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Abstract—We propose an adaptive and provably accurate ten-
sor completion approach based on combining matrix completion
techniques (see, e.g., [1]–[3]) for a small number of slices with a
modified noise robust version of Jennrich’s algorithm (see, e.g., [4,
Section 3]). In the simplest case, this leads to a sampling strategy
that more densely samples two outer slices (the bread), and then
more sparsely samples additional inner slices (the bbq-braised
tofu) for the final completion. Under mild assumptions on the
factor matrices, the proposed algorithm completes an n× n× n
tensor with CP-rank r with high probability while using at most
O(nr log2 r) adaptively chosen samples. Empirical experiments
further verify that the proposed approach works well in practice,
including as a low-rank approximation method in the presence
of additive noise.

I. INTRODUCTION

Consider a CP rank-r tensor T ∈ Rn×n×n where r ≤ n
with CP-decomposition

T =

r∑
i=1

ai ◦ bi ◦ ci. (I.1)

Here ai,bi, ci ∈ Rn for all i ∈ [r] := {1, . . . , r}, and ◦
denotes the outer product so that ai ◦ bi ◦ ci ∈ Rn×n×n has
entries (ai ◦ bi ◦ ci)h,j,k = (ai)h(bi)j(ci)k for all i ∈ [r].
The tensor completion problem is to reconstruct T after
observing a subset of its entries Ti,j,k for (i, j, k) ∈ Ω ⊂ [n]3.
In this paper Ω will consist of random entries adaptively
sampled in several rounds (i.e., so that the entries observed
in round ℓ + 1 are selected via a distribution that depends
on the entries observed in rounds 1 to ℓ). We hasten to add,
however, that the general proof approach taken herein can itself
be adapted to also yield tensor completion results based on
non-adaptive sampling at the expense of further restricting the
class of tensors considered below for which the methods will
be guaranteed to succeed.

In order to define the class of tensors for which the proposed
approach will be guaranteed to succeed we need several defi-
nitions. Define the factor matrix A =

[
a1 a2 · · · ar

]
∈

Rn×r to have columns given by the factor vectors aj in (I.1),
as well as for B,C ∈ Rn×r with columns arranged in the
same corresponding orders. We will employ the Khatri-Rao
product of two matrices; which is the matrix that results from
computing the Kronecker product of their matching columns.
That is, for A,B ∈ Rn×r, their Khatri-Rao product is the
matrix A⊙B ∈ Rn2×r defined by

A⊙B :=
[
a1 ⊗ b1 a2 ⊗ b2 . . . an ⊗ bn

]
.

This operation is useful when considering the matricizations
or flattenings of a rank-r CP tensor (I.1). E.g. the mode-3
unfolding of T is equal to T (3) = C(A ⊙ B)T , see [5].
Define the coherence of an r-dimensional subspace U ⊂ Rn

to be
µ(U) :=

n

r
max
i∈[n]
∥PUei∥22,

where PU is the orthogonal projection onto U , and where
ei ∈ Rn for i ∈ [n] denotes the ith standard basis vector.
Also, the Kruskal rank of a matrix is the maximum integer r
such that any r columns of the matrix are linearly independent.

Finally, for any positive integers n, r, s with r, s ≤ n and
any µ0 ∈ [1, n/r], we define T(n, r, µ0, s) to be the class of
all tensors T =

∑r
i=1 ai ◦ bi ◦ ci ∈ Rn×n×n for which:

(a) the factor matrices A,B both have full column rank,
(b) the column space of A has coherence bounded above by

µ0, and
(c) every s× r submatrix of C has Kruskal rank ≥ 2.

We are now able to state our main result.

Theorem 1. There exists an adaptive random sampling strat-
egy and an associated reconstruction algorithm (see Algo-
rithm 2) such that for any δ > 0, after observing at most
C1sµ0nr log

2(r2/δ) entries of a tensor T ∈ T(n, r, µ0, s),
the algorithm completes T with probability at least 1 − sδ.
Here C1 > 0 is absolute constant that is independent of all
other quantities.

