
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SAMPLING THEORY AND OVERPARAMETERIZATION:
SHAPING LOSS LANDSCAPES IN ℓ2 REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Overparameterization in neural networks has demonstrated remarkable advan-
tages for both memorization and generalization, particularly in models trained
with gradient descent. While much of the existing research focuses on the inter-
play between overparameterization and gradient-based methods, we explore its
influence on the loss landscape of ℓ2 supervised regression problems, independent
of any specific optimizer. By leveraging the Nyquist-Shannon-Whittaker sampling
theorem, we establish a theoretical link between sampling theory and overparam-
eterized neural networks. Our findings reveal that overparameterization not only
exponentially increases the number of global minima but also expands the dimen-
sionality of loss valleys for various ℓ2 regression problems modelled with feed-
forward neural networks. We empirically validate these theoretical insights across
multiple supervised ℓ2 regression tasks, trained with both gradient-based and non-
gradient-based optimization algorithms. These results offer fresh perspectives on
the advantages of overparameterization in neural network design, independent of
the chosen learning algorithm.

1 INTRODUCTION

Overparameterization has demonstrated remarkable benefits for both memorization and general-
ization, particularly when training with gradient descent. Traditional learning theory suggests that
models with excessive capacity are prone to overfitting. However, modern deep learning research has
shown that overparameterized models can perfectly fit or memorize training data while still general-
izing well to unseen data (Zhang et al., 2021). This memorization effect is particularly pronounced
when using gradient descent, which efficiently navigates high-dimensional parameter spaces to lo-
cate global minima of the loss function, even in highly overparameterized networks (Arora et al.,
2019; Zhang et al., 2021). The neural tangent kernel (NTK) theory has revealed that with suffi-
cient overparameterization, gradient descent (flow) closely mirrors the behavior of kernel regression
(Jacot et al., 2018; Bietti & Mairal, 2019; Huang et al., 2020). This insight highlights the critical
role of overparameterization in understanding the dynamics of gradient descent in neural networks.
Moreover, gradient descent exhibits an implicit bias toward finding solutions with minimal norm in
overparameterized models, such as those with ReLU activations. This bias has been associated with
improved generalization properties, even when the model can perfectly memorize the training data
(Du et al., 2018; Allen-Zhu et al., 2019). This balance between memorization and generalization
underscores the effectiveness of overparameterization in modern deep learning.

While these works reveal a deep connection between overparameterization, memorization, and gen-
eralization, they focus on the context of gradient descent as the learning algorithm. In this article,
we seek to understand whether overparameterization offers inherent benefits for the loss landscape
associated with ℓ2 supervised regression problems, independent of any particular optimizer.

Our approach builds on the sampling theory of Nyquist-Shannon-Whittaker (NSW) (Nyquist, 1928;
Shannon, 1948; Whittaker, 1915) a foundational result in signal processing, providing the conditions
under which a continuous signal can be perfectly reconstructed from a discrete set of samples. It
states that if a signal is band-limited, meaning its frequency components are restricted to a maximum
frequency ωmax, then the signal can be fully recovered from its samples, provided the sampling rate
is at least twice the highest frequency present—this rate is known as the Nyquist rate. Specifically, if
the sampling interval T satisfies 1

T ≥ 2ωmax, the original signal can be reconstructed using a sum of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

shifted sinc functions, where sinc(x) = sin(πx)
πx for x ̸= 0 and sinc(0) = 1. This theorem is critical

in modern data acquisition and reconstruction, ensuring that no information is lost in the sampling
process as long as the Nyquist criterion is satisfied.

We build on these insights to establish a connection between sampling theory and supervised regres-
sion problems. Our first main result focuses on sinc-activated feedforward networks for modeling
ℓ2 regression problems and demonstrates how overparameterization leads to an exponential increase
in global minima around the origin of the parameter space. What is particularly interesting about
this result is that it is independent of any optimizer, implying that for such networks, overparame-
terization provides a significant benefit for the loss landscape that should help any optimizer. Our
second main result shows how sampling theory with the triangular function offers a new perspective
on understanding ReLU feedforward networks. We mathematically prove that overparameterization
results in an increase in the dimension of global minima that manifest as loss valleys in the parameter
space.

Both theorems present a novel viewpoint on the benefits of overparameterization, going beyond
what has been previously studied in the literature. To validate that our theoretical results provide
practical insights into ℓ2 supervised regression problems, we conduct a series of experiments for
both sinc and ReLU-activated feedforward networks using first-order gradient-based optimizers,
second-order gradient-based optimizers, and non-gradient-based genetic optimizers. In each case,
our results support our theoretical findings. We believe that the insights offered by sampling theory
will lead to a deeper understanding of overparameterization and its effects on deep learning.

Our main contributions are:

1. Theoretical results explaining how overparameterization alters the global minima of the
loss landscape for a supervised ℓ2 regression problem modelled with a sinc or ReLU-
activated feedforward network that is independent of any optimizer.

2. A comprehensive validation of our theoretical results across a variety of supervised ℓ2

regression problems trained with different optimizers.

2 NOTATION

Within the course of this article we will use the following mathematical notations and definitions.
The function sinc will be used throughout and is defined by sinc(x) = sin(πx)

πx for x ̸= 0 and
sinc(0) = 1. We will also make use of the Hilbert space L2(R), which we remind the reader is
defined as the space of square integrable real valued functions on R with the Lebesgue measure,
with inner product defined by < f, g >L2(R)=

∫
R f · g. Given a point z ∈ Rn we will denote the

open ball of radius R about the point z by BR(z). We will say two topological spaces X and Y are
homeomorphic if there exists a continuous bijective function ξ : X → Y with a continuous inverse
ξ−1 : Y → X . The term closed interval will be used to mean an interval of the form [a, b] which is
defined as the set of real numbers c ∈ R that satisfy the inequality a ≤ c ≤ b where a, b ∈ R. We
will primarily deal with feedforward networks as defined in standard texts such as Prince (2023).
The parameter space for such a network will be denoted by Rparam and will consist of all the weights
and biases of the network. Finally, by the term overparameterization we mean that there are more
parameters than data points. In general, we will often be considering situations where we add more
neurons to the hidden layer of a shallow neural network and this is the primary way we will add
extra parameters to our network. In the appendix we consider the case of deep networks where we
increase parameters by adding hidden layers. For more details on notation see App. A.1.

3 RELATED WORK

Research on overparameterization has enhanced our understanding of how large models achieve
both memorization and generalization. While overfitting was once a concern, studies like Zhang
et al. (2021) showed that overparameterized networks can still generalize well, despite perfectly
fitting training data. The neural tangent kernel (NTK) framework (Jacot et al., 2018) explained
how gradient descent in these regimes resembles kernel regression, with Arora et al. (2019) and
Huang et al. (2020) demonstrating that overparameterization smooths the loss landscape, leading

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to multiple global minima. Additionally, Allen-Zhu et al. (2019) and Du et al. (2018) explored
how gradient descent’s bias toward minimal-norm solutions improves generalization of a network.
Recent work by Belkin et al. (2019) and Nakkiran et al. (2021) introduced the ”double descent” phe-
nomenon, showing that increasing model size beyond the interpolation threshold further enhances
performance. Despite this focus on gradient-based optimization, less attention has been given to
overparameterization’s impact on alternative optimizers.

The sinc function has been applied to neural networks in tasks such as audio sampling (Ravanelli
& Bengio, 2018b;a) and dynamical systems (Ramasinghe et al., 2023; Saratchandran et al., 2024).
Saratchandran et al. (2024) also established a universal approximation theorem for sinc-based net-
works. While these works focus on signal processing applications, this paper takes a different ap-
proach, using sinc networks to provide new insights into overparameterization.

4 OVERVIEW OF RESULTS

The problem we address in this paper is rooted in supervised ℓ2 regression. This machine learning
task involves a dataset {(xi, yi)}ni=1, a neural model N (θ;x), where θ ∈ Rparam represents the
parameters and x is the input variable, and an ℓ2 loss function L2, which is defined as:

L2(θ) =
1

2n

n∑
i=1

(N (θ;xi)− yi)
2
. (1)

The objective is to determine the parameters θ that minimize the loss function L2 through a suitable
learning algorithm. While previous works have demonstrated the benefits of overparameterization
when minimizing L2 using gradient-based algorithms, this paper seeks to understand whether over-
parameterization provides benefits for the loss function itself, independent of any specific optimizer.

Our approach is inspired by the classical Nyquist-Shannon-Whittaker (NSW) sampling theorem in
signal processing (Martin, 1997). Sampling theory addresses the problem of reconstructing a signal
f from a collection of samples {f(xi)}Ni=1. Mathematically, if a function f(t) is band-limited with
a maximum frequency ωmax, the NSW theorem says that it can be reconstructed from its samples
{f(nT)}n∈Z, provided the sampling rate satisfies 1

T ≥ 2ωmax (known as the Nyquist rate). The
reconstruction formula is given by:

f(x) =

∞∑
n=−∞

f(nT) sinc

(
1

T
(x− nT)

)
. (2)

In general, the theorem requires an infinite number of samples. As this is not possible in practice a
finite but large N > 0 is usually chosen to produce the approximation

f(x) ≈
N∑

n=−N

f(nT) sinc

(
1

T
(x− nT)

)
. (3)

Fig. 1 gives a visual overview of the NSW sampling theorem. What is particularly striking about this
theorem is that it provides an explicit formula for reconstructing a function based solely on discrete
samples. In the case where one samples the signal at a sample rate less than the Nyquist frequencey
signal cannot be accurately reconstructed and aliasing occurs (Martin, 1997). It is not difficult to see
that the sum in equation 3 is a sinc activated shallow neural network.

We therefore see that we can reformulate the sampling problem as a supervised learning task. Given
a band-limited signal f and a dataset of samples (nT, f(nT))Nn=−N , reconstructing f can be viewed
as minimizing the loss function L2 for a shallow sinc activated neural network N (θ;x):

L2(θ) =
1

2n

n∑
i=1

(N (θ;nT)− f(nT))
2 for 1 ≤ p < ∞. (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Left: Sampling the signal sin(4πx) at 4 different points and centering sinc functions with
bandwidth 8 about these points. Right: Using the NSW reconstruction formula 3 to reconstruct the
signal from the sampled points.

This formulation establishes a clear connection between sampling theory and supervised learning.
The goal of this work is to explore whether this perspective provides new insights into the benefits
of overparameterization and its effect on the loss landscape of L2.

Question: Does the sampling theory approach of NSW for modelling signals lead to new insights
for the benefits of overparameterization for networks modelling supervised ℓ2 regression problems?

Our results demonstrate that overparameterization has a substantial influence on the loss landscape
of L2, independent of the specific optimization algorithm.

Main results for sinc-activated networks: For sinc-activated feedforward networks, our main
theorem demonstrates that increasing the number of neurons, either by adding width or depth, leads
to an exponential increase in the number of global minima for the loss function L2. These global
minima are distributed around a ball centered at the origin of the parameter space. This result
highlights a significant benefit for the loss landscape when the network becomes highly overparam-
eterized, independent of the optimizer.

