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Describe the image in detail.
Please output with
interleaved segmentation
masks for the
corresponding parts of the answer.

User

A brown dog and a gray cat 
are standing next to each 
other.

GLaMM

What color is the dog's collar?

User

Sure, it is [seg].

GLaMM

Describe the image in detail.

User

The image features a dog and a cat standing next to each
other, posing for a picture. The dog is on the right side of
the image, while the cat is on the left. Both animals
appear to be smiling, creating a friendly and harmonious
atmosphere.
The dog is wearing a collar, which is visible around its neck. The cat, on 
the other hand, is not wearing any visible accessories. The two animals 
seem to be enjoying each other's company.

DIFFLMM + Attend-and-Segment (Ours)

What color is the dog's collar?

User

The dog's collar is silver.

DIFFLMM + Attend-and-Segment (Ours)

Figure 1: Grounded conversations with GLaMM (Rasheed et al., 2024) vs. our approach,
DIFFLMM + attend-and-segment . Left: As a state-of-the-art grounding LMM, GLaMM is
trained to relate text phrases with segmentation masks while generating a response. However, due to
limitations induced by the grounding supervision, it often fails to precisely follow the human user’s
instructions (e.g., describing the image in detail, answering the correct color). Right: Our approach
reveals and enhances the grounding ability implicitly learned by LMMs without explicit grounding
supervision, which leads to visually grounded responses while preserving the general vision-language
conversation ability of LMMs. More examples are shown in Figure 4.

ABSTRACT

Current large multimodal models (LMMs) face challenges in grounding, which
requires the model to relate language components to visual entities. Contrary to
the common practice that fine-tunes LMMs with additional grounding supervision,
we find that the grounding ability can in fact emerge in LMMs trained without
explicit grounding supervision. To reveal this emerging grounding, we introduce an
“attend-and-segment” method which analyzes the attention within standard LMMs
to provide a point prompt to a segmentation model (e.g., SAM) and perform pixel-
level segmentation. Furthermore, to enhance the grounding ability, we propose
DIFFLMM, an LMM utilizing a diffusion-based visual encoder, as opposed to
the standard CLIP visual encoder, and trained with the same weak supervision.
Without being constrained by the biases and limited scale of grounding-specific
supervision data, our approach enables strong visual grounding while preserv-
ing general conversation abilities. We achieve competitive performance on both
grounding-specific and general visual question answering benchmarks, compared
with grounding LMMs and generalist LMMs, respectively. Notably, we achieve a
44.2 grounding mask recall on grounded conversation generation, outperforming
the extensively supervised model GLaMM.
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1 INTRODUCTION

Large multimodal models (LMMs) (Liu et al., 2023; Zhu et al., 2024; Dai et al., 2023) have brought
the new opportunity of solving vision-language tasks in a general-purpose manner, which are typically
built by connecting a visual encoder and a large language model (LLM) and fine-tuned by visual
instructions. Currently, one major challenge faced by LMMs is grounding—the key ability of relating
language components (e.g., noun phrases) to visual entities (e.g., objects) in a given image (Yu et al.,
2016; Krishna et al., 2017). With the grounding ability, LMMs can lift the constraint of text-only
responses and address more vision-language tasks in the real world.

To equip LMMs with the grounding ability, the common belief is that additional supervision for
grounding is necessary, and corresponding architectural modifications need to be introduced. For
instance, recent efforts extend the output modality from pure text to bounding boxes (Chen et al.,
2023b; Peng et al., 2024), trace points (Xu et al., 2024), or segmentation masks (Lai et al., 2024;
Rasheed et al., 2024), by 1) attaching additional modules to the vanilla LMM architecture, and 2)
fine-tuning the LMM with grounding supervision. The grounding supervision originates from either
re-purposing existing datasets that contain human-labeled object-level annotations or automatically
annotating images using other models.

However, such reliance on strong supervision brings more undesired constraints: 1) Limited training
data: Image datasets with high-quality object-level annotations (at most millions of images (Shao
et al., 2019; Kuznetsova et al., 2020)) rely on pre-defined categories and are significantly smaller than
those with coarse image-text pairs (up to billions (Schuhmann et al., 2022)), so re-purposing such
object-level annotations only results in visual instruction data with limited diversity and quantity.
Meanwhile, if the object-level annotations are produced by automated models, such annotations
are noisier and less reliable than human-labeled ones (Rasheed et al., 2024). 2) Supervision bias:
Changing the data focus to grounding tasks can lead to catastrophic forgetting (French, 1999) and
hurt LMMs’ general conversation capabilities. Furthermore, whether the grounding data are manually
annotated (Lin et al., 2014) or pseudo-labeled by other models (Rasheed et al., 2024), they are biased
by the annotators’ or models’ knowledge and may fail to align with general human preferences,
as these fine-grained annotations can vary significantly among different annotators or models. 3)
Generalizability: The grounding supervision is constrained within the visual concepts from either
the existing datasets or other models, which contradicts with the ultimate goal of developing a
general-purpose assistant for solving open-world problems (Bendale & Boult, 2015). Consequently,
the resulting LMMs may be biased by the limited grounding supervision data, generalize poorly to
novel visual concepts and domains, and lose general conversation abilities. Figures 1 and 4 show
illustrative examples of these limitations.

To avoid such limitations, the question worth rethinking then arises: Is there an approach to grounding
LMMs other than strong supervision? In fact, in this work, we reveal a critical yet previously
overlooked fact: LMMs have inherently obtained the grounding ability through the weakly supervised
visual instruction tuning. In other words, the grounding ability can emerge in LMMs without
grounding supervision. Echoing prior observations of traditional convolutional neural networks (Zhou
et al., 2015; 2016), we find that LMMs learn to detect visual entities and relate them with the language
implicitly, during the progress of vision-language learning at the image level.

We therefore propose a simple and effective “attend-and-segment” strategy to transform this emerging
grounding ability into pixel-level segmentation masks. Intuitively, the attention mechanism (Vaswani
et al., 2017) in LMMs reveals where the LMM is looking at, and thus provides clues for visual
grounding. We start with a base LMM trained without grounding supervision (Liu et al., 2023),
and acquire its attention corresponding to the visual input. Though the entire attention map may
be noisy, we locate the point where the LMM is focused on during token generation, and use the
point to accurately prompt a segmentation model (Kirillov et al., 2023) for pixel-level grounding.
With this attend-and-segment method, we enable vision-language tasks that directly rely on the
grounding capability (e.g., grounded conversation generation (Rasheed et al., 2024)). Remarkably,
attend-and-segment does not require explicit grounding supervision like prior work; in contrast,
weak supervision from standard visual instruction tuning data is sufficient to achieve performance
comparable with or even higher than previous grounding-supervised models. Furthermore, as a
general approach, attend-and-segment can be readily integrated with recent generalist LMMs (Li
et al., 2024a; Tong et al., 2024a), and benefit from their stronger vision-language capabilities.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Furthermore, we introduce a simple solution to enhance the emerging grounding ability of LMMs.
Previously, CLIP (Radford et al., 2021) plays a dominant role as the visual encoder of LMMs,
due to its vision-language feature alignment. However, CLIP is known to be weak in providing
localized visual features (Zhou et al., 2022; Ghiasi et al., 2022; Li et al., 2022), as its pre-training
simply aligns the global representations of image-text pairs. Through systematic evaluation on both
grounding-specific and general tasks, we find diffusion models (Ho et al., 2020; Rombach et al., 2022)
a better alternative to CLIP, as their text-to-image generation capability enables both vision-language
alignment and localized features. Thus, we propose the diffusion-based LMM (DIFFLMM), which
augments the CLIP visual encoder of the LMM with a diffusion-based visual encoder, while being
fine-tuned using the same data as the original LMM. To the best of our knowledge, DIFFLMM is the
first successful integration of diffusion-based visual encoding and LMMs for both visual grounding
and general vision-language tasks. Compared with the original LMM, DIFFLMM enhances the
grounding ability without sacrificing performance in general-purpose vision-language tasks.

