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Abstract

Intent obfuscation is a common tactic in adver-
sarial situations, enabling the attacker to both ma-
nipulate the target system and avoid culpability.
Surprisingly, it has rarely been implemented in
adversarial attacks on machine learning systems.
We are the first to propose incorporating intent
obfuscation in generating adversarial examples
for object detectors: by perturbing another non-
overlapping object to disrupt the target object,
the attacker hides their intended target. We con-
duct a randomized experiment on 5 prominent
detectors—YOLOv3, SSD, RetinaNet, Faster R-
CNN, and Cascade R-CNN—using both targeted
and untargeted attacks and achieve success on
all models and attacks. We analyze the success
factors characterizing intent obfuscating attacks,
including target object confidence and perturb ob-
ject sizes. We then demonstrate that the attacker
can exploit these success factors to increase suc-
cess rates for all models and attacks. Finally, we
discuss known defenses and legal repercussions.

1. Introduction
A malevolent agent sticks an adversarial patch to a bench on
the sidewalk, causing a self-driving car to miss the stop sign
and hit a crossing pedestrian. Upon interrogation, he claims
no malicious intent; the patch was only an art. Because the
sticker was on the bench but the effect was on the sign, au-
thorities are unable to prove intent. This thought experiment
highlights two serious implications of intent obfuscating
attacks: it opens up new avenues for harmful exploits, and
provides the culprit with “plausible deniability”.

Considering the potential significance of intent obfuscating
attacks, it is important for the machine learning community
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to understand and defend against such attacks. Intent ob-
fuscation, though a common practice in cyberattacks for
penetrating target systems (LIFARS, 2020), has rarely been
raised in the adversarial machine learning literature. Most
research has focused on the competition between attack and
defense, which involves crafting more effective adversarial
examples to deceive machine learning systems and evade
detection, and conversely, more robust machine learning
systems and more sensitive detection algorithms to mitigate
attacks (Ren et al., 2020; Xu et al., 2020). Intent obfuscation
complements the attack and defense literature by adding the
dimension of intent to the competition: attackers can hide
their purpose of attack for plausible deniability, and defend-
ers would have a harder time proving, or even determining,
the purpose of attack from the adversarial examples.

We propose intent obfuscating attacks on object detectors
through a contextual attack, in which we perturb one ob-
ject to target another non-overlapping object. By attacking
another object, intent is obfuscated providing plausible de-
niability, which conventional adversarial methods do not.
As the opening example demonstrates, the attacker can ma-
nipulate an innocuous object to cause the detector to miss
a critical target and simultaneously be legally shielded: the
attacker can blame the mistake on the machine learning
system rather than admit to intentional deception. As a
bonus, implementing intent obfuscation as a contextual at-
tack opens up new avenues to attack the target, especially
in situations where the attacker cannot manipulate the tar-
get directly. Moreover, contextual attacks are harder to
detect since the defense algorithms not only need to in-
spect the target but also its surrounding region. The key
question is whether perturbing one object to target another
non-overlapping object is feasible on the common detection
models and object classes.

Feasibility is not guaranteed because object detectors are
more complex then image classifiers, and consequently ad-
versarial attacks on object detectors are harder to implement
and typically less general. Most prominent attacks like
placing adversarial patches on stop-signs (Eykholt et al.,
2018) or the Fast Gradient Sign Method (FGSM) (Good-
fellow et al., 2014) perturb the target objects themselves.
But intent obfuscating attacks could nevertheless achieve
success by exploiting the contextual reasoning of object de-
tectors: Detectors are known to use contextual information
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(a) A vanishing attack perturbs a broccoli and
causes YOLOv3 to no longer detect the targeted
broccoli (no purple detections are seen around
the target).

(b) A mislabeling attack perturbs
a chair and causes SSD to misla-
bel the targeted stop sign to the
intended class—a bear—with 1.00
confidence.

(c) An untargeted attack perturbs a couch and
causes Faster R-CNN to miss correctly predicted
objects (like “tv” and “person”) and make up
objects (like “bird” and “chair”).