Main results for ReLU activated networks: For ReLU activated feedforward networks, we of-
fer a novel perspective on overparameterization by framing it in terms of sampling with triangular
functions. Our findings show that increasing the number of neurons, either by expanding the width
or depth of the network, leads to a growth in the dimensionality of the global minima, which man-
ifest as loss valleys. We provide a precise quantitative characterization of how this dimensionality
increases. These results further highlight the significant benefits of overparameterization, regardless
of the optimization algorithm used.

5 MAIN RESULTS

5.1 SINC ACTIVATED FEEDFORWARD NETWORKS

In this section, we present our main result on sinc-activated neural networks for modeling ℓ2 su-
pervised regression problems. To clarify the statement of the theorem, we first provide a precise
definition of a loss valley that also constitutes a global minimum.

Definition 5.1. Let L2 : Rparam → R denote the ℓ2 loss function associated to a neural network as in
equation 4. Let Λ denote a collection of points in Rparam such that each θ ∈ Λ is a global minimum
of L2. We say Λ defines a global minimum valley if for each point θ ∈ Λ there exists an r > 0
such that Λ∩Br(θ) is homeomorphic to Rk for some 0 < k ≤ param. The dimension of the global
minimum valley is k. We say a point θ∗ in Rparam is an isolated global minimum of L2 if there exists
an r > 0 such that Br(θ

∗)\{θ∗} does not contain any global minima of L2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: The function on the left admits a global minimum valley of dimension 1 and the function
on the right exhibits two isolated global minima.

In Fig. 2 we give examples of two different functions that exhibit a global minimum valley and
isolated global minima.
Theorem 5.2. Let X = {(xi, yi)}ni=1 be a labelled dataset of n samples. Consider N (x; θ) to be a
shallow neural network with n neurons in its hidden layer. Define the ℓ2 loss function L2(θ) as:

L2(θ) :=
1

pn

n∑
i=1

(N (xi; θ)− yi)
2
, (5)

which is a mapping from the parameter space Rparam to R. Let GR(n) denote the number of distinct
global minimum valleys of L2 that intersect the ball BR(0) of radius R ≥ 1, centered at the origin.
The dependence on n reflects the number of neurons in the hidden layer of the network N .

If l neurons are added to the hidden layer of N , then the number of distinct global minimum valleys
in GR(n+ l) grows at least exponentially in l.

The proof of Thm. 5.2 can be found in App. A.1.1. Below, we provide an overview of the core ideas
of the proof.

Proof overview: For this overview assume the data samples (xi) all lie in the interval [0, 1] and
are uniformly distributed. So let us assume x1 = 1

n , x2 = 2
n , . . . , xn−1 = n−1

n , xn = 1.

Step 1: The starting point is to think of the labelled dataset X = {(xi, yi)}ni=1 as defining a
discrete signal f with samples (xi) and sample values (yi) = (f(xi)). We then follow the approach
of the NSW theorem equation 3, and centre a shifted sinc function with bandwidth n about each xi

having height yi.

The sum defined by summing the shifted sinc functions
n∑

i=1

yisinc(nx− xi) (6)

then perfectly memorizes the data. This follows because sinc(m) = 0 for any m ∈ Z\{0}. The next
step is to observe that it can be implemented by a shallow sinc activated neural network N (x; θ)
where θ is defined as follows: The weight W1 and bias b1 in the first hidden layer are defined by

W1 = [n, . . . , n]T and b1 = [−1, . . . ,−n]T (7)
and the weight W2 and bias b2 is taken to be

W2 = [y1, . . . , yn] and b2 = 0. (8)
Then observe that N (xi; θ) = yi showing that θ defined by equation 7, equation 8 is a global
minimum of the loss function L2 defined in equation 5.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Step 2: Suppose we add one extra neuron to the hidden layer of N . This then adds extra parameters
to θ which we denote as

W̃1 = [W1, a1]
T (9)

b̃1 = [b1, a2]
T (10)

W̃2 = [W2, a3] (11)

b̃2 = b. (12)

Denoting all these parameters by θ̃ we find

N (θ̃;x) =

n∑
i=1

yi sinc

(
nx− i

)
+ a3 sinc(a1x− a2) + b. (13)

If we choose a1 = n and a2 ∈ Z− {1, . . . , n}, a3 ∈ R and b = 0. Then we see that any parameters
θ∗ = (W̃1, b̃1, W̃2, b̃2) satisfying these constraints yields

N (θ;xi) = yi for 1 ≤ i ≤ n (14)

which implies these θ∗ parameterized by Z−{1, . . . , n}×R are all global minimum valleys for the
loss L2.

Step 3: The final step is to prove by induction that adding l neurons leads to an increase in distinct
global minimum valleys parameterized by (Z\{1, . . . , n})l ×Rl. Thus to count how the number of
distinct global minimum valleys within a ball BR(0) increase as l gets bigger we need to understand
how the set BR(0) ∩ (Z\{1, . . . , n})l grows as l gets bigger. For this we use a standard result that
says that the number of integer points in a ball of radius R ≥ 1, BR(0), about the origin in Rl grows
exponentially with l, see Lem. A.3 in App. A.1.1. This completes the basic idea of the proof. □

Thm. 5.2 also applies for deep sinc activated networks. The statement of the theorem in the deep
case can be found in Thm. A.9 in App. A.1.2.

Thm. 5.2 establishes that overparameterization results in an exponential increase in global minimum
valleys but it does not address whether these minima generalize well to points outside the training
set. The following theorem addresses this by showing that for datasets obtained by sampling a signal
f ∈ L2(R), many of the global minima given by Thm. 5.2 exhibit good generalization. The proof
can be found in App. A.1.1.
Theorem 5.3. Let f ∈ L2(R) be a continuous signal, and let ϵ > 0 be a fixed threshold. Consider
a dataset (xi, f(xi))

n
i=1 obtained by sampling f . Let N (θ;x) be a shallow feedforward network

with sinc activation and n neurons in its hidden layer. Define the ℓ2 loss function based on the
parameters θ of N as follows:

L2(θ) :=
1

2n

n∑
i=1

(N (θ;xi)− f(xi))
2
. (15)

If we add l > 0 neurons to the hidden layer of N , for sufficiently large l, there are an infinite number
of parameters θ lying in distinct global minimum valleys that satisfy the following bound:

|f(x)−N (θ∗;x)| < ϵ (16)

for any x ∈ [0, 1] \ {xi}ni=1.

5.2 RELU ACTIVATED FEEDFORWARD NETWORKS

In this section we present our main result for ReLU activated networks. Our key insight is that a
shallow ReLU network has the capacity to generate the triangle function with only 3 neurons in the
hidden layer.
Lemma 5.4. Let T denote the triangle function defined by T(x) = max(1− |x|, 0). Then

T(x) = ReLU(x+ 1) + ReLU(x− 1)− 2ReLU(x). (17)

Furthermore, there exists a shallow ReLU neural network N with 3 neurons and a parameter θ∗

such that N (x; θ∗) = T (x). More generally, there exists a neural network N with 3 neurons and a
parameter θ∗ such that N (x; θ∗) = T (ω(x− a)) for any ω > 0 and any a ∈ R.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Final train PSNR after convergence is plotted against the width of the hidden layer for
shallow sinc (left) and ReLU (right) networks, each trained with four different optimizers on a
curve fitting task. The results show that, for both network types, increasing the width of the hidden
layer consistently leads to higher train PSNR across all optimizers.

Using Lemma 5.4, we observe that a ReLU network can be interpreted as sampling with the trian-
gular function. This key insight forms the foundation for the following theorem.

Theorem 5.5. Let X = {(xi, yi)}ni=1 be a data set with xi ∈ Rk and yi ∈ Rm. Let N (x; θ) be a
shallow ReLU neural network with 3n neurons in the hidden layer. Let

L2(θ) :=
1

6n

3n∑
i=1

(N (xi; θ)− f(xi))
2 (18)

denote the ℓ2 loss function. Then if we add 3l neurons to the hidden layer of N , for l > 0, we have
that there is an increase in global minima parameterized by the set(

R− { n closed intervals }
)l

×
(
R− { n closed intervals }

)l

× Rml. (19)

In particular, we see that overparamterization leads to higher dimensional global minimum valleys
whose dimension grows at worst linearly in l i.e. the dimension grows as Ω(l).

The proof of Thm. 5.5 proceeds analogously to the proof of Thm. 5.2 with the difference being that
we centre a triangular function over each data point and then use Lem. 5.4. Details can be found in
App. A.1.3. Furthermore, the results of Thm. 5.5 extends to deep ReLU networks. Details can be
found in Thm. A.16 in App. A.1.4.

We also have a generalization theorem analogous to Thm. 5.3 for shallow ReLU feedforward net-
works. The reader can find the statement of this theorem and its proof in Thm. A.14 in App. A.1.3.

6 EXPERIMENTS

In this section, we aim to validate the results from Sec. 5.1 and 5.2. Thms. 5.2 and 5.5, along with
their deep counter parts in App. A.1.2 and A.1.4, demonstrate that overparameterization facilitates
the emergence of more global minima in the loss landscape, particularly near the origin of the
parameter space. This implies that overparameterization should make it easier for an optimizer to
find a global minimum.

To test our hypothesis, we conducted four common supervised ℓ2 regression experiments found in
the literature: curve fitting, image regression, super resolution, and 3D shape modeling. For each
task, we minimized the ℓ2 loss function L2 (see equation 5) using four distinct optimizers: SGD (a
standard first-order method), Adam (an adaptive gradient-based optimizer), OnePlusOne (a gradient-
free genetic algorithm), and L-BFGS (a second-order optimizer leveraging Hessian curvature). We

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Final test PSNR after convergence is plotted against the width of the hidden layer for
shallow sinc (left) and ReLU (right) networks, each trained with four different optimizers on a
curve fitting task. The results show that, for both network types, increasing the width of the hidden
layer consistently leads to higher test PSNR across all optimizers.

ran each experiment ten times, plotting the mean and standard deviation of the train PSNR after
convergence across varying model widths and depths. Further experimental details are provided
in appendix A.2.1. Consistently, we observed that overparameterization led to higher train PSNR
values, indicating that it facilitated finding global minima for the optimizers.

6.1 CURVE FITTING

We consider the function f(x) = sin(2πx) + sin(6πx) and use it to generate our dataset. Specif-
ically, we select xi as 50 equally spaced points over the interval [0, 1], with corresponding values
yi = f(xi). We then trained both shallow sinc and ReLU networks to regress the function f using
the L2 loss on a subset of 30 points out of the 50. As shown in Fig. 3, the PSNR increases as we
add more neurons to the hidden layer, consistently improving across all optimizers.

We then obtained the test PSNR by testing on all the 50 points. As shown in Fig. 4, the test PSNR
increases as we add more neurons to the hidden layer, consistently improving across all optimizers,
validating the insight from Thm. 5.3 and Thm. A.14 in App. A.1.3.

