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ABSTRACT

Sparsity has become popular in machine learning, because it can save computational
resources, facilitate interpretations, and prevent overfitting. In this paper, we
discuss sparsity in the framework of neural networks. In particular, we formulate
a new notion of sparsity that concerns the networks’ layers and, therefore, aligns
particularly well with the current trend toward deep networks. We call this notion
layer sparsity. We then introduce corresponding regularization and refitting schemes
that can complement standard deep-learning pipelines to generate more compact
and accurate networks.

1 INTRODUCTION

The number of layers and the number of nodes in each layer are arguably among the most fundamental
parameters of neural networks. But specifying these parameters can be challenging: deep and wide
networks, that is, networks with many layers and nodes, can describe data in astounding detail, but
they are also prone to overfitting and require large memory, CPU, energy, and so forth. The resource
requirements can be particularly problematic for real-time applications or applications on fitness
trackers and other wearables, whose popularity has surged in recent years. A promising approach to
meet these challenges is to fit networks sizes adaptively, that is, to allow for many layers and nodes in
principle, but to ensure that the final network is “simple” in that it has a small number of connections,
nodes, or layers (Changpinyo et al., 2017; Han et al., 2016; Kim et al., 2016; Liu et al., 2015; Wen
et al., 2016).

Popular ways to fit such simple and compact networks include successively augmenting small
networks (Ash, 1989; Bello, 1992), pruning large networks (Simonyan & Zisserman, 2015), or
explicit sparsity-inducing regularization of the weight matrices, which we focus on here. An example
is the `1-norm, which can reduce the number of connections. Another example is the `1-norm
grouped over the rows of the weight matrices, which can reduce the number of nodes. It has been
shown that such regularizers can indeed produce networks that are both accurate and yet have a small
number of nodes and connections either in the first layer (Feng & Simon, 2017) or overall (Alvarez &
Salzmann, 2016; Liu et al., 2015; Scardapane et al., 2017). Such sparsity-inducing regularizers also
have a long-standing tradition and thorough theoretical underpinning in statistics (Hastie et al., 2015).

But while sparsity on the level of connections and nodes has been studied in some detail, sparsity
on the level of layers is much less understood. This lack of understanding contrasts the current
trend to deep network architectures, which is supported by state-of-the-art performances of deep
networks (LeCun et al., 2015; Schmidhuber, 2015), recent approximation theory for ReLU acti-
vation networks (Liang & Srikant, 2016; Telgarsky, 2016; Yarotsky, 2017), and recent statistical
theory (Golowich et al., 2017; Kohler & Langer, 2019; Taheri et al., 2020). Hence, a better under-
standing of sparsity on the level of layers seems to be in order.

Therefore, we discuss in this paper sparsity with a special emphasis on the networks’ layers. Our
key observation is that for typical activation functions such as ReLU, a layer can be removed if all
its parameter values are non-negative. We leverage this observation in the development of a new
regularizer that specifically targets sparsity on the level of layers, and we show that this regularizer
can lead to more compact and more accurate networks.
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Our three main contributions are:

1. We introduce a new notion of sparsity that we call layer sparsity.
2. We introduce a corresponding regularizer that can reduce network sizes.
3. We introduce an additional refitting step that can further improve prediction accuracies.

In Section 2, we specify our framework, discuss different notions of sparsity, and introduce our
refitting scheme. In Section 3, we establish a numerical proof of concept. In Section 4, we conclude
with a discussion.

2 SPARSITY IN NEURAL NETWORKS

We first state our framework, then discuss different notions of sparsity, and finally introduce a refitting
scheme.