The proof of our sandwich sampling algorithm involves
three stages. First, w.l.o.g., we pick s mode-3 slices and then
use a matrix completion algorithm that with high probability
recovers these slices and observes at most C ′

1µ0nr log
2(r2/δ)

entries in each slice. Second, if this n × n × s subtensor is
correctly completed, we can then use a deterministic vari-
ant of Jennrich’s Algorithm1 on the completed subtensor to
learn the factor matrices A and B. Third, once we know
the factor matrices A and B, we can deterministically find
r sample locations in each of the n mode-3 slices whose
values allow a censored least squares problem to solve for
the third factor matrix C. This three-stage procedure uses
at most C ′

1sµ0nr log
2(r2/δ) samples to complete the s ini-

tial mode-3 slices in order to learn A and B, and then

1As discussed in [6] the work of [7] is perhaps a more accurate attribution
of the method, however we use the traditional name of Jennrich’s Algorithm
in this work.



nr additional samples to learn C thereafter, for a total of
at most C ′

1sµ0nr log
2(r2/δ) + nr ≤ C1sµ0nr log

2(r2/δ)
samples. See Figure 1 for a schematic illustration of the overall
sampling strategy where fibers are sampled through the middle
of the sandwich for simplicity.

We note that assumptions a and c are the necessary as-
sumptions for the Jennrich’s step to work with any n× n× s
subtensor. Furthermore, if the columns of the factor matrices
are drawn from any continuous distribution, assumption c for
s = 2 holds with probability 1. Finally, something akin to
assumption b is always required in completion problems.

Fig. 1. A schematic depiction of the sampling strategy where s = 2 slices
have been sampled relatively densely in order to compute A and B, and
where additional fibers where then sampled elsewhere to help compute C

A. Related Work

Many prior works on low-rank tensor completion use non-
adaptive and uniform sampling [8]–[15]. While some of those
works [9], [13], [15] can handle CP-ranks up to roughly n3/2

instead of n, all of them require at least O(n3/2) samples,
even when the rank is r = O(1). Furthermore, [9] shows that
completing an n×n×n rank-r tensor from n3/2−ϵ uniformly
random samples is NP-hard by comparison to the problem of
refuting a 3-SAT formula with n variables and n3/2−ϵ clauses.

In [16], the authors propose a method for completing CP-
rank r ≤ n tensors using adaptive sampling which, for order-
3 tensors, requires O(µ2

0nr
5/2 log2 r) samples. Our algorithm

requires a number of samples which has a more favorable
dependence on the coherence µ0 and rank r. Furthermore, our
result only requires coherence assumptions about A, instead
of about A and B. These improvements come at the expense
of requiring the mild additional assumptions a and c in our
Theorem 1 related to Jennrich’s algorithm, however.

The first step in our tensor completion algorithm involves
using an adaptive sampling algorithm to complete s mode-
3 slices of the tensor. Our tensor completion algorithm and

results are based on the adaptive matrix completion algo-
rithm and results in [2] which, with high probability, uses
O(µ0nr log

2 r) samples to complete a rank r matrix. However,
our algorithm can be adapted to use other adaptive matrix
completion results such as, e.g., [3] with relative ease.

In the censored least squares phase of our algorithm, we can
sample entire fibers of the tensor as done in Figure 1. We note
that doing so is similar in spirit to the fiber sampling approach
of Sørensen and De Lathauwer [17]. However, their work
focuses on determining algebraic constraints on the factor
matrices of a low rank tensor which, when satisfied, allow
the tensor to be completed from the sampled fibers. As such,
our results cannot be directly compared with [17].

II. PROOF OF THEOREM 1

In this section we follow our 3 stage proof outline.

A. Completing s mode-3 slices of T

We start by picking any subset of indices S ⊂ [n] with
|S| = s elements. For each k ∈ S, the mode-3 slice T:,:,k ∈
Rn×n satisfies

T:,:,k =

r∑
i=1

⟨ci, ek⟩aibT
i ,

and so, col-span(T:,:,k) ⊆ col-span(A). By assumption,
col-span(A) has coherence bounded by µ0. Thus, the as-
sumptions required by Theorem 1 in [2] hold. Therefore,
for each slice T:,:,k k ∈ S, with probability at least 1 − δ,
the adaptive sampling procedure in Algorithm 1 uses at
most C ′

1µ0nr log
2(r2/δ) samples for some absolute constant

C ′
1 > 0, and completes T:,:,k.
By taking a simple union bound over each of the s slices k ∈

S, we have that with probability at least 1− sδ, this strategy
will successfully complete all of the s slices T:,:,k for k ∈ S
and use fewer than C ′

1sµ0nr log
2(r2/δ) samples. Let Ω1 =

{(i, j, k)|(i, j) sampled according to [2] for slice k ∈ S}, the
set of locations of T sampled to complete these s slices.