6.2 IMAGE REGRESSION

In this experiment, our goal was to regress an image from the Div2k dataset. Given pixel coordinates
x ∈ R2, the task was to use a network N to predict the corresponding RGB values c ∈ R3. Fol-
lowing the approach of Sitzmann et al. (2020), the dataset consisted of pixel coordinates paired with
their respective RGB values. We trained sinc and ReLU deep networks of varying depths, ranging
from 1 to 8 hidden layers, each containing 256 neurons, and employed the L2 loss, commonly used
in image regression tasks (Sitzmann et al., 2020; Saratchandran et al., 2023; Saragadam et al., 2023).
The results, shown in Fig. 5, demonstrate that increasing network depth consistently leads to higher
PSNR values. However, we observed diminishing returns in PSNR improvement beyond 4 hidden
layers, with the most significant gains occurring between 1 and 4 layers.

6.3 IMAGE SUPER RESOLUTION

In this experiment, we tackle an image super-resolution task. Following the methodology of Sara-
gadam et al. (2023), we performed 4× super-resolution on the Butterfly image from the DIV2K
dataset. The problem is framed as solving y = Ax, where the operator A applies 4× downsam-
pling. The goal is to recover x using a feedforward network, with the task learned via the ℓ2 loss
L2 as described in equation 5, similar to the approach in Saragadam et al. (2023). To enable testing
(see App. A.2.2), we sampled 70% of the total pixels in the image.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Final train PSNR after convergence is plotted against the number of hidden layers for
deep sinc (left) and ReLU (right) networks, each trained with four different optimizers on an image
regression task. The results show that, for both network types, increasing the depth of the network
consistently leads to higher train PSNR across all optimizers.

Figure 6: Final train PSNR after convergence is plotted against the number of hidden layers for deep
sinc (left) and ReLU (right) networks, each trained with four different optimizers on an image super
resolution task with training set consisting of 70% of the total pixels. The results show that, for both
network types, increasing the depth of the network consistently leads to higher train PSNR across
all optimizers.

We conducted the experiment using both sinc and ReLU-activated feedforward networks. The net-
works varied in depth, ranging from 1 to 8 hidden layers, each containing 256 neurons, and were
trained using the L2 loss. The training results, presented in Fig. 6, demonstrate that increasing the
network depth leads to higher PSNR values, although the improvements diminish beyond 4 hidden
layers.

6.4 3D SHAPE MODELLING

In this experiment we optimize a binary occupancy field, which represents a 3D shape as the decision
boundary of a neural network as in Wang et al. (2021); Gropp et al. (2020). We use the Thai
statue instance obtained from the Stanford 3D Scanning repository. We trained sinc and ReLU deep
networks of varying depths, each with 128 neurons, utilizing the loss L2 to regress the Thai statue.
The results, shown in Fig. 5, indicate that increasing the depth of the networks consistently leads to
higher PSNR values.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Final train PSNR after convergence is plotted against the number of hidden layers for
deep sinc (left) and ReLU (right) networks, each trained with four different optimizers on a binary
occupancy shape fitting task. The results show that, for both network types, increasing the depth of
the network consistently leads to higher train PSNR across all optimizers.

6.5 FURTHER EXPERIMENTS

Epochs needed for convergence: Results on the number of epochs needed for each optimizer to
converge as width and depth are added are carried out in App. 6.5.

Testing for image super resolution: Although our Thm. 5.3 and Thm. A.14 in App. A.1.3
focus on points outside the training set for one dimensional signals. We decided to empirically see
what happens when we consider testing for higher dimensional signals. The results for super image
resolution, following Sec. 6.3, are given in App. A.2.2.

Testing for binary occupancy: Results on testing for the binary occupancy experiment carried
out in Sec. 6.4 are given in App. A.2.2.

Neural Radiance Fields (NeRF): We also carried out experiments on Neural Radiance Fields
(Mildenhall et al., 2021). Results can be found in App. A.2.2.

7 LIMITATIONS

Our results in Theorems 5.3 and A.14 apply to signals in L2(R), as they are rooted in the Nyquist-
Shannon-Whittaker sampling theorem, which pertains to such signals. An interesting extension
would be to explore whether bounds outside the training data can be established for higher-
dimensional signals in L2(Rk) for k > 1. We believe this direction could be linked to the mul-
tidimensional sampling theorem by Petersen & Middleton (1962), potentially offering new insights
into the role of network depth and its impact on generalization. We aim to take this up in a future
project.

8 CONCLUSION

In this paper, we demonstrated that overparameterization, viewed through the lens of sampling the-
ory, provides valuable insights into the structure of the loss landscape for ℓ2 supervised regression
problems. Our theoretical findings reveal that both sinc and ReLU activated feedforward networks,
when overparameterized, significantly increase the number of global minima for the ℓ2 loss func-
tion, regardless of the optimizer used. Empirical validation with various optimizers reinforces these
results, highlighting the pivotal role of overparameterization. We hope these insights inspire new
approaches to understanding neural networks and the loss functions used to train them.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. Advances in Neural
Information Processing Systems, 32, 2019.

Fernando Chamizo. Lattice points in bodies of revolution. Acta Arithmetica, 85(3):265–277, 1998.

Zhang Chen, Zhong Li, Liangchen Song, Lele Chen, Jingyi Yu, Junsong Yuan, and Yi Xu. Neurbf: A
neural fields representation with adaptive radial basis functions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4182–4194, 2023.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

François Fricker. Einführung in die Gitterpunktlehre, volume 73. Springer-Verlag, 2013.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regu-
larization for learning shapes. arXiv preprint arXiv:2002.10099, 2020.

Wei Huang, Weitao Du, and Richard Yi Da Xu. On the neural tangent kernel of deep networks with
orthogonal initialization. arXiv preprint arXiv:2004.05867, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

RJ Martin. An introduction to shannon sampling and interpolation theory, with generalizations to
nonuniform sampling. GEC Journal of Technology, 14(1):19–26, 1997.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, 2021.

Harry Nyquist. Certain topics in telegraph transmission theory. Transactions of the American Insti-
tute of Electrical Engineers, 47(2):617–644, 1928.

Tim Olson. Applied Fourier Analysis. Springer, 2017.

Daniel P Petersen and David Middleton. Sampling and reconstruction of wave-number-limited
functions in n-dimensional euclidean spaces. Information and control, 5(4):279–323, 1962.

Simon JD Prince. Understanding deep learning. MIT press, 2023.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

Sameera Ramasinghe, Hemanth Saratchandran, Violetta Shevchenko, and Simon Lucey. On the
effectiveness of neural priors in modeling dynamical systems. arXiv preprint arXiv:2303.05728,
2023.

Mirco Ravanelli and Yoshua Bengio. Interpretable convolutional filters with sincnet. arXiv preprint
arXiv:1811.09725, 2018a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mirco Ravanelli and Yoshua Bengio. Speaker recognition from raw waveform with sincnet. In 2018
IEEE spoken language technology workshop (SLT), pp. 1021–1028. IEEE, 2018b.

Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraraghavan,
and Richard G Baraniuk. Wire: Wavelet implicit neural representations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18507–18516, 2023.

Hemanth Saratchandran, Shin-Fang Chng, Sameera Ramasinghe, Lachlan MacDonald, and Simon
Lucey. Curvature-aware training for coordinate networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 13328–13338, 2023.

Hemanth Saratchandran, Sameera Ramasinghe, Violetta Shevchenko, Alexander Long, and Simon
Lucey. A sampling theory perspective on activations for implicit neural representations. arXiv
preprint arXiv:2402.05427, 2024.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Elias M Stein and Rami Shakarchi. Real analysis: measure theory, integration, and Hilbert spaces.
Princeton University Press, 2009.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Peng-Shuai Wang, Yang Liu, Yu-Qi Yang, and Xin Tong. Spline positional encoding for learning 3d
implicit signed distance fields. arXiv preprint arXiv:2106.01553, 2021.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

E Whittaker. On the functions which are represented by expansions of the interpolation theory.
Proceedings of the Royal Society of Edinburgh, 35, 1915.

Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, and Zhangyang Wang. Sinnerf:
Training neural radiance fields on complex scenes from a single image. In European Conference
on Computer Vision, pp. 736–753. Springer, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 THEORETICAL RESULTS

In this section we give detailed proofs of the theorems from the main paper. For the sake of self
containment we outline the theoretical notation we will be using throught this section.

Theoretical Notation: We outline the main notation we will be using throughout this section. We
remind the reader that the function sinc is defined by sinc(x) = sin(πx)

πx for x ̸= 0 and sinc(0) = 0.
We will also use the triangular function which is defined by T(x) = max(1 − |x|, 0). We will
use the standard notation of R and Z to denote the real numbers and integers respectively. Closed
intervals will be defined by the notation [a, b] where a, b ∈ R with a < b, consisting of numbers
c ∈ R such that a ≤ c ≤ b. The notation (a, b) will denote an open interval of real numbers, where
a, b ∈ R with a < b, consisting of numbers c ∈ R such that a < c < b. Open balls about a point
z ∈ Rn will be denoted by BR(z) for any R > 0. We will say to topological spaces X and Y are
homeomorphic if there exists a continuous function f : X → Y that is bijective and has a continuous
inverse f−1 : Y → X . The space L2(R) denotes the Hilbert space of square integrable real values
functions on R with the Lebesgue measure, the inner product being defined by < f, g >:=

∫
R f · g

for f, g ∈ L2(R).

All the neural networks we consider will be feedforward, as defined in Prince (2023), and denoted
by N . The parameter space of N will be denoted by Rparam. The objective functions used to train
such networks will be the standard ℓ2 loss functions (Prince, 2023) for supervised learning tasks,
which given a dataset {(xi, yi)} and a feedforward network N (θ;x), where θ are the parameters of
the network, is defined by

L2(θ) =
1

2n

n∑
i=1

(N (θ;x)− yi)
2. (20)

An important observation that we will use through the paper is that if the following equations are
satisfied for a parameter θ

N (θ;xi) = yi for 1 ≤ i ≤ n (21)

then the parameter θ is necessarily a global minimum for L2. This follows from noting that by
equation 20, we must have that L2(θ) ≥ 0 for any θ ∈ Rparam.

A.1.1 RESULTS FOR SHALLOW SINC NETWORKS

In this section we would like to give the proof of Thms. 5.2 and 5.3. In order to do this we will start
with some propositions and lemmas.

Proposition A.1. Let X = {(xi, yi}ni=1 be a data set with xi ∈ Rk and the labels yi ∈ Rm. Let
N (x; θ) be a sinc activated shallow neural network with n neurons. Then there exists a parameter
θ∗ such that

N (xi; θ
∗) = yi for all 1 ≤ i ≤ n. (22)

In particular, θ∗ is a global minimum for the ℓ2 loss objective

L2(θ) :=
1

2n

n∑
i=1

(N (xi; θ)− yi)
2. (23)

Furthermore, we can write down an explicit expression for the parameter θ∗.