2.1 MATHEMATICAL FRAMEWORK

To fix ideas, we first consider fully-connected neural networks that model data according to

yi = f1
[
W 1f2

[
...f l[W lxi]

]]
+ ui , (1)

where i ∈ {1, . . . , n} indexes the n different samples, yi ∈ R is the output, xi ∈ Rd is the
corresponding input with d the input dimension, l is the number of layers, W j ∈ Rpj×pj+1 for j ∈
{1, . . . , l} are the weight matrices with p1 = 1 and pl+1 = d, f j : Rpj → Rpj for j ∈ {1, . . . , l}
are the activation functions, and ui ∈ R is the random noise. Extensions beyond fully-connected
networks are straightforward—see Section 2.5.

We summarize the parameters in W := (W 1, . . . ,W l) ∈ V := {V = (V 1, . . . , V l) : V j ∈
Rpj×pj+1}, and we write for ease of notation

fV [xi] := f1
[
V 1f2

[
...f l[V lxi]

]]
(2)

for V ∈ V .

Neural networks are usually fitted based on regularized estimators in Lagrange

Ŵ ∈ argmin
V ∈V

{
DataFit[y1, . . . , yn,x1, . . . ,xn] + h[V ]

}
(3)

or constraint form
Ŵ ∈ argmin

V ∈V
h[V ]≤1

{
DataFit[y1, . . . , yn,x1, . . . ,xn]

}
, (4)

where DataFit : Rn × Rn×d is a data-fitting function such as least-squares
∑n

i=1(yi − fV [xi])
2,

and h : V → [0,∞) is a regularizer such as the elementwise `1-norm
∑

j,k,l |(V j)kl|. We are
particularly interested in regularizers that induce sparsity.

2.2 STANDARD NOTIONS OF SPARSITY

We first state two regularizers that are known in deep learning and the corresponding notions of
sparsity.

Connection sparsity Consider the vanilla `1-regularizer

hC[V ] :=

l∑
j=1

(rC)j |||V j |||1 :=

l∑
j=1

(rC)j

pj∑
v=1

pj+1∑
w=1

|(V j)vw| ,

where rC ∈ [0,∞)l is a vector of tuning parameters. This regularizer is the deep learning equivalent
of the lasso regularizer in linear regression (Tibshirani, 1996) and has received considerable attention

2



Under review as a conference paper at ICLR 2021

no sparsity

input

output

connection sparsity

input

output

node sparsity

input

output

layer sparsity

input

output

combined sparsity

input

output

Figure 1: feedforward neural networks with different types of sparsity

recently (Barron & Klusowski, 2018; 2019; Kim et al., 2016). The regularizer acts on each individual
connection, pruning a full network (first network from the left in Figure 1) to a more sparsely
connected network (second network in Figure 1). We, therefore, propose to speak of connection
sparsity.

Node sparsity Consider a grouped version of the above regularizer

hN[V ] :=

l∑
j=1

(rN)j |||V j |||2,1 :=

l∑
j=1

(rN)j

pj∑
v=1

√√√√pj+1∑
w=1

|(V j)vw|2 ,

where rN ∈ [0,∞)l is again a vector of tuning parameters. This regularizer is the deep learning
equivalent of the group lasso regularizer in linear regression (Bakin, 1999) and has received some
attention recently (Alvarez & Salzmann, 2016; Feng & Simon, 2017; Scardapane et al., 2017). The
regularizer acts on all connections that go into a node simultaneously, rendering entire nodes inactive
(third network in Figure 1). We, therefore, propose to speak of node sparsity.

2.3 LAYER SPARSITY

We now complement the two existing regularizers and notions of sparsity with a new, third notion.

Layer sparsity Consider the regularizer

hL[V ] :=

l−1∑
j=1

(rL)j |||V j |||2,+ :=

l−1∑
j=1

(rL)j

√√√√ pj∑
v=1

pj+1∑
w=1

(
neg[(V j)vw]

)2
, (5)

where rL ∈ [0,∞)l−1 is a vector of tuning parameters, and neg[a] := min{a, 0} is the negative part
of a real value a ∈ R. This regularizers does not have an equivalent in linear regression, and it is also
new in deep learning.