B. Learning mode-1 and 2 factor matrices via Modified Jen-
nrich’s Algorithm / simultaneous diagonlization

Let u,v be random vectors uniformly drawn from the unit
sphere Ss−1. Denote the sub-vector of c with entries indexed
in S by c̃i = (ci)S , and construct two auxiliary matrices
Tu,Tv using the completed slices by adding up the linear
combinations of the completed slices, weighted by the random
vectors u,v. In terms of the components, we have:

Tu =

r∑
i=1

⟨c̃i,u⟩aibT
i

Tv =

r∑
i=1

⟨c̃i,v⟩aibT
i
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Denote the r× r matrix Du which has along its diagonal en-
tries the values ⟨c̃i,u⟩, and similarly Dv . Notice the following
identity with the product Tu(Tv)

†

Tu(Tv)
† = ADuB

T
(
ADvB

T
)†

= ADuD
−1
v A†

Where the matrix DuD
−1
v is a diagonal matrix with (i, i)-entry

equal to ⟨c̃i,u⟩
⟨c̃i,v⟩ . Clearly the matrix Tu(Tv)

† is diagonalizable,
and so by computing the eigen-decomposition of Tu(Tv)

† we
recover the columns of A and the eigenvlaues along the diag-
onal of DuD

−1
v . We can order the eigenvectors in descending

order by magnitude of their corresponding eigenvalue. Note it
is here that we employ assumption c: Since CS (i.e., the rows
of C indexed by S) has k-rank at least 2, the ratios ⟨c̃i,u⟩

⟨c̃i,v⟩ for
each i will almost surely be distinct from one another, and
thus the ordering of the eigenvalues is unique.

Let P be the permutation matrix that interchanges the
columns of A so that instead of being in DuD

−1
v order, they

are in Du order (ordered greatest to least in terms of the
magnitude of ⟨c̃i,u⟩). Now notice that

A†Tu = A†APDuB
T

= PDuB
T

= (BDuP)T .

(II.1)

This means that the rescaled columns of B that are in Du

order are now in DuD
−1
v order after we apply the inverse

A† to Tu. That is, we have found the matching components
of A and B up to a re-scaling of their outer product! This
was achieved by learning the columns of A from Tu(Tv)

†

and then, crucially, the matching columns of B from A†Tu.
The scaling due to Du will be resolved in the final step of
the algorithm, where we solve for the missing third factor (i.e.,
B,C and BD,C(D−1) are both valid pairs of factors for any
diagonal matrix D).

C. Learning the mode-3 factor matrix

After obtaining A and a rescaled B in order to find the
remaining components, C, we will need Ω2, a second set of
revealed locations of the entries of T . We will also need the
solutions to n instances of the following censored least squares
problem related to those revealed values

(A⊙B)Kk
c = tKk

(II.2)

where k ∈ [n],c = (Ck,:)
T , t = vec(T:,:,k)T and Kk =

{i+ n(j − 1)|(i, j, k) ∈ Ω2}. In (II.2), the term tKk
denotes

the vector of length |Kk| which includes only the entries of t
which have indicies appearing in the set Kk. Similarly (A⊙
B)Kk

is the matrix where we restrict rows of (A⊙B) to only
those which have indices appearing in the set.

Note (A ⊙B) is full rank because A and B are assumed
to be full rank (see, e.g., [18]). This implies the uncensored
system is consistent with a unique solution. The difficulty in
the censored case is that unobserved values in a particular

column of the right hand side of (II.2) could force the
discarding of rows of the matrix (A⊙B) that cause the system
to become under-determined.

That is, we must ensure that (A ⊙ B)Kk
has full column

rank for each k. If we do not vary our sampling procedure from
frontal slice to frontal slice, then this corresponds to sampling
tubes of the original tensor of the form Ti,j,: and Kk = K for
all k ∈ [n]. In order to arrange the sampling to accomplish this,
consider a QR with column-pivoting factorization of (A ⊙
B)T , see algorithm 5.4.1 in [19]). This produces factors and
a permutation matrix Π ∈ Rn2×n2

such that (A ⊙B)TΠ =
QR, where

R =
[
R1 R2

]
and R1 ∈ Rr×r is upper-triangular and non-singular. But this
means that the first r columns of Π select a set of columns of
(A ⊙B)T which are linearly independent, so for each Π:,p,
p ∈ [r] we have that there exists some q ∈ [n2] such that eq =