Proof. The main idea of the proof is that we can perform a reconstruction by centering suitable sinc
functions around the domain data xi with height given by the labels yi. Then one uses the insight
that such a construction can be done via a shallow neural network with a sinc activation.

To begin with we will start by assuming the data set is one-dimensional so that xi ∈ R and yi ∈ R.
Let us normalize the data points so that xi =

p̃i

qi
for pi, qi ∈ Z. Then put each each xi over a common

denominator q and write xi =
pi

q . Note that the fact we can do this is an assumption though one that
is satisfied in practise due to the finite precision of the computers. This normalization can also be

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

interpreted from the signal processing viewpoint as assuming the bandwidth of the discrete signal
defined by the data {xi, yi} is a multiple of q > 0.

We then define a parameter θ∗ for a sinc activated shallow neural network N , with n neurons in the
hidden layer, as follows: The weight W1 and bias b1 of the hidden layer will be

W1 = [q, . . . , q]T and b1 = [−p1, . . . ,−pn] (24)

and the weight W2 and bias b2 of the output layer will be

W2 = [y1, . . . , yn] and b2 = 0. (25)

If we input this parameter into N we obtain

N (x; θ∗) = y1sinc(qx− p1) + · · ·+ ynsinc(qx− pn). (26)

Using the fact that sinc(m) = 0 for any integer m ∈ Z− {0} we find that

N (xi; θ
∗) = yi for all 1 ≤ i ≤ n. (27)

This shows that θ∗ is an explicit global minimum for the loss function L2.

In the case of higher dimensional data satisfying xi ∈ Rk and yi ∈ R we proceed as follows. We
write the data as follows:

x1 = [x11, . . . , xk1]
T

...

xn = [x1n, . . . , xkn]
T .

As in the one dimensional case, we normalize each data coordinate over a common denominator so
that xij =

pij

q .

Then we define a parameter θ∗ for a shallow sinc activated neural network N as follows: The weight
W1 and bias b1 of the hidden layer will be:

W1 =

q · · · q
...

...
...

q · · · q

 and b1 =

−(p11+ · · · +pk1)
...

...
...

−(p1n+ · · · +pkn)

 (28)

Note that in this case W1 has dimensions n× k and b1 n× 1.

The weight W2 and bias b2 of the output layer will be

W2 = [y1, . . . , yn] and b2 = 0. (29)

Then given an arbitrary input z = [z1, . . . , zk]
T we have

N (z; θ∗) = y1sinc

(
qz1 − p11 + · · ·+ qzk − pk1

)
+ · · ·

+ ynsinc

(
qz1 − p1n + · · ·+ qzk − pkn

)
.

We then observe that using the fact that sinc(n) = 0 for all integers n ∈ Z− {0} we have

N (xi; θ
∗) = 0 for all 1 ≤ i ≤ n (30)

showing that the explicit parameter θ∗ is a global minimum of the loss function L2.

The final step is to consider the case when the labels are also high dimensional. In particular, assume
xi ∈ Rk and yi ∈ Rm. In this case we write yi = (y1i, . . . , ymi, for 1 ≤ i ≤ n, where We will also
use the same convention we used for the data points xi above.

In this case the weights and bias of the hidden layer will be the same as in equation 28. The weight
W2 and bias b2 for the output layer will be defined by

W2 =

 y11 · · · y1n
...

...
...

ym1 · · · ymn

 and b2 = [0, · · · , 0]T . (31)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For an arbitrary input z = [z1, . . . , zk]
T we have

N (z; θ∗) = [N1(z; θ
∗), . . . ,Nm(z; θ∗)]T (32)

where

Nj(z; θ
∗) = yj1sinc

(
qz1 − p11 + · · ·+ qzk − pk1

)
+ · · ·

+ yjnsinc

(
qz1 − p1n + · · ·+ qzk − pkn

)
for 1 ≤ j ≤ m.

It is clear from this that
N (xi; θ

∗) = yi for all 1 ≤ i ≤ n. (33)
This gives an explicit representation of θ∗ in this setting and shows that it is a global minimum for
the loss function L2.

The following proposition seeks to understand what happens if we add a single extra neuron to the
above neural network found in Prop. A.1.
Proposition A.2. Let X = {(xi, yi)}ni=1 be a data set with xi ∈ Rk and labels yi ∈ Rm. Let
N (x; θ) be a sinc activated shallow neural network with n neurons given by Prop. A.1. Let

L2(θ) :=
1

2n

n∑
i=1

(N (xi; θ)− yi)
2 (34)

denote the ℓ2 loss function.

Then adding 1 extra neuron to the hidden layer of N (x; θ) results in an increase in global minima
of L2 parameterized by the set Z×Z− {n points} ×Rm. Furthermore, we can write down explicit
expressions for each of these new global minima.

Proof. We start by assuming xi ∈ R and yi ∈ R. We assume our data is normalized so that xi =
pi

q

as in the proof of Prop. A.1.

The proof will proceed by building the extra global minima using the structure of θ∗ found in Prop.
A.1.

Since we have added one extra neuron to N the weight W1 in the hidden layer will have dimension
(n+1)× 1 and the bias b1 will have dimension (n+1)× 1. The weight W2 in the output layer will
have dimension 1× (n+ 1) and the bias b2 will have dimension 1× 1.

Let us define the weight W1 = [q, . . . , q, λ1]
T and bias b1 = [−p1, . . . ,−pn, η]

T where for now λ1

and η are parameters in R. Let the weight of the output layer be given by W2 = [y1, . . . , yn, λ2]
where λ2 ∈ R and the bias by b2 = 0. If we input these parameters into the neural network N we
obtain:

N (x; θ) = y1sinc(qx− p1) + · · ·+ ynsinc(qx− pn) + λ2sinc(λ1x− η).

We now want to show that for the right choices of λ1, λ2, η ∈ R we can obtain parameters θ∗ so
that N (xi; θ

∗) = yi. In order to see what parameters we can choose, write λ1 = qξ where ξ ∈ Z
then let η ∈ Z− {ξp1, . . . , ξp1} and let λ2 ∈ R.

Observe that for these parameters we have that

λ2sinc(qξxi − η) = 0 for 1 ≤ i ≤ n (35)

where we have used the fact that sinc(m) = 0 for any integer m ∈ Z− {0}. We thus see that if we
define θ∗ by W1 = [q, . . . , q, ξq]T , b1 = [p1, . . . , pn, η], W2 = [y1, . . . , yn, λ] and b2 = 0 where
ξ ∈ Z, η ∈ Z− {ξp1, . . . , ξpn} and λ ∈ R then for such a parameter we have that

N (xi; θ
∗) = yi for 1 ≤ i ≤ n. (36)

This proves the theorem for the setting of one dimensional data.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

In the case that xi ∈ Rk and yi ∈ R, we start by writing the data as follows:

x1 = [x11, . . . , xk1]
T

...

xn = [x1n, . . . , xkn]
T .

As in the one dimensional case, we write each data coordinate over a common denominator so that
xij =

pij

q .

We then write the weight W1 and bias b1 of the hidden layer as

W1 =


q · · · q
...

...
...

q · · · q
ξ1q · · · ξkq

 and b1 =


−(p11+ · · · +pk1)

...
...

...
−(p1n+ · · · +pkn)

−η

 (37)

where ξ1, . . . , ξk ∈ R and η ∈ R. Note that in this case W1 has dimensions (n + 1) × k and b1
(n + 1) × 1. We write the weight W2 and the bias b2 of the output layer as W2 = [y1, . . . , yn, λ]
and b2 = 0 where λ ∈ R.

If we insert these weights and biases into the neural network N , for any input point z =
[z1, . . . , zk]

T we obtain
N (z; θ) = y1sinc(qz1 − p11 + · · ·+ qzk − pk1) + · · ·

+ ynsinc(qz1 − p1n + · · ·+ qzk − pkn)

+ λsinc(ξ1qz1 + · · ·+ ξkqzk − η).

We then denote by θ∗ those parameters that satisfy ξ, . . . , ξk ∈ Z and η ∈ Z − {ξ1p11 + · · · +
ξkpk1, . . . , ξ1p1n + · · ·+ ξkpkn} and λ ∈ R and observe that

N (xi; θ
∗) = yi for 1 ≤ i ≤ n. (38)

This proves the theorem for the case xi ∈ Rk and yi ∈ R.

For the general case of data xi ∈ Rk and yi ∈ Rm with k, m > 1 we proceed similar to the above
case. The weights W1 and bias b1 of the hidden layer will be given by

W1 =


q · · · q
...

...
...

q · · · q
ξ1q · · · ξkq

 and b1 =


−(p11+ · · · +pk1)

...
...

...
−(p1n+ · · · +pkn)

−η

 (39)

and the weights W2 and bias b2 of the output layer will be given by

W2 =

 y11 · · · y1n λ1

...
...

...
...

ym1 · · · ymn λm

 and b2 = [0, · · · , 0]T . (40)

For an arbitrary input z = [z1, . . . , zk]
T we have

N (z; θ∗) = [N1(z; θ
∗), . . . ,Nm(z; θ∗)]T (41)

where
Nj(z; θ

∗) = yj1sinc(qz1 − p11 + · · ·+ qzk − pk1) + · · ·
+ yjnsinc(qz1 − p1n + · · ·+ qzk − pkn)

+ λjsinc(ξ1qz1 + · · ·+ ξkqzk − η)

for 1 ≤ j ≤ m. We then denote by θ∗ those parameters that satisfy ξ, . . . , ξk ∈ Z and η ∈
Z − {ξ1p11 + · · · + ξkpk1, . . . , ξ1p1n + · · · + ξkpkn}, λ1, . . . , λm ∈ R and observe that for such
parameters we have

N (xi; θ
∗) = yi for 1 ≤ i ≤ n. (42)

This shows that the extra global minima are parameterized by the set
Z× Z− {ξ1p11 + · · ·+ ξkpk1, . . . , ξ1p1n + · · ·+ ξkpkn} × Rm (43)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We will need the following lemma about how the integer points in Rn within a ball BR(0) about the
origin for R > 1 grows as the dimension n increases.
Lemma A.3. Let R ≥ 1 and let BR(0) denote the ball of radius R about the origin in Rn. Let
Λ(n) = Zn ∩ BR(0) denote the integer lattice points in BR(0) and |Λ(n)| denote its cardinality.
Then |Λ(n)| grows exponentially in n.

The proof of this lemma can be found in Chamizo (1998) and Fricker (2013).

Note that the above lemma also holds true if we remove a finite set of points in Zn.

We now have all the ingredients to give a proof of Thm. 5.2 from the main body of the paper.

Proof of Thm. 5.2. The proof uses the result of Prop. A.2 and Lem. A.3.

We saw from the proof of Prop. A.2 that if we add 1 neuron to N there are a number of new global
minimum valleys that are parameterized by the set Z×Z−{ n points }×Rm. Following that proof
we see that if we add l > 0 neurons to N we will get a collection of new global minimum valleys
parameterized by the set Zl × (Z− { n points })l × Rlm.

