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Abstract

Intent obfuscation is a common tactic in adver-
sarial situations, enabling the attacker to both ma-
nipulate the target system and avoid culpability.
Surprisingly, it has rarely been implemented in
adversarial attacks on machine learning systems.
We are the first to propose incorporating intent
obfuscation in generating adversarial examples
for object detectors: by perturbing another non-
overlapping object to disrupt the target object,
the attacker hides their intended target. We con-
duct a randomized experiment on 5 prominent
detectors—YOLOV3, SSD, RetinaNet, Faster R-
CNN, and Cascade R-CNN—using both targeted
and untargeted attacks and achieve success on
all models and attacks. We analyze the success
factors characterizing intent obfuscating attacks,
including target object confidence and perturb ob-
ject sizes. We then demonstrate that the attacker
can exploit these success factors to increase suc-
cess rates for all models and attacks. Finally, we
discuss known defenses and legal repercussions.

1. Introduction

A malevolent agent sticks an adversarial patch to a bench on
the sidewalk, causing a self-driving car to miss the stop sign
and hit a crossing pedestrian. Upon interrogation, he claims
no malicious intent; the patch was only an art. Because the
sticker was on the bench but the effect was on the sign, au-
thorities are unable to prove intent. This thought experiment
highlights two serious implications of intent obfuscating
attacks: it opens up new avenues for harmful exploits, and
provides the culprit with “plausible deniability”.

Considering the potential significance of intent obfuscating
attacks, it is important for the machine learning community
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to understand and defend against such attacks. Intent ob-
fuscation, though a common practice in cyberattacks for
penetrating target systems (LIFARS| 2020), has rarely been
raised in the adversarial machine learning literature. Most
research has focused on the competition between attack and
defense, which involves crafting more effective adversarial
examples to deceive machine learning systems and evade
detection, and conversely, more robust machine learning
systems and more sensitive detection algorithms to mitigate
attacks (Ren et al.}2020; Xu et al., [2020). Intent obfuscation
complements the attack and defense literature by adding the
dimension of intent to the competition: attackers can hide
their purpose of attack for plausible deniability, and defend-
ers would have a harder time proving, or even determining,
the purpose of attack from the adversarial examples.

‘We propose intent obfuscating attacks on object detectors
through a contextual attack, in which we perturb one ob-
ject to target another non-overlapping object. By attacking
another object, intent is obfuscated providing plausible de-
niability, which conventional adversarial methods do not.
As the opening example demonstrates, the attacker can ma-
nipulate an innocuous object to cause the detector to miss
a critical target and simultaneously be legally shielded: the
attacker can blame the mistake on the machine learning
system rather than admit to intentional deception. As a
bonus, implementing intent obfuscation as a contextual at-
tack opens up new avenues to attack the target, especially
in situations where the attacker cannot manipulate the tar-
get directly. Moreover, contextual attacks are harder to
detect since the defense algorithms not only need to in-
spect the target but also its surrounding region. The key
question is whether perturbing one object to target another
non-overlapping object is feasible on the common detection
models and object classes.

Feasibility is not guaranteed because object detectors are
more complex then image classifiers, and consequently ad-
versarial attacks on object detectors are harder to implement
and typically less general. Most prominent attacks like
placing adversarial patches on stop-signs (Eykholt et al.,
2018) or the Fast Gradient Sign Method (FGSM) (Good+
fellow et al., [2014) perturb the target objects themselves.
But intent obfuscating attacks could nevertheless achieve
success by exploiting the contextual reasoning of object de-
tectors: Detectors are known to use contextual information
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(a) A vanishing attack perturbs a broccoli and  (b) A mislabeling attack perturbs  (c) An untargeted attack perturbs a couch and
causes YOLOV3 to no longer detect the targeted  a chair and causes SSD to misla- causes Faster R-CNN to miss correctly predicted
broccoli (no purple detections are seen around  bel the targeted stop sign to the objects (like “tv”” and “person”) and make up
the target). intended class—a bear—with 1.00  objects (like “bird” and “chair”).

confidence.