Figure 1. Disrupting a target object by perturbing another non-overlapping object enables intent obfuscating attacks to hide the
attacker’s intended target: the attacker can implement intent obfuscation using targeted (a) vanishing and (b) mislabeling attacks and
(c) untargeted attacks, depending on their desired end result. Predictions on the original images are in yellow and those on the attacked
images are in purple, with predictive confidence stated beside the class labels. The target and perturb objects are both dotted and labeled
with “target” and “perturb” respectively. These examples are generated in the randomized experiment on the COCO dataset (Section 4).
For clarity, the annotations are shown over the original images. Corresponding perturbed images are shown in Figure 12.

to improve performance, either implicitly through end-to-
end training (e.g. YOLO Redmon et al., 2015) or explicitly
through architectural design (Tong et al., 2020, Section 2.4).

We implement intent obfuscating attacks on object detectors
using the Targeted Objectness Gradient (TOG) algorithm
(Chow et al., 2020b) because TOG achieves greater success
than previous attacks like DAG (Xie et al., 2017), according
to Chow et al. (2020a). In addition, as an iterative gradient-
based algorithm, TOG can not only attack any modern state-
of-the-art detector trained using backpropagation, but also
enable the attacker to specify a precise target object for
intent obfuscation. We apply TOG to both 1 and 2-stage
detectors—the two most common types of object detectors
(Zhao et al., 2019; Zou et al., 2019)—on the large-scale
Microsoft Common Objects in Context (COCO) dataset
(Lin et al., 2014). In sum, we contribute to the important
and understudied issue of intent obfuscation in adversarial
machine learning:

1. We are the first to propose intent obfuscating attacks
on object detectors (Section 3).

2. We determine the feasibility of intent obfuscating at-
tacks on 5 prominent detectors—YOLOv3, SSD, Reti-
naNet, Faster R-CNN, and Cascade R-CNN—for both
targeted and untargeted attacks (Section 4).

3. We analyze the success factors for intent obfuscating
attacks, including detection models, attack modes, tar-
get object confidence and perturb object sizes (Section

5).
4. We implement intent obfuscating attacks by perturbing

arbitrary non-overlapping regions—rather than actual
objects—to disrupt the target (Section 6).

5. We demonstrate that perturbing an arbitrary region
allows us to easily manipulate two validated success
factors—perturb sizes and perturb-target distances—
to greatly increase success on all models and attacks
(Section 6.3).

2. Related Work
Intent obfuscation: Intent obfuscation is rare in the ma-
chine learning literature. One exception is a widely-cited
article on intent obfuscation by Sharif et al. (2016). The
article uses adversarially patterned spectacles to conduct
intent obfuscating attacks on face recognition systems and
enable “plausible deniability” (Sharif et al., 2016, introduc-
tion). In comparison, we execute intent obfuscating attacks
on object detectors, which is a more general and challenging
problem. Moreover, as opposed to wearing conspicuously
printed spectacles (Sharif et al., 2016, Figure 4 and 5), we
use contextual attacks to obfuscate intent, which not only
arouse less suspicion but also open up new avenues for
manipulating the target.

Contextual attacks: Previous research has attempted to
exploit the contextual reasoning of object detectors to im-
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prove existing attacks or to design new attacks (Hu et al.,
2021; Saha et al., 2020; Lee & Kolter, 2019; Liu et al.,
2018; Zhang et al., 2020; Cai et al., 2021). The �rst 4
citations illustrate purely contextual attacks by perturbing
non-overlapping regions, most notably through an adversar-
ial patch. We extend those papers to cover greater breadth
with 5 models, 3 attack modes and 80 COCO classes and
depth by systematically testing 10 success factors. More im-
portantly, intent obfuscating attacks and contextual attacks
diverge in 3 important aspects:

1. Aim: Intent obfuscating attack aims to disrupt the
targetand hide intent. Contextual attack is a means
to obfuscate intent. Alternative means could include
showing the detection system a manipulated image
while recording the original image in the system logs.

2. Method: Perturbing actual objects intuitively obfus-
cates intent more than perturbing a background region.
A contextual attack does not distinguish the two.

3. Results: We analyze success factors which preserve
intent obfuscation through non-overlapping perturba-
tions. For contextual attacks, an overriding factor for
ensuring success is to perturb the target object together
with its surrounding context, as shown in (Zhang et al.,
2020).