We argue that the regularizer can give rise to a new type of sparsity. The regularizer can be disentan-
gled along the layers according to

hL[V ] =

l−1∑
j=1

(rL)jh
L,j [V j ]

with

hL,j [V j ] :=

√√√√ pj∑
v=1

pj+1∑
w=1

(
neg[(V j)vw]

)2
for j ∈ {1, . . . , l − 1} .
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We then focus on an individual inner layer, that is, a layer that corresponds to an index j ∈ {2, . . . , l−
1}. To fix ideas, we consider the popular ReLU activation (Glorot et al., 2011; Hahnloser, 1998;
Hahnloser et al., 2000; Salinas & Abbott, 1996); in other words, we consider (f j)q[t] := fReLU[t] :=
max{t, 0} for all j ∈ {2, . . . , l}, q ∈ {1, . . . , pj}, and t ∈ R (the activation of the output layer can
be arbitrary). It is now easy to show that the regularizer hL indeed induces sparsity on the level of
layers.

Theorem 1 (Layer Sparsity). Consider j ∈ {2, . . . , l − 1}, and define a merged weight matrix as
V j−1,j := V j−1V j ∈ Rpj−1×pj+1 . It holds that

hL,j [V j ] = 0 ⇒ f j−1[V j−1f j [V jz]
]
= f j−1[V j−1,jz

]
for all z ∈ [0,∞)pj+1 .

Proof of Theorem 1. If hL,j [V j ] = 0, then (V j)qm ≥ 0 for all q ∈ {1, . . . , pj}, m ∈ {1, . . . , pj+1}.
Hence, it holds for all q ∈ {1, . . . , pj} that (V jz)q ≥ 0 and, therefore, that f j [V jz] = V jz. The
theorem follows then by the fact that V j−1,j = V j−1V j .

A key property of the ReLU function is positive homogeneity. That positive homogeneity can allow
for moving weights between layers had been observed in Barron & Klusowski (2018); here, we use
the positive homogeneity to merge layers. The idea is as follows: hL,j [V j ] = 0 means in view of the
stated theorem that we can redefine the network of depth l as a network of depth l − 1 by removing
the function f j , replacing the weights V j−1 by V j−1,j , and then removing the jth layer altogether.

Theorem 1 can be applied sequentially to neighboring layers; hence, the regularization can merge
not only one but many layers into one. In conclusion, our new regularizer hL acts on all nodes and
connections of each layer simultaneously, rendering entire layers inactive (fourth network in Figure 1).
We, therefore, propose to speak of layer sparsity.

The concept of layer sparsity and Theorem 1 in particular do not hinge on the exact choice of the
regularizer in (5): one can take any function hL that can be disentangled along the layers as described
and that ensures the fact that hL,j [V j ] = 0 implies mink,l(V

j)kl ≥ 0.

We illustrate layer sparsity with two examples.

Example 1 (Identity Activation). We first highlight the meaning of layer sparsity in a simplistic
setting that does not rely on Theorem 1. We consider identity activation, that is, (f j)q[t] = t for all
j ∈ {2, . . . , l}, q ∈ {1, . . . , pj}, and t ∈ R. The networks in (2) can then be written as

fV [xi] = f1[V 1 · · ·V lxi] .

In other words, the initial l-layer network can be compressed into a one-layer network with activation
function f1 and parameter matrix V 1 · · ·V l ∈ R1×d. This setting with identity activation is, of
course, purely academic, but it motivates an important question: can parts of networks be compressed
similarly in the case of ReLU?

Theorem 1 gives an answer to this question: if hL,j [V j ] = 0, then the jth and (j − 1)th layers
can be combined. In the extreme case hL,2[V 2] = · · · = hL,l[V l] = 0 and non-negative input, the
network can be condensed into a one-layer network just as in the linear case. In this sense, one can
understand our layer regularizer is as a measure for the networks’ “distance to linearity.” We detail
this further in the following example.