Π:,p, the corresponding column of the identity in Rn2×n2

.
Let i = q mod n, j = ⌊ qn⌋. Define then Ω2 all the tuples
of the form (i, j, :). That is, we can read off from Π which
r fibers of length n to sample in order to ensure (II.2) is
consistent for each k ∈ [n]. We have specified at most nr new
sample locations, and thus Ω = Ω1∪Ω2, the set of all samples
employed to complete the tensor T is at most |Ω1|+ |Ω2| ≤
C ′

1sµ0nr log
2(r2/δ) + nr ≤ C1sµ0nr log

2(r2/δ).
Remark 1. Note, Π is not unique, and indeed we could use
different selections corresponding to other valid permutations
from frontal slice to frontal slice to vary the sampling pattern
when finding C. Additionally, including more rows of (A ⊙
B) beyond the first r as specified by Π may be numerically
advantageous when computing C.

Algorithm 1 Consistency Preserving Fiber Sampler
input :
γ ≥ 1, over-sample parameter
r rank parameter
A,B ∈ Rn×r, estimates for factor matrices
output: Ω2, set of sample locations
Compute QR with column-pivoting, QR = (A⊙B)

T
Π

for p ∈ [γr] do
q ← nonzero(Π:,p)
i← q mod n
j ← ⌊ qn⌋
Include (i, j, k) in Ω2 for all k ∈ [n]

end

III. EXPERIMENTS

In this section, we show that tensors sampled according to
our overall strategy and completed using Algorithm (2) support
our theoretical findings. In particular we demonstrate that once
sample complexity bounds are satisfied, we can achieve very
precise levels of relative error by sampling what is overall
a small percentage of the total tensor’s entries. For example,
in the rank 20 case in Figure 2, the median relative error is
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Algorithm 2 Tensor Sandwich
input : S ⊆ [n] slices to complete
output: T̂ , completed tensor
# Slice Complete Phase
for k ∈ S do

Use, e.g., [3], or algorithm 1 in [2] to complete T:,:,k.
Algorithm 1 in [2] uses at most C ′

1µ0nr log
2(r2/δ)

adaptively chosen samples.
end
# Jennrich Complete Phase
Generate random vectors u,v ∈ Ss−1;
Tu ←

∑
k∈S ukT::k

Tv ←
∑

k∈S vkT::k

Compute eigen-decomposition AΛA−1 = Tu(Tu)
†

B← A−1Tu

# Censored Least Squares Phase
Ω2 ← fiber sampler(A,B, r, γ)
CT ← censored least squares ((A ⊙ B), Ti,j,k s.t. (i, j, k) ∈
Ω2)
T̂ ← [[A,B,C]]

0.000168 having sampled 94445
8000000 ≈ 1.1% of the total entries.

Our experiments also verify the linear dependence on rank
in the sample complexity bound. Furthermore, in our second
set of experiments we show that the method performs useful
completion even in the presence of noise. The code and results
from the numerical experiments is available at https://github.
com/cahaselby/TensorSandwich.

In all our experiments, the three modes of the tensor
have length n = 200. The data is generated by drawing
factor matrices A,B,C ∈ Rn×r with i.i.d standard Gaussian
entries and then normalizing the columns. We then weight the
components using quadratically decaying weights, i.e.

T =

r∑
i=1

(
1

i2

)
ai ◦ bi ◦ ci. (III.1)

Errors are averaged over ten independent trials.
For each of our trials, s = 2. After uniformly selecting

two frontal slices to complete, within these slices we sample
per Algorithm 1 in [3] using a sample budget of m samples
per slice. Slices are then completed using the SDP formula-
tion of the nuclear norm minimization solved via Douglas-
Rachford splitting, see [20]. Convergence is declared once
the primal residual, dual residual and duality gap are below
10−8 for each of the s selected slices, or after 2500 iterations,
whichever comes first. We note that the accuracy of this matrix
completion step influences numerically what is achievable in
terms of overall accuracy for the completed tensor, and that
the error for completing these slices is compounded in the
subsequent steps (even in the absence of noise). This explains
the apparent “leveling off” of the relative error at about 10−4

even as sample complexity or signal-to-noise ratios increase.
Following matrix completion on these frontal slices and

estimation of A and B, we select γr rows of (A⊙B) using
Algorithm 1 and the corresponding fibers of T to solve the

censored least square problem. In all the experiments in this
section, γ = 4. This results in at most γnr new entries revealed
in the original tensor. Total number of entries sampled then
is always bounded by sm+ γnr (some overlap of samples is
possible in the two slices already completed). Note that for all
experiments 0.035nr log2(n) < m < 0.7nr log2(n).