Figure 1. Disrupting a target object by perturbing another non-overlapping object enables intent obfuscating attacks to hide the
attacker’s intended target: the attacker can implement intent obfuscation using targeted (a) vanishing and (b) mislabeling attacks and
(c) untargeted attacks, depending on their desired end result. Predictions on the original images are in yellow and those on the attacked
images are in purple, with predictive confidence stated beside the class labels. The target and perturb objects are both dotted and labeled
with “target” and “perturb” respectively. These examples are generated in the randomized experiment on the COCO dataset (Section[d).
For clarity, the annotations are shown over the original images. Corresponding perturbed images are shown in Figure@

to improve performance, either implicitly through end-to- B).
end training (e.g. YOLO [Redmon et al},[2013) or explicitly 4. We implement intent obfuscating attacks by perturbing
through architectural design (Tong et al.| [2020] Section 2.4). arbitrary non-overlapping regions—rather than actual

objects—to disrupt the target (Section|[6).

5. We demonstrate that perturbing an arbitrary region
allows us to easily manipulate two validated success
factors—perturb sizes and perturb-target distances—
to greatly increase success on all models and attacks

(Section [6.3).

We implement intent obfuscating attacks on object detectors
using the Targeted Objectness Gradient (TOG) algorithm

(Chow et al.,[2020b) because TOG achieves greater success

than previous attacks like DAG 2017), according
to|Chow et al.|(2020a)). In addition, as an iterative gradient-

based algorithm, TOG can not only attack any modern state-
of-the-art detector trained using backpropagation, but also
enable the attacker to specify a precise target object for
intent obfuscation. We apply TOG to both 1 and 2-stage

detectors—the two most common types of object detectors  ypgen obfuscation: Intent obfuscation is rare in the ma-
(Zhao et al} 2019} Zou et al, 2019)—on the large-scale hine learning literature. One exception is a widely-cited
Microsoft Common Objects in Context (COCO) dataset  ,icle on intent obfuscation by [Sharif et al.| (2016). The

(Lin et al; 2014). In sum, we contribute to the important  ,icle yses adversarially patterned spectacles to conduct
and understudied issue of intent obfuscation in adversarial ;o0 obfuscating attacks on face recognition systems and

machine learning: enable “plausible deniability” (Sharif et al, 2016 introduc-
tion). In comparison, we execute intent obfuscating attacks
on object detectors, which is a more general and challenging
problem. Moreover, as opposed to wearing conspicuously
printed spectacles (Sharif et al.}, 2016}, Figure 4 and 5), we
use contextual attacks to obfuscate intent, which not only
arouse less suspicion but also open up new avenues for
manipulating the target.

2. Related Work

1. We are the first to propose intent obfuscating attacks
on object detectors (Section 3).

2. We determine the feasibility of intent obfuscating at-
tacks on 5 prominent detectors—YOLOV3, SSD, Reti-
naNet, Faster R-CNN, and Cascade R-CNN—for both
targeted and untargeted attacks (Section ).

3. We analyze the success factors for intent obfuscating
attacks, including detection models, attack modes, tar- Contextual attacks: Previous research has attempted to
get object confidence and perturb object sizes (Section exploit the contextual reasoning of object detectors to im-
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prove existing attacks or to design new attacks (Hu &t aliterate the process for a total ofiterations:
2021;[Saha et al., 2020; Lee & Koltér, 2019; Liu et al.,
2018;/ Zhang et all, 2020; Cai etlal., 2021). The rst 4
citations illustrate purely contextual attacks by perturbing
non-overlapping regions, most notably through an adversar-
ial patch. We extend those papers to cover greater breaddf{hereas a targeted attack minimizes the training loss to-
with 5 models, 3 attack modes and 80 COCO classes antiards the desired target, an untargeted attack maximizes
depth by systematically testing 10 success factors. More infnote the change in sign) the training las§; x; y ) towards
portantly, intent obfuscating attacks and contextual attack&e original targey, which could either be the ground-truth
diverge in 3 important aspects: or the model predictions:

x+s X' sgnr xL(:xy 0)) 1)