Our extensive experiments demonstrate that LMMs’ grounding capabilities can emerge from weak
supervision. Our approach, requiring no additional grounding supervision, does not suffer from
biases in the grounding supervision data, and generalizes better. Despite being trained on less data
than prior grounding LMMs (Lai et al., 2024; Rasheed et al., 2024), DIFFLMM achieves better or
comparable performance on grounding-specific benchmarks, while adhering to a strong generalist
model for vision-language tasks. To summarize, our contributions are three-fold:

• Different from prior methods that rely on grounding-specific strong supervision, we show the pos-
sibility of grounding LMMs without grounding supervision. Eliminating the need for fine-grained
annotations from humans or external models, our approach is more scalable and generalizable.

• We discover a simple and effective approach, attend-and-segment , to achieve pixel-level grounding
for LMMs by inspecting the attention mechanism in the generation process and prompting a
segmentation model, which requires no grounding supervision or architectural changes.

• We propose DIFFLMM, which employs a visual encoder based on the diffusion model. DIFFLMM
offers stronger grounding capabilities than the original LMM, while maintaining general vision-
language task performance.

2 RELATED WORK

Large multimodal models (LMMs). Pioneering work in LMMs, such as LLaVA (Liu et al.,
2023; Sun et al., 2024; Liu et al., 2024a;b), MiniGPT-4 (Zhu et al., 2024; Chen et al., 2023a), and
InstructBLIP (Dai et al., 2023; Li et al., 2023a), enables visual inputs for large language models
(LLMs) via vision-language feature alignment (Radford et al., 2021) and instruction tuning (Wei et al.,
2022). To equip LMMs with the grounding ability, a series of methods have been proposed to produce
model outputs of bounding boxes (Peng et al., 2024; Chen et al., 2023b; Wang et al., 2023; Pi et al.,
2023; You et al., 2024; Li et al., 2024b), traces of points (Xu et al., 2024), or segmentation masks (Lai
et al., 2024; Rasheed et al., 2024; Zhang et al., 2024; Ren et al., 2024), by adding region-specific
tokens or decoders. These methods require further grounding supervision, so image datasets with
fine-grained annotations (Lin et al., 2014; Yu et al., 2016; Zhou et al., 2017) are usually repurposed
for the visual instruction tuning. Unlike these supervised methods, our approach, attend-and-segment ,
does not change the LMM architecture or require any grounding supervision data.

A concurrent work F-LMM (Wu et al., 2024a) shows a similar method to exploit attention maps
in frozen LMMs for visual grounding, but we differ mainly in two aspects: 1) F-LMM follows the
supervised paradigm to learn the segmentator, while our attend-and-segment requires zero supervision.
For the first time, we reveal LMMs’ emerging grounding capabilities without explicit supervision. 2)
F-LMM examines existing LMMs without changing their visual encoding. In contrast, by analyzing
visual encoders’ grounding ability, we propose DIFFLMM to further enhance implicit grounding.

Diffusion models (DMs) as visual feature extractors. DMs (Song & Ermon, 2019; Ho et al., 2020;
Song et al., 2021; Karras et al., 2022; Nichol & Dhariwal, 2021; Rombach et al., 2022) have become
a prevalent paradigm in visual generation, and intermediate features from DMs are explored for
applications beyond generative tasks. For example, DDPM-Seg (Baranchuk et al., 2022), ODISE (Xu
et al., 2023), and EmerDiff (Namekata et al., 2024) utilize DM features for various segmentation tasks.
Features from DMs can also establish point- or pixel-level correspondences between images (Tang

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

et al., 2023; Luo et al., 2023; Zhang et al., 2023b; Hedlin et al., 2023). For the first time, we show
DMs can be utilized for learning a general-purpose LMM with strong grounding capabilities.

3 APPROACH

In this section, we first introduce the common architecture design of LMMs (Section 3.1). Then,
we discuss attend-and-segment , which transforms the implicitly learned grounding ability into
segmentation masks (Section 3.2). Based on the standard LMM and attend-and-segment , we propose
DIFFLMM, to further enhance the grounding ability without additional supervision (Section 3.3).
We include implementation details of our approach in Appendix A.

3.1 PRELIMINARY: META-ARCHITECTURE OF LARGE MULTIMODAL MODELS (LMMS)

Most LMMs (Liu et al., 2023; Zhu et al., 2024; Dai et al., 2023) share a common meta-architecture
which consists of a visual encoder MV , a vision-to-language feature projector MV 7→L, and a large
language model (LLM) ML, as illustrated in Figure 2. Given an image I of resolution H × W ,
the visual encoder MV (e.g., CLIP (Radford et al., 2021)) is employed to extract visual features
V = MV (I) ∈ Rh×w×cV , where h × w represents the feature map size, and cV is the visual
feature dimension. Then, the visual feature map is considered as a sequence of hw elements, and
projected element-wise into the language feature space by the projector MV 7→L. The projector can
be implemented as a learnable lightweight multilayer perceptron (MLP). The k-th projected visual
token is computed as vk = MV 7→L(Vk) ∈ RcL , where cL is the feature dimension in the LLM. The
visual tokens, concatenated with other language tokens, form the input sequence Sinput:

Sinput = {t1, . . . , tp, v1, . . . , vhw, tp+1, . . . , tp+q}, (1)

where {v1, . . . , vhw} are the hw visual tokens projected from the visual feature map, t1, . . . , tp are
the p language tokens before the visual tokens, and {tp+1, . . . , tp+q} are the q language tokens after
the visual tokens.

The LLM is usually a decoder-only Transformer model, which is capable of next-token prediction.
Given the input sequence Sinput, the output sequence Soutput = {o1, . . . , or} is generated in an
auto-regressive manner, where the i-th token is predicted as:

oi = ML(Sinput, o1, . . . , oi−1). (2)

The generation is terminated when the last predicted token or is a special “end-of-sequence” token.

3.2 Attend-and-Segment : GROUNDING LMMS WITHOUT GROUNDING SUPERVISION

Prior efforts towards grounding LMM attach a detection or segmentation module to the LMM archi-
tecture, and specialize the LMM training procedure with grounding supervision, i.e., visual instruction
data augmented by object-level annotations, such that the LMM learns to predict connections between
the text response and the image contents in the form of localized bounding boxes or segmentation
masks. In contrast to these strongly supervised methods, we propose attend-and-segment , a sim-
ple and effective method for grounding LMMs without changing their architecture or providing
additional grounding supervision. We investigate the attention maps inside the transformer-based
language model when generating tokens, and observe strong interpretablity associated with the
attention maps. Intuitively, the attention maps can provide information about where the model is
looking at when producing outputs.

Formally, we consider the input token sequence Sinput as detailed in Section 3.1. When predicting an
output token oi, we capture the raw attention maps Araw

i ∈ [0, 1]nlayer×nhead×(p+hw+q+i−1) inside the
transformer-based LLM ML, where nlayer is the number of layers in the LLM, nhead is the number
of heads per layer, and p+ hw + q + i− 1 is the number of tokens before the i-th output token oi.
We only use the attention maps associated with the hw visual tokens, and reduce the dimensions
by averaging over nlayer layers and nhead heads per layer. This operation returns an attention matrix
Areduced

i ∈ [0, 1]h×w, with the same spatial dimension as the visual feature map.