Example 2 (ReLU Activation). We now illustrate how layer sparsity compresses and, therefore,
simplifies networks in the case of ReLU activation. We fix an initial network fN parameterized
by N ∈ V . We identify the active layers of the network by

S ≡ S[N ] :=
{
j ∈ {2, . . . , l − 1} : hL,j [N j ] 6= 0

}
∪ {1, l} . (6)

Thus, S and {1, . . . , l} \ S contain the indexes of the relevant and irrelevant layers, respectively. (We
always consider the input and output layers as active.) The level of sparsity, that is, the number of
active layers, is s := |S| ≤ l.

Observe first that the theorem’s restriction to z’s that have non-negative elements makes sense: by
the definition of fReLU, the outputs of every ReLU layer are non-negative. We now denote the indexes
in S in an orderly fashion: j1, . . . , js ∈ S such that j1 < · · · < js = l. We then define scaled
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versions of the corresponding merged matrices: if ji−1 ∈ S or ji ∈ {1, l}, we do the “trivial merge”
M ji := N ji ∈ Rpji

×pji+1 ; otherwise, we do the “non-trivial merge”

M ji := N ji−1+1 · · ·N ji ∈ Rpji−1+1×pji+1 .

In other words, we merge all irrelevant layers between the ji−1th and jith layers into the jith layer.

We can then compress the data-generating model in (1) into

yi = f j1
[
M j1f j2

[
...f js [M jsxi]

]]
+ ui

with M := (M j1 , . . . ,M js) ∈ VS := {V = (V 1, . . . , V s) : V i ∈ Rpji−1+1×pji+1}. Formulated
differently, we can condense the original network according to

fN [xi] = fM [xi] = f j1
[
M j1f j2

[
...f js [M jsxi]

]]
,

that is, we can formulate the initial ReLU activation network with l layers as a new ReLU activation
network with s layers.

The new network is still a ReLU activation network but has a smaller number of layers if s < l and,
consequently, a smaller number of parameters in total: the total number of parameters in the initial
network is

∑l
j=1(pj × pj+1), while the total number of parameters in the transformed network is

only
∑s

i=1(pji−1+1 × pji+1).

Our concept for regularizing layers is substantially different from existing ones: our layer-wise
regularizer induces weights to be non-negative, whereas existing layer-wise regularizers induce
weights to be zero (Wen et al., 2016, Section 3.3). The two main advantages of our approach are that
it (i) does not require shortcuts to avoid trivial networks and (ii) does not implicitly enforce connection
or node sparsity. We thus argue that our layer sparsity is a much more natural and appropriate way to
capture and regularize network depths.

Layer sparsity more closely relates to ResNets (He et al., 2016). The recent popularity of ResNets
is motivated by two observations: 1. Solvers seem to struggle with finding good minima of deep
networks; even training accuracies can deteriorate when increasing the number of layers. 2. Allowing
for linear mappings that short-circuit parts of the network seem to help solvers in finding better
minima. From our viewpoint here, one can argue that ResNets use these linear mappings to regulate
network depths adaptively and, therefore, are related to layer sparsity. But importantly, ResNets are
even more complex than the networks they are based on, while our notion simplifies networks.

Since, as one can verify again readily, all three regularizers are convex, any combination of them is
also convex. Such combinations can be used to obtain networks that are sparse in two or all three
aspects (last network in Figure 1). In this sense, the different notions of sparsity are not competing
but rather complementing each other.

2.4 REFITTING

Sparse networks can be used directly, but they can also be a basis for further optimization: one can
adjust the network architecture according to the non-zero pattern of the sparse network and then
re-estimate the parameters of this smaller network. Such strategies are well-known in statistics and
machine learning under the name refitting (Lederer, 2013; Chzhen et al., 2019). The theoretical
underpinning of these strategies is the insight that regularization creates a bias that—in certain
cases—can be alleviated by a subsequent “unbiasing” step. In deep learning, refitting has been
studied recently under the name lottery-ticket hypothesis (Frankle & Carbin, 2019).