1. Aim: Intent obfuscating attack aims to disrupt the
targetand hide intent. Contextual attack is a means x"h= s xt+ o sgn( xL(5xy) 2
to obfuscate intent. Alternative means could include
showing the detection system a manipulated imagd he optimization losg& depends on the model, which we
while recording the original image in the system logs. will present in the next section. For illustration purposes,
2. Method: Perturbing actual objects intuitively obfus- we will conduct experiments usingas the ground-truth.
cates intent more than perturbing a background region.
A contextual attack does not distinguish the two. 3.2. Model Losses
3. Results: We analyze success factors which preserve ) , .
intent obfuscation through non-overlapping perturba?Ve attack 5 prominent detection models—comprising 3
tions. For contextual attacks, an overriding factor forON€-Stage detectors (SSD, YOLOv3, and RetinaNet) and 2
ensuring success is to perturb the target object togethdV0-Stage detectors (Faster R-CNN and Cascade R-CNN)—
with its surrounding context, as shown in (Zhang et al__lmplemented in the versatne MMDetection toolbox _(Chen
2020). et al|, 2019) and pretrained on the COCO dataset (Linlet al.,
2014). All models, besides the more recent and widely-
cited Cascade R-CNN, are spotlighted in reviews by Zhao
3. Intent Obfuscation et all (2019) and Zou et a[. (2019) and stated as the most
widely implemented according to Papers With Code. Table
3.1. Attack Methods [ summarizes the 5 detection models and corresponding

We execute intent obfuscating attacks using the Targetedttack losses. Full details are given in Apperjdjx B.
Objectness Gradient (TOG) algorithm (Chow et[al., 2020b).

TOG is an iterative gradient-based method, similar to theq, Randomized Attack

Projected Gradient Descent (PGD) (Madry et [al., 2017)

attack, and can be implemented both as untargeted and térl. Setup

geted attacks. We are most interested in the targeted atta‘gg

b it gives the attack . rol the desi e evaluate the 3 intent obfuscating attacks—vanishing,
ecause It gives the attacker precise control over the desir islabeling and untargeted—on the 5 models using the

end_result. A targeted attack ac.hi.eves its purpose by mani%-Ol? COCO dataset (Lin etil., 2014). The COCO dataset
ulating the ground-truth for training the object deteoﬁ)r. has 80 categories of common objects in everyday scenes for

Th_e attacker can aim for the detector to mi_sl_abe_l the .ta.rgeébject detection and the 2017 split has 118,000 train images
object by changing its class label and retaining its original

bounding box (“mislabeling” attack for the t t ob tamd 5,000 test images (Papers with Code). We use the
ounding box (*mislabeling” attack), or for the target objec test images to attack the 5 models with pretrained weights

to vanish entirely by removing both its bounding box andobtained through MMDetection (Chen et al., 2019) and

class label from the ground-truth (*vanishing” attack). Thelrvisualized the results using the FiftyOne visualization app

technical details are elaborated below: (Moore, B. E. and Corso, J1 I, 2020).

Let be the model parameters the input imagey® the
desired target, and( ;x;y 9 the optimization loss. The
desired targey® could be derived by manipulating either the
ground-truth or the model predictions. At iteratibhl, we
add the signed gradients, L ( ;x;y 9 times the learning
rate to the perturbed image in the previous iteratidn
Then we limit the change ix to within the bounds$ and

Target and perturb objects selection:First, we evaluate
the models on the original images and count a detection
as correct when both the bounding box and the class label
match the ground-truth with at least 0.3 intersection-over-
union (IOU) and 0.3 con dence respectively. Note that
we do not use the standard COCO mean average precision
(mAP) metric since mAP measures detection precision over
For object detection, the ground-truth for a labeled objectthe whole dataset, but we are interested in evaluating success
comprise 4 bounding box coordinates and 1 class label. for single objects. After getting the initial predictions, we
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Table 1.Detection models and attack losses. Full details are given in Appendix B.