The attention between the output token and the visual tokens can provide interpretable grounding
signals already. To further amplify the grounding signals and reduce the noise, we apply normalization

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Describe the 
image in detail.

Image 
Encoder 𝑀!

Projector
𝑀!↦#

Input 𝑆$%&'(

𝑡! ⋯ 𝑡" 𝑣! ⋯ 𝑣#$ 𝑡"%! ⋯ 𝑡"%&

Large 
Language 

Model
𝑀#

Attention

Output 𝑆)'(&'(

𝑜! ⋯ 𝑜'(! 𝑜'

... The dog is on the 
right side of the image, 

while the cat

𝑀*+,

Figure 2: Meta-architecture of LMMs and the attend-and-segment strategy. In the standard
LMM, the image encoder MV extracts visual features from an input image, and the features are
transformed into visual tokens by the projector MV 7→L. The large language model ML generates
the output in an auto-regressive manner. When generating a new token (e.g., “cat”) which requires
grounding, we capture the attention between the new token and the input visual tokens. Then a
segmentation model (e.g., SAM (Kirillov et al., 2023)) is prompted by the point with the highest
attention value to produce a segmentation mask (e.g., cat in the image).

across the whole output sequence:

Anorm
i = Areduced

i − 1

r

∑r

j=1
Areduced

j , (3)

where r is the output sequence length.

To provide pixel-level grounding, we derive a segmentation mask by upsampling the attention map
and prompting a pre-trained segmentation model (SAM (Kirillov et al., 2023) by default). For each
token that requires grounding, we produce its corresponding binary mask by finding the point with
the highest normalized attention and using its coordinate as a point prompt to the segmentation model.
Thus, for elements of the output sequence, our attend-and-segment method provides pixel-level
grounding results. Notably, we use off-the-shelf segmentation models without modification, while
fine-tuning is inevitable in prior pixel-level grounding LMMs (Lai et al., 2024; Rasheed et al., 2024).

In downstream tasks like panoptic narrative segmentation, the tokens to ground are already provided,
but other tasks like grounded conversation generation require the model to generate grounded noun
phrases. In such tasks, we utilize existing natural language processing tools (e.g., spaCy (Honnibal
et al., 2020)) to parse the output sequence into noun phrases, and associate noun phrases with the
output tokens. For each noun phrase, we produce segmentation masks using the average of normalized
attention maps from the corresponding tokens.

3.3 DIFFLMM: ENHANCED GROUNDING WITH DIFFUSION-BASED LMM

Most LMMs employ CLIP (Radford et al., 2021) as the visual encoder because it has been pre-trained
to align vision and language representations, but CLIP is known to be sub-optimal in tasks that
require precise localization (e.g., object detection, image segmentation) (Zhou et al., 2022; Ghiasi
et al., 2022; Li et al., 2022). To enhance the grounding ability of LMMs, a direct choice may be
replacing CLIP with better localized pure-vision backbones like DINO (Caron et al., 2021; Oquab
et al., 2024). However, the lack of alignment with language representations can hurt vision-language
task performance (Jiang et al., 2023; Tong et al., 2024b).

Compared with vision-language models with image-level alignment (e.g., CLIP) and pure-vision
models (e.g., DINO), visual representations from diffusion models (DMs) strike a better balance: 1)
DMs learn to generate high-fidelity images, for which well-localized visual features are necessary.
Consequently, they are better than CLIP at localization. 2) DMs are trained to perform text-to-
image generation, and in this procedure, they acquire alignment with language instructions, which is
lacking in pure-vision models like DINO. Therefore, we propose diffusion-based LMM (DIFFLMM,
illustrated in Figure 3), which strengthens the visual encoder with a pre-trained DM.

To extract visual features for a given input image I , we simulate one denoising step in the diffusion
process. The image is tokenized by a vector quantized (VQ) encoder, added with a random noise,
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Condition

Add
Noise

Implicit Captioner

MLP
CLIP

Visual Encoder

Denoising U-Net

CLIP 
Features

VQ
Encoder

SD Features

CLIP Features

+

Visual Features

Concatenate

Positional Encodings

ProjectorInputText

Figure 3: Visual encoding in DIFFLMM. We perform one denoising step with the diffusion model
(DM) (Ho et al., 2020; Rombach et al., 2022), and extract visual features from an intermediate block
of the U-Net. The implicit captioner (Xu et al., 2023) produces text-like conditioning and improves
the visual features in the U-Net. We combine both DM features and CLIP features, and add learnable
positional encodings to them. The final visual features are projected into the language feature space,
and fed into the LLM along with other text tokens. The DM and CLIP visual encoder are frozen.

and fed into the U-Net model of a DM (Ho et al., 2020; Rombach et al., 2022). We extract the
visual feature map from the second upsampling block in the U-Net, which best preserves visual
semantics (Tang et al., 2023). Text conditioning can enhance the visual feature extraction in the DM,
but the image caption is usually unavailable. We employ the implicit captioning mechanism (Xu et al.,
2023), which simulates text conditioning by the CLIP visual encoder. Specifically, the CLIP visual
features are extracted as VCLIP = MCLIP(I), projected by a multilayer perceptron (MLP) MCLIP7→SD,
and injected into the U-Net via cross-attention modules. We denote the DM visual features as
VSD = MSD(I,MCLIP7→SD(VCLIP)). Finally, the visual feature map V is composed by concatenating
both DM features and CLIP features (note that we can reuse the CLIP features without additional
overhead), and adding a set of learnable positional encodings PE (Vaswani et al., 2017) to further
enhance localization awareness:

V = concat(VSD, VCLIP) + PE ∈ Rh×w×cV . (4)

For efficient training and preventing overfitting, we freeze pre-trained parameters in the CLIP visual
encoder and the DM. Only the MLP in the implicit captioner, the positional encodings, and the vision-
language feature projector are learnable in the visual encoder of DIFFLMM. Since the computation
is dominated by the large language model component in DIFFLMM, integrating diffusion models in
DIFFLMM does not significantly impact the efficiency. We only observe a marginal increase in the
training and inference time (< 5%).

4 EXPERIMENTS

In this section, we first present an analytical experiment to demonstrate the implicit grounding ability
of LMMs (Section 4.1), and then show results of applying our approach in both visual grounding
(Sections 4.2 and 4.3) and general conversation tasks (Section 4.4). Finally, we include ablation
study of our module designs (Section 4.5). Due to limited space, we include implementation details
and further results in the appendix. It is worth noting that attend-and-segment and DIFFLMM are
general approaches for LMMs, but considering the computation limitations, we focus on grounding
and enhancing LMMs with 7B or 8B-scale language models (Chiang et al., 2023; Meta, 2024).

4.1 PILOT STUDY: INSTANCE SEGMENTATION

We start by conducting an analytical study via instance segmentation (He et al., 2017) on MS-
COCO (Lin et al., 2014) to demonstrate the emergence of grounding ability in LMMs and how
different visual encoders impact this ability. Different from vision-language entangled benchmarks
(which will be tested in later sections), the vision-centric instance segmentation task 1) directly
focuses on relating image regions (represented as segmentation masks) with visual concepts (object
categories), which is exactly the objective of grounding, and 2) does not evaluate based on language
generation, making it more convenient to directly compare grounding abilities in different models.
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Table 1: Analysis of grounding abilities based on instance segmentation. We examine the
grounding ability embedded in the attention maps of LMMs, and compare LMMs trained with
different visual backbones (including CLIP (Radford et al., 2021; Cherti et al., 2023), DINOv2 (Oquab
et al., 2024), and Stable Diffusion (Rombach et al., 2022)) and the same data without grounding
supervision, based on LLaVA-1.5 (Liu et al., 2024a). The original LLaVA-1.5 achieves a non-
trivial performance compared with the baseline of randomly sampling points and prompting SAM.
DIFFLMM enhances this grounding ability with diffusion-based visual features, and even surpasses
Cambrian-1 (Tong et al., 2024a), which relies on an ensemble of four visual encoders, on mask AR.