Observe that the connected components of Zl × (Z − { n points })l × Rlm are precisely in one to
one correspondence with the integer points in Zl × (Z − { n points })l. Therefore, we can prove
the theorem if we can show that BR(0) ∩

(
Zl × (Z − { n points })l

)
grows exponentially as l gets

bigger and bigger. This follows from Lem. A.3.

We now move on to give the proof of Thm. 5.3. This will be done by using some standard lemmas
from Fourier analysis.
Lemma A.4. Let f ∈ L2(R) be a band-limited signal with maximum frequency ωmax. Suppose we
sample f at the points f(nT) where 1

T ≥ 2ωmax. Let

FN (x) =

N∑
i=−N

f(nT) sinc

(
1

T
(x− nT)

)
. (44)

Then we have the bound

|f − FN | ≤ O
(

1√
N

)
(45)

The proof of this lemma can be found in Olson (2017).
Lemma A.5. The set of band-limited functions denoted B is a dense set of L2(R). This means given
any signal f ∈ L2(R) and any threshold ϵ > 0 we can find a band-limited function g ∈ B ⊆ L2(R)
such that

||f − g||L2(R) < ϵ. (46)
Lemma A.6. A band-limited function f ∈ B is necessarily analytic on the whole real line and thus
continuous on the whole real line.

Proof of Thm. 5.3. The proof of Thm. 5.3 proceeds as follows. We first use Lem. A.5 to find a
g ∈ B such that ||f − g||L2(R) <

ϵ
4 . By Lem. A.6 we have that g is necessarily continuous and by

assumption we have that f is continuous. Therefore, we can choose g so that

g(xi) = f(xi) for 1 ≤ i ≤ n. (47)

Then using the fact that L2-convergence implies pointwise convergence (Stein & Shakarchi, 2009),
we have that for any x ∈ [0, 1] it holds |f − g| < ϵ

4 .

The next step is to establish the theorem for the bandlimited function g. Denote the maximum
frequency present in g by ωmax. We then choose a collection of points {pi}i∈Z whose distance
between successive elements |pi+1 − pi| = T where 1

T ≥ 2ωmax and such that {xi} are contained
within {pi}. Fig. 8 gives a pictorial representation of how the points {xi} will look within {pi}.

We then consider the sum
N∑

i=−N

g(pi) sinc

(
1

T
(x− pi)

)
(48)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 8: The original data points {xi} are shown in red. The green points are the new equally
spaced points {pi} that contain {xi}.

and note that this sum is precisely the first 2N terms of the Nyquist-Shannon-Whittaker (NSW)
series.

Then observe that using the same technique as in the proof of Thm. 5.2, we can represent this sum
as a shallow sinc activated neural network N with 2N neurons in the hidden layer. That is, there
exists a parameter θ, given by the proof of Thm. 5.2, such that

N (θ;x) =

N∑
i=−N

g(pi) sinc

(
1

T
(x− pi)

)
. (49)

and hence
N (θ; pi) = g(pi). (50)

If we choose, N large and in particular larger than n we can then show that two properties of N
must hold. First that since {xi}ni=1 are contained within {pi} we must have that

N (θ;xi) = g(xi) = f(xi) (51)

as g = f on the data set by construction. Then applying Lem. A.4, we can find an N >> 1 very
large such that

|g(x)−N (θ;x)| < C√
N

<
ϵ

4
(52)

for all x ∈ [0, 1] and for some fixed C > 0.

Suppose we now add q neurons to the hidden layer of N . Then N takes the form

N (θ;x) =

N∑
i=−N

g(pi) sinc

(
1

T
(x− pi)

)
+

q∑
i=1

ci sinc(aix+ bi) (53)

where the ai, bi and ci ∈ R are the extra parameters coming from adding q neurons. Observe that
the points {pi} are all equally spaced of distance T . Hence we can write

xi = miT (54)

for some mi ∈ Z. Then in order for N to satisfy the labels f(xi) on the set {xi} we can choose
ai ∈ 1

T Z i.e. ai = ni

T for any ni ∈ Z and bi ∈ Z − {aim1, . . . , aimn} and ci ∈ R. Using the fact
that sinc(m) = 0 for m ∈ Z\{0} and letting θ∗ denote the parameters with ai, bi and ci satisfying
the above mentioned constraints that

N (θ∗;xi) = f(xi) (55)

implying that all these new parameters θ∗ are a global minimum for the loss function

L2(θ) =
1

2n

n∑
i=1

(N (θ;xi)− f(xi))
2
. (56)

We then find that with these new parameters θ∗ that

|f(x)−N(θ∗;x)| ≤ |f(x)− g(x)|+ |g(x)−N(θ∗;x)| (57)

for any x ∈ [0, 1]. We already know that |f(x) − g(x)| < ϵ
4 so in order to prove the theorem it

suffices to prove that
|g(x)−N(θ∗;x)| < ϵ

2
(58)

for any x ∈ [0, 1].

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

In order to do this we observe that we can write

|g(x)−N(θ∗;x)| ≤
∣∣∣∣g(x)− N∑

i=−N

g(pi) sinc

(
1

T
(x− pi)

)∣∣∣∣+ ∣∣∣∣ q∑
i=1

ci sinc(aix+ bi)

∣∣∣∣ (59)

where we remind that reader that ai ∈ 1
T Z, bi ∈ Z\{aim1, . . . , aimn} and ci ∈ R. We already

chose N large so that ∣∣∣∣g(x)− N∑
i=−N

g(pi) sinc

(
1

T
(x− pi)

)∣∣∣∣+ ∣∣∣∣ < ϵ

4
(60)

see equation 52. Therefore, we just need to bound the term∣∣∣∣ q∑
i=1

ci sinc(aix+ bi)

∣∣∣∣. (61)

If we can show that this is less than ϵ
4 we are done. To do this we observe that for any x ∈ R

| sinc(x)| ≤ 1. Therefore ∣∣∣∣ q∑
i=1

ci sinc(aix+ bi)

∣∣∣∣ ≤ q∑
i=1

|ci|. (62)

Write ci = λ for some λ ∈ R so that the sum becomes
q∑

i=1

|ci| = qλ. (63)

We then have that λ must satisfy the constraint

λ ∈
(
− ϵ

4q
,
ϵ

4q

)
. (64)

With λ satisfying this constraint we find that the parameters θ∗ such that ai ∈ 1
T Z and bi ∈

Z\{aim1, . . . , aimn} and ci = λ ∈
(
− ϵ

4q ,
ϵ
4q

)
must satisfy the bound

|f(x)−N (θ∗;x)| < ϵ. (65)

Furthermore, all these parameters θ∗ are global minima of the loss function

L2(θ) =
1

2n

n∑
i=1

(N (θ;xi)− f(xi))
2
. (66)

We thus see that these generalizable global minima are parameterized by the set 1
T Z×

(
− ϵ

4q ,
ϵ
4q

)
and correspond to distinct global minimum loss valleys with the different loss valleys parameterized
by 1

T Z.

We therefore see that we have added a total of N + q − n new neurons to the original N that had n
neurons in the hidden layer. This shows that as long as we take l ≥ N−n and then adding l neurons
to N gives the result of the theorem. This provides a quantitative bound on how large l needs to be
in order to get the result of the theorem.

A.1.2 RESULTS FOR DEEP SINC NETWORKS

In Sec. 5.1 we stated our main Thm. 5.2 which deals with how the global minima in the loss
landscape of the ℓ2 loss L2, see equation 5, changes as we add more neurons to the hidden layer of
our network. Another way of adding more parameters to a network is to add another hidden layer
i.e. add more depth. In this section we show that our Thm. 5.2 has a generalization to the case of
deep sinc activated networks.

We start with some propositions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proposition A.7. Let X = {(xi, yi)}ni=1 be a labelled data set. Let N (x; θ) be a sinc activated
shallow neural network with n neurons. Let

L2(θ) :=
1

2n

n∑
i=1

(N (xi; θ)− yi)
2 (67)

denote the ℓ2 loss objective function.

Then adding 1 extra hidden layer of n neurons to N (x; θ) results in an increase in global minimum
valleys of L2 parameterized by the set Zn(n−1) × Rn. Furthermore, we can write down explicit
expressions for each of these new global minima.

Proof. To begin with we assume the data is one dimensional i.e. xi ∈ R and yi ∈ R. Furthermore,
we assume that our data points are normalized so that xi =

pi

q for pi, q ∈ Z.

When we add an extra hidden layer with n neurons to the network N , we obtain a deep network
with 2 hidden layers. We will denote the weights and biases of each layer of this new network as
follows. The first hidden layer will have weights and biases denoted by (W1, b1), the second hidden
layer by (W2, b2) and the output layer by (W3, b3). The dimensions of these weights and biases will
be W1 and b1 will be n × 1, W2 will be an n × n matrix and b2 will be n × 1. Finally, W3 will be
1× n and b3 will be 1× 1.

The extra global minima that arise from adding one extra hidden layer will arise from the global
minimum found in Prop. A.1. Thus the weight W1 and bias b1 will be given by

W1 = [q, . . . , q]T and b1 = [−p1, . . . ,−pn]
T . (68)

For now we will write the weight W2 and bias b2 as

W2 =

w
2
11 · · · w2

1n
...

...
...

w2
n1 · · · w2

nn

 and b2 = [b21, . . . , b
2
n]

T (69)

and the weight W3 and bias b3 as

W3 = [w3
1, . . . , w

3
n] and b3 = b. (70)

With the weights and biases defined above denoted by θ the structure of the network takes the
following form

N (θ, x) = w3
1sinc(w

2
11sinc(qx− p1) + · · ·+ w2

1nsinc(qx− pn) + b21) (71)
+

...
+

w3
nsinc(w

2
n1sinc(qx− p1) + · · ·+ w2

nnsinc(qx− pn) + b2n) + b.

If we let b = 0, w3
i = yi for 1 ≤ i ≤ n, b2i = −w2

ii, and then allow w2
ii ∈ R and w2

ij = nij − b2j
for nij ∈ Z and for i ̸= j. We see that any parameter θ∗ that satisfies these constraints satisfies the
following

N (θ∗;xi) = yi for 1 ≤ i ≤ n (72)
which follows from that fact that sinc(m) = 0 for any m ∈ Z−{0} and sinc(0) = 1. It thus follows
that such parameters are global minima of the loss function L2.

We therefore see that the extra global minima that arise from adding one hidden layer with n neurons
can be parameterized by Rn × Zn(n−1) and hence are global minimum valleys.

The next step is to consider the case that the data xi ∈ Rk and yi ∈ R. We write the data as follows:

x1 = [x11, . . . , xk1]
T

...

xn = [x1n, . . . , xkn]
T .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

As in the one dimensional case, we write each data coordinate over a common denominator so that
xij =

pij

q .

Then we define a parameter θ∗ for a shallow sinc activated neural network N as follows: The weight
W1 and bias b1 of the hidden layer will be:

W1 =

q · · · q
...