3. Intent Obfuscation

3.1. Attack Methods

We execute intent obfuscating attacks using the Targeted
Objectness Gradient (TOG) algorithm (Chow et al., 2020b).
TOG is an iterative gradient-based method, similar to the
Projected Gradient Descent (PGD) (Madry et al., 2017)
attack, and can be implemented both as untargeted and tar-
geted attacks. We are most interested in the targeted attack
because it gives the attacker precise control over the desired
end result. A targeted attack achieves its purpose by manip-
ulating the ground-truth for training the object detector.1

The attacker can aim for the detector to mislabel the target
object by changing its class label and retaining its original
bounding box (“mislabeling” attack), or for the target object
to vanish entirely by removing both its bounding box and
class label from the ground-truth (“vanishing” attack). Their
technical details are elaborated below:

Let � be the model parameters,x the input image,y0 the
desired target, andL(�; x; y 0) the optimization loss. The
desired targety0 could be derived by manipulating either the
ground-truth or the model predictions. At iterationt + 1 , we
add the signed gradientsr x L(�; x; y 0) times the learning
rate� to the perturbed image in the previous iterationx t .
Then we limit the change inx to within the boundsS and

1For object detection, the ground-truth for a labeled object
comprise 4 bounding box coordinates and 1 class label.

iterate the process for a total ofT iterations:

x t +1 = � x + S
�
x t � � � sgn(r x L(�; x; y 0))

�
(1)

Whereas a targeted attack minimizes the training loss to-
wards the desired target, an untargeted attack maximizes
(note the change in sign) the training lossL(�; x; y ) towards
the original targety, which could either be the ground-truth
or the model predictions:

x t +1 = � x + S
�
x t + � � sgn(r x L(�; x; y ))

�
(2)

The optimization lossL depends on the model, which we
will present in the next section. For illustration purposes,
we will conduct experiments usingy as the ground-truth.

3.2. Model Losses

We attack 5 prominent detection models—comprising 3
one-stage detectors (SSD, YOLOv3, and RetinaNet) and 2
two-stage detectors (Faster R-CNN and Cascade R-CNN)—
implemented in the versatile MMDetection toolbox (Chen
et al., 2019) and pretrained on the COCO dataset (Lin et al.,
2014). All models, besides the more recent and widely-
cited Cascade R-CNN, are spotlighted in reviews by Zhao
et al. (2019) and Zou et al. (2019) and stated as the most
widely implemented according to Papers With Code. Table
1 summarizes the 5 detection models and corresponding
attack losses. Full details are given in Appendix B.

4. Randomized Attack

4.1. Setup

We evaluate the 3 intent obfuscating attacks—vanishing,
mislabeling and untargeted—on the 5 models using the
2017 COCO dataset (Lin et al., 2014). The COCO dataset
has 80 categories of common objects in everyday scenes for
object detection and the 2017 split has 118,000 train images
and 5,000 test images (Papers with Code). We use the
test images to attack the 5 models with pretrained weights
obtained through MMDetection (Chen et al., 2019) and
visualized the results using the FiftyOne visualization app
(Moore, B. E. and Corso, J. J., 2020).

Target and perturb objects selection:First, we evaluate
the models on the original images and count a detection
as correct when both the bounding box and the class label
match the ground-truth with at least 0.3 intersection-over-
union (IOU) and 0.3 con�dence respectively. Note that
we do not use the standard COCO mean average precision
(mAP) metric since mAP measures detection precision over
the whole dataset, but we are interested in evaluating success
for single objects. After getting the initial predictions, we
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Table 1.Detection models and attack losses. Full details are given in Appendix B.