Model Visual Backbone PAcc APS APM APL AP ARS ARM ARL AR
Random Point 10.53 0.0 0.2 0.8 0.3 0.1 1.2 10.1 3.8

LLaVA-1.5
CLIP (original) 34.01 1.8 6.6 6.3 3.9 5.8 21.7 43.2 22.8
ConvNeXt CLIP 37.16 3.1 7.0 8.4 4.9 8.4 22.1 44.0 23.9
DINOv2 34.55 1.9 6.7 7.2 4.2 6.4 22.0 41.7 23.0

DIFFLMM SD-1.5 38.92 2.1 7.6 9.9 5.7 6.4 25.3 48.8 25.9
(Ours) SD-1.5 + CLIP 40.22 1.6 7.9 9.6 5.6 6.3 25.5 47.3 26.0

Cambrian-1 Ensemble 44.49 2.0 6.9 10.6 6.0 6.3 20.7 39.1 21.4

LMMs are not originally designed for instance segmentation. Therefore, for evaluation purposes,
we ask LMMs to generate a detailed description of a given image, and leverage attend-and-segment
to produce pairs of noun phrases and segmentation masks from the LMM response. Then we find
the best-matching category label for each noun phrase by computing their embedding similarities
using spaCy (Honnibal et al., 2020). Since the LMM is not constrained to only describe objects that
are annotated by the dataset (and should not be rewarded or penalized for detecting out-of-domain
objects), we exclude predictions that cannot be matched with any category label that appear in the
given image. We compare the standard metrics in instance segmentation, mask average precision
(AP) and mask average recall (AR). In this setting, AP is lower than AR because the models are
not supervised for the task, and we do not explicitly remove duplicated predictions. To assess the
quality of point prompts derived from LMM attention maps without SAM, we compute a new metric,
point accuracy (PAcc), which is the ratio of point prompts that correctly fall into the masks of the
corresponding category. For comparison, we consider a baseline that simulates a “blind” LMM,
which prompts SAM with a random point for segmenting each ground-truth category.

As shown in Table 1, the attention-derived prompts from the original LLaVA-1.5 achieve a non-trivial
34.01 accuracy, indicating that the attention maps can be utilized for fine-grained grounding. Further
performing segmentation with SAM leads to 22.8 AR. Comparing models equipped with different
visual encoders but trained with the same data, our DIFFLMM achieves the best overall point accuracy
and mask AP/AR, whether or not we concatenate the diffusion features with CLIP features. A recent
vision-centric LMM, Cambrian-1 (Tong et al., 2024a), utilizing an ensemble of four visual encoders,
has an even higher point accuracy and mask AP. However, due to different training data, it tends to
generate shorter descriptions than LLaVA-1.5, resulting in more missed objects and lower mask AR.

4.2 GROUNDED CONVERSATION GENERATION

The pilot study on instance segmentation shows that LMMs trained without explicit grounding
supervision already implicitly acquires grounding ability, which can be used to produce pixel-level
segmentation masks. Following the discussion above, we examine LMMs’ grounding ability on a
more comprehensive benchmark, grounded conversation generation (GCG) (Rasheed et al., 2024).
The objective of GCG is to understand visual entities in an image, and organize them into a localized
description. To be specific, the GCG task requires the LMM to generate a detailed caption for a given
image, in which phrases are related to their corresponding segmentation masks in the image.

Since the GCG task requires model abilities in both captioning and segmentation, three types of
metrics are considered: 1) To measure the caption quality, the text-only metric, METEOR (Banerjee
& Lavie, 2005), compares the generated captions with the human-annotated reference captions. 2) To
assess the segmentation mask quality, the mask-only metric, mean intersection-over-union (mIoU),
quantifies the similarity between ground-truth masks and their matched predicted masks. 3) The
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Table 2: Grounded conversation generation (GCG) results. Even without grounding supervision,
attend-and-segment (a&s in the table) unlocks the implicitly learned grounding ability in LLaVA-
1.5 (Liu et al., 2024a), outperforming all grounding-specific models on this task. DIFFLMM further
enhances the grounding ability, and leads to stronger grounding performance. The higher METEOR
scores demonstrate our better preserved conversation ability. As a general approach, attend-and-
segment can be applied on different LMMs (Li et al., 2024a; Tong et al., 2024a). All methods are
evaluated by the text-only metric METEOR (M) (Banerjee & Lavie, 2005), the mask-only metric
mIoU, and the combined metric grounding mask recall (Rec) (Rasheed et al., 2024) on the Grandf

dataset (Rasheed et al., 2024). Baseline results are from GLaMM (Rasheed et al., 2024).

Model Grounding Validation Set Test Set
Supervision M↑ mIoU↑ Rec↑ M↑ mIoU↑ Rec↑

BuboGPT (Zhao et al., 2023)

✓

17.2 54.0 29.4 17.1 54.1 27.0
Kosmos-2 (Peng et al., 2024) 16.1 55.6 28.3 15.8 56.8 29.0
LISA (Lai et al., 2024) 13.0 62.0 36.3 12.9 61.7 35.5
GLaMM (Rasheed et al., 2024) 16.2 66.3 41.8 15.8 65.6 40.8

LLaVA-1.5 + a&s + SAM (Ours)

✗

18.6 58.0 44.2 18.3 59.3 42.7
LLaVA-NeXT + a&s + SAM (Ours) 15.6 64.5 45.6 15.6 65.6 44.2
Cambrian-1 + a&s + SAM (Ours) 14.6 59.8 42.0 14.5 60.7 40.4
DIFFLMM + a&s + SAM (Ours) 18.4 61.2 46.6 18.2 62.1 44.2

grounding mask recall (Rasheed et al., 2024) is an integrated metric for region-specific grounding,
which considers both the mask IoU and the textual similarities between the predictions and the ground
truth. Therefore, the grounding mask recall is mainly considered when comparing different models.

In Table 2 we compare our approach, which learns the LMM without any grounding supervision, with
prior methods for grounding LMMs (Zhao et al., 2023; Peng et al., 2024; Lai et al., 2024; Rasheed
et al., 2024). Even without grounding supervision, our attend-and-segment leads to 42.7 mask recall
for the original LLaVA-1.5 (Liu et al., 2024a), which is already higher than all the previous grounding
LMMs. As a general approach, attend-and-segment can be used in conjunction with recent LMMs
such as LLaVA-NeXT (Li et al., 2024a) and Cambrian-1 (Tong et al., 2024a), and benefit from their
improved visual encoding and vision-language capabilities. Compared with CLIP-based LMMs,
DIFFLMM provides better localized visual features and improves the grounding ability. When
using our DIFFLMM as the LMM, we reach the highest 44.2 test recall. Our method achieves pixel
grounding but does not suffer from the supervision bias brought by grounding annotations, and thus
better preserves the text-only conversation abilities, as shown by the higher METEOR scores.

4.3 REFERRING EXPRESSION SEGMENTATION AND PANOPTIC NARRATIVE GROUNDING

In addition to GCG, we provide additional results on two widely investigated visual grounding tasks:
referring expression segmentation (RES) (Hu et al., 2016; Yu et al., 2016), which requires seg-
menting a target object specified by a given referring expression, and panoptic narrative grounding
(PNG) (González et al., 2021), which grounds each noun phrase in a given text description with a
panoptic segmentation mask. We employ two other segmentation models, Co-DETR (Zong et al.,
2023) and OpenSeeD (Zhang et al., 2023a), in RES and PNG, respectively. The details of our
implementation and complete results are included in Appendix B.