...
...

q · · · q

 and b1 =

−(p11+ · · · +pk1)
...

...
...

−(p1n+ · · · +pkn)

 (73)

Note that in this case W1 has dimensions n×k and b1 n×1. The weight W2 and bias b2 of the second
hidden layer will be defined just in the same way as above in the case that the data was assumed one
dimensional and similarly for the weight W3 and bias b3 of the output layer. We therefore, see that
once again with such weights and biases N (θ∗;xi) = yi, which means such parameters are global
minima of the loss function L2 and these extra global minima are parameterized by Zn(n−1) × Rn

and hence are global minimum valleys.

Finally, for the case that xi ∈ Rk and yi ∈ Rm the proof follows the strategy of Prop. A.1.

In this case we write yi = (y1i, . . . , ymi), for 1 ≤ i ≤ n. We will also use the same convention we
used for the data points xi above.

In this case the weights and bias of the first hidden layer will be the same as in equation 73. The
weights W2 and bias b2 for the second hidden layer will be exactly the same as those found for the
case the data was assumed one dimensional. The weight W3 and bias b3 for the output layer will be
defined by

W2 =

 y11 · · · y1n
...

...
...

ym1 · · · ymn

 and b2 = [0, · · · , 0]T . (74)

For an arbitrary input z = [z1, . . . , zk]
T we have

N (z; θ∗) = [N1(z; θ
∗), . . . ,Nm(z; θ∗)]T (75)

where

Nj(z; θ
∗) = yj1sinc

(
qz1 − p11 + · · ·+ qzk − pk1

)
+ · · ·

+ yjnsinc

(
qz1 − p1n + · · ·+ qzk − pkn

)
for 1 ≤ j ≤ m.

It is clear from this that
N (xi; θ

∗) = yi for all 1 ≤ i ≤ n. (76)
This gives an explicit representation of θ∗ in this setting and shows that it is a global minimum for the
loss function L2. Furthermore, once again we have that the extra global minima are parameterized
by Rn × Zn(n−1) and are valleys.

Proposition A.8. Let X = {(xi, yi)}ni=1 be a data set with xi ∈ Rk and yi ∈ Rm. Let N (x; θ) be
a sinc activated shallow neural network with n neurons given by Prop. A.7. Let

L2(θ) :=
1

2n

n∑
i=1

(N (xi; θ)− yi)
2 (77)

denote the ℓ2 loss objective function.

Then adding l extra hidden layers with n neurons each to N (x; θ) results in an increase in global
minima of L2 parameterized by the set Zln(n−1) × Rln. Furthermore, we can write down explicit
expressions for each of these new global minima.

Proof. The proof of this proposition follows exactly the same approach of Prop. A.7. One simply
uses induction on the number of hidden layers with the base case being Prop. A.7.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

The following theorem is the analogue of Thm. 5.2 for the case of adding parameters by adding
depth.

Theorem A.9. Let X = {(xi, yi)}ni=1 be a data set with xi ∈ Rk and yi ∈ Rm. Let N (x; θ) be a
shallow neural network with n neurons. Let

L2(θ) :=
1

2n

n∑
i=1

(N (xi; θ)− yi)
2 (78)

denote the ℓ2 loss function. Let GR(n, 1) denote the number of distinct global minimum valleys of
L2 in the ball BR(0) of radius R ≥ 1 around the origin 0 where the dependence of n comes from
the n neurons of N and the 1 denotes that N has 1 hidden layer. Then if we add l hidden layers,
each with n neurons, to N we have that GR(n, l) grows at least exponentially in l.

Proof. From Prop. A.8 we see that when we add l hidden layers, each with n neurons, there are
extra global minima for the objective function L2 that are parameterized by Rnl × Zln(n−1). Each
of these global minimum valleys are parameterized by Zln(n−1). Thus we see that the number of
such valleys grows like the number of integer points in BR(0) ∩ Zln(n−1), which has exponential
growth in l by Lem. A.3.

A.1.3 RESULTS FOR SHALLOW RELU NETWORKS

In this section we want to give the proof of Thm. 5.5. In order to do so we will need to establish a
correspondance between ReLU shallow networks and the Triangle function T.

The starting point is Lem. 5.4 whose proof we now give.

Proof of Lem. 5.4. The proof of equation 17 in Lem. 5.4 follows immediately from the definition of
the ReLU function.

The parameter θ∗ is defined as follows. The weight W1 and bias b1 of the hidden layer are defined
by

W1 = [1, 1, 1]T and [1,−1, 0]T . (79)

The weight W2 and bias b2 of the output layer are defined by

W2 = [1, 1,−2] and b2 = 0. (80)

Using these parameters we see that

N (x; θ∗) = ReLU(x+ 1) + ReLU(x− 1)− 2ReLU(x) (81)
= T (x) by equation 17. (82)

For the case of T (ω(x− a)) we have

W1 = [ω, ω, ω]T and b1 = [1− ωa,−1− ωa,−ωa] (83)

and W2 and b2 the same as above.

Sampling with the triangle function leads to a piecewise linear interpolant as shown in the following
lemma.

Lemma A.10. Let f ∈ L2(R) and let T : R → R denote the triangular function defined by
T (x) = max{1 − |x|, 0}. Suppose we sample the signal f at the integer points, f(n) for n ∈ Z.
Then the series

s(x) =

∞∑
n=−∞

f(n)T (x− n) (84)

is a piecewise linear interpolation of the signal f .

Proof. The starting point is to observe that the triangular function is linear on the regions [−1, 0]
and [0, 1] and completely zero outside these regions. This means that in the summation equation 84

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

the only non-zero term will come from the nearest sampled points n1 ≤ x ≤ n2 where n1 = ⌊x⌋
and n2 = ⌈x⌉. Thus for n1 ≤ x ≤ n2 we see that the summation breaks down to

s(x) = f(n1)T (x− n1) + f(n2)T (x− n2). (85)

Applying the definition T (x) = max{1− |x|, 0} we find

T (x− n1) = 1− (x− n1) = n2 − x (86)
T (x− n2) = 1− (n2 − x) = x− n1. (87)

This then shows that for n1 ≤ x ≤ n2

s(x) = f(n1)(n2 − x) + f(n2)(x− n1) (88)

which is precisely the formula for the linear interpolation between f(n1) and f(n2). Hence we see
that equation 84 is a piecewise linear approximation to the signal f as required.

In the above Lem. A.10 we assumed the signal f was sampled on the integers. In general, in the
case that the signal is sampled on a discrete set of equally spaced points {xi} such that |xi−xj | = d
we get an equivalent lemma by using the scaled triangular function given by Td(x) = T (1dx). By
taking the sampling points {xi} closer together one obtains a better linear approximation of f .

Lem. 5.4 and A.10 give another way to see that ReLU networks perform piecewise linear interpo-
lation.

Before we can prove the main Thm. 5.5 from Sec. 5.2 we will state and prove some propositions.

Proposition A.11. Let X = {(xi, yi)}ni=1 be a data set with xi ∈ Rk and yi ∈ Rm. Let N (x; θ) be
a ReLU activated shallow neural network with 3n neurons. Then there exists a parameter θ∗ such
that

N (xi; θ
∗) = yi for all 1 ≤ i ≤ n. (89)

In particular, θ∗ is a global minimum for the ℓ2 loss objective

L2(θ) :=
1

6n

3n∑
i=1

(N (xi; θ)− yi)
2. (90)

Furthermore, we can write down an explicit expression for the parameter θ∗.

Proof. The proof of this theorem follows the sampling strategy undertaken in the proof of Prop. A.1
with the use of Lem. A.10.

To begin with we assume xi ∈ R and yi ∈ R. Choose ϵ1, . . . , ϵn > 0 so that

T (
1

ϵi
(xj − xi) = 0 for all i ̸= j. (91)

We then define the parameter θ∗ as follows. The weight W1 and bias b1 of the hidden layer will be

W1 =

[
1

ϵ1
,
1

ϵ1
,
1

ϵ1
,
1

ϵ2
,
1

ϵ2
,
1

ϵ2
, . . . ,

1

ϵn
,
1

ϵn
,
1

ϵn

]T
(92)

b1 =

[
−x1

ϵ1
+ 1,

−x1

ϵ1
− 1,

−x1

ϵ1
, . . . ,

−xn

ϵn
+ 1,

−xn

ϵn
− 1,

−xn

ϵn

]T
. (93)

The output layer will have weight W2 and bias b2 given by

W2 =

[
y1, y1,−2y1, y2, y2,−2y2, . . . , yn, yn,−2yn

]
(94)

b2 = 0. (95)

We then find that

N (x; θ∗) =

n∑
i=1

yiT

(
1

ϵi
(x− xi)

)
(96)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

which implies that
N (xi; θ

∗) = yi (97)
by the choice of numbers ϵ1, . . . , ϵn and the definition of the triangular function T .

The general case of data {(xi, yi)}ni=1 with xi ∈ Rk and yi ∈ Rm follows the exact same strategy
as we did in the proof for Prop. A.1.

Proposition A.12. Let X = {(xi, f(xi))}ni=1 be a data set with xi ∈ Rk and yi ∈ Rm. Let N (x; θ)
be a ReLU activated shallow neural network with 3n neurons given by the above theorem. Let

L2(θ) :=
1

6n

3n∑
i=1

(N (xi; θ)− yi)
2 (98)

denote the ℓ2 loss objective function.

Then adding 3 extra neurons to the hidden layer of N (x; θ) results in an increase in global minima
valleys of L2 parameterized by the set(

R− { n closed intervals }
)
×

(
R− { n closed intervals }

)
× Rm. (99)

Proof. The poof of this follows the approach taken in Prop. A.11. In Prop. A.11, we found a
parameter θ∗ that was a global minimum when our network had 3n neurons. We will build the new
global minima from the representation of θ∗ found in Prop. A.11. We will start with the simpler
case of one dimensional data. So assume that xi ∈ R and the labels yi ∈ R.

Let us represent the weight W1 and bias b1 of the hidden layer by

W1 =

[
1

ϵ1
,
1

ϵ1
,
1

ϵ1
, . . . ,

1

ϵn
,
1

ϵn
,
1

ϵn
, a, a, a

]T
(100)

b1 =

[
−x1

ϵ1
+ 1,

−x1

ϵ1
− 1,

−x1

ϵ1
, . . . ,

−xn

ϵn
+ 1,

−xn

ϵn
− 1,

−xn

ϵn
,−aλ+ 1, aλ− 1, aλ

]T
(101)

where a, λ ∈ R. We represent the weight W2 and bias b2 of the output layer by

W2 =

[
y1, y1,−2y1, . . . , yn, yn,−2yn, c, c,−2c

]
(102)

b2 = 0 (103)

for c ∈ R. We then see that for such parameters we have that

N (x; θ) =

n∑
i=1

yiT

(
1

ϵi
(x− xi)

)
+ cT (a(x− λ)). (104)

We then observe that N (x; θ) will fit the training data provided the term

cT(a(xi − λ)) = 0 for 1 ≤ i ≤ n. (105)

Mathematically this will happen provided λ lies outside the closed intervals [xi − ϵi, xi + ϵi] for all
1 ≤ i ≤ n and

|a| > max{|λ− (xi + ϵ)|, |λ− (xi − ϵ)|} for all 1 ≤ i ≤ n. (106)

This constraint can be encoded by allowing

λ ∈ R−
n⋃

i=1

[xi − ϵi, xi + ϵi] (107)

a ∈ R−
n⋃

i=1

[
− (λ− (x1 − ϵi)), λ− (x1 − ϵi)

]
(108)

c ∈ R. (109)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Letting θ∗ be determined by weights and biases satisfying the above constraint, we see that

N (θ∗;xi) = yi for 1 ≤ i ≤ n (110)

hence with such parameters we see that

L2(θ
∗) = 0 (111)

showing that the extra parameters θ∗ are all global minima.