In Figure 2, we see a phase transition of our method. For a
given rank, prior to a threshold, the error is dominated by the
inability to accurately complete the s slices. Once sufficient
samples are obtained within these slices, completion reliably
succeeds and accuracy approaches the limiting numerical
accuracy inherited from the initial slice completion step.

Fig. 2. Median relative error (log-scaled) of completed tensors of varying
rank as sample complexity increases without noise. Each value is the median
of ten trials.

In Figure 3, we add mean-zero i.i.d. Gaussian noise to each
entry in our tensor and perform the same completion strategy
on the noisy tensor as described earlier in this section. For each
trial, the noise tensor N is scaled to the appropriate signal-to-
noise ratio, i.e. SNR = 10 log10

∥T ∥
∥N∥ . Weights for each of the

components are again set as per (III.1). The sample complexity
proportions are fixed with respect to slice completion versus
fibers sampled to estimate C but do scale according to rank
in order to facilitate comparison. In all cases the total number
of sampled entries is between 0.27% and 1.10% of the total
number of entries, depending on rank.

We noticed during these experiments that using masked
alternating least squares alone (as in [21]) to complete our
synthetic tensors (using either the Tensor Sandwich sample
pattern, or an equivalent proportion of uniformly drawn sam-
ples) achieved at best relative errors of about 6%. However,
the estimate of the tensor as output by Algorithm 2, and its
sample pattern can be used as an initialization to an iterative
scheme like alternating least squares to further improve the
accuracy of the completed tensor. In Figure 4, we show
three sets of related experiments: the relative error at various
ranks achieved by alternating least squares alone (AS), Tensor
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Fig. 3. Median relative error (log-scaled) of completed tensors of varying
rank for different levels of white Gaussian noise. Sample complexity is less
than 1.1% for all trials, scaled linearly by rank.

Sandwich alone (TS), or alternating least squares initialized
by Tensor Sandwich (TS + ALS). In each trial, 100 iterations
of alternating least squares are used, weights for components
are set to decay according to (III.1), and each of the three
variations for completing the tensor are used on the same
data. We notice that at this level of sample complexity, for
either a sample mask chosen uniformly at random or according
to the adaptive scheme described in this work, ALS alone is
limited. Combined with Tensor Sandwich, however, we can
see roughly an order of magnitude improvement in relative
error by performing a hundred iterations of ALS on the TS
estimate. This shows Tensor Sandwich can be useful as an
initialization strategy for other completion methods, either to
save on run time by decreasing the total number of iterations
needed, or to improve the accuracy of the final estimate.

Fig. 4. Median relative error (log-scaled) of completed tensors of varying
rank for different levels of white Gaussian noise. Sample complexity is less
than 1.1% for all trials, scaled linearly by rank. Tensors are completed using
100 iterations of alternating least squares (ALS), or Tensor Sandwich (TS),
or 100 iterations of ALS initialized by Tensor Sandwich (TS+ALS).

In a final set of experiments, we compare one of the
existing (non-adaptive) completion methods discussed in the
Related Work section to Tensor Sandwich. We use the same
overall sample budget for Tensor Sandwich but instead use the
Algorithm in [4] which we refer to as Tensor Complete (TC).
The range of total values sampled is the same as in Figure
2. Implementation details make direct comparisons difficult.
However, the empirical findings summarized in Figure 5
suggest that Tensor Sandwich can produce better estimates
for high rank tensors than Tensor Complete can when sample
budgets are limited.

Fig. 5. Median relative error (log-scaled) of completed tensors of varying
rank for different total number of entries revealed. Tensors are completed
using Tensor Sandwich (TS), or Tensor Complete as described in [4] without
noise.

IV. CONCLUSIONS AND FUTURE WORK

We have presented an adaptive sampling approach for low
CP-rank tensor completion which completes a CP-rank r
tensor of size n × n × n using O(nr log2 r) samples with
high probability. Our method significantly improves on the
tensor completion result in [16] while only making a mild
additional assumption on the third factor matrix. We also
provided numerical experiments to demonstrate that a version
of our tensor completion method is robust to noise empirically.