We would like to note that directly comparing our approach with prior supervised grounding
LMMs is not exactly fair, due to the following reasons: 1) Our approach requires no grounding
supervision, while all prior grounding LMMs are extensively trained on such grounding tasks. 2)
In both task settings, the text for grounding is set by an external input, which is inconsistent with
the generative nature of LMMs. Grounding LMMs have to be trained to generate a special token
for mask decoding, but our approach does not include such training. Therefore, a conversation
between a human user and an LMM has be simulated for indirectly producing the attention maps
and segmentation results. Considering both factors, RES and PNG are inherently challenging for our
approach without grounding supervision. Nevertheless, we achieve competitive performance on these
two tasks, setting a new state of the art for zero-shot approaches, as shown in Tables 3 and 4.
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Table 3: Results on referring expression seg-
mentation (RES). We use Co-DETR (Zong et al.,
2023) for class-agnostic mask proposal gener-
ation. Without RES supervision, attend-and-
segment enhances the ability to localize cor-
responding objects for given referring phrases,
compared with prior zero-shot methods. All
models are evaluated by the average cumu-
lative intersection-over-union (cIoU) on Ref-
COCO(+/g) (Yu et al., 2016). ‘Sup?’ indicates
whether grounding supervision on RES is used.

Model Sup? cIoU

LISA (Lai et al., 2024)

✓

69.9
GROUNDHOG (Zhang et al., 2024) 74.2
GLaMM (Rasheed et al., 2024) 75.6
LLaVA-1.5 + F-LMM (Wu et al., 2024a) 69.0

Global-Local CLIP (Yu et al., 2023)

✗

26.5
TAS (Suo et al., 2023) 32.5
Ref-Diff (Ni et al., 2023) 36.1
LLaVA-1.5 + a&s + Co-DETR (Ours) 35.2
DIFFLMM + a&s + Co-DETR (Ours) 37.0

Table 4: Results on panoptic narrative ground-
ing (PNG). We use a specialized panoptic seg-
mentation model, OpenSeeD (Zhang et al., 2023a)
to generate candidate masks. Our approach
achieves competitive results even without ground-
ing supervision. DIFFLMM improves the original
LLaVA-1.5 for visual grounding, which is consis-
tent with our results on other tasks (Tables 1 and
2). The metric is average recall. ‘Sup?’ indicates
whether grounding supervision on PNG is used.

Model Sup? AR

PixelLM† (Ren et al., 2024)

✓

43.1
GLaMM† (Rasheed et al., 2024) 55.8
GROUNDHOG (Zhang et al., 2024) 66.8
LLaVA-1.5 + F-LMM (Wu et al., 2024a) 64.8

DatasetDiffusion‡ (Nguyen et al., 2023)

✗

23.5
DiffSeg‡ (Tian et al., 2024) 24.1
DiffPNG (Yang et al., 2024) 38.5
LLaVA-1.5 + a&s + OpenSeeD (Ours) 42.2
DIFFLMM + a&s + OpenSeeD (Ours) 45.3
†: Reported by F-LMM. ‡: Reported by DiffPNG.

4.4 VISUAL QUESTION ANSWERING

When enhancing the grounding ability of LMMs, we do not want LMMs to lose their general vision-
language abilities. To assess such general abilities, we evaluate DIFFLMM on a wide range of visual
question answering (VQA) benchmarks, including VQAv2 (Goyal et al., 2017), GQA (Hudson &
Manning, 2019), Vizwiz (Gurari et al., 2018), ScienceQA-IMG (Lu et al., 2022), and TextVQA (Singh
et al., 2019). We also consider more comprehensive LMM benchmarks, including POPE (Li et al.,
2023b), MMBench (Liu et al., 2024c), and LLaVA-Bench (Liu et al., 2023).

It is worth noting that previous grounding LMMs (e.g., LISA (Lai et al., 2024), GLaMM (Rasheed
et al., 2024)) are not usually evaluated on these general-purpose VQA benchmarks. For example,
POPE is designed for quantifying object hallucination in LMMs by asking questions like “Is
there an [object] in the image?” but the queried object often does not exist. However,
we find that GLaMM almost always answers “Sure, it is [seg].” and provides an incorrect
segmentation mask (see examples in Figure 4). Such loss of capabilities in answering general
questions is due to supervision bias—these LMMs are fine-tuned for grounding tasks and they
forget how to answer general visual questions without grounding. Therefore, grounding LMMs like
GLaMM have extremely low scores on these benchmarks, and we choose to compare with stronger
generalist LMMs that are not designed for grounding tasks on VQA benchmarks.

When compared with state-of-the-art LMMs of the same scale (fine-tuned from a 7B LLM), including
InstructBLIP (Dai et al., 2023), IDEFICS (HuggingFace, 2023), Qwen-VL-Chat (Bai et al., 2023),
and LLaVA-1.5 (Liu et al., 2024a), DIFFLMM ranks 1st on 3 benchmarks, and 2nd on 4 benchmarks.
Since DIFFLMM is trained on the same data as LLaVA-1.5, similar results are observed. There-
fore, our diffusion-based DIFFLMM improves fine-grained vision-language comprehension that
specifically requires the grounding ability, while retaining strong general vision-language capabilities.

4.5 ABLATION STUDY

Our attend-and-segment applies normalization across the sequence of attention maps (Equation 3),
which significantly reduces noises in the maps (Figure 7). From the attention map, we select the
single point with the highest attention value to prompt SAM, instead of providing the entire map as
a mask prompt. Empirically, we find that attention maps are sparse, tending to focus on a few key
points within objects rather than the entire objects, so point prompts are more effective. Quantitative
comparisons are summarized in Table 6. We use point-based prompts in all other experiments.
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Table 5: Visual Question Answering (VQA) results. We evaluate and compare generalist LMMs of
the same scale (all with a 7B-sized LLM) on a wide range of benchmarks, including VQAv2 (Goyal
et al., 2017), GQA (Hudson & Manning, 2019), Vizwiz (VW) (Gurari et al., 2018), ScienceQA-IMG
(SQA) (Lu et al., 2022), TextVQA (TQA) (Singh et al., 2019), POPE (Li et al., 2023b), MMBench
(MM-B) (Liu et al., 2024c), and LLaVA-Bench (LV-B) (Liu et al., 2023). Different from prior models,
DIFFLMM is built upon a diffusion model (DM) visual encoder, which provides stronger grounding
(Tables 1 and 2) and preserves vision-language abilities in general tasks. Notably, GLaMM (Rasheed
et al., 2024) fails in these general VQA tasks. For each benchmark, the 1st and 2nd best models are
marked. Baseline results are from LLaVA-1.5 (Liu et al., 2024a).

Model Visual VQAv2 GQA VW SQA TQA POPE MM-B LV-B

InstructBLIP (Dai et al., 2023) CLIP - 49.2 34.5 60.5 50.1 78.9 36.0 60.9
IDEFICS (HuggingFace, 2023) CLIP 50.9 38.4 35.5 - 25.9 - 48.2 -
Qwen-VL-Chat (Bai et al., 2023) CLIP 78.2 57.5 38.9 68.2 61.5 - 60.6 -
LLaVA-1.5 (Liu et al., 2024a) CLIP 78.5 62.0 50.0 66.8 58.2 85.9 64.3 65.4
DIFFLMM (Ours) DM 78.3 62.1 48.1 69.3 57.2 85.7 66.2 63.7

Table 6: Ablation study on attend-
and-segment . Normalizing attention
maps across the entire sequence re-
moves noisy patterns and improves
grounding. Prompting SAM (Kirillov
et al., 2023) with a single point instead
of a low-resolution mask is more ef-
fective. Our attend-and-segment com-
bines both techniques. The results are
based on evaluating DIFFLMM on the
GCG task (Rasheed et al., 2024).