Attack Lossesc

Targeted

Detectors Stagesa COCO mAPb Vanishing Mislabeling Untargetedd

YOLOv3 1 33.7 Object Class Class, Box, Object
SSD 1 29.5 Class Class Class, Box
RetinaNet 1 36.5 Class Class Class, Box
Faster
R-CNN

2 37.4
RPN: Object;
Det: Class

Det: Class
RPN: Object, Box;
Det: Class, Box

Cascade
R-CNN

2 40.3
RPN 1: Object;
RPNs 2, 3 + Det: Class

RPNs 2, 3: Class;
Det: Class

RPN 1: Object, Box;
RPNs 2, 3 + Det: Class, Box

a In general, 1-stage detectors are quicker whereas 2-stage detectors are more accurate, though the 1-stage RetinaNet
aims to be both quick and accurate. In a 2-stage detector, the input image passes through a Region Proposal Network
(RPN) stage and a detection (Det) stage.

b COCO mean Average Precision (mAP) is the primary metric on the COCO challenge.
c The training losses in detectors typically include the box regression loss (Box), the class loss on the 80 COCO labels

and/or the background class (Class), and the objectness loss on categorizing an image region as background or object
(Object).

d Untargeted attack targets all training losses in a model, i.e. the backpropagation loss.

restrict only to the correctly predicted objects. Then we ran-
domly sample a target object and anothernon-overlapping
perturb object per image. Images with less than 2 correctly
predicted non-overlapping objects are ignored.

Ground-truth manipulation for targeted attack: Then
we create the desired targety0 from the ground-truthy for
the 2 targeted attacks (vanishing and mislabeling equation
1). For the vanishing attack, we remove the target object
entirely—both the class label and bounding box—from the
ground-truthy to gety0. For the mislabeling attack, we
change the class label of the target object iny to a random
class (refer as “intended class” from now on) to get the
desired targety0. For the untargeted attack, we evaluate the
randomly selected target object only to compare success
rates with the 2 targeted attacks.

Attack parameters: Next, we run the 3 attacks using iter-
ations 10, 50, 100, and 200, but not more than 200 since
success rates plateau after. For every iteration, we set a learn-
ing rate� which could maximally change a pixel from 0
(black) to 1 (white). For instance, we use a 0.1 learning rate
for 10 iterations. In addition, we set a perturbation boundS
such that the image remains in the original range[0; 1] after
every iteration. Since the resulting success rates are not at
ceiling, we did not try a more restrictive bound. For ev-
ery model, attack and iteration combination, we resampled
5,000 test images.

Results evaluation: We distort the bounding box of the
perturb object and then re-evaluate the generated adversarial

image: as in the initial evaluation step, we use IOU and
con�dence thresholds of 0.3 to determine whether the attack
succeeds in disrupting the target object. For targeted attacks,
we do not restrict success to the intended attack mode (e.g.
a mislabeling attack which causes the target object to vanish
is still considered as success) because it may not concern
the attacker. Nevertheless, as shown in Figure 5, vanishing
and mislabeling attacks do cause the target objects to vanish
and mislabel respectively in most success cases. In addition,
mislabeling attacks usually mislabel the target object to the
intended class (Figure 6). More experimental details are
included in Appendix C.1.

5. Hypotheses and Results

We conducted a thorough analysis by listing 10 hypotheses
increasing success rates and systematically testing whether
those hypotheses are valid. Figure 2 graphs the success
rates. The hypotheses and results are summarized in Table
2 and explained in the appendices C.2 and C.3 respectively.
Attacked images are illustrated in Figure 1.

6. Deliberate Attack

Rather than randomly selecting target and perturb objects
in the randomized experiment, the attacker can—and will—
select objects to exploit the success factors listed in Section
5. For instance, to maximize havoc on a congested street, he
may target the stop sign with the lowest predicted con�dence
(Result 5), and use a targeted attack if most self-driving cars
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Figure 2.Intent obfuscating attack is feasible for all models
and attacks: We conduct a randomized experiment by resam-
pling COCO images, and within those images randomly sampling
correctly predicted target and perturb objects. Then we distort
the perturb objects to disrupt the target objects varying the attack
iterations. The binned summaries and regression trendlines graph
success proportion against attack iterations in the randomized at-
tack experiment. Errors are 95% con�dence intervals. and every
point aggregates success over 5,000 images. Targeted vanishing
and mislabeling attacks obtain signi�cantly greater success on the
1-stage YOLOv3 and SSD than the 2-stage Faster R-CNN and
Cascade R-CNN detectors. However, the 1-stage RetinaNet is as
resilient as the 2-stage detectors. Additionally, targeted attacks are
signi�cantly more successful than untargeted attacks on YOLOv3
and SSD, but the pattern does not exist for RetinaNