0.744 0.744 0.731 0.730 0.734 0.736
GDC 0.820 0.777 0.760 0.743 0.747 0.744 0.745 0.738 0.743
BiGCN 0.874 0.836 0.811 0.799 0.797 0.795 0.792 0.791 0.780

Table 22: Pubmed - NL - LP
0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

GCN 0.821 0.774 0.753 0.749 0.741 0.739 0.735 0.738 0.738
SAGE 0.813 0.774 0.761 0.753 0.751 0.747 0.749 0.750 0.752
GAT 0.820 0.779 0.773 0.770 0.770 0.770 0.770 0.770 0.772
GIN 0.806 0.782 0.772 0.768 0.769 0.770 0.773 0.775 0.771
GDC 0.828 0.785 0.758 0.755 0.753 0.750 0.745 0.745 0.748
BiGCN 0.841 0.814 0.806 0.804 0.801 0.799 0.800 0.800 0.796

Table 23: DBLP - NL - LP
0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

GCN 0.902 0.881 0.866 0.857 0.851 0.847 0.843 0.842 0.841
SAGE 0.900 0.876 0.863 0.859 0.858 0.856 0.851 0.850 0.849
GAT 0.899 0.880 0.868 0.863 0.860 0.856 0.854 0.853 0.850
GIN 0.896 0.885 0.878 0.874 0.872 0.869 0.865 0.867 0.865
GDC 0.904 0.883 0.871 0.865 0.859 0.854 0.853 0.850 0.847
BiGCN 0.916 0.900 0.894 0.890 0.884 0.883 0.883 0.880 0.881
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E.1.3 STRUCTURE MISTAKES (SM)

Node Classification (NC)

Table 24: Cora - SM - NC
0.001 0.003 0.005 0.007 0.009 0.011 0.013 0.015

GCN 0.693 0.611 0.564 0.527 0.507 0.486 0.468 0.468
SAGE 0.697 0.606 0.558 0.519 0.515 0.500 0.483 0.473
GAT 0.678 0.565 0.509 0.458 0.435 0.400 0.356 0.342
GIN 0.529 0.302 0.261 0.247 0.242 0.244 0.275 0.261
GDC 0.723 0.659 0.634 0.619 0.611 0.604 0.598 0.599
BiGCN 0.720 0.682 0.659 0.645 0.643 0.637 0.631 0.635

Table 25: Citeseer - - SM - NC
0.001 0.003 0.005 0.007 0.009 0.011 0.013 0.015

GCN 0.521 0.446 0.409 0.378 0.362 0.351 0.347 0.329
SAGE 0.520 0.446 0.411 0.375 0.369 0.363 0.336 0.337
GAT 0.498 0.397 0.344 0.299 0.282 0.272 0.254 0.231
GIN 0.397 0.221 0.211 0.210 0.201 0.204 0.206 0.205
GDC 0.529 0.515 0.515 0.511 0.516 0.514 0.518 0.526
BiGCN 0.601 0.577 0.565 0.567 0.565 0.565 0.562 0.567

Table 26: PubMed - SM - NC
1e-5 2.5e-5 5e-5 7.5e-5 1e-4 2.5e-4 5e-4 7.5e-4 1e-3

GCN 0.770 0.760 0.745 0.730 0.719 0.683 0.659 0.647 0.640
SAGE 0.770 0.760 0.739 0.731 0.721 0.679 0.659 0.645 0.638
GAT 0.772 0.755 0.734 0.721 0.706 0.665 0.641 0.633 0.610
GIN 0.774 0.768 0.758 0.754 0.742 0.700 0.577 0.497 0.442
GDC 0.766 0.755 0.742 0.730 0.723 0.690 0.692 0.707 0.713
BiGCN 0.778 0.770 0.761 0.751 0.746 0.728 0.721 0.724 0.725

Table 27: Computers - SM - NC
0.001 0.003 0.005 0.007 0.009 0.011 0.013 0.015

GCN 0.782 0.723 0.632 0.548 0.519 0.472 0.471 0.457
SAGE 0.779 0.708 0.660 0.562 0.531 0.496 0.471 0.456
GAT 0.663 0.597 0.524 0.530 0.499 0.432 0.443 0.429
GIN 0.417 0.395 0.385 0.389 0.386 0.385 0.385 0.385
GDC 0.776 0.744 0.711 0.690 0.678 0.684 0.677 0.682
BiGCN 0.822 0.795 0.775 0.764 0.756 0.756 0.749 0.749
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Table 28: Photos - SM - NC
0.001 0.003 0.005 0.007 0.009 0.011 0.013 0.015

GCN 0.838 0.667 0.668 0.554 0.561 0.525 0.520 0.449
SAGE 0.855 0.815 0.762 0.754 0.710 0.638 0.592 0.478
GAT 0.820 0.681 0.512 0.432 0.376 0.372 0.356 0.319
GIN 0.266 0.283 0.261 0.262 0.261 0.260 0.267 0.255
GDC 0.871 0.843 0.818 0.787 0.764 0.748 0.748 0.734
BiGCN 0.902 0.880 0.867 0.856 0.851 0.844 0.838 0.833

E.2 ADDITIONAL IMPLEMENTATION DETAILS AND HYPER-PARAMETER SETTING

All implementations for both node classification and link prediction are based on PyTorch 1.2.0
and Pytorch Geometric1. All experiments based on PyTorch are running on one NVIDIA GeForce
RTX 2080 Ti GPU using CUDA. The experimental datasets are taken from the PyTorch Geometric
platform. We tune our hyperparameters for each model using validation data and listed the final
optimal setting in the following tables. To accelerate the tedious process of hyper-parameters tuning,
we set 2λ1

1+p = 2λ2

1+p = λ and choose different hyper-parameter p for different datasets.

E.2.1 NODE CLASSIFICATION

Table 29: Hyper-parameters of BiGCN in Node Classification
Cases Dataset p λ k Hidden dimension Layer Dropout lr

Noise rate Cora 3 1.8
Citeseer 3 1.8
PubMed 3 1.8 2 16 2 0.5 0.01
Comp 2.5 1.0
Photos 1.5 0.8

Noise level Cora 3 1.8
Citeseer 3 1.8
PubMed 3 1.8 2 16 2 0.5 0.01
Comp 2.5 1.0
Photos 1.5 0.8

Structure mistakes Cora 0.1 0.8
Citeseer 0.05 0.8
PubMed 0.1 0.8 2 16 2 0.5 0.01
Comp 0.1 1.0
Photos 0.1 1.0

1https://github.com/rusty1s/pytorch_geometric
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E.2.2 LINK PREDICTION

Table 30: Hyper-parameters of BiGCN in Link Prediction
Cases Dataset p λ k Hidden dimension Layer Dropout lr

Noise rate Cora 8.5 1.2
Citeseer 8.5 1.2
PubMed 8.5 1.2 2 32 2 0.5 0.01
DBLP 8.5 1.2

Noise level Cora 8.5 1.2
Citeseer 8.5 1.2
PubMed 8.5 1.2 2 32 2 0.5 0.01
DBLP 8.5 1.2
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