Several questions remain for future work. First, it would
be interesting to prove rigorous guarantees for a non-adaptive
version of our tensor completion algorithm using as few
additional assumptions as possible. Second, it is possible to
extend our tensor completion method to higher-order tensors in
several ways. Choosing the best approach based on sampling
complexity analysis would be of value. Finally, it is always
important to provide rigorous completion guarantees for the
case where the observed entries are corrupted with some sort
of noise. Very little prior work on low-rank tensor completion
provides any such theoretical guarantees making a treatment
of this case an high-value goal.

ACKNOWLEDGEMENTS

This work was supported in part by NSF DMS 2106472.

5



REFERENCES

[1] E. Candes and B. Recht, “Exact matrix completion via convex opti-
mization,” Communications of the ACM, vol. 55, no. 6, pp. 111–119,
2012.

[2] A. Krishnamurthy and A. Singh, “On the power of adaptivity in matrix
completion and approximation,” 2014.

[3] Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward, “Completing
any low-rank matrix, provably,” Journal of Machine Learning
Research, vol. 16, no. 94, pp. 2999–3034, 2015. [Online]. Available:
http://jmlr.org/papers/v16/chen15b.html

[4] A. Moitra, Algorithmic aspects of machine learning. Cambridge
University Press, 2018.

[5] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[6] T. G. Kolda, “Will the real jennrich’s algorithm please stand up?” https:
//www.mathsci.ai/post/jennrich/, accessed: 2023-05-23.

[7] S. E. Leurgans, R. T. Ross, and R. B. Abel, “A decomposition
for three-way arrays,” SIAM Journal on Matrix Analysis and
Applications, vol. 14, no. 4, pp. 1064–1083, 1993. [Online]. Available:
https://doi.org/10.1137/0614071

[8] P. Jain and S. Oh, “Provable tensor factorization with missing data,”
Advances in Neural Information Processing Systems, vol. 27, 2014.

[9] B. Barak and A. Moitra, “Noisy tensor completion via the sum-of-
squares hierarchy,” in Conference on Learning Theory. PMLR, 2016,
pp. 417–445.

[10] M. Yuan and C.-H. Zhang, “On tensor completion via nuclear norm
minimization,” Foundations of Computational Mathematics, vol. 16,
no. 4, pp. 1031–1068, 2016.

[11] ——, “Incoherent tensor norms and their applications in higher order
tensor completion,” IEEE Transactions on Information Theory, vol. 63,
no. 10, pp. 6753–6766, 2017.

[12] A. Potechin and D. Steurer, “Exact tensor completion with sum-of-
squares,” in Conference on Learning Theory. PMLR, 2017, pp. 1619–
1673.

[13] A. Montanari and N. Sun, “Spectral algorithms for tensor completion,”
Communications on Pure and Applied Mathematics, vol. 71, no. 11, pp.
2381–2425, 2018.

[14] A. Liu and A. Moitra, “Tensor completion made practical,” Advances
in Neural Information Processing Systems, vol. 33, pp. 18 905–18 916,
2020.

[15] B. Kivva and A. Potechin, “Exact nuclear norm, completion and
decomposition for random overcomplete tensors via degree-4 sos,” arXiv
preprint arXiv:2011.09416, 2020.

[16] A. Krishnamurthy and A. Singh, “Low-rank matrix and tensor comple-
tion via adaptive sampling,” Advances in neural information processing
systems, vol. 26, 2013.

[17] M. Sørensen and L. De Lathauwer, “Fiber sampling approach to canoni-
cal polyadic decomposition and application to tensor completion,” SIAM
Journal on Matrix Analysis and Applications, vol. 40, no. 3, pp. 888–
917, 2019.

[18] T. B. JM., “The k-rank of a khatri–rao product,” Unpublished Note,
Heijmans Institute of Psychological Research, University of Groningen,
The Netherlands., 2000.

[19] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The
Johns Hopkins University Press, 1996.

[20] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, “Conic optimization
via operator splitting and homogeneous self-dual embedding,” Journal
of Optimization Theory and Applications, vol. 169, no. 3, pp.
1042–1068, June 2016. [Online]. Available: http://stanford.edu/∼boyd/
papers/scs.html

[21] G. Tomasi and R. Bro, “Parafac and missing values,” Chemometrics
and Intelligent Laboratory Systems, vol. 75, no. 2, pp. 163–180, 2005.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0169743904001741

6


