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ABSTRACT

Overparameterization in neural networks has demonstrated remarkable advan-
tages for both memorization and generalization, particularly in models trained
with gradient descent. While much of the existing research focuses on the inter-
play between overparameterization and gradient-based methods, we explore its
influence on the loss landscape of £2 supervised regression problems, independent
of any specific optimizer. By leveraging the Nyquist-Shannon-Whittaker sampling
theorem, we establish a theoretical link between sampling theory and overparam-
eterized neural networks. Our findings reveal that overparameterization not only
exponentially increases the number of global minima but also expands the dimen-
sionality of loss valleys for various £? regression problems modelled with feed-
forward neural networks. We empirically validate these theoretical insights across
multiple supervised 2 regression tasks, trained with both gradient-based and non-
gradient-based optimization algorithms. These results offer fresh perspectives on
the advantages of overparameterization in neural network design, independent of
the chosen learning algorithm.

1 INTRODUCTION

Overparameterization has demonstrated remarkable benefits for both memorization and general-
ization, particularly when training with gradient descent. Traditional learning theory suggests that
models with excessive capacity are prone to overfitting. However, modern deep learning research has
shown that overparameterized models can perfectly fit or memorize training data while still general-
izing well to unseen data (Zhang et al., [2021). This memorization effect is particularly pronounced
when using gradient descent, which efficiently navigates high-dimensional parameter spaces to lo-
cate global minima of the loss function, even in highly overparameterized networks (Arora et al.,
2019; Zhang et all 2021). The neural tangent kernel (NTK) theory has revealed that with suffi-
cient overparameterization, gradient descent (flow) closely mirrors the behavior of kernel regression
(Jacot et al.| 2018} Bietti & Mairal, 2019; Huang et al., [2020). This insight highlights the critical
role of overparameterization in understanding the dynamics of gradient descent in neural networks.
Moreover, gradient descent exhibits an implicit bias toward finding solutions with minimal norm in
overparameterized models, such as those with ReLU activations. This bias has been associated with
improved generalization properties, even when the model can perfectly memorize the training data
(Du et al.| 2018}, |Allen-Zhu et al., 2019). This balance between memorization and generalization
underscores the effectiveness of overparameterization in modern deep learning.

While these works reveal a deep connection between overparameterization, memorization, and gen-
eralization, they focus on the context of gradient descent as the learning algorithm. In this article,
we seek to understand whether overparameterization offers inherent benefits for the loss landscape
associated with £2 supervised regression problems, independent of any particular optimizer.

Our approach builds on the sampling theory of Nyquist-Shannon-Whittaker (NSW) (Nyquist, |1928;
Shannon, |1948; [Whittaker, |1915)) a foundational result in signal processing, providing the conditions
under which a continuous signal can be perfectly reconstructed from a discrete set of samples. It
states that if a signal is band-limited, meaning its frequency components are restricted to a maximum
frequency wpm,x, then the signal can be fully recovered from its samples, provided the sampling rate
is at least twice the highest frequency present—this rate is known as the Nyquist rate. Specifically, if
the sampling interval 7" satisfies % > 2wmax, the original signal can be reconstructed using a sum of
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shifted sinc functions, where sinc(z) = % for x # 0 and sinc(0) = 1. This theorem is critical
in modern data acquisition and reconstruction, ensuring that no information is lost in the sampling

process as long as the Nyquist criterion is satisfied.

‘We build on these insights to establish a connection between sampling theory and supervised regres-
sion problems. Our first main result focuses on sinc-activated feedforward networks for modeling
(2 regression problems and demonstrates how overparameterization leads to an exponential increase
in global minima around the origin of the parameter space. What is particularly interesting about
this result is that it is independent of any optimizer, implying that for such networks, overparame-
terization provides a significant benefit for the loss landscape that should help any optimizer. Our
second main result shows how sampling theory with the triangular function offers a new perspective
on understanding ReLLU feedforward networks. We mathematically prove that overparameterization
results in an increase in the dimension of global minima that manifest as loss valleys in the parameter
space.

Both theorems present a novel viewpoint on the benefits of overparameterization, going beyond
what has been previously studied in the literature. To validate that our theoretical results provide
practical insights into £? supervised regression problems, we conduct a series of experiments for
both sinc and ReLU-activated feedforward networks using first-order gradient-based optimizers,
second-order gradient-based optimizers, and non-gradient-based genetic optimizers. In each case,
our results support our theoretical findings. We believe that the insights offered by sampling theory
will lead to a deeper understanding of overparameterization and its effects on deep learning.

Our main contributions are:

1. Theoretical results explaining how overparameterization alters the global minima of the
loss landscape for a supervised ¢ regression problem modelled with a sinc or ReLU-
activated feedforward network that is independent of any optimizer.

2. A comprehensive validation of our theoretical results across a variety of supervised ¢2
regression problems trained with different optimizers.

2 NOTATION

Within the course of this article we will use the following mathematical notations and definitions.
The function sinc will be used throughout and is defined by sinc(z) = % for z # 0 and
sinc(0) = 1. We will also make use of the Hilbert space L?(IR), which we remind the reader is
defined as the space of square integrable real valued functions on R with the Lebesgue measure,
with inner product defined by < f,g >p2r)= fR f - g. Given a point z € R™ we will denote the
open ball of radius R about the point z by Br(z). We will say two topological spaces X and Y are
homeomorphic if there exists a continuous bijective function £ : X — Y with a continuous inverse
¢€71:Y — X. The term closed interval will be used to mean an interval of the form [a, b] which is
defined as the set of real numbers ¢ € R that satisfy the inequality a < ¢ < b where a,b € R. We
will primarily deal with feedforward networks as defined in standard texts such as [Prince| (2023).
The parameter space for such a network will be denoted by RP*™™ and will consist of all the weights
and biases of the network. Finally, by the term overparameterization we mean that there are more
parameters than data points. In general, we will often be considering situations where we add more
neurons to the hidden layer of a shallow neural network and this is the primary way we will add
extra parameters to our network. In the appendix we consider the case of deep networks where we
increase parameters by adding hidden layers. For more details on notation see App. [A.T]

3 RELATED WORK

Research on overparameterization has enhanced our understanding of how large models achieve
both memorization and generalization. While overfitting was once a concern, studies like [Zhang
et al.| (2021) showed that overparameterized networks can still generalize well, despite perfectly
fitting training data. The neural tangent kernel (NTK) framework (Jacot et al. [2018) explained
how gradient descent in these regimes resembles kernel regression, with |Arora et al| (2019) and
Huang et al.| (2020) demonstrating that overparameterization smooths the loss landscape, leading
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to multiple global minima. Additionally, |Allen-Zhu et al.| (2019) and |Du et al.| (2018)) explored
how gradient descent’s bias toward minimal-norm solutions improves generalization of a network.
Recent work by Belkin et al.|(2019) and|Nakkiran et al.|(2021) introduced the ”double descent” phe-
nomenon, showing that increasing model size beyond the interpolation threshold further enhances
performance. Despite this focus on gradient-based optimization, less attention has been given to
overparameterization’s impact on alternative optimizers.

The sinc function has been applied to neural networks in tasks such as audio sampling (Ravanelli
& Bengio, 2018bja) and dynamical systems (Ramasinghe et al., 2023} |Saratchandran et al.| |2024)).
Saratchandran et al.[(2024) also established a universal approximation theorem for sinc-based net-
works. While these works focus on signal processing applications, this paper takes a different ap-
proach, using sinc networks to provide new insights into overparameterization.

4 OVERVIEW OF RESULTS

The problem we address in this paper is rooted in supervised ¢2 regression. This machine learning
task involves a dataset {(z;,y;)}" ,, a neural model N (6;z), where § € RP*™™ represents the
parameters and x is the input variable, and an 2 loss function £, which is defined as:

n
i=1

1 < 5
L5(0) = o Z: N (0;2:) —wi)” (1)
The objective is to determine the parameters # that minimize the loss function £, through a suitable
learning algorithm. While previous works have demonstrated the benefits of overparameterization
when minimizing £- using gradient-based algorithms, this paper seeks to understand whether over-
parameterization provides benefits for the loss function itself, independent of any specific optimizer.

Our approach is inspired by the classical Nyquist-Shannon-Whittaker (NSW) sampling theorem in
signal processing (Martin,|1997). Sampling theory addresses the problem of reconstructing a signal
f from a collection of samples { f ()} ;. Mathematically, if a function f(¢) is band-limited with
a maximum frequency wy,.x, the NSW theorem says that it can be reconstructed from its samples
{f(nT)}nez, provided the sampling rate satisfies % > 2wmax (known as the Nyquist rate). The

reconstruction formula is given by:

. 1
flx) = n;w f(nT) sinc (T (x — nT)> . (2)
In general, the theorem requires an infinite number of samples. As this is not possible in practice a
finite but large N > 0 is usually chosen to produce the approximation

flz) ~ ZN: F(nT) sinc (; (an)). 3)

n=—N

Fig. [T]gives a visual overview of the NSW sampling theorem. What is particularly striking about this
theorem is that it provides an explicit formula for reconstructing a function based solely on discrete
samples. In the case where one samples the signal at a sample rate less than the Nyquist frequencey
signal cannot be accurately reconstructed and aliasing occurs (Martin,|1997). It is not difficult to see
that the sum in equation [3]is a sinc activated shallow neural network.

We therefore see that we can reformulate the sampling problem as a supervised learning task. Given
a band-limited signal f and a dataset of samples (nT, f (nT))ﬁlz_ ~» Feconstructing f can be viewed
as minimizing the loss function £ for a shallow sinc activated neural network N (0; z):

n

Lr(0) = 5~ > (N(0;nT) — f(nT))* for 1 < p < 0. (4)
=1
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Figure 1: Left: Sampling the signal sin(47x) at 4 different points and centering sinc functions with
bandwidth 8 about these points. Right: Using the NSW reconstruction formula [3to reconstruct the
signal from the sampled points.

This formulation establishes a clear connection between sampling theory and supervised learning.
The goal of this work is to explore whether this perspective provides new insights into the benefits
of overparameterization and its effect on the loss landscape of Lo.

Question: Does the sampling theory approach of NSW for modelling signals lead to new insights
for the benefits of overparameterization for networks modelling supervised £2 regression problems?

Our results demonstrate that overparameterization has a substantial influence on the loss landscape
of L4, independent of the specific optimization algorithm.

Main results for sinc-activated networks: For sinc-activated feedforward networks, our main
theorem demonstrates that increasing the number of neurons, either by adding width or depth, leads
to an exponential increase in the number of global minima for the loss function £5. These global
minima are distributed around a ball centered at the origin of the parameter space. This result
highlights a significant benefit for the loss landscape when the network becomes highly overparam-
eterized, independent of the optimizer.

Main results for ReLU activated networks: For ReLU activated feedforward networks, we of-
fer a novel perspective on overparameterization by framing it in terms of sampling with triangular
functions. Our findings show that increasing the number of neurons, either by expanding the width
or depth of the network, leads to a growth in the dimensionality of the global minima, which man-
ifest as loss valleys. We provide a precise quantitative characterization of how this dimensionality
increases. These results further highlight the significant benefits of overparameterization, regardless
of the optimization algorithm used.

5 MAIN RESULTS

5.1 SINC ACTIVATED FEEDFORWARD NETWORKS

In this section, we present our main result on sinc-activated neural networks for modeling ¢2 su-
pervised regression problems. To clarify the statement of the theorem, we first provide a precise
definition of a loss valley that also constitutes a global minimum.

Definition 5.1. Let £, : RP&™ 5 R denote the £2 loss function associated to a neural network as in
equation[d Let A denote a collection of points in RP*™™ such that each 6 € A is a global minimum
of L5. We say A defines a global minimum valley if for each point § € A there exists an r > 0
such that A N B,.(f) is homeomorphic to R* for some 0 < k < param. The dimension of the global
minimum valley is k. We say a point 8* in RP*®™ is an isolated global minimum of L if there exists
an r > 0 such that B,.(0*)\{6*} does not contain any global minima of L.
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Figure 2: The function on the left admits a global minimum valley of dimension 1 and the function
on the right exhibits two isolated global minima.

In Fig. 2] we give examples of two different functions that exhibit a global minimum valley and
isolated global minima.

Theorem 5.2. Let X = {(x;,y;)} be a labelled dataset of n samples. Consider N'(x;0) to be a
shallow neural network with n neurons in its hidden layer. Define the (% loss function Ly(0) as:

1 n

= — > (N(zi6) —y)°, 5)
P

which is a mapping from the parameter space RP“" to R. Let Gr(n) denote the number of distinct

global minimum valleys of Lo that intersect the ball Bg(0) of radius R > 1, centered at the origin.

The dependence on n reflects the number of neurons in the hidden layer of the network N

EQ(@) .

If | neurons are added to the hidden layer of N, then the number of distinct global minimum valleys
in Gr(n + 1) grows at least exponentially in l.

The proof of Thm. [5.2]can be found in App. [A-T.1] Below, we provide an overview of the core ideas
of the proof.

Proof overview: For this overview assume the data samples (z;) all lie in the interval [0, 1] and
are uniformly distributed. So let us assume 71 = +, 20 = 2, ... 7,1 = =21z, = 1.

Step 1: The starting point is to think of the labelled dataset X = {(z;,v;)}?, as defining a
discrete signal f with samples (z;) and sample values (y;) = (f(z;)). We then follow the approach
of the NSW theorem equation [3] and centre a shifted sinc function with bandwidth n about each ;

having height y;.

The sum defined by summing the shifted sinc functions
Z yisinc(nz — x;) (6)
i=1

then perfectly memorizes the data. This follows because sinc(m) = 0 for any m € Z\{0}. The next

step is to observe that it can be implemented by a shallow sinc activated neural network A (z;6)
where 6 is defined as follows: The weight 17 and bias b; in the first hidden layer are defined by

Wi =n,...,n]" and by = [-1,...,—n]T (7
and the weight W5 and bias b is taken to be
Wa = [y1,...,yn] and by = 0. ®)

Then observe that A/ (z;;0) = y; showing that 6 defined by equation m equation [§ is a global
minimum of the loss function £, defined in equation@
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Step2: Suppose we add one extra neuron to the hidden layer of A/, This then adds extra parameters
to # which we denote as

Wi = [Wy,a]" ©)
by = [br, az]" (10)
Wa = [Wa, as] (11)
by = b. (12)
Denoting all these parameters by 0 we find
N(@;z) = z": y; sinc <nx - z) + agsinc(a1z — az) + b. (13)
i=1

If we choose a; = nand as € Z — {1,...,n}, a3 € Rand b = 0. Then we see that any parameters

0* = (W1, by, Wa, be) satisfying these constraints yields
N(O;x;) =y;forl1 <i<n (14)
which implies these §* parameterized by Z — {1, ...,n} x R are all global minimum valleys for the

loss Ls.

Step 3: The final step is to prove by induction that adding [ neurons leads to an increase in distinct
global minimum valleys parameterized by (Z\{1,...,n})! x Rl Thus to count how the number of
distinct global minimum valleys within a ball Br(0) increase as [ gets bigger we need to understand
how the set Br(0) N (Z\{1,...,n})! grows as | gets bigger. For this we use a standard result that
says that the number of integer points in a ball of radius R > 1, B(0), about the origin in R! grows
exponentially with [, see Lem. in App. This completes the basic idea of the proof. [

Thm. [5.2] also applies for deep sinc activated networks. The statement of the theorem in the deep

case can be found in Thm. [A.9)in App.

Thm. [5.2]establishes that overparameterization results in an exponential increase in global minimum
valleys but it does not address whether these minima generalize well to points outside the training
set. The following theorem addresses this by showing that for datasets obtained by sampling a signal
f € L?(R), many of the global minima given by Thm. exhibit good generalization. The proof
can be found in App.

Theorem 5.3. Let f € L?(R) be a continuous signal, and let € > 0 be a fixed threshold. Consider
a dataset (z;, f(x;));_, obtained by sampling f. Let N(0;x) be a shallow feedforward network
with sinc activation and n neurons in its hidden layer. Define the (2 loss function based on the
parameters 0 of N as follows:

>N (B) — (). (15)

i=1

1
 on

£2(6) :

Ifwe add 1 > 0 neurons to the hidden layer of N, for sufficiently large |, there are an infinite number
of parameters 0 lying in distinct global minimum valleys that satisfy the following bound:

|f(z) = N(0%2)| <€ (16)
forany x € [0,1]\ {x;}1 .

5.2 RELU ACTIVATED FEEDFORWARD NETWORKS

In this section we present our main result for ReLU activated networks. Our key insight is that a
shallow ReLLU network has the capacity to generate the triangle function with only 3 neurons in the
hidden layer.
Lemma 5.4. Let T denote the triangle function defined by T(x) = max(1 — |z|,0). Then

T(x) = ReLU(z 4+ 1) + ReLU(z — 1) — 2ReLU(x). (17)
Furthermore, there exists a shallow ReLU neural network N with 3 neurons and a parameter 0*

such that N (z;0*) = T (x). More generally, there exists a neural network N with 3 neurons and a
parameter 0* such that N'(x;0*) = T(w(x — a)) for any w > 0 and any a € R.
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Figure 3: Final train PSNR after convergence is plotted against the width of the hidden layer for
shallow sinc (left) and ReLU (right) networks, each trained with four different optimizers on a
curve fitting task. The results show that, for both network types, increasing the width of the hidden
layer consistently leads to higher train PSNR across all optimizers.

Using Lemma [5.4] we observe that a ReLU network can be interpreted as sampling with the trian-
gular function. This key insight forms the foundation for the following theorem.

Theorem 5.5. Let X = {(x;,y;)}", be a data set with x; € R and y; € R™. Let N'(z;0) be a
shallow ReLU neural network with 3n neurons in the hidden layer. Let

3n

> N (@i 0) — f(w:))? (18)

i=1

1
" 6n

LQ(G) :

denote the (2 loss function. Then if we add 31 neurons to the hidden layer of N/, for | > 0, we have
that there is an increase in global minima parameterized by the set

! !
(R — { n closed intervals }) X (R — { n closed intervals }) x R™, (19)

In particular, we see that overparamterization leads to higher dimensional global minimum valleys
whose dimension grows at worst linearly in l i.e. the dimension grows as §(1).

The proof of Thm. [5.5]proceeds analogously to the proof of Thm. [5.2]with the difference being that
we centre a triangular function over each data point and then use Lem. [5.4] Details can be found in
App. [A1.3] Furthermore, the results of Thm. [5.5] extends to deep ReLU networks. Details can be

found in Thm. [A7T6]in App. [A-T4]

We also have a generalization theorem analogous to Thm. [5.3]for shallow ReLU feedforward net-
works. The reader can find the statement of this theorem and its proof in Thm. [A.14]in App. [A.1.3]

6 EXPERIMENTS

In this section, we aim to validate the results from Sec. [5.1]and[5.2} Thms. [5.2]and[5.5] along with
their deep counter parts in App. [A.T.2]and [A.T.4] demonstrate that overparameterization facilitates
the emergence of more global minima in the loss landscape, particularly near the origin of the
parameter space. This implies that overparameterization should make it easier for an optimizer to
find a global minimum.