We now formulate a version of refitting for layer sparsity. We stay in the framework of Example 2 to
keep the notation light.

Example 3 (ReLU Activation Cont.). Consider the model in (1) with the specifications of Example 2,
and consider a corresponding layer-sparse estimator Ŵ of the parameters such as (3) with h = hL.
In line with (6), we denote the set of the active layers by

S = S[Ŵ ] =
{
j ∈ {1, . . . , l − 1} : hL,j [Ŵ j ] 6= 0

}
∪ {1, l}
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and the corresponding parameter space of the condensed network by VS ≡ VS [Ŵ ] = {V =
(V 1, . . . , V s) : V i ∈ Rpji−1+1×pji+1}, where s := |S|. The least-squares refitted estimator for the
parameters in the condensed network is then

ŴS ∈ argmin
V ∈VS

{ n∑
i=1

(
yi − fV [xi]

)2}
. (7)

Hence, the estimator Ŵ complemented with least-squares refitting yields the network

f
ŴS

[xi] = f j1
[
Ŵ j1
S f j2

[
...f js [Ŵ js

S xi]
]]

. (8)

This strategy corresponds to the “one-shot approach” in Frankle & Carbin (2019); one could extend it
along the lines of their iterative approach, but the numerical results indicate that this is not necessary.
Also, in contrast to the results in Frankle & Carbin (2019), our results indicate that keeping the
initialization is not necessary either.

2.5 EXTENSIONS BEYOND FULLY-CONNECTED NETWORKS

We have illustrated our ideas with feedforward networks that have fully connected layers, but the
principles of layer sparsity apply much more generally. Consider a fixed hidden layer with index
j ∈ {2, . . . , l − 1}. In the fully-connected networks (2), this layer corresponds to a function
z 7→ f j [V jz] with weights V j ∈ Rpj×pj+1 . We now generalize these functions to

z 7→ f j

[
m∑

k=1

V j,kz + bj

]
with weights V j := (V j,1, . . . , V j,m) ∈Mj,1 × · · · ×Mj,m and bias bj ∈ Bj , and with arbitrary
nonempty subsetsMj,1 × · · · ×Mj,m ⊂ Rpj×pj+1 and Bj ⊂ Rpj . The corresponding layer-sparse
regularizer is then

hL,j [V j ] :=

√√√√ pj∑
v=1

pj+1∑
w=1

m∑
k=1

(
neg[(V j,k)vw]

)2
+

pj∑
u=1

(
neg[(bj)u]

)2
.

We can confirm immediately that this regularizer has the same effect as its analog in the fully-
connected case. Indeed, under the assumptions of Theorem 1, it holds that

hL,j [V j ] = 0

⇒ f j−1

[
V j−1f j

[
m∑

k=1

V j,kz + bj

]]
= f j−1[V j−1,jz + bj−1,j ] for all z ∈ [0,∞)pj+1 ,

where V j−1,j :=
∑m

k=1 V
j−1V j,k ∈ Rpj−1×pj+1 and bj−1,j := V j−1bj ∈ Rpj−1 . In other words,

if the value of the regularizer is zero, the jth layer can be merged into the (j − 1)th layer as before.

These observations highlight the fact that layer sparsity applies very generally: it only requires the
properties of ReLU-type activations and the linearities that exist within most types of layers. As a
concrete application, layer sparsity can compress networks that have convolutional layers, where
m specifies the number of feature maps andMj,m the non-zero patterns of the filters.

3 EMPIRICAL STUDY

We now confirm in a brief empirical study the fact that layer regularization can 1. improve prediction
accuracies and 2. reduce the number of active layers.