Attn SAM GCG Val
Norm Prompt mIoU↑ Rec↑

✓ Mask 50.0 36.5
✗ Point 57.4 44.1
✓ Point 61.2 46.6

Table 7: Ablation study on general conversations of DIF-
FLMM. We pre-train DIFFLMM on the data as LLaVA-
1.5 (Liu et al., 2024a), and compare the converged losses
of various backbones including CLIP (Radford et al., 2021),
DINOv2 (Oquab et al., 2024), and SD-1.5 (Rombach et al.,
2022). Lower losses indicate better vision-language align-
ment. Both positional encodings (PE) and implicit captioner
(IC) improve the convergence of DIFFLMM, and support it
to preserve general conversation abilities.

Model Backbone PE IC Loss↓

LLaVA-1.5
CLIP – 2.027

DINOv2 – 2.403
CLIP+DINOv2 – 2.088

SD-1.5 2.384
DIFFLMM SD-1.5 ✓ 2.338
(Ours) SD-1.5 ✓ ✓ 2.141

SD-1.5+CLIP ✓ ✓ 2.032

In DIFFLMM (Figure 3), we employ a few modules to enhance the visual feature extraction and
alignment with the language model. Specifically, we 1) add learnable positional encodings (Vaswani
et al., 2017) to the visual features, and 2) use the implicit captioner (Xu et al., 2023) to simulate text
conditioning with CLIP visual features. Due to limited computation, we cannot retrain models with the
full dataset of LLaVA-1.5 (Liu et al., 2024a) and run thorough evaluation as in the previous sections.
Instead, we examine the modules’ effects with respect to the optimization objective in the pre-training
stage (Liu et al., 2023), as summarized in Table 7. Trivially replacing the CLIP (Radford et al., 2021)
visual encoder with DINOv2 (Oquab et al., 2024) leads to significantly higher losses, which implies
worse vision-language alignment. Thanks to the text-to-image training, SD-1.5 (Rombach et al.,
2022) results in a smaller loss. The positional encodings close the loss gap by about 13%, and further
adding the implicit captioner reduces the gap by another 55%.

5 CONCLUSION

In this work, we reveal a previously overlooked yet critical fact that LMMs possess grounding
capabilities even if they are trained without grounding supervision. We propose attend-and-segment
to convert this implicit grounding ability into segmentation masks, and we introduce DIFFLMM to
further enhance the grounding ability. Our approach is more scalable and generalizable compared
with supervised methods. Moreover, extensive evaluation results demonstrate strong performance on
both grounding-specific and general vision-language benchmarks, even surpassing grounding LMMs
trained with extensive supervision on the challenging grounded conversation generation task.
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Ethics statement. Despite the promising results, our approach shares several common limitations
with other LMMs, particularly regarding the visual instruction tuning data and pre-training models.
Social biases may be introduced during data collection, filtering, and annotation processes. Therefore,
our approach should be used with cautious in human-related applications, and we aim to develop
LMMs with improved alignment and safety in the future.

Reproducibility statement. We ensure reproducibility by providing detailed implementation descrip-
tions and data specifications in Appendix A. Additionally, our code is included in the supplementary
material. We will publicly release the code upon the acceptance of this work.
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A IMPLEMENTATION DETAILS OF OUR APPROACH

In this section, we provide the implementation details of this work to ensure reproducibility of our
experiments.

Attend-and-Segment. We first collect the attention maps for the visual tokens, and aggregate the
attention maps by averaging over all layers and heads. Then we apply normalization across the output
token sequence to remove noisy points, and upsample the normalized attention map to the original
image resolution. During mask refinement, we find the coordinate where the normalized attention
value is maximized, and use it as a prompt to the ViT-H SAM model (Kirillov et al., 2023) for
producing the pixel-level segmentation map. In the instance segmentation and grounded conversation
generation tasks, we parse the model response into noun phrases using spaCy (Honnibal et al.,
2020), and for each phrase, we average the normalized attention maps for the tokens that compose
the central noun of the phrase.

DIFFLMM. Our development of DIFFLMM is based on the codebase and dataset of LLaVA-1.5 (Liu
et al., 2024a). We employ the Stable Diffusion v1.5 (Rombach et al., 2022) model as our visual
backbone. In the denoising step, we add a random noise at the 100 timestep, and extract features
from the second upsampling block, following the practice of DIFT (Tang et al., 2023). We also
provide additional ablation study on the choice of the noise level and feature block in Table 8. In the
implicit captioner (Xu et al., 2023), we employ the visual encoder of CLIP-ViT-L-336px (Radford
et al., 2021), which is the same CLIP model in the original LLaVA-1.5. The model is trained with
LoRA (Hu et al., 2022), and the same training recipe as LLaVA-1.5. The training data are also the
same as LLaVA-1.5. The included datasets and their licenses are listed below.

• LAION (Schuhmann et al., 2022): MIT License.
• CC (Changpinyo et al., 2021): “The dataset may be freely used for any purpose, although

acknowledgement of Google LLC (“Google”) as the data source would be appreciated.”
• SBU (Ordonez et al., 2011): Unknown license.
• MS-COCO (Lin et al., 2014): Creative Commons Attribution 4.0 International License.
• GQA (Hudson & Manning, 2019): Creative Commons Attribution 4.0 International License.
• OCR-VQA (Mishra et al., 2019): Unknown license.
• TextVQA (Singh et al., 2019): Creative Commons Attribution 4.0 International License.
• VisualGenome (Krishna et al., 2017): Creative Commons Attribution 4.0 International

License.

Table 8: Ablation study on diffusion feature extraction. Adding a relatively small noise (at
diffusion step 100 or 200) to the original image and extracting features from the second upsampling
block in the diffusion U-Net lead to the best results in DIFFLMM.

Noise Step Feature Block Pre-train Loss ↓
100 2 2.384

0
2

2.417
200 2.395
300 2.457

100
1 2.400
3 2.465
4 2.625

B DETAILS OF REFERRING EXPRESSION SEGMENTATION AND PANOPTIC
NARRATIVE GROUNDING

Referring expression segmentation (RES). The RES task requires the model to segment a target
object specified by a given referring expression. It is indirect for our method, attend-and-segment ,
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to provide a single attention map for the referring expression specified by a task input. We design
a simple strategy to find the text-image correspondence. Specifically, we formulate a one-round
conversation between a human user and an LMM. For a referring expression [expr], the human
user asks the model to “Describe the [expr].” Then, the model is expected to generate
a response that focuses on the target object. We find the first token of the object of the sentence
(e.g., the token right after the verb “is”), and extract its attention map. After that, we can apply
attend-and-segment to find the point with the highest attention value, and produce a grounding mask
based on it. An illustrative example is shown as follows, in which we will use the token “a” for
attention map extraction.

USER: Describe the "middle player."
MODEL: The "middle player" in the image is a baseball player
wearing a blue shirt and a baseball glove...

We observe that SAM (Kirillov et al., 2023) tends to produce overly fine-grained segmentation masks
for object parts, and cannot deliver satisfactory results in the RES task which requires masks for entire
objects. Since our approach is actually not tied with any specific segmentation model, we can use
the prompt point generated by attend-and-segment to guide other models for segmentation. In this
experiment, we use a Co-DETR (Zong et al., 2023) instance segmentation model to produce class-
agnostic mask predictions for each image. To avoid data contamination, we exclude RefCOCO(+/g)
validation/test images from the training set, and retrain the Co-DETR model. After generating both
the prompt point with attend-and-segment and the set of candidate masks, we select the mask that
contains the prompt point. If there are multiple masks containing the prompt point, we just use the
mask with the highest confidence score predicted by Co-DETR.

The results are summarized in Table 9. Without any training on RES or other visual grounding tasks,
we achieve a remarkable performance of 37.0 average cIoU in RES. In particular, we outperform the
previous zero-shot methods (Yu et al., 2023; Suo et al., 2023; Ni et al., 2023). The results demonstrate
strong visual grounding capabilities implicitly learned by LMMs.

Table 9: Comprehensive results on the referring expression segmentation (RES) task. Our
approach uses Co-DETR (Zong et al., 2023) for class-agnostic mask proposal generation. Although
DIFFLMM is trained without referring segmentation data, it significantly enhances the ability to
localize corresponding objects for given referring phrases. attend-and-segment leads to improved
segmentation quality than prior zero-shot methods (Yu et al., 2023; Suo et al., 2023; Ni et al., 2023),
and DIFFLMM further enhances this grounding ability. All models are evaluated by the cumulative
intersection-over-union (cIoU) metric.

Model Grounding RefCOCO RefCOCO+ RefCOCOg Avg.Supervision val testA testB val testA testB val test

LISA (Lai et al., 2024)

✓

74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6 69.9
GROUNDHOG (Zhang et al., 2024) 78.5 79.9 75.7 70.5 75.0 64.9 74.1 74.6 74.2
GLaMM (Rasheed et al., 2024) 79.5 83.2 76.9 72.6 78.7 64.6 74.2 74.9 75.6
LLaVA-1.5 + F-LMM (Wu et al., 2024a) 75.2 79.1 71.9 63.7 71.8 54.7 67.1 68.1 69.0

Cropping (Yu et al., 2023)

✗

22.7 21.1 23.1 24.1 22.4 23.9 28.7 27.5 24.2
Global-Local CLIP (Yu et al., 2023) 24.9 23.6 24.7 26.2 24.9 25.8 31.1 31.0 26.5
TAS (Suo et al., 2023) 29.5 30.3 28.2 33.2 38.8 28.0 35.8 36.2 32.5
SAM-CLIP (Ni et al., 2023) 25.2 25.9 24.8 25.6 27.8 26.1 33.8 34.8 28.0
Ref-Diff (Ni et al., 2023) 35.2 37.4 34.5 35.6 38.7 31.4 38.6 37.5 36.1
LLaVA-1.5 + a&s (Ours) 38.8 47.0 34.2 32.9 40.0 27.3 31.8 29.6 35.2
DIFFLMM + a&s (Ours) 41.9 48.0 37.1 34.1 40.1 30.0 32.9 31.8 37.0

Panoptic narrative grounding (PNG). The PNG task requires the model to ground each noun phrase
in a given text description of a given image, by providing a corresponding panoptic segmentation
mask (Kirillov et al., 2019) for each noun phrase. Different from the standard setup of LMMs, the text
description of the image is provided by the task, rather than generated by the model itself. Therefore,
we adapt our attend-and-segment method for the PNG task. Specifically, we simulate a one-round
conversation between a human user and an LMM. The human user asks the model to “Describe
the image in detail.” Then, the model responds with the given text description. We extract
attention maps from the model response part of this conversation, and use the attention maps to guide
the segmentation procedure.
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Similar to RES, we use a specialized panoptic segmentation model, OpenSeeD (Zhang et al., 2023a),
to provide high-quality panoptic segmentation masks for each image. For each noun phrase, we
find the first associated token and its attention maps. Then, we locate the point with the highest
attention value, and select the mask that contains this point, from all the candidate masks generated
by OpenSeeD. Note that in panoptic segmentation, all masks are non-overlapping, so there is only
one mask that contains this point of the highest attention value. This selected mask is predicted as the
region corresponding to the noun phrase.

In Table 10, we compare the results of our approach with prior grounding LMMs. Although our
approach is applied on the PNG task in a zero-shot manner, it achieves competitive performance and
even outperforms one prior grounding LMM, PixelLM. Additionally, our approach improves over all
previous zero-shot PNG methods (Nguyen et al., 2023; Tian et al., 2024; Yang et al., 2024).

Table 10: Comprehensive results on the panoptic narrative grounding (PNG) task. Our approach
uses a specialized panoptic segmentation model, OpenSeeD (Zhang et al., 2023a) to generate
candidate masks, and applies attend-and-segment on the LMM-generated attention maps. Our
approach achieves competitive results even without grounding supervision. DIFFLMM improves the
original LLaVA-1.5 for visual grounding, which is consistent with our results on other tasks. The
metric is average recall. The results of PixelLM and GLaMM are reported by F-LMM (Wu et al.,
2024a). The results of DatasetDiffusion and DiffSeg are reported by DiffPNG (Yang et al., 2024).

Model Grounding All Thing StuffSupervision

PixelLM (Ren et al., 2024)

✓

43.1 41.0 47.9
GLaMM (Rasheed et al., 2024) 55.8 52.9 62.3
GROUNDHOG (Zhang et al., 2024) 66.8 65.0 69.4
LLaVA-1.5 + F-LMM (Wu et al., 2024a) 64.8 63.4 68.2

DatasetDiffusion (Nguyen et al., 2023)

✗

23.5 16.0 33.8
DiffSeg (Tian et al., 2024) 24.1 17.7 33.0
DiffPNG (Yang et al., 2024) 38.5 36.0 42.0
LLaVA-1.5 + a&s (Ours) 42.2 34.6 52.9
DIFFLMM + a&s (Ours) 45.3 38.7 54.5

C QUALITATIVE RESULTS

In Figure 4 we present qualitative results of DIFFLMM + attend-and-segment for more challenging
visual questions that are different from the training data, in comparison with GLaMM (Rasheed
et al., 2024). First, when the questions are not formulated as usual, GLaMM tends to interpret these
questions as image captioning or referring segmentation tasks, while DIFFLMM can still follow the
user’s instructions and accurately answer the questions. Meanwhile, attend-and-segment provides
well-grounded responses that connects text phrases and visual entities. Furthermore, our approach
shows better generalizability to unfamiliar question types, visual concepts, and image domains.

We present additional qualitative results for the grounded conversation generation task in Figure 5.
The DIFFLMM model is asked to “Describe the image in detail.” Then we use attend-
and-segment to produce visual grounding. Overall, our approach can provide accurate segmentation
masks, but may also suffer from common issues of LMMs (e.g., object hallucination (Li et al., 2023b;
Sun et al., 2024)).

D ADDITIONAL ANALYSIS OF ATTENTION MAPS

In attend-and-segment , we aggregate the attention values between each generated token and the
visual tokens into a 2D map. In this section, we provide more in-depth analysis of the attention maps.
For visualization, we use the same “cat and dog” image (Figure 1) as an example in the following
analysis; we have similar observations on other images as well.
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What is 
unusual about 
this image?

User

A man is standing on top of a 
car washing platform.

GLaMM

Who is sitting 
on the bench?

User

It is [seg].

GLaMM

No one is sitting on the bench.

Ours

The unusual aspect of this 
image is that a man is standing 
on the back of a yellow taxi cab, 
holding a laundry bag...

Ours

Describe the 
image in 
detail.

User

A furry white animal standing in 
a field.

GLaMM

The image features a large, fluffy, 
white llama standing in a grassy 
field. The llama appears to be 
looking up, possibly observing 
something in the sky...