To test our hypothesis, we conducted four common supervised ¢? regression experiments found in
the literature: curve fitting, image regression, super resolution, and 3D shape modeling. For each
task, we minimized the ¢? loss function Lo (see equation using four distinct optimizers: SGD (a
standard first-order method), Adam (an adaptive gradient-based optimizer), OnePlusOne (a gradient-
free genetic algorithm), and L-BFGS (a second-order optimizer leveraging Hessian curvature). We
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Figure 4: Final test PSNR after convergence is plotted against the width of the hidden layer for
shallow sinc (left) and ReLU (right) networks, each trained with four different optimizers on a
curve fitting task. The results show that, for both network types, increasing the width of the hidden
layer consistently leads to higher test PSNR across all optimizers.

ran each experiment ten times, plotting the mean and standard deviation of the train PSNR after
convergence across varying model widths and depths. Further experimental details are provided
in appendix [A.2.1] Consistently, we observed that overparameterization led to higher train PSNR
values, indicating that it facilitated finding global minima for the optimizers.

6.1 CURVE FITTING

We consider the function f(z) = sin(27z) + sin(67z) and use it to generate our dataset. Specif-
ically, we select x; as 50 equally spaced points over the interval [0, 1], with corresponding values
yi = f(z;). We then trained both shallow sinc and ReL.U networks to regress the function f using
the £, loss on a subset of 30 points out of the 50. As shown in Fig. [3] the PSNR increases as we
add more neurons to the hidden layer, consistently improving across all optimizers.

We then obtained the test PSNR by testing on all the 50 points. As shown in Fig. 4] the test PSNR
increases as we add more neurons to the hidden layer, consistently improving across all optimizers,

validating the insight from Thm. and Thm. in App.

6.2 IMAGE REGRESSION

In this experiment, our goal was to regress an image from the Div2k dataset. Given pixel coordinates
x € R?, the task was to use a network A to predict the corresponding RGB values ¢ € R3. Fol-
lowing the approach of |Sitzmann et al.|(2020), the dataset consisted of pixel coordinates paired with
their respective RGB values. We trained sinc and ReLU deep networks of varying depths, ranging
from 1 to 8 hidden layers, each containing 256 neurons, and employed the Lo loss, commonly used
in image regression tasks (Sitzmann et al., 2020} Saratchandran et al.}|2023;|Saragadam et al.,[2023).
The results, shown in Fig. [5] demonstrate that increasing network depth consistently leads to higher
PSNR values. However, we observed diminishing returns in PSNR improvement beyond 4 hidden
layers, with the most significant gains occurring between 1 and 4 layers.

6.3 IMAGE SUPER RESOLUTION

In this experiment, we tackle an image super-resolution task. Following the methodology of |Sara-
gadam et al.| (2023), we performed 4x super-resolution on the Butterfly image from the DIV2K
dataset. The problem is framed as solving y = Ax, where the operator A applies 4x downsam-
pling. The goal is to recover z using a feedforward network, with the task learned via the 2 loss
L5 as described in equation 5] similar to the approach in[Saragadam et al.[(2023). To enable testing
(see App.[A.2.2), we sampled 70% of the total pixels in the image.
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Figure 5: Final train PSNR after convergence is plotted against the number of hidden layers for
deep sinc (left) and ReLU (right) networks, each trained with four different optimizers on an image
regression task. The results show that, for both network types, increasing the depth of the network
consistently leads to higher train PSNR across all optimizers.
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Figure 6: Final train PSNR after convergence is plotted against the number of hidden layers for deep
sinc (left) and ReLU (right) networks, each trained with four different optimizers on an image super
resolution task with training set consisting of 70% of the total pixels. The results show that, for both
network types, increasing the depth of the network consistently leads to higher train PSNR across
all optimizers.

We conducted the experiment using both sinc and ReLLU-activated feedforward networks. The net-
works varied in depth, ranging from 1 to 8 hidden layers, each containing 256 neurons, and were
trained using the L5 loss. The training results, presented in Fig. [f] demonstrate that increasing the
network depth leads to higher PSNR values, although the improvements diminish beyond 4 hidden
layers.

6.4 3D SHAPE MODELLING

In this experiment we optimize a binary occupancy field, which represents a 3D shape as the decision
boundary of a neural network as in [Wang et al.| (2021); |Gropp et al.| (2020). We use the Thai
statue instance obtained from the Stanford 3D Scanning repository. We trained sinc and ReLLU deep
networks of varying depths, each with 128 neurons, utilizing the loss £ to regress the Thai statue.
The results, shown in Fig. [5] indicate that increasing the depth of the networks consistently leads to
higher PSNR values.
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Figure 7: Final train PSNR after convergence is plotted against the number of hidden layers for
deep sinc (left) and ReLU (right) networks, each trained with four different optimizers on a binary
occupancy shape fitting task. The results show that, for both network types, increasing the depth of
the network consistently leads to higher train PSNR across all optimizers.

6.5 FURTHER EXPERIMENTS

Epochs needed for convergence: Results on the number of epochs needed for each optimizer to
converge as width and depth are added are carried out in App. [6.3]

Testing for image super resolution: Although our Thm. and Thm. in App.
focus on points outside the training set for one dimensional signals. We decided to empirically see
what happens when we consider testing for higher dimensional signals. The results for super image
resolution, following Sec. [6.3] are given in App.[A.2.7]

Testing for binary occupancy: Results on testing for the binary occupancy experiment carried
out in Sec. [6.4]are given in App.[A.2.7]

Neural Radiance Fields (NeRF): We also carried out experiments on Neural Radiance Fields
(Mildenhall et al.| 2021). Results can be found in App.[A.2.2]

7 LIMITATIONS

Our results in Theorems and apply to signals in L?(RR), as they are rooted in the Nyquist-
Shannon-Whittaker sampling theorem, which pertains to such signals. An interesting extension
would be to explore whether bounds outside the training data can be established for higher-
dimensional signals in L?(R¥) for k > 1. We believe this direction could be linked to the mul-
tidimensional sampling theorem by |Petersen & Middleton| (1962)), potentially offering new insights
into the role of network depth and its impact on generalization. We aim to take this up in a future
project.

8 CONCLUSION

In this paper, we demonstrated that overparameterization, viewed through the lens of sampling the-
ory, provides valuable insights into the structure of the loss landscape for 2 supervised regression
problems. Our theoretical findings reveal that both sinc and ReLU activated feedforward networks,
when overparameterized, significantly increase the number of global minima for the ¢ loss func-
tion, regardless of the optimizer used. Empirical validation with various optimizers reinforces these
results, highlighting the pivotal role of overparameterization. We hope these insights inspire new
approaches to understanding neural networks and the loss functions used to train them.
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A APPENDIX

A.1 THEORETICAL RESULTS

In this section we give detailed proofs of the theorems from the main paper. For the sake of self
containment we outline the theoretical notation we will be using throught this section.

Theoretical Notation: We outline the main notation we will be using throughout this section. We

remind the reader that the function sinc is defined by sinc(z) = % for z # 0 and sinc(0) = 0.
We will also use the triangular function which is defined by T(z) = max(1 — |z],0). We will
use the standard notation of R and Z to denote the real numbers and integers respectively. Closed
intervals will be defined by the notation [a, b] where a,b € R with a < b, consisting of numbers
¢ € Rsuch that @ < ¢ < b. The notation (a, b) will denote an open interval of real numbers, where
a,b € R with @ < b, consisting of numbers ¢ € R such that a < ¢ < b. Open balls about a point
z € R™ will be denoted by Bg(z) for any R > 0. We will say to topological spaces X and Y are
homeomorphic if there exists a continuous function f : X — Y that is bijective and has a continuous
inverse f~! : Y — X. The space L?(RR) denotes the Hilbert space of square integrable real values
functions on R with the Lebesgue measure, the inner product being defined by < f, g >:= fR f-g

for f,g € L*(R).

All the neural networks we consider will be feedforward, as defined in |Prince| (2023)), and denoted
by N. The parameter space of N will be denoted by RP**™, The objective functions used to train
such networks will be the standard ¢2 loss functions (Prince, 2023) for supervised learning tasks,
which given a dataset {(z;,y;)} and a feedforward network N (6; ), where 6 are the parameters of
the network, is defined by

1 n
=5 > WN(B;2) — )™ (20)

=1

L(0)

An important observation that we will use through the paper is that if the following equations are
satisfied for a parameter 6
NO;z;) =y for1 <i<n (21)

then the parameter 6 is necessarily a global minimum for L. This follows from noting that by
equation [20] we must have that £5(¢) > 0 for any § € RP¥*™,

A.1.1 RESULTS FOR SHALLOW SINC NETWORKS

In this section we would like to give the proof of Thms. [5.2]and[5.3] In order to do this we will start
with some propositions and lemmas.

Proposition A.1. Let X = {(x;,y;}", be a data set with x; € R¥ and the labels y; € R™. Let
N (z;0) be a sinc activated shallow neural network with n neurons. Then there exists a parameter
0* such that

N (z;0%) = y; forall1 <i < n. (22)

In particular, 0* is a global minimum for the (2 loss objective

n

> W@ 0) — i) 23)

i=1

£2(0) = —

Furthermore, we can write down an explicit expression for the parameter 0*.