3.1 ARTIFICIAL DATA

We start with artificial data.
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d = 2, n = 100
l− 1 = 10 l− 1 = 25

sW = 0.1 sW = 0.3 sW = 0.9 sW = 0.1 sW = 0.3
Method m̂se ŝ m̂se ŝ m̂se ŝ m̂se ŝ m̂se ŝ
LS 1.123 (1.396) 10 (0) 1.112 (1.448) 10 (0) 1.060 (1.349) 10 (0) 0.989 (1.263) 25 (0) 0.988 (1.260) 25 (0)
SLS 0.018 (0.023) 10 (0) 0.035 (0.616) 10 (0) 0.203 (0.830) 10 (0) 0.142 (1.020) 25 (0) 0.147 (0.985) 25 (0)

ILS 0.006 (0.011) 1 (2) 0.008 (0.023) 3 (4) 0.907 (1.272) 9 (10) 0.003 (0.024) 2 (4) 0.050 (1.012) 7 (9)
FLS 0.007 (0.013) 1 (1) 0.008 (0.128) 2 (4) 0.364 (1.137) 8 (9) 0.009 (0.985) 2 (5) 0.021 (1.120) 4 (13)

Table 1: encouraging layer sparsity can reduce the prediction error and the model complexity

3.1.1 SIMULATION FRAMEWORK

We generate data according to the model in (2). The most outside activation function f1 is the identity
function, and the coordinates of all other activation functions f2, . . . ,f l are ReLU functions. The
input vectors x1, . . . ,xn are jointly independent and standard normally distributed in d dimensions;
the noise random variables u1, . . . , un are independent of the input, jointly independent, and standard
normally distributed in one dimension. For a given sparsity level sW ∈ [0, 1], a vector s ∈
{0, 1}l−1 with independent Bernoulli distributed entries that have success parameter sW is generated.
The entries of the parameter matrix W 1 are sampled independently from the uniform distribution
on (−2, 2), and the entries of the parameter matrices W 2, . . . ,W l are sampled independently from
the uniform distribution on (0, 2) if sj = 0 and on (−2, 2) otherwise. Hence, the parameter sW
controls the level of the layer sparsity: the smaller sW , the higher the network’s layer sparsity.

In concrete numbers, the input dimension is d = 2, the network widths are p2 = · · · = pl = 5,
the number of hidden layers is l − 1 ∈ {10, 25}, and the sparsity level is s ∈ {0.1, 0.3, 0.9}. Our
settings and values represent, of course, only a very small part of possible networks in practice, but
given the generality of our concepts, any attempt of an exhaustive simulation study must fail, and the
simulations at least allow us (i) to corroborate our theoretical insights and (ii) to indicate that our
concepts can be very useful in practice.

Datasets of 150 samples are generated; n = 100 of the samples are assigned to training and the rest
to testing. The relevant measures for an estimate Ŵ of the network’s parameters are the empirical
mean squared error

m̂se ≡ m̂se[Ŵ ] :=
1

|T |
∑

(y,x)∈T

(
y − f

Ŵ
[x]
)2

,

over the test set T with cardinality |T | = 50 and the level of sparsity among the hidden layers

ŝ ≡ ŝ[Ŵ ] :=
∣∣{j ∈ {1, . . . , l − 1} : hL,j [Ŵ j ] 6= 0

}∣∣ .

Reported are the medians (and third quantiles in paranthesis) over 30 simulation runs for each setting.

3.1.2 METHODS

Our first method (SLS) is a standard least-squares complemented with the layer regularizer (5) in
Lagrange form Ŵ . The baseline for this estimator is vanilla least-squares (LS). Since our estimator—
in contrast to least-squares—allows for merging layers, we can also complement it with our refitting
scheme of Section 2.4 (FLS). The baseline for our refitted estimator is the least-squares estimator that
“knows” the relevant layers beforehand (ILS), that is, a least-squares on the relevant layers VS [W ]
with W the true parameter—see Example 2. The latter estimator cannot be used in practice, but it
can serve as a benchmark here in the simulations.