Attack Losse$

Targeted
Detectors Stag8s COCO mAP  Vanishing Mislabeling Untargetéd
YOLOv3 1 33.7 Object Class Class, Box, Object
SSD 1 29.5 Class Class Class, Box
RetinaNet 1 36.5 Class Class Class, Box
Faster RPN: Object; i RPN: Object, Box;
R-CNN 374 Det: Class Det: Class Det: Class, Box
Cascade 5 40.3 RPN 1: Object; RPNs 2, 3: Class; RPN 1: Object, Box;
R-CNN ’ RPNs 2, 3 + Det: Class Det: Class RPNs 2, 3 + Det: Class, Box

a In general, 1-stage detectors are quicker whereas 2-stage detectors are more accurate, though the 1-stage RetinaNet
aims to be both quick and accurate. In a 2-stage detector, the input image passes through a Region Proposal Network
(RPN) stage and a detection (Det) stage.

b COCO mean Average Precision (mAP) is the primary metric on the COCO challenge.

¢ The training losses in detectors typically include the box regression loss (Box), the class loss on the 80 COCO labels
and/or the background class (Class), and the objectness loss on categorizing an image region as background or object
(Object).

d Untargeted attack targets all training losses in a model, i.e. the backpropagation loss.

restrict only to the correctly predicted objects. Then we ranimage: as in the initial evaluation step, we use 10U and
domly sample a target object and anothen-overlapping con dence thresholds of 0.3 to determine whether the attack
perturb object per image. Images with less than 2 correctlgucceeds in disrupting the target object. For targeted attacks,
predicted non-overlapping objects are ignored. we do not restrict success to the intended attack mode (e.g.
a mislabeling attack which causes the target object to vanish

Ground-truth manipulation for targeted attack: Then . . '
we create the desired targéifrom the ground-trutly for is still considered as success) becau_se |t. may not concern
the attacker. Nevertheless, as shown in Figure 5, vanishing

the 2 targeted attacks (vanishing and mislabeling equation : . ) :
_— .and mislabeling attacks do cause the target objects to vanish
1). For the vanishing attack, we remove the target objec . : : .
. : and mislabel respectively in most success cases. In addition,
entirely—both the class label and bounding box—from the . ; : :
mislabeling attacks usually mislabel the target object to the

round-truthy to gety® For the mislabeling attack, we . : . .
ghange the c)I/ass?ab)él of the target objeat tg a random intended class (Figure 6). More experimental details are
eincluded in Appendix C.1.

class (refer as “intended class” from now on) to get th
desired targey®. For the untargeted attack, we evaluate the
randomly selected target object only to compare success. Hypotheses and Results

rates with the 2 targeted attacks. We conducted a thorough analysis by listing 10 hypotheses

Attack parameters: Next, we run the 3 attacks using iter- increasing success rates and systematically testing whether

ations 10, 50, 100, and 200, but not more than 200 sincéhose hypotheses are valid. Figure 2 graphs the success

success rates plateau after. For every iteration, we set a leanates. The hypotheses and results are summarized in Table

ing rate which could maximally change a pixel from 0 2 and explained in the appendices C.2 and C.3 respectively.

(black) to 1 (white). For instance, we use a 0.1 learning ratéttacked images are illustrated in Figure 1.

for 10 iterations. In addition, we set a perturbation bo&nd

such that thfa image remains in the original raf@d] after 6. Deliberate Attack

every iteration. Since the resulting success rates are not at

ceiling, we did not try a more restrictive bound. For ev-Rather than randomly selecting target and perturb objects

ery model, attack and iteration combination, we resampledh the randomized experiment, the attacker can—and will—

5,000 test images. select objects to exploit the success factors listed in Section