Proof. The main idea of the proof is that we can perform a reconstruction by centering suitable sinc
functions around the domain data x; with height given by the labels y;. Then one uses the insight
that such a construction can be done via a shallow neural network with a sinc activation.

To begin with we will start by assuming the data set is one-dimensional so that x; € R and y; € R.
Let us normalize the data points so that x; = % for p;, q; € Z. Then put each each z; over a common
denominator g and write z; = 2. Note that the fact we can do this is an assumption though one that
is satisfied in practise due to the finite precision of the computers. This normalization can also be
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interpreted from the signal processing viewpoint as assuming the bandwidth of the discrete signal
defined by the data {x;, y; } is a multiple of ¢ > 0.

We then define a parameter 6* for a sinc activated shallow neural network N, with n neurons in the
hidden layer, as follows: The weight 1/} and bias b, of the hidden layer will be

Wi=1lq,...,q  and by = [—p1,..., —py] (24)
and the weight W5 and bias b2 of the output layer will be
Ws = [y1,--.,ys] and by = 0. (25)
If we input this parameter into A/ we obtain
N (z;0") = yisinc(qr — p1) + - - - + ynsinc(qz — pp)- (26)
Using the fact that sinc(m) = 0 for any integer m € Z — {0} we find that
N(x;;0%) = y; forall 1 <i <n. 27)

This shows that 8 is an explicit global minimum for the loss function Ls.

In the case of higher dimensional data satisfying z; € R* and y; € R we proceed as follows. We
write the data as follows:
w1 = [z11, o] "

Ty = [-Tln; e ,xkn]T.

As in the one dimensional case, we normalize each data coordinate over a common denominator so
o _ Dpij

that x;; = =*.

q

Then we define a parameter 6* for a shallow sinc activated neural network A as follows: The weight
W1 and bias by of the hidden layer will be:

g g —(put o +pr1)
Wi=1: © | andb = : (28)
q - ¢ —(p1n+ +pkn)
Note that in this case W/ has dimensions n x k and b1 n x 1.
The weight W5 and bias bs of the output layer will be
Wy = [y1,...,yn) and by = 0. (29)

Then given an arbitrary input z = [21, ..., zx]? we have

N(z;0%) = y1sin0<q21 —pi1+ -+ gz —pm) + -

+ ynsinc <qzl — Pin t+ -+ qzp — pkn>~

We then observe that using the fact that sinc(n) = 0 for all integers n € Z — {0} we have
N(z;;0%) =0foralll <i<n (30)
showing that the explicit parameter 6* is a global minimum of the loss function L.

The final step is to consider the case when the labels are also high dimensional. In particular, assume
x; € R* and y; € R™. In this case we write y; = (Y1, - - - , Ymi» for 1 < i < n, where We will also
use the same convention we used for the data points x; above.

In this case the weights and bias of the hidden layer will be the same as in equation 28] The weight
W5 and bias be for the output layer will be defined by

Yii - Yin
We=| : : o | and by =[0,---,0]". (31)

Ym1 Ymn

14
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For an arbitrary input z = [21, ..., ;|7 we have
N(2;0%) = [N1(2;0%), ..., Nom(2;0)]7 (32)

where
Nj(z0%) = yjlsin0<qzl —pi1+ gz pm) 4+

+ yjnsinc (qzl —Pin + -+ gz — pkn)

forl1 <j<m.

It is clear from this that

N(x;;0%) = y; forall 1 <i < n. (33)
This gives an explicit representation of 8 in this setting and shows that it is a global minimum for
the loss function L. ]

The following proposition seeks to understand what happens if we add a single extra neuron to the
above neural network found in Prop.

Proposition A.2. Let X = {(z;,v:)}; be a data set with x; € R and labels y; € R™. Let
N (z;0) be a sinc activated shallow neural network with n neurons given by Prop. Let

n

> (N (wi;:0) — y:)? (34)

i=1

1
T on

EQ(Q) :

denote the ¢? loss function.

Then adding 1 extra neuron to the hidden layer of N (x;0) results in an increase in global minima
of Lo parameterized by the set Z x Z — {n points} x R™. Furthermore, we can write down explicit
expressions for each of these new global minima.

Proof. We start by assuming z; € R and y; € R. We assume our data is normalized so that x; = %
as in the proof of Prop. [A.1]

The proof will proceed by building the extra global minima using the structure of * found in Prop.

Since we have added one extra neuron to A/ the weight W in the hidden layer will have dimension
(n+1) x 1 and the bias b; will have dimension (n + 1) x 1. The weight W5 in the output layer will
have dimension 1 x (n + 1) and the bias bo will have dimension 1 x 1.

Let us define the weight Wy = [q, ..., q, \]T and bias by = [—p1, ..., —pn, n]T where for now \;
and 7 are parameters in R. Let the weight of the output layer be given by Wa = [y1, ..., Yn, A2]
where Ay € R and the bias by by = 0. If we input these parameters into the neural network \ we
obtain:

N (z;0) = y1sinc(gx — p1) + - - - + ypsine(qzr — p,) + Aesine(A1z — 7).
We now want to show that for the right choices of A1, A2, 7 € R we can obtain parameters 6* so

that N (z;;6*) = y;. In order to see what parameters we can choose, write A\ = g€ where £ € Z
thenletn € Z — {&p1,...,Ep1} and let Ay € R.

Observe that for these parameters we have that
Agsinc(géx; —n) =0forl <i<n (35)

where we have used the fact that sinc(m) = 0 for any integer m € Z — {0}. We thus see that if we
define 6* by Wy = [q,...,q,&q]", b1 = [p1,-- -, Pn> 1) Wa = [y1,--+,¥Yn, A and by = 0 where
E€Z,neZ—{p1,...,&pn} and X € R then for such a parameter we have that

N(x;;0%) = y; for1 <i < n. (36)

This proves the theorem for the setting of one dimensional data.
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In the case that z; € R¥ and y; € R, we start by writing the data as follows:

T = [$11,~~~a$k1]T

T
Ty = [xln; cee 1xkn] .
As in the one dimensional case, we write each data coordinate over a common denominator so that

Tij = p;j.

We then write the weight W, and bias b, of the hidden layer as

q - q —(pu+ -+ +pe1)
Wwi=|: ¢ | andb=| ° 3 3 37)
§ig - &g -

where &1,...,& € Rand n € R. Note that in this case W; has dimensions (n + 1) X k and by
(n 4+ 1) x 1. We write the weight W5 and the bias by of the output layer as Wa = [y1, ..., Yn, A
and b, = 0 where A € R.

If we insert these weights and biases into the neural network AN, for any input point z =
[21,...,2,]T we obtain
N(z;0) = yisinc(qz1 — pu1 + -+ + g2k — pra) + -+
+ ynsine(gz1 — pin + -+ + q25 — Prn)
+ Asinc(&1g21 + -+ + kg — 7).

We then denote by 6* those parameters that satisfy &,...,& € Zandn € Z — {&p11 + -+ +
EkPr1y - E1P1n + -+ + EkPrn } and X € R and observe that

N(x;;0%) = y; for 1 <i < n. (38)
This proves the theorem for the case x; € R* and y; € R.

For the general case of data z; € R and y; € R™ with k, m > 1 we proceed similar to the above
case. The weights 1W/; and bias b; of the hidden layer will be given by

a - q —(put+ o +pe1)
Wwi=|: ¢ | andb=| ° 5 5 (39)
€19 - &g =1
and the weights W5 and bias by of the output layer will be given by
Yii o Y M1
Wo=1|: : : i |andby=][0,---,0]". (40)
For an arbitrary input z = [21, ..., ;|7 we have
N(20%) = [Ni(2:0%), ..., N (2077 41)

where
N;j(2;0%) = yjisinc(qzr — pi1 + - + gz — pr1) + -+
+ yjnsinc(qz1 — pin + - + @26 — Pin)
+ Ajsinc(§1gz1 + -+ + Egze — )
for 1 < j < m. We then denote by 6* those parameters that satisfy £,...,&, € Z and n €

Z—{&pu+ -+ &kprty - & + -+ EkPkn}s ALy - -+ s A € R and observe that for such
parameters we have

N(z;0%) =y for1 <i<n. (42)

This shows that the extra global minima are parameterized by the set
ZXZ—{&pi1+ -+ Ekpr1s- -, §1P1n + -+ + EpPrn } X R™ (43)
O
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We will need the following lemma about how the integer points in R” within a ball Bz (0) about the
origin for R > 1 grows as the dimension n increases.

Lemma A.3. Let R > 1 and let Br(0) denote the ball of radius R about the origin in R™. Let
A(n) = Z™ N Bg(0) denote the integer lattice points in Br(0) and |A(n)| denote its cardinality.
Then |A(n)| grows exponentially in n.

The proof of this lemma can be found in (Chamizo| (1998)) and |Fricker| (2013).
Note that the above lemma also holds true if we remove a finite set of points in Z".

We now have all the ingredients to give a proof of Thm. [5.2]from the main body of the paper.

Proof of Thm. The proof uses the result of Prop. and Lem.