From what we showed above we can see these extra global minima are parameterized by the set(
R−

n⋃
i=1

[xi − ϵi, xi + ϵi]

)
×
(
R−

n⋃
i=1

[
− (λ− (x1 − ϵi)), λ− (x1 − ϵi)

])
× R (112)

The general case of data xi ∈ Rk with labels yi ∈ Rm uses the above together with the exact same
approach we took for Prop. A.2.

We are now in a position to prove Thm. 5.5.

Proof of Thm. 5.5. The proof of this theorem proceeds by inducting over l. The base case is given
by Prop. A.12. Assuming the statement is true for l − 1 for l > 0 we can run through the proof of
Prop. A.12 and see that by adding another 3 neurons we get extra global minima parameterized by
the set(

R−
n⋃

i=1

[xi − ϵi, xi + ϵi]

)
×
(
R−

n⋃
i=1

[
− (λ− (x1 − ϵi)), λ− (x1 − ϵi)

])
× Rm. (113)

Combined with the induction step this yields the statement of the theorem.

Observe that as we add 3l neurons the dimension of the global minimum valley given by the above
scales in dimension by l showing that overparameterization leads to higher dimensional global min-
imum loss valleys that scale at least linearly in l.

In the case of shallow ReLU networks we have an analogue of Thm. 5.3. In order to derive such
a theorem we start with the following simple lemma from linear interpolation Stein & Shakarchi
(2009).

Lemma A.13. Let f ∈ L2(R) then for any given ϵ > 0, there exists a function g ∈ L(R) such that
g is a continuous piecewise linear function and such that ||f − g||L2(R) < ϵ.

Theorem A.14. Let f ∈ L2(R) be a continuous signal, and let ϵ > 0 be a fixed threshold. Consider
a dataset (xi, f(xi))

n
i=1 obtained by sampling f . Let N (θ;x) be a shallow feedforward network

with ReLU activation and 3n neurons in its hidden layer. Define the ℓ2 loss function based on the
parameters θ of N as follows:

L2(θ) :=
1

6n

3n∑
i=1

(N (θ;xi)− f(xi))
2
. (114)

If we add l > 0 neurons to the hidden layer of N , for sufficiently large l, there are an infinite number
of parameters θ lying in a global minimum valley that satisfy the following bound:

|f(x)−N (θ∗;x)| < ϵ (115)

for any x ∈ [0, 1] \ {xi}ni=1.

Proof. The proof of Thm. A.14 proceeds in a similar way to the proof of Thm. 5.3 with one key
difference. We will use the triangle function as the sampling kernel. We first use Lem. A.13 to find
a g ∈ L2(R) such that ||f − g||L2(R) < ϵ

4 and such that g is a conintuous piecewise linear curve.
Therefore, we can choose g so that

g(xi) = f(xi) for 1 ≤ i ≤ n. (116)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 9: Left: The original function in blue is sampled at the black points with shifted triangle
functions at the centre of each sampled point. Right: The reconstruction on taking the sum of the
shifted triangular functions produces a continuous piecwise linear approximation to the original
function.

Then using the fact that L2-convergence implies pointwise convergence (Stein & Shakarchi, 2009),
we have that for any x ∈ [0, 1] it holds |f − g| < ϵ

4 .

The next step is to establish the theorem for the function g. Denote the maximum frequency present
in g by ωmax. We then choose a collection of points {pi}i∈Z whose distance between successive
elements |pi+1 − pi| = T where 1

T ≥ 2ωmax and such that {xi} are contained within {pi}. Fig. 8
gives a pictorial representation of how the points {xi} will look within {pi}.

The next step is to use Lem. A.10 which implies that sampling with the triangle function T is the
same as performing a piecewise linear interpolation that is continuous if the signal being interpolated
is continuous. This means, we can find a collection of points {pi}i∈Z that contains {xi} and some
ϵi > 0 and λi and write

g(x) =

∞∑
i=−∞

λi T(
1

ϵi
(x− pi)). (117)

Fig. 9 gives a schematic viewpoint of how g is constructed from shifted triangle functions.

In particular if we just look at the points {pi} that lie in a small neighbourhood of [0, 1], we have
that there is an N > 0 such that

|g(x)−
N∑

i=−N

λi T(
1

ϵi
(x− pi))| <

ϵ

4
(118)

for any x ∈ [0, 1] and since g(xi) = f(xi) we have that the associated λi will be f(xi). Furthermore
we have that the sum

N∑
i=−N

λi T(
1

ϵi
(x− pi)) (119)

can be represented as a shallow ReLU network N (θ;x) with 6N neurons in its hidden layer. This
follows by using Lem. 5.4. In particular, this implies that

N (θ;xi) = f(xi) (120)

so that θ defines a global minimum of the loss function L2.

Suppose we now add 3q > 0 neurons to the hidden layer of N . Then we can write N with the new
parameters from adding these neurons as

N∑
i=−N

λi T(
1

ϵi
(x− pi)) +

q∑
i=1

ai T(
1

bi
(x− ci)). (121)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

The key observation to make now is that as long as ci is outside the closed interval [0, 1] and bi is
such that the triangle centred at ci with sides determined by 1

bi
and height ai namely ai T(bi(x−ci))

is zero for any point x ∈ [0, 1]. We then see that any new parameters arising from adding q neurons
to the hidden layer and satisfying these constraints will still satisfy

N (θ∗;xi) = f(xi) for 1 ≤ i ≤ n (122)
and thus the parameters θ∗ are global minima for the loss L2.

We then see that

|f(x)−N (θ∗;x)| ≤ |f(x)− g(x)|+ |g(x)−N (θ∗;x)| ≤ ϵ

4
+ |g(x)−N (θ∗;x)| (123)

for any x ∈ [0, 1]. The final step is to estimate the quantity |g(x) −N (θ∗;x)|. We can rewrite this
as follows

|g(x)−N (θ∗;x)| ≤ |g(x)−
N∑

i=−N

λi T(
1

ϵi
(x− pi))|+ |

q∑
i=1

ai T(
1

bi
(x− ci))|. (124)

Observe that we already made it so that

|g(x)−
N∑

i=−N

λi T(
1

ϵi
(x− pi))| <

ϵ

4
. (125)

So we only need to estimate the absolute value of the sum
∑q

i=1 ai T(
1
bi
(x− ci)). Since |T(1

bi
(x−

ci))| ≤ 1 we have that

|
q∑

i=1

ai T(
1

bi
(x− ci))| ≤

q∑
i=1

|ai|. (126)

If we write each ai = η where η ∈ (− ϵ
4q ,

ϵ
4q) then

q∑
i=1

|ai| <
ϵ

4
. (127)

We thus see that we need the new parameters ai, bi and ci to satisfy the constraints ai ∈ (− ϵ
4q ,

ϵ
4q),

bi ∈ R\{closed interval} and ci ∈ R\[0, 1] and with these constraints the parameters θ∗ form a
global minimum valley and satisfy the bound

|f(x)−N (θ∗;x)| < ϵ (128)
for any x ∈ [0, 1].

We therefore see that we have added a total of N + 3q − 3n new neurons to the original N that had
3n neurons in the hidden layer. This shows that as long as we take l ≥ N−3n then adding l neurons
to N gives the result of the theorem. This provides a quantitative bound on how large l needs to be
in order to get the result of the theorem.

A.1.4 RESULTS FOR DEEP RELU NETWORKS

Thm. 5.5 applies overparameterization by increasing the width of the hidden layer of a shallow
neural network. In this section we state and prove results for the case of increasing the depth by
adding more hidden layers.
Proposition A.15. Let X = {(xi, f(xi))}ni=1 be a data set with xi ∈ Rk and yi ∈ Rm. Let N (x; θ)
be a ReLU activated shallow neural network with 3n neurons given by the above theorem. Let

L2(θ) :=
1

6n

3n∑
i=1

(N (xi; θ)− f(xi))
2 (129)

denote the ℓ2 loss objective function.

Then adding 1 extra hidden layer of 3n neurons to N (x; θ) results in an increase in global minima
of L2 parameterized by the set

Rn ×
(
R− (−1, 1)

)n(n−1)
(130)

Furthermore, we can write down explicit expressions for each of these new global minima.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Proof. The proof of this proposition will be structured similar to Prop. A.12 with the main idea
being that the extra neurons added through the hidden layer can be chosen in such a way that the
network still perfectly fits the training data.

Start by assuming the data is one dimensional so that xi ∈ R and yi ∈ R and choose ϵ1, . . . , ϵn > 0
so that

T (
1

ϵi
(xj − xi) = 0 for all i ̸= j. (131)

We will then build the weights of the extra hidden layer using the weights and biases found in Prop.
A.11. Namely, we let

W1 =

[
1

ϵ1
,
1

ϵ1
,
1

ϵ1
,
1

ϵ2
,
1

ϵ2
,
1

ϵ2
, . . . ,

1

ϵn
,
1

ϵn
,
1

ϵn

]T
(132)

b1 =

[
−x1

ϵ1
+ 1,

−x1

ϵ1
− 1,

−x1

ϵ1
, . . . ,

−xn

ϵn
+ 1,

−xn

ϵn
− 1,

−xn

ϵn

]T
. (133)

Note that W1 has shape 3n× 1 and b1 has shape 3n× 1. Let W2 and b2 be the weights and bias of
the second hidden layer respectively, and let us notate them as follows

W2 =

 w2
1,1 · · · w2

1,3n
...