The objective functions are optimized by using mini-batch gradient descent with batch size 10,
learning rate 10−2, and number of epochs 200 (for l = 10, sW = 0.1, 0.3), 300 (for l = 10,
sW = 0.9), 400 (for l = 25, sW = 0.1), and 500 (otherwise). The tuning parameters (rL)j are 0.2
(for l = 10, sW = 0.1), 0.12 (for l = 10, sW = 0.3), 0.07 (for l = 10, sW = 0.9), and 0.05 (for
l = 25).
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3.1.3 RESULTS

The numerical results show that our layer-regularized version SLS can improve on the prediction
accuracy of the standard least-squares LS considerably (m̂se-columns of the first and second rows
in Table 1). The results also show that the refitting in FLS can improve the prediction accuracy
further, and that refitted estimator can rival the infeasible ILS in terms of prediction (m̂se-columns
of the third and fourth rows). The results finally show that the layer regularization can detect the
correct number of layers (̂s-columns of the third and fourth rows). In summary, our layer-regularized
estimator outmatches the standard least-squares, and the refitted version of our estimator rivals
the infeasible least-squares that knows which are the relevant layers beforehand—both in terms of
prediction accuracy and sparsity. Hence, layer regularization can condense networks effectively.

The results also reveal that the prediction accuracies of our estimators increase with sW decreasing
(m̂se-columns across different sW). This trend is expected: the higher the layer sparsity, the more
layer-regularization can condense the networks. This behavior is confirmed in the sparsities (̂s-
columns across different sW). In other words, the layer regularization is adaptive to the true layer
sparsity.

The tuning parameters (rL)j have been calibrated very roughly by hand. We expect that a more
careful calibration of rL based on cross-validation, for example, accentuates the positive effects of
layer sparsity even further. But since our goal in this section is a general proof of concept for layer
sparsity rather than the optimization of a specific deep learning pipeline, we do not pursue this further
here.

The tuning parameters of the descent algorithm, such as the batch size, number of epochs, learning
rate, and so forth, have also been calibrated very roughly by hand. An observation is the fact that all
methods can sometimes provide accurate prediction if the number of epochs is extremely large, but
our layer-regularized methods SLS and FLS generally lead to accurate prediction after much less
epochs than their unregularized counterpart LS. This observation indicates that layer regularization
also impacts the algorithmic aspects of deep learning beneficially.

3.2 REAL DATA

We now turn to real data. Specifically, we consider subsamples of MNIST (LeCun et al., 1998),
FashionMNIST (Xiao et al., 2017), and KMNIST (Clanuwat et al., 2018).

3.2.1 SETUP

For each of the three data examples, the training data consists of n = 10 000 images sampled
uniformly at random; the test data also consists of 10 000 images. The network consists of l = 10 fully-
connected layers; the hidden layers have width p2 = · · · = pl = 50. While fully-connected networks
have been outperformed image classification by other, more intricate pipelines, they still provide
decent results (even on the subsetted data) and are perfectly suited for illustrating our ideas.

The baseline is cross-entropy (CE), which is LS but with the least-squares loss replaced by the
cross-entropy loss. Our layer-sparse method is refitted cross-entropy (FCE), which is the pendant of
FLS, that is, cross-entropy with additional layer-sparse regularization and refitting.

The objective functions are optimized by using mini-batch gradient descent with batch size 100,
learning rate 10−3, and number of epochs 100. In line with theoretical considerations (Lederer &
Vogt, 2020), the tuning parameters are set to (rL)j = ln[p]/

√
n with p the total number of network

parameters. The performances are measured in terms of average classification accuracies (denoted
those by ÂC) and level of sparsity among the hidden layers ŝ.

3.2.2 RESULTS

The results are summarized in Table 2. Similarly as before, we find that layer-sparse regularization
can reduce the number of layers while retaining the classification accuracy or even improving it.