We saw from the proof of Prop. that if we add 1 neuron to AV there are a number of new global
minimum valleys that are parameterized by the set Z x Z — { n points } x R™. Following that proof
we see that if we add [ > 0 neurons to A we will get a collection of new global minimum valleys
parameterized by the set Z' x (Z — { n points })! x R!™,

Observe that the connected components of Z! x (Z — { n points })! x R!™ are precisely in one to
one correspondence with the integer points in Z! x (Z — { n points })!. Therefore, we can prove
the theorem if we can show that Br(0) N (Z' x (Z — { n points })') grows exponentially as [ gets
bigger and bigger. This follows from Lem. O

We now move on to give the proof of Thm. [5.3] This will be done by using some standard lemmas
from Fourier analysis.

Lemma A4. Let f € L?(R) be a band-limited signal with maximum frequency wnmax. Suppose we
sample f at the points f(nT) where 7= > 2wmax. Let

N
Fy(x) = i;N f(nT)sinc (;(m - nT)> (44)
Then we have the bound .
|f — Fn| < O(W) (45)

The proof of this lemma can be found in |Olson| (2017)).
Lemma A.5. The set of band-limited functions denoted B is a dense set of L*(R). This means given
any signal f € L*(R) and any threshold € > 0 we can find a band-limited function g € B C L*(R)
such that

I1f = gllee@®) <e (46)
Lemma A.6. A band-limited function f € B is necessarily analytic on the whole real line and thus
continuous on the whole real line.

Proof of Thm. The proof of Thm. [5.3] proceeds as follows. We first use Lem. [A.5|to find a
g € Bsuch that || f — g|z2r) < §. By Lem. we have that g is necessarily continuous and by
assumption we have that f is continuous. Therefore, we can choose g so that

g(z;) = f(z;) for 1 <i < n. 47
Then using the fact that L2-convergence implies pointwise convergence (Stein & Shakarchil, [2009),
we have that for any = € [0, 1] it holds |f — g| < §.

The next step is to establish the theorem for the bandlimited function g. Denote the maximum

frequency present in g by wpq,. We then choose a collection of points {p; };cz whose distance

between successive elements |p;+1 — p;| = T where % > 2wmax and such that {x;} are contained

within {p; }. Fig. [8|gives a pictorial representation of how the points {z; } will look within {p; }.

We then consider the sum

i 9(p:) sinc (;(ﬂf —pz’)) (43)

i=—N
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Figure 8: The original data points {x;} are shown in red. The green points are the new equally
spaced points {p;} that contain {x;}.

and note that this sum is precisely the first 2NV terms of the Nyquist-Shannon-Whittaker (NSW)
series.

Then observe that using the same technique as in the proof of Thm. [5.2] we can represent this sum
as a shallow sinc activated neural network A/ with 2N neurons in the hidden layer. That is, there
exists a parameter 6, given by the proof of Thm. such that

al 1
N(O;x) = Z g(p;) sinc (T(:v — pl)> (49)
i=——N
and hence
N(O;pi) = g(pi)- (50

If we choose, N large and in particular larger than n we can then show that two properties of A/
must hold. First that since {x;}}_, are contained within {p; } we must have that

N(0;2;) = g(x;) = f(xs) (51

as g = f on the data set by construction. Then applying Lem. we can find an N >> 1 very
large such that

9(@) — N(0:2)] < - <

€
— 52
VN 4 62
for all z € [0, 1] and for some fixed C' > 0.
Suppose we now add ¢ neurons to the hidden layer of A. Then N takes the form
N 1 q
N(0;z) = Z g(p;) sinc (T(m — pl)) + Z ¢; sinc(a;x + b;) (53)

i=—N i=1

where the a;, b; and ¢; € R are the extra parameters coming from adding ¢ neurons. Observe that
the points {p;} are all equally spaced of distance T". Hence we can write

Ty = miT (54)
for some m; € Z. Then in order for A to satisfy the labels f(z;) on the set {z;} we can choose
a; € %Z ie a; = % forany n; € Zand b; € Z — {aym1,...,a;my} and ¢; € R. Using the fact

that sinc(m) = 0 for m € Z\{0} and letting 8* denote the parameters with a;, b; and ¢; satisfying
the above mentioned constraints that

N0 i) = f(:) (55)
implying that all these new parameters 6* are a global minimum for the loss function
1< 2
Lo(0) = o ; N (0;2:) — f(2:))”. (56)

We then find that with these new parameters 6* that
[f(z) = N(0%;2)| < |f(2) — g(x)] + [g(z) — N(0%; z)| (57)

for any z € [0,1]. We already know that |f(x) — g(x)| < § so in order to prove the theorem it
suffices to prove that

l9(@) = N(0%;2)] < 5 (58)
for any x € [0, 1].
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In order to do this we observe that we can write

o)~ N < o)~ 3 tpysine (e )|+ | Ssincta 00| 9

i=—N i=1
where we remind that reader that a; € %Z, b; € Z\{a;my,...,a;my} and ¢; € R. We already
chose N large so that
N 1 €
o) = 3 otsine (e =0 )| | < § (60

see equation[52] Therefore, we just need to bound the term

q
Z ¢; sinc(a;x + b;)

i=1

: (61)

If we can show that this is less than < we are done. To do this we observe that for any z € R

1
|'sinc(z)| < 1. Therefore

q q
Z cisinc(a;z 4+ b;)| < Z il (62)
i=1 i=1

Write ¢; = A for some A € R so that the sum becomes

a
> leil = g (63)
i=1

We then have that A must satisfy the constraint

€ €
re-£,9). 64
© ( 4q’ 4q> 9

With A satisfying this constraint we find that the parameters 6* such that a; € %Z and b; €

Z\{a;m1,...,a;m,}and c; = X € ( — fq, fq) must satisfy the bound
|[f(z) = N (0% 2)] <e. (65)
Furthermore, all these parameters 6* are global minima of the loss function
I 5
Lr(0) = 5~ ; (N (0;2:) = f(2))° (66)

We thus see that these generalizable global minima are parameterized by the set %Z X ( — 1 ;)
q q

and correspond to distinct global minimum loss valleys with the different loss valleys parameterized
by %Z.

We therefore see that we have added a total of N + ¢ — n new neurons to the original A that had n
neurons in the hidden layer. This shows that as long as we take [ > N — n and then adding [ neurons

to \V gives the result of the theorem. This provides a quantitative bound on how large [ needs to be
in order to get the result of the theorem. O

A.1.2 RESULTS FOR DEEP SINC NETWORKS

In Sec. [5.0] we stated our main Thm. [5.2] which deals with how the global minima in the loss
landscape of the £2 loss L5, see equation |5} changes as we add more neurons to the hidden layer of
our network. Another way of adding more parameters to a network is to add another hidden layer
i.e. add more depth. In this section we show that our Thm. [5.2] has a generalization to the case of
deep sinc activated networks.

We start with some propositions.
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Proposition A.7. Let X = {(z;,y:)}"_, be a labelled data set. Let N'(x;0) be a sinc activated
shallow neural network with n neurons. Let

Ly(0) = — Z(N (2:30) — y;)? (67)

denote the 2 loss objective function.

Then adding 1 extra hidden layer of n neurons to N (x;0) results in an increase in global minimum
valleys of Lo parameterized by the set Z""~1) x R™. Furthermore, we can write down explicit
expressions for each of these new global minima.

Proof. To begin with we assume the data is one dimensional i.e. z; € R and y; € R. Furthermore,
we assume that our data points are normalized so that x; = % for p;, q € Z.

When we add an extra hidden layer with n neurons to the network A/, we obtain a deep network
with 2 hidden layers. We will denote the weights and biases of each layer of this new network as
follows. The first hidden layer will have weights and biases denoted by (W7, by ), the second hidden
layer by (W2, by) and the output layer by (W3, bs). The dimensions of these weights and biases will
be W7 and by will be n x 1, W5 will be an n X n matrix and bs will be n x 1. Finally, W3 will be
1 x nand bz will be 1 x 1.

The extra global minima that arise from adding one extra hidden layer will arise from the global
minimum found in Prop. Thus the weight W7 and bias b; will be given by

Wl = [qa"wCI]T andbl = [_plw"v_pn}T' (68)

For now we will write the weight W5 and bias b as

wi e wi,
Wy=| : : | and by = [b7,...,b7]" (69)
w?Ll e w?m,

and the weight W3 and bias b3 as
Ws = [w?,...,w?] and bs = b. (70)

With the weights and biases defined above denoted by 6 the structure of the network takes the
following form

N (0, z) = wisine(w? sinc(qz — p1) + - - - + w?, sinc(qz — py) + b?) (71)
_|_

+
wisinc(w? sinc(qx — py) + - - - + w2, sinc(qz — p,) + b2) + b.

If weletb = 0, w} = y; for 1 < i < n, b? = —w?, and then allow w? € R and wizj = n;; — b?

for n;; € Z and for i # j. We see that any parametlér 0* that satisfies these constraints satisfies the
following

N(O 5 z) =y for1 <i<mn (72)
which follows from that fact that sinc(m) = 0 for any m € Z — {0} and sinc(0) = 1. It thus follows
that such parameters are global minima of the loss function L,.

We therefore see that the extra global minima that arise from adding one hidden layer with n neurons
can be parameterized by R” x Z"("~1) and hence are global minimum valleys.