Ours

Do you know 
the author of 
this painting?

User

Sure, it is [seg].

GLaMM

Yes, the painting is by the 
famous French artist Claude 
Monet.

Ours

Figure 4: Comparison of model responses to challenging visual questions. 1) Unusual image
contents: The model is requested to analyze the unusual aspect of a given image. Compared with
GLaMM, our approach provides a more detailed and accurate answer with grounding. 2) Adversarial
questions: The model is asked about something that does not exist in the image. GLaMM insists to
segment the bike behind the bench in this example. 3) Rare visual concepts: The image contains
objects of less frequent categories. In this example, GLaMM does not recognize the llama but
describes it in a general manner, while our approach provides a more accurate description. 4) Shifted
image domain: An image from a new domain is given to the model. Interestingly, our approach
seems to be making the decision based on the texture and style in the painting. For visual clarity,
we only show the beginning parts of our model responses if they are too long. These challenging
examples demonstrates better generalizability of our approach.

Attention in each head and layer. Instead of averaging the attention values over nlayer layers and
nhead heads per layer in the LLM, we first inspect the individual attention values in each head and
layer. Figure 6 visualizes the attention between one generated token “cat” and the input visual tokens.
Consistent with some recent observations (Wu et al., 2024b), a few heads in the intermediate layers
show stronger activation with respect to the visual object in the image. Also, attention maps in
intermediate layers are more localized. However, it is infeasible to build direct connections between
attention heads and visual concepts, given the absence of grounding annotations.

Table 11 summarizes an empirical study that demonstrates the grounding results of using the attention
from one single head of one single layer. Compared with averaging over all heads and layers,
individual heads and layers lead to to significantly worse and noisier results. Therefore, we aggregate
the attention maps across all heads and layers by averaging, which also simplifies the algorithm of
attend-and-segment in our setting without grounding supervision.

Attention normalization. After reducing the attention maps into one 2D map for each generated
token, we observe some noisy patterns in the attention maps (Figure 7-top). Some seemingly
uninformative visual tokens (usually in the background) attracts more attention from the generated
token than other visual tokens. A recent work (Darcet et al., 2024) shows similar observations, and
explains that such less informative tokens are “repurposed for internal computations.” To remove
such artifacts, they propose to provide additional tokens to the Vision Transformer as registers.

However, in our setting, we cannot retrain the visual backbone or the language model due to limited
data and computes. Instead, we simply normalize the attention maps by subtracting the mean attention
map averaged over the output sequence (Section 3.2). Although the noisy attention patterns exist, we
observe that these patterns are relatively stable (Figure 7-top), so the mean attention map, aggregated
over the output sequence, can capture the undesired attention patterns and allow us to remove them.
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Table 11: Evaluation of attention maps from individual head/layer combinations. Applying
attend-and-segment on the attention maps extracted from individual heads and layers results in worse
and less stable grounding mask recall in GCG, as compared with applying attend-and-segment on the
mean attention maps aggregated over all heads and layers, which achieves 46.6 mask recall (Table 2).

Head Index avg.±std.1 9 17 25

1 19.2 13.6 19.9 11.9 16.2±3.5
Layer 9 7.5 25.1 9.0 28.2 17.5±9.3
Index 17 26.2 4.3 19.7 27.1 19.3±9.1

25 5.9 34.3 27.0 15.7 20.7±10.8

Overall 18.4±8.8

After the attention normalization, we observe clearer patterns (Figure 7-bottom) which leads to accu-
rate pixel grounding. Quantitatively, attention normalization improves the GCG mask recall from 44.1
to 46.6 (Table 6). In addition to noun phrases, other words reveal relations or comparisons between
visual entities, and could be helpful for more vision-language tasks. We leave this investigation for
future research.

Visualization of attention maps. We visualize the attention maps in DIFFLMM in complex scenes
in Figure 8, to demonstrate the ability to differentiate similar visual entities and understand complex
phrases. In Figure 9, we examine the attention maps inside the diffusion U-Net, which uses a CLIP
text encoder. Due to the limited capacity of the text encoder, the attention maps produced by the
diffusion U-Net are ineffective for visual grounding.
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The image features a cozy bedroom with a large bed situated in the center of the room. The bed is covered with a blue comforter, 
and it is positioned next to a window that allows natural light to enter the room. The room also has a dresser and a mirror, adding 
to the overall comfort and functionality of the space.
In addition to the bed, there are several books scattered throughout the room, indicating that the occupant may be an avid reader. 
A potted plant is placed near the window, adding a touch of greenery to the room. A vase can also be seen on the dresser, further 
enhancing the room's decor.

The image captures a tennis match in progress, with a man in a white shirt and white shorts playing on a blue tennis court. He is in 
the middle of a swing, holding a tennis racket and preparing to hit the ball. The tennis ball is visible in the air, close to the player.
There are several other people in the scene, likely spectators or fellow players. Some of them are standing near the edges of the 
court, while others are positioned further away. A chair can be seen on the side of the court, possibly for resting or observing the 
match.

The image features a black cat sitting in front of a computer monitor, which is displaying a webpage. The cat appears to be looking 
at the screen, possibly intrigued by the content. The computer setup includes a keyboard placed to the left of the monitor and a 
cell phone on the right side.
In addition to the cat and the computer setup, there is a person visible in the background, likely the owner of the cat or someone 
working in the same space.

Figure 5: Qualitative results for grounded conversation generation. For visual clarity, we only
display the best four non-overlapping segmentation masks per image.
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Figure 6: Attention between the visual tokens and the generated token “cat.” We observe certain
heads in the intermediate layers produce more localized attention maps with respect to the “cat” object
in the image (e.g., Head 14 of Layer 15). It remains challenging to directly relate individual heads
to visual concepts when grounding annotations are not available, so attend-and-segment directly
aggregates attention maps from all layers and heads by averaging them.
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" The" " image" " features" " a" " dog" " and" " a" " cat" " standing" " next"

" to" " each" " other" "," " pos" "ing" " for" " a" " picture" "."

" The" " dog" " is" " on" " the" " right" " side" " of" " the" " image"

"," " while" " the" " cat" " is" " on" " the" " left" "." " Both"

" The" " image" " features" " a" " dog" " and" " a" " cat" " standing" " next"

" to" " each" " other" "," " pos" "ing" " for" " a" " picture" "."

" The" " dog" " is" " on" " the" " right" " side" " of" " the" " image"

"," " while" " the" " cat" " is" " on" " the" " left" "." " Both"

Figure 7: Attention maps before and after the normalization. Top: Before the normalization, a few
uninformative visual tokens in the background (e.g., top-center tokens above the dog’s head) receive
more attention, which is consistent with recent observations (Darcet et al., 2024). Such patterns
are stable across the output sequence. Bottom: To remove such artifacts in the attention maps, we
subtract the mean attention map (Section 3.2). After the normalization, the attention maps show
clearer localization, and are suitable for pixel-level grounding. In addition to noun phrases, other
parts of the text response demonstrate meaningful visual correspondence (e.g., “next to each other”
and the space between the two animals).
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Figure 8: Attention maps in complex scenes. Our approach is able to reason and ground complex
phrases (e.g., “a man standing behind the counter serving wine”) via the attention maps in the LMM.
In complex scenes with other similar objects (e.g. other men in the first image, another table on the
left side of the second image, and the man in the mirror in the third image), our approach can still
correctly locate the target object by finding the point with the highest attention value.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 9: Attention maps from the diffusion U-Net. The U-Net in the diffusion model also
computes cross-attention between image patches and a given text condition. However, the attention
maps are more noisy compared with the attention maps in the LMM (see Figure 8), and thus are less
effective in visual grounding.
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