...
...

w2
3n,1 · · · w2

3n,3n

 and b2 = [b21, . . . , b
2
3n]

T (134)

and the weight W3 and bias b3 as
W3 = [w3

1, . . . , w
3
3n] and b3 = b. (135)

We can then write the network out as

N (θ, x) = w3
1ReLU

(
w2

1,1ReLU(
1

ϵ1
(x− x1) + 1) + w2

1,2ReLU(
1

ϵ1
(x− x1) + 1)− 2w2

1,3ReLU(
1

ϵ1
(x− x1))

+ · · ·+ w2
1,3n−2ReLU(

1

ϵ1
(x− x1) + 1) + w2

1,3n−1ReLU(
1

ϵ1
(x− x1) + 1)

− 2w2
1,3nReLU(

1

ϵ1
(x− x1))

)
+

...
+

w3
nReLU

(
w2

3n,1ReLU(
1

ϵ1
(x− x1) + 1) + w2

3n,2ReLU(
1

ϵ1
(x− x1) + 1)− 2w2

3n,3ReLU(
1

ϵ1
(x− x1))

+ · · ·+ w2
3n,3n−2ReLU(

1

ϵ1
(x− x1) + 1) + w2

3n,3n−1ReLU(
1

ϵ1
(x− x1) + 1)

− 2w2
3n,3nReLU(

1

ϵ1
(x− x1))

)
+ b

If we let b = 0, w3
1 = y1, w3

2 = y1, w3
3 = −2y1.. . . , w3n−2 = yn, w3

3n−1 = yn, w3n = −2yn.
Then let w2

i,i ∈ R and impose the constraint |w2
ij − w2

ii| ≥ 1 for all j ̸= i. Then observe that any
parameter θ∗ satisfying these weight and bias constraints for each layer forced the neural network
to satisfy

N (xi; θ
∗) = yi for 1 ≤ i ≤ n. (136)

For each i ̸= j if we write w2
ij = rij + w2

ii for rij ∈ R. Then the constraint |w2
ij − w2

ii| ≥ 1 can
be expressed as |rij | ≥ 1. Thus we see that the global minima obtained by adding one extra hidden
layer can be parameterized by

Rn ×
(
R− (−1, 1)

)n(n−1)
. (137)

The general case where the data is high dimensional so that xi ∈ Rk and yi ∈ Rm follows the exact
same proof strategy from Thm. A.9.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

We can now state and prove the deep analogue of Thm. 5.5 for ReLU networks.
Theorem A.16. Let X = {(xi, yi)}ni=1 be a data set with xi ∈ Rk and yi ∈ Rm. Let N (x; θ) be a
ReLU activated shallow neural network with 3n neurons. Let

L2(θ) :=
1

6n

3n∑
i=1

(N (xi; θ)− f(xi))
2 (138)

denote the ℓ2 loss objective function.

Then adding l > 0 extra hidden layers of 3n neurons to N (x; θ) results in an increase in global
minima of L2 parameterized by the set

Rln ×
(
R− (−1, 1)

)ln(n−1)
. (139)

Thus we see that overparameterizing by adding more hidden layers leads to higher dimensional
global minimum loss valleys whose dimension grow at worst as Ω(l).

Proof. The proof of this theorem uses induction on l. The base case of l = 1 being given by Prop.
A.15. The inductive step is then carried out by assuming the theorem is true for l − 1 for l > 1 and
then proceeding with the exact same lines of proof as in Prop. A.15 to obtain that the extra global
minima are parameterized by

Rn ×
(
R− (−1, 1)

)n(n−1)
. (140)

Combining this with the induction step leads to the proof of the theorem.

A.2 EXPERIMENTS

A.2.1 EXPERIMENTAL SETUP

In this section we discuss the experimental hyperparameters we used for each of the experiments.
For each of the four experiments we used the optimizers SGD, Adam, OnePlusOne and L-BFGS.

SGD: For this optimizer we used the standard PyTorch implementation with a learning rate of
1e-3 for all experiments. We found we obtained similar results with learning rates of the form 1e-2
and 1e-4 (and lower) but that 1e-3 was the best and seemed to be the commonly used learning rate
for SGD in the literature. We observed that with different learning rates overparameterization still
led to better train PNSRs and test PSNRs.

Adam: For this optimizer we used the standard PyTorch implementation with a learning rate of
1e-4 for all experiments which is what the literature used. We found we obtained similar results with
learning rates of the form 1e-2 and 1e-3 (and lower) but that 1e-4 was the best. We observed that
with different learning rates overparameterization still led to better train PNSRs and test PSNRs.

OnePlusOne: This optimizer operates through an iterative process involving “parents” and “off-
spring.” The algorithm starts with a single solution, referred to as the parent. At each iteration, a new
solution, the offspring, is generated by introducing a random mutation to the parent. This mutation
typically follows a Gaussian distribution. The offspring is then evaluated based on the objective
function. If the offspring achieves a better result than the parent, it replaces the parent; otherwise,
the parent remains unchanged. This process continues until convergence or a stopping criterion is
met, gradually improving the solution with each iteration. We implemented this optimizer based on
the facebook research code available at https://facebookresearch.github.io/nevergrad/. The hyperpa-
rameter that needs to be fixed is the number offspring the optimizer sends out to compare against the
parent. We found that anywhere between 10 to 30 offspring did the best and thus fixed 20 offspring
as our hyperparameter. For each hyperparameter we noticed the trend that oveparameterization
yielded better train and test PSNRs.

L-BFGS: For this optimizer we used the standard PyTorch implementation with a learning rate
of 1e-3 for all experiments. We found we obtained similar results with learning rates of the form
1e-2 and 1e-4 (and lower) but that 1e-3 was the best. We observed that with different learning
rates overparameterization still led to better train PNSRs and test PSNRs. We also noticed that
the optimizer struggled for the larger experiments image super resolution and the binary occupancy
field. This was also found in the literature in work of Saratchandran et al. (2023).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 10: Number of iterations needed to converge for each optimizer as width increases for sinc
(left) and ReLU networks (right) on a curve fitting task.

Sinc networks: Our sinc networks all used a sinc activation in each layer following the literature
(Ramasinghe et al., 2023; Saratchandran et al., 2024).

ReLU Networks: ReLU networks exhibit spectral bias (Rahaman et al., 2019). To overcome such
a phenomenon positional embedding layers are often added to such a network (Tancik et al., 2020;
Sitzmann et al., 2020; Saragadam et al., 2023). We followed the approach of those references and
added a positional embedding layer to our ReLU network, which is a non-trainable layer that embeds
the data into a higher dimensional space. It is well known this helps ReLU networks overcome
spectral bias (Tancik et al., 2020). This also allowed us to consider a high dimensional problem
as now the data embeds into a high dimensional space before it goes into trainable layers of the
network.

Curve fitting: In the case of the curve fitting experiment, Sec. 6.1, we found that training for 200
epochs led to convergence. We trained all optimizers with a full batch of the data set.

Image regression: In the case of image regression, Sec. 6.2, we found that training for 5000
epochs led to convergence. We trained the optimizers SGD, Adam, and L-BFGS with a batch size
of 256.

Super image resolution: For this experiment, Sec. 6.3, we found that training for 5000 epochs
led to convergence. We trained the optimizers SGD, Adam, and L-BFGS with a batch size of 256.

3D shape modelling: For this experiment, Sec. 6.3, we found that training for 1000 epochs led
to convergence. We trained the optimizers SGD, Adam, and L-BFGS with a batch size of 128
following Saragadam et al. (2023).

A.2.2 FURTHER EXPERIMENTS

Iterations for curve fitting: Fig. 11 shows the number of epochs each optimizer needed for
convergence. As can be seen by that figure, as we add more width the number of epochs needed
for each optimizer to converge went down suggesting it was easier for the optimizers to find global
minima with more depth, though we did notice the gains went down as we added hidden layers past
depth 4.

Iterations for curve fitting: Fig. 10 shows the number of iterations each optimizer needed for
convergence. As can be seen by that figure, as we add more width the number of iterations needed
for each optimizer to converge went down suggesting it was easier for the optimizers to find global
minima with more width.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 11: Number of epochs needed to converge for each optimizer as number of hidden layers
increases for a deep sinc (left) and ReLU networks (right) on an image regression task.

Figure 12: Final SSIM after convergence is plotted against the number of hidden layers for deep
sinc (left) and ReLU (right) networks, each trained with four different optimizers on an image super
resolution task. The results show that, for both network types, increasing the depth of the network
consistently leads to higher test PSNR across all optimizers.

Iterations for image regression:

Testing for image super resolution: We computed the Structural Similarity Index Measure
(SSIM) (Wang et al., 2004) after convergence to assess testing quality for the super image reso-
lution task from Sec. 6.3. As shown in Fig. 12, increasing depth also enhanced the SSIM, but again,
the gains plateaued after 4 hidden layers.

Testing for Binary Occupancy fields: We computed the Intersection Over Union (IOU) measure
(Saragadam et al., 2023) for the binary occupancy experiment carried out in Sec. 6.4. Results can
be seen in Fig. 13 shows the results showing that as more depth is added the IOU increases for all
optimizers.

Neural Radiance Fields (NeRF) has recently gained attention as a powerful technique for model-
ing 3D scenes from multi-view 2D images using an MLP. NeRF operates by estimating the radiance
field of a 3D scene given 3D coordinates x ∈ R3 and viewing directions. The radiance field maps
each input 3D point to its corresponding volume density σ ∈ R and directional emitted color c ∈ R3.

Following the approach in the literature (Mildenhall et al., 2021; Xu et al., 2022; Chen et al., 2023),
we trained NeRF models with both sinc and ReLU activations using the ℓ2 loss L2 defined in equa-
tion 5. In this experiment, the network depth was fixed at 8 layers, consistent with prior work, while

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 13: Final IOU after convergence is plotted against the number of hidden layers for deep sinc
(left) and ReLU (right) networks, each trained with four different optimizers on a binary occupancy
task. The results show that, for both network types, increasing the depth of the network consistently
leads to higher test PSNR across all optimizers.

Figure 14: Final train (left) and test (right) PSNR after convergence for NeRF is plotted against the
width of an 8 layer sinc and ReLU network, trained with Adam. The results show increasing the
depth of the network consistently led to higher train PSNR and test PSNR.

we varied the width of each layer, testing sizes of 32, 64, 128, 256, and 356 neurons. During initial
trials, we encountered difficulties training NeRF with SGD, OnePlusOne, and L-BFGS optimizers.
After consulting the literature, we found that NeRF models are predominantly trained using Adam,
and as Saratchandran et al. (2023) showed, training with L-BFGS is challenging due to issues with
stochasticity.

Consequently, we employed Adam as the sole optimizer for this experiment. The training was
conducted on the LLFF dataset from Mildenhall et al. (2021), which consists of eight instances,
with three unseen views reserved for testing (Mildenhall et al., 2021). We calculated the PSNR
by averaging across all eight training instances. For testing, we averaged the PSNR of each test
view across the eight instances and then averaged over the three test views. As shown in Fig. 14,
overparameterization consistently led to higher PSNR values in both the sinc and ReLU cases.

32

	Introduction
	Notation
	Related Work
	Overview of Results
	Main Results
	Sinc activated feedforward networks
	ReLU activated feedforward networks

	Experiments
	Curve fitting
	Image regression
	Image super resolution
	3D shape modelling
	Further experiments

	Limitations
	Conclusion
	Appendix
	Theoretical Results
	Results for shallow sinc networks
	Results for deep sinc networks
	Results for shallow ReLU networks
	Results for deep ReLU networks

	Experiments
	Experimental setup
	Further experiments