The next step is to consider the case that the data x; € R* and y; € R. We write the data as follows:

T = [T11,. ., Tpa)

Ty = [«Tln; e ,xkn]T.
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As in the one dimensional case, we write each data coordinate over a common denominator so that
_ Pij
Tij = #

Then we define a parameter 8* for a shallow sinc activated neural network A as follows: The weight
W, and bias b; of the hidden layer will be:

q e q _(p11+ ce +pk1)

Wi=|: © o oifamdbi=|
q “ee q _(pln_|_ cee +pkn)
Note that in this case W/ has dimensions n x k and b; n x 1. The weight W5 and bias b of the second
hidden layer will be defined just in the same way as above in the case that the data was assumed one
dimensional and similarly for the weight W3 and bias b3 of the output layer. We therefore, see that
once again with such weights and biases N (0*; x;) = y;, which means such parameters are global

minima of the loss function £, and these extra global minima are parameterized by Z"(»~1) x R”
and hence are global minimum valleys.

Finally, for the case that zz; € R* and 3; € R™ the proof follows the strategy of Prop.

(73)

In this case we write y; = (Y1, - .-, Ymi), for 1 <4 < n. We will also use the same convention we
used for the data points x; above.

In this case the weights and bias of the first hidden layer will be the same as in equation The
weights W5 and bias bo for the second hidden layer will be exactly the same as those found for the
case the data was assumed one dimensional. The weight W3 and bias b3 for the output layer will be
defined by

Yir 0 Yin
Wy=|: ¢ | andby=][0,---,0]". (74)
Ym1 e Ymn
For an arbitrary input z = [21, ..., z;]7 we have
N(z0%) = N1(207), ..., Non(2,67)]T (75)

where

Nj(z0") = yjlsiHC(qZ1 —pii+ gz —pm) + -

+ yjnsinc (q21 —Pin+ -+ gz — pkn)

forl1 <j <m.
It is clear from this that

N(x;;0%) = y; forall 1 <i < n. (76)
This gives an explicit representation of 6* in this setting and shows that it is a global minimum for the

loss function L. Furthermore, once again we have that the extra global minima are parameterized
by R™ x Z"=1) and are valleys. O

Proposition A.8. Let X = {(;,v;)}", be a data set with v; € R¥ and y; € R™. Let N (x;0) be
a sinc activated shallow neural network with n neurons given by Prop.[A.7] Let

1
)

n

> (N (3:0) — yi)? 77

i=1

L2(6) :

denote the (? loss objective function.

Then adding | extra hidden layers with n neurons each to N (x;0) results in an increase in global
minima of Lo parameterized by the set Z™("=1) x R Furthermore, we can write down explicit
expressions for each of these new global minima.

Proof. The proof of this proposition follows exactly the same approach of Prop. One simply
uses induction on the number of hidden layers with the base case being Prop. O
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The following theorem is the analogue of Thm. [5.2] for the case of adding parameters by adding
depth.

Theorem A.9. Let X = {(x;,v;)}"", be a data set with z; € R¥ and y; € R™. Let N'(z;0) be a
shallow neural network with n neurons. Let

n

L2(0) := % _Z(N (2:30) — y;)? (78)

denote the (? loss function. Let Gr(n, 1) denote the number of distinct global minimum valleys of
Lo in the ball Bg(0) of radius R > 1 around the origin O where the dependence of n comes from
the n neurons of N and the 1 denotes that N has 1 hidden layer. Then if we add | hidden layers,
each with n neurons, to N' we have that Gr(n, 1) grows at least exponentially in l.

Proof. From Prop. we see that when we add [ hidden layers, each with n neurons, there are
extra global minima for the objective function £, that are parameterized by R™ x Z(»~1)_ Each
of these global minimum valleys are parameterized by Z*("~1)| Thus we see that the number of

such valleys grows like the number of integer points in Br(0) N Z™(™~1), which has exponential
growth in [ by Lem. O

A.1.3 RESULTS FOR SHALLOW RELU NETWORKS

In this section we want to give the proof of Thm. [5.5] In order to do so we will need to establish a
correspondance between ReLU shallow networks and the Triangle function T.

The starting point is Lem. [5.4] whose proof we now give.
Proof of Lem. The proof of equation[I7)in Lem. [5.4]follows immediately from the definition of
the ReLLU function.

The parameter 6* is defined as follows. The weight W, and bias b; of the hidden layer are defined
by

Wi =[1,1,1]% and [1, —1,0]%. (79)
The weight W5 and bias bs of the output layer are defined by
Wy =11,1,—2] and by = 0. (80)
Using these parameters we see that
N(z;0") = ReLU(x + 1) + ReLU(z — 1) — 2ReLU(x) (81)
= T'(z) by equation[L7} (82)
For the case of T'(w(xz — a)) we have
Wi = [w,w,w]” and by = [1 — wa, —1 — wa, —wa) (83)
and W5 and by the same as above. O]

Sampling with the triangle function leads to a piecewise linear interpolant as shown in the following
lemma.

Lemma A.10. Let f € L*(R) and let T : R — R denote the triangular function defined by
T(z) = max{1l — |z|,0}. Suppose we sample the signal f at the integer points, f(n) for n € Z.
Then the series

s(x)= Y f(n)T(x—n) (84)

n—=—oo

is a piecewise linear interpolation of the signal f.

Proof. The starting point is to observe that the triangular function is linear on the regions [—1,0
and [0, 1] and completely zero outside these regions. This means that in the summation equation
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the only non-zero term will come from the nearest sampled points ny < z < ny where ny = ||
and ng = [z]. Thus for n; < z < ny we see that the summation breaks down to

s(z) = f(n1)T(z —n1) + f(n2)T (2 — na). (85)

Applying the definition 7'(z) = max{1 — |z|,0} we find
Tx—n1)=1—(x—n1)=ns—=x (86)
Tx—n2)=1—(ne—z) =z —n,. (87)

This then shows that for ny < x < no

s(x) = f(n1)(n2 — ) + f(n2)(x —n1) (88)
which is precisely the formula for the linear interpolation between f(n1) and f(n2). Hence we see
that equation [84]is a piecewise linear approximation to the signal f as required. O

In the above Lem. [A.T0] we assumed the signal f was sampled on the integers. In general, in the
case that the signal is sampled on a discrete set of equally spaced points {x; } such that |z; —z;| = d

we get an equivalent lemma by using the scaled triangular function given by T(z) = T(4z). By
taking the sampling points {x;} closer together one obtains a better linear approximation of f.

Lem. [5.4] and [A.T0] give another way to see that ReLU networks perform piecewise linear interpo-
lation.
Before we can prove the main Thm. [5.5]from Sec. [5.2] we will state and prove some propositions.

Proposition A.11. Let X = {(z;,v:)}", be a data set with x; € R* and y; € R™. Let N'(;0) be
a ReLU activated shallow neural network with 3n neurons. Then there exists a parameter 0* such
that

N(z;0%) =y, forall1 <i < n. (89)

In particular, 0* is a global minimum for the (? loss objective

3n

> N (@i 0) — i) (90)

i=1

£2(0) = —

Furthermore, we can write down an explicit expression for the parameter 6*.

Proof. The proof of this theorem follows the sampling strategy undertaken in the proof of Prop. [A.T]
with the use of Lem. [A. 10l

To begin with we assume z; € R and y; € R. Choose €1, ..., €, > 0 so that
1
T(—(x; —x;) = 0forall i # j. o1
€;

We then define the parameter 6* as follows. The weight W/ and bias b; of the hidden layer will be

T
1 1 1 1 1 1 1 1 1
Wl_|:77,7aa"'777:| (92)
€1 €1 €1 €2 €2 €9 €n €n €n
T
blz[ T T T T Ty x"} . (93)
€1 €1 €1 €n €n €n
The output layer will have weight W5 and bias bo given by
W2 = |:y15y17 72ylay27y2a 72:(/27 <oy YUny Yn, 22/7:] (94)
by = 0. 95)

‘We then find that

€

Na:67) = iyﬁ(%w - ) %6)
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which implies that
N(@i0%) = y; 97)
by the choice of numbers €1, . . ., €, and the definition of the triangular function 7.

The general case of data {(z;,v;)}, with z; € R¥ and y; € R™ follows the exact same strategy
as we did in the proof for Prop. O

Proposition A.12. Let X = {(z;, f(x;))}", be a data set with z; € R* and y; € R™. Let N'(x;6)
be a ReLlU activated shallow neural network with 3n neurons given by the above theorem. Let

3n

> (N (@i;0) — yi)? 98)

i=1

_1
" 6n

[:2(9) .

denote the 2 loss objective function.
Then adding 3 extra neurons to the hidden layer of N (x; 0) results in an increase in global minima
valleys of Lo parameterized by the set

(R — { n closed intervals }) X <R — { n closed intervals }) x R™. 99)

Proof. The poof of this follows the approach taken in Prop. In Prop. we found a
parameter 6* that was a global minimum when our network had 3n neurons. We will build the new
global minima from the representation of 6* found in Prop. We will start with the simpler
case of one dimensional data. So assume that z; € R and the labels y; € R.

Let us represent the weight W, and bias b; of the hidden layer by

11 1 11 1 4
WIZ {,,,...,,,,a,a,a] (100)
€1 €1 €1 €n €n €n
—x —x —x —x —x —x r
b1—|: 1+17 1—1, 17"'a n+17 n_la na_aA+17aA_17a>\:|
€1 €1 €1 €n €n €n
(101)
where a, A € R. We represent the weight W5 and bias b2 of the output layer by
Wy = |:y17 Y15 —2Y15 - - s Yns YUns —2Yn, €, G, 20:| (102)
by =0 (103)
for ¢ € R. We then see that for such parameters we have that
= 1
N(z;0) = Zsz<(a: - xl)) + cT(a(x — ). (104)
€
i=1

We then observe that N(x; §) will fit the training data provided the term
cT(a(z; — X)) =0forl <i<n. (105)

Mathematically this will happen provided ) lies outside the closed intervals [z; — €;, x; + ¢;] for all
1 <i<nand

la| > max{|A — (z; + €)],|A — (z; —€)|} forall 1 <i < n. (106)
This constraint can be encoded by allowing
AeR—Jlwi — e,z + € (107)
i=1
aeR—J[-(\=(z1—) A= (21— €)] (108)
i=1
ceR. (109)
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Letting 6* be determined by weights and biases satisfying the above constraint, we see that
NOz) =y forl <i<n (110)
hence with such parameters we see that
L2(07) =0 (111)
showing that the extra parameters §* are all global minima.