To highlight the features of layer sparsity more, we also look at the training losses and testing
accuracies over the course of the optimization; Figure 2 contains these data averaged over 20 draws
of the MNIST data. We find that both the initial estimator as well as the refitted version eventually

8
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MNIST FashionMNIST KMNIST

Method ÂC ŝ ÂC ŝ ÂC ŝ

CE 0.92 10 0.84 10 0.76 10
FCE 0.92 3 0.84 3 0.78 3

Table 2: layer sparsity can reduce model complexity without sacrificing classification accuracy

achieve the same accuracies, but the refitted version can be trained much faster. These observations are
commensurate with the observations in (Frankle & Carbin, 2019), who study refitting of connection-
sparse networks.

In contrast to (Frankle & Carbin, 2019), however, we could not find any benefits of keeping the
initializations of the original network: both the training and the accuracy curves remain virtually the
same. This observation might indicate that layer sparsity might be particularly robust under refitting.
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Figure 2: compressed layer-sparse networks can be trained faster than the original networks

4 DISCUSSION

We have shown that layer sparsity can compress layered networks effectively both in theory (Section 2)
and practice (Section 3).

We have also shown that refitting with respect to layer sparsity can facilitate the optimization of the
network. Refitting has a long-standing tradition in high-dimension statistics—see Lederer (2013),
for example—but has been applied in deep learning only recently (Frankle & Carbin, 2019). Our
research supports the usefulness of refitting in general, and it demonstrates that layer sparsity is
particularly suited for refitting.

Related concepts such as ResNets add complexity to the network descriptions. This makes these
networks not only unfit for refitting but also very hard to analyze statistically. Layer sparsity,
in contrast, simplify network architectures and seem amenable to statistical analyses via recent
techniques for regularized deep learning (Taheri et al., 2020). Statistical theory for layer sparsity,
therefore, seems a feasible goal for further research.

In summary, layer sparsity complements other notions of sparsity that concern individual connections
or nodes. All of these concepts can help to fit networks that are efficient in terms of memory and
computations and easy to interpret.
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A TUNING-PARAMETER CALIBRATION

Regularizing layer sparsity involves the tuning parameters (rL)j . Such tuning parameters are integral
to regularization in deep learning and in machine learning more generally. In sparse linear regression,
there has been some progress for developing theories for calibrating these parameters (Bien et al.,
2019; Chichignoud et al., 2016; Taheri et al., 2016). In sparse deep learning, however, theories for
tuning-parameter calibration are missing completely.

In the real-data analysis of Section 3.2, we have used a theory-inspired tuning parameter. The goal of
this section here is to give more insights into the calibration of the tuning parameter. Figure 3 shows
the accuracies of refitting with different number of hidden layers and locates the tuning parameters
selected by our approach and by cross-validation, that is, training/validation based on 10 000 training
and validation samples. The results are averaged over 20 draws of MNIST data as described earlier
but only over 5 epochs each for illustration. The plot shows the expected upside-down-U-shape of
the accuracies, which reflects the trade-off between variance (many layers/small tuning parameters)
and bias (few layers/large tuning parameters). The plot shows that cross-validation can even improve
the impact of layer sparsity further for a small number of epochs. (As illustrated in the right panel
of Figure 2, tuning parameters become—as far as accuracy is concerned—less important for large
number of epochs.)

Tuning-parameter calibration remains a challenge not only here but in deep learning much more
generally. But our observations in this section and the main body of the paper demonstrate that
layer-sparse regularization can improve deep-learning pipelines substantially with data-adaptive
schemes such as cross-validation as well as with a simple, theory-inspired choice of the tuning
parameter.
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Figure 3: the accuracy as a function of the number of hidden layers has a typical upside-down-U-
shape; the cross-validated tuning parameters (blue) improve the theory-inspired tuning parameters
(red) further
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