5. For instance, to maximize havoc on a congested street, he

may target the stop sign with the lowest predicted con dence
esult 5), and use a targeted attack if most self-driving cars

Results evaluation: We distort the bounding box of the
perturb object and then re-evaluate the generated adversar
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Table 2.Hypothesis testing in the randomized attack (Section 5)

Hypotheses (higher
success for)

Accepted (across attacks
and models)

1-stage> 2-stage
models (YOLOv3,
SSD, RetinaNet
Faster R-CNN,
Cascade R-CNN)
Targeted> Untargeted
attack
Vanishing>
Mislabeling attack

Figure 2.Intent obfuscating attack is feasible for all models Larger attack

and attacks: We conduct a randomized experiment by resam-  jtarations

pling COCO images, and within those images randomly sampling Less con dent targets

correctly predicted target and perturb objects. Then we distort

the perturb objects to disrupt the target objects varying the attack Larger perturb boxes

iterations. The binned summaries and regression trendlines graph

success proportion against attack iterations in the randomized at- Shorter perturb-target

tack experiment. Errors are 95% con dence intervals. and every distance

point aggregates success over 5,000 images. Targeted vanishing | ess accurate target

and mislabeling attacks obtain signi cantly greater success on the COCO class

1-stage YOLOvV3 and SSD than the 2-stage Faster R-CNN and

Cascade R-CNN detectors. However, the 1-stage RetinaNet is as More UiEigElels

resilient as the 2-stage detectors. Additionally, targeted attacks are |nt(_anded .Class

signi cantly more successful than untargeted attacks on YOLOv3 (mislabeling attack

and SSD, but the pattern does not exist for RetinaNet, Faster R- ONIY)

CNN, and Cascade R-CNN. Within targeted attacks, vanishing Lower target (o]t}

achieves signi cantly greater success than mislabeling attack on (untargeted attack

all models except YOLOv3. Moreover, success rates signi cantly — only)

All except RetinaNet
(YOLOvV3, SSD>
RetinaNet, Faster R-CNN,
Cascade R-CNN)

Only YOLOV3, SSD

All except YOLOvV3

All

All

All except mislabeling
attack on Faster R-CNN
All
Mixed

None except RetinaNet

All

increase with larger attack iterations. Signi cance is determined at
< 0:05using a Wald z-test on the logistic estimates. Full details
are given in Section 4.

6.2. Hypotheses
use a l-stage detector (Result 2). He could also increa
success by deliberately perturbing larger objects (Result
closer to the target (Result 7). Indeed, he can easily multipl;ﬁ
success on a random target for any detector by perturbin
a largearbitrary region close to the target object, as we
demonstrate below.

ap < :05for Wald z-test on logistic estimate
b intersection-over-union

ctively manipulating only the perturb sizes and target-
erturb distances makes the deliberate attack more con-
olled than the randomized attack. Hence, although we are
groposing similar hypotheses to those in the randomized
attack (Hypotheses 6 and 7), we can more strongly claim

that larger perturb sizes or shorter distancassesuccess

6.1. Setup rates to increase.
We adopt the setup in the randomized attack (Section 4.19.3. Results

However, rather than randomly selecting target and perturl%
objects, we randomly select a target object and then enclosg,
a non-overlapping square perturb region beside it (Figur?h
13). We vary the length of the square perturb region and the .
distance between the target and perturb bounding boxes
be 10, 50, 100, or 200 pixels (in original image dimensions
and test all combinations. For every combination, we resam-
ple 200 COCO test images and run the 3 attacks all for 200
iterations (more details in Appendix D.1).

uccess rates greatly increase compared to the randomized
attack (Figure 4): in the extreme at perturb lengths more
an 200 pixels and perturb-target distances less than 10
ixels, the attacker obtains for the vanishing attack nearly
)g 0% success rates on YOLOv3 and SSD and more than
0% on RetinaNet, Faster R-CNN and Cascade R-CNN. A
uccess example is illustrated in Figure 3.

Hypothesis testing is similar to the procedure in the random-