From what we showed above we can see these extra global minima are parameterized by the set

n

(R— G[$i—ei,xi+ei]> X <R— Ul-O= (@1 =), A= (& —ei)]> xR (112)

i=1 i=1

The general case of data 2; € R* with labels y; € R™ uses the above together with the exact same
approach we took for Prop. O

We are now in a position to prove Thm. [5.3]

Proof of Thm. |5.5] The proof of this theorem proceeds by inducting over [. The base case is given
by Prop. |A.12] Assuming the statement is true for / — 1 for [ > 0 we can run through the proof of
Prop. |A.12|and see that by adding another 3 neurons we get extra global minima parameterized by
the set

i=1 i=1
Combined with the induction step this yields the statement of the theorem.

Observe that as we add 3/ neurons the dimension of the global minimum valley given by the above
scales in dimension by ! showing that overparameterization leads to higher dimensional global min-
imum loss valleys that scale at least linearly in /. O

In the case of shallow ReLU networks we have an analogue of Thm. [5.3] In order to derive such
a theorem we start with the following simple lemma from linear interpolation [Stein & Shakarchi
(2009).

Lemma A.13. Ler f € L*(R) then for any given € > 0, there exists a function g € LR) such that
g is a continuous piecewise linear function and such that || f — g||r2®) < €.

Theorem A.14. Let f € L?(R) be a continuous signal, and let ¢ > 0 be a fixed threshold. Consider
a dataset (x;, f(x;));_, obtained by sampling f. Let N'(0;x) be a shallow feedforward network
with ReLU activation and 3n neurons in its hidden layer. Define the {2 loss function based on the
parameters 0 of N as follows:

3n

D (N (O;2i) — f(:) (114)

i=1

L(0) : .

Ifwe add 1 > 0 neurons to the hidden layer of N, for sufficiently large |, there are an infinite number
of parameters 0 lying in a global minimum valley that satisfy the following bound:

|f(x) = N(0752)] < e (115)

forany x € [0,1]\ {x;}1 .
Proof. The proof of Thm. [A.T4] proceeds in a similar way to the proof of Thm. [5.3] with one key
difference. We will use the triangle function as the sampling kernel. We first use Lem. to find

ag € L*(R) such that || f — g||r2®) < £ and such that g is a conintuous piecewise linear curve.
Therefore, we can choose g so that

g(z;) = f(x;) for 1 < i < n. (116)
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Figure 9: Left: The original function in blue is sampled at the black points with shifted triangle
functions at the centre of each sampled point. Right: The reconstruction on taking the sum of the
shifted triangular functions produces a continuous piecwise linear approximation to the original
function.

Then using the fact that L2-convergence implies pointwise convergence (Stein & Shakarchil, [2009),
we have that for any = € [0, 1] it holds |f — g| < {.

The next step is to establish the theorem for the function g. Denote the maximum frequency present
in g by wyq.. We then choose a collectlon of points {p; };cz whose distance between successive
elements |p; 1 — p;| = T where = 7 > 2Wmax and such that {x;} are contained within {p;}. Fig.
gives a pictorial representation of how the points {z; } will look within {p;}.

The next step is to use Lem. [A.T0] which implies that sampling with the triangle function T is the
same as performing a piecewise linear interpolation that is continuous if the signal being interpolated
is continuous. This means, we can find a collection of points {p; };cz that contains {x;} and some
€; > 0 and \; and write

Z i T(= x—pz)) (117)

i=—00

Fig. 9 gives a schematic viewpoint of how g is constructed from shifted triangle functions.

In particular if we just look at the points {p;} that lie in a small neighbourhood of [0, 1], we have
that there is an N > 0 such that

Z A T(= x—pJ)l < Z (118)

forany x € [0, 1] and since g(x;) = f(x;) we have that the associated \; will be f(z;). Furthermore
we have that the sum

Z ) (119)

can be represented as a shallow ReLU network N (6; z-) with 6N neurons in its hidden layer. This
follows by using Lem. In particular, this implies that

N(O;x;) = f(zy) (120)
so that § defines a global minimum of the loss function L.

Suppose we now add 3¢ > 0 neurons to the hidden layer of A/. Then we can write N with the new
parameters from adding these neurons as

Z i T x—pl —l—Zal x—cl)) (121)
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The key observation to make now is that as long as ¢; is outside the closed interval [0, 1] and b; is
such that the triangle centred at c; with sides determined by bi and height a; namely a; T(b;(z—¢;))

is zero for any point z € [0, 1]. We then see that any new parameters arising from adding ¢ neurons
to the hidden layer and satisfying these constraints will still satisfy

N(O*2;) = f(z;)for1 <i<n (122)
and thus the parameters 0 are global minima for the loss L.
We then see that
() = N0 2) < |f(2) = g(2)] + |g(z) = N (675 2)] < 2 +lg(x) = N(0%2)]  (123)

for any = € [0,1]. The final step is to estimate the quantity |g(x) — N (6*; z)|. We can rewrite this
as follows
N

lg(x) =N (0%2)] < lg(x) = Y A ( (z —pi) \+|Zaz x—cz))l (124)

i=—N
Observe that we already made it so that

Z (= x—pz))\ < 1 (125)

So we only need to estimate the absolute value of the sum Y7 | a; T(i+ (z —¢;)). Since | T(bi(
¢i))| < 1 we have that

(z — ¢;) |<Z|al| (126)

@‘,_.

DO

If we write each a; = n where n) € (ffq, 4—6(]) then

€

4

M=

la;] < 127)
i=1

We thus see that we need the new parameters a;, b; and ¢; to satisfy the constraints a; € (—fq7 4%),

b; € R\{closed interval} and ¢; € R\[0,1] and with these constraints the parameters 6* form a

global minimum valley and satisfy the bound

|f(z) = N(0%;2) <€ (128)
for any x € [0, 1].
We therefore see that we have added a total of N + 3¢ — 3n new neurons to the original A that had
3n neurons in the hidden layer. This shows that as long as we take [ > N — 3n then adding [ neurons

to V' gives the result of the theorem. This provides a quantitative bound on how large [ needs to be
in order to get the result of the theorem. O

A.1.4 RESULTS FOR DEEP RELU NETWORKS

Thm. [5.5] applies overparameterization by increasing the width of the hidden layer of a shallow
neural network. In this section we state and prove results for the case of increasing the depth by
adding more hidden layers.

Proposition A.15. Let X = {(z;, f(z;))}, be a data set with x; € R* and y; € R™. Let N (z; )
be a ReLLU activated shallow neural network with 3n neurons given by the above theorem. Let

3n
1
o 2 W (@i ) — f(x:)? (129)

i=1

L(0) =

denote the (2 loss objective function.

Then adding 1 extra hidden layer of 3n neurons to N (x; 0) results in an increase in global minima
of Lo parameterized by the set

R™ x (R — (—1,1))"" 7Y (130)
Furthermore, we can write down explicit expressions for each of these new global minima.
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Proof. The proof of this proposition will be structured similar to Prop. [A.12] with the main idea
being that the extra neurons added through the hidden layer can be chosen in such a way that the
network still perfectly fits the training data.

Start by assuming the data is one dimensional so that z; € R and y; € R and choose €1, ...,€, >0
so that .
T(—(x; —x;) =0forall i # j. (131)
€

We will then build the weights of the extra hidden layer using the weights and biases found in Prop.
[A.T1] Namely, we let

1 11 1 11 1 1 1
W1:|:777757"'a77 (132)
€1 €1 €1 €2 €2 €2 €n €n €n
T
blz[ LY et S et L (133)
€1 €1 €1 €n €n €n

Note that W7 has shape 3n x 1 and by has shape 3n x 1. Let W5 and by be the weights and bias of
the second hidden layer respectively, and let us notate them as follows

wiy o wig,
Wy=| : : : and by = [b3,...,03,]" (134)
w%n,l o w%n,Sn
and the weight W3 and bias b3 as
W3 = [w},..., w3, ] and by = b. (135)

We can then write the network out as

N (0, ) = wiReLU (wl 1ReLU( (r—21)+1) +w? 2ReLU( (x—21)+1) — 2w? 3ReLU( (x —x1))
€1 €1 €1

1 1
+F wi?m_QReLU(—(:c —x)+ 1)+ wi?m_lReLU(e—(a: —x)+1)
€1 1

- 2wi, 3nReLU( (x — xl))>

€1

+
3 2 1 2 1 2 L
w, ReLU | w3, ;ReLU(— (2 — 21) + 1) + w3, sReLU(— (2 — x1) + 1) — 2wj3,, 3ReLU(—(x — 1))

€1 €1 €1

1 1
+o w§r7,,3nf2]":{e]-".U(7(‘IIj - xl) + 1) + /wgn,SnflR'eLIJ(7(ir - xl) + 1)

€1 €1
2w3n ?mP”eLIJ(6 (SC - .171))) +b
1
If weletb = 0, wi = y1, wi = y1, wi = —2y1 U)3n 2 = Yn» Wiy = Yn, W3n = —2Yn.
Then let w?, € R and impose the constraint |w w?| > 1 for all j # i. Then observe that any

parameter 9* satisfying these weight and bias constramts for each layer forced the neural network
to satisfy

N(x;;0%) = y; for1 <i < n. (136)
For each i # j if we write w?j = 14 + w} for r;; € R. Then the constraint \wfj —w}| > 1can
be expressed as |r;;| > 1. Thus we see that the global minima obtained by adding one extra hidden

layer can be parameterized by

n—1)

R" x (R — (—1,1))" (137)

The general case where the data is high dimensional so that z; € R* and y; € R™ follows the exact
same proof strategy from Thm. O
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We can now state and prove the deep analogue of Thm. [5.5]for ReLU networks.
Theorem A.16. Let X = {(x;,y;)}"_, be a data set with v; € R¥ and y; € R™. Let N'(x;0) be a
ReLU activated shallow neural network with 3n neurons. Let
3n
1
= & > N(@i0) = f(2:))° (138)

i=1

L2(6) :

denote the 2 loss objective function.

Then adding | > 0 extra hidden layers of 3n neurons to N (x;0) results in an increase in global
minima of Ly parameterized by the set

R x (R — (—1,1)) (139)
Thus we see that overparameterizing by adding more hidden layers leads to higher dimensional
global minimum loss valleys whose dimension grow at worst as (1).

In(n—1)

Proof. The proof of this theorem uses induction on {. The base case of [ = 1 being given by Prop.
The inductive step is then carried out by assuming the theorem is true for [ — 1 for [ > 1 and
then proceeding with the exact same lines of proof as in Prop. [A.T5]to obtain that the extra global
minima are parameterized by

R x (R — (~1,1))"" Y. (140)
Combining this with the induction step leads to the proof of the theorem. O

A.2 EXPERIMENTS
A.2.1 EXPERIMENTAL SETUP

In this section we discuss the experimental hyperparameters we used for each of the experiments.
For each of the four experiments we used the optimizers SGD, Adam, OnePlusOne and L-BFGS.

SGD: For this optimizer we used the standard PyTorch implementation with a learning rate of
le-3 for all experiments. We found we obtained similar results with learning rates of the form le-2
and le-4 (and lower) but that le-3 was the best and seemed to be the commonly used learning rate
for SGD in the literature. We observed that with different learning rates overparameterization still
led to better train PNSRs and test PSNRs.

Adam: For this optimizer we used the standard PyTorch implementation with a learning rate of
le-4 for all experiments which is what the literature used. We found we obtained similar results with
learning rates of the form le-2 and le-3 (and lower) but that 1e-4 was the best. We observed that
with different learning rates overparameterization still led to better train PNSRs and test PSNRs.

OnePlusOne: This optimizer operates through an iterative process involving “parents” and “off-
spring.” The algorithm starts with a single solution, referred to as the parent. At each iteration, a new
solution, the offspring, is generated by introducing a random mutation to the parent. This mutation
typically follows a Gaussian distribution. The offspring is then evaluated based on the objective
function. If the offspring achieves a better result than the parent, it replaces the parent; otherwise,
the parent remains unchanged. This process continues until convergence or a stopping criterion is
met, gradually improving the solution with each iteration. We implemented this optimizer based on
the facebook research code available at https://facebookresearch.github.io/nevergrad/. The hyperpa-
rameter that needs to be fixed is the number offspring the optimizer sends out to compare against the
parent. We found that anywhere between 10 to 30 offspring did the best and thus fixed 20 offspring
as our hyperparameter. For each hyperparameter we noticed the trend that oveparameterization
yielded better train and test PSNRs.

L-BFGS: For this optimizer we used the standard PyTorch implementation with a learning rate
of le-3 for all experiments. We found we obtained similar results with learning rates of the form
le-2 and le-4 (and lower) but that le-3 was the best. We observed that with different learning
rates overparameterization still led to better train PNSRs and test PSNRs. We also noticed that
the optimizer struggled for the larger experiments image super resolution and the binary occupancy
field. This was also found in the literature in work of Saratchandran et al.| (2023)).
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Figure 10: Number of iterations needed to converge for each optimizer as width increases for sinc
(left) and ReLU networks (right) on a curve fitting task.

Sinc networks: Our sinc networks all used a sinc activation in each layer following the literature
(Ramasinghe et al., 2023} |Saratchandran et al.| 2024).

ReLU Networks: ReLU networks exhibit spectral bias (Rahaman et al.,[2019). To overcome such
a phenomenon positional embedding layers are often added to such a network (Tancik et al.,|2020;
Sitzmann et al., 2020; [Saragadam et al., 2023). We followed the approach of those references and
added a positional embedding layer to our ReL.U network, which is a non-trainable layer that embeds
the data into a higher dimensional space. It is well known this helps ReLU networks overcome
spectral bias (Tancik et al., [2020). This also allowed us to consider a high dimensional problem
as now the data embeds into a high dimensional space before it goes into trainable layers of the
network.

Curve fitting: In the case of the curve fitting experiment, Sec. we found that training for 200
epochs led to convergence. We trained all optimizers with a full batch of the data set.

Image regression: In the case of image regression, Sec. [6.2] we found that training for 5000
epochs led to convergence. We trained the optimizers SGD, Adam, and L-BFGS with a batch size
of 256.

Super image resolution: For this experiment, Sec. [6.3] we found that training for 5000 epochs
led to convergence. We trained the optimizers SGD, Adam, and L-BFGS with a batch size of 256.

3D shape modelling: For this experiment, Sec. [6.3] we found that training for 1000 epochs led
to convergence. We trained the optimizers SGD, Adam, and L-BFGS with a batch size of 128
following|Saragadam et al.[(2023).

A.2.2 FURTHER EXPERIMENTS

Iterations for curve fitting: Fig. shows the number of epochs each optimizer needed for
convergence. As can be seen by that figure, as we add more width the number of epochs needed
for each optimizer to converge went down suggesting it was easier for the optimizers to find global
minima with more depth, though we did notice the gains went down as we added hidden layers past
depth 4.

Iterations for curve fitting: Fig. shows the number of iterations each optimizer needed for
convergence. As can be seen by that figure, as we add more width the number of iterations needed
for each optimizer to converge went down suggesting it was easier for the optimizers to find global
minima with more width.
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Figure 11: Number of epochs needed to converge for each optimizer as number of hidden layers
increases for a deep sinc (left) and ReL.U networks (right) on an image regression task.
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Figure 12: Final SSIM after convergence is plotted against the number of hidden layers for deep
sinc (left) and ReLU (right) networks, each trained with four different optimizers on an image super
resolution task. The results show that, for both network types, increasing the depth of the network
consistently leads to higher test PSNR across all optimizers.

Iterations for image regression:

Testing for image super resolution: We computed the Structural Similarity Index Measure
(SSIM) (Wang et al., 2004) after convergence to assess testing quality for the super image reso-
lution task from Sec. [0.3] As shown in Fig. [T2] increasing depth also enhanced the SSIM, but again,
the gains plateaued after 4 hidden layers.

Testing for Binary Occupancy fields: We computed the Intersection Over Union (IOU) measure
(Saragadam et all, 2023) for the binary occupancy experiment carried out in Sec. [6.4] Results can
be seen in Fig. [13|shows the results showing that as more depth is added the IOU increases for all
optimizers.

Neural Radiance Fields (NeRF) has recently gained attention as a powerful technique for model-
ing 3D scenes from multi-view 2D images using an MLP. NeRF operates by estimating the radiance
field of a 3D scene given 3D coordinates x € R? and viewing directions. The radiance field maps
each input 3D point to its corresponding volume density o € R and directional emitted color ¢ € R3.

Following the approach in the literature (Mildenhall et al., 2021} Xu et al.,|2022; |Chen et al.||2023),
we trained NeRF models with both sinc and ReLU activations using the /2 loss Lo defined in equa-
tion[5] In this experiment, the network depth was fixed at 8 layers, consistent with prior work, while
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Figure 13: Final IOU after convergence is plotted against the number of hidden layers for deep sinc
(left) and ReLU (right) networks, each trained with four different optimizers on a binary occupancy
task. The results show that, for both network types, increasing the depth of the network consistently
leads to higher test PSNR across all optimizers.
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Figure 14: Final train (left) and test (right) PSNR after convergence for NeRF is plotted against the
width of an 8 layer sinc and ReLLU network, trained with Adam. The results show increasing the
depth of the network consistently led to higher train PSNR and test PSNR.

we varied the width of each layer, testing sizes of 32, 64, 128, 256, and 356 neurons. During initial
trials, we encountered difficulties training NeRF with SGD, OnePlusOne, and L-BFGS optimizers.
After consulting the literature, we found that NeRF models are predominantly trained using Adam,
and as [Saratchandran et al.| (2023)) showed, training with L-BFGS is challenging due to issues with
stochasticity.

Consequently, we employed Adam as the sole optimizer for this experiment. The training was
conducted on the LLFF dataset from Mildenhall et al.| (2021), which consists of eight instances,
with three unseen views reserved for testing (Mildenhall et al.l 2021). We calculated the PSNR
by averaging across all eight training instances. For testing, we averaged the PSNR of each test
view across the eight instances and then averaged over the three test views. As shown in Fig. [T4]
overparameterization consistently led to higher PSNR values in both the sinc and ReLU cases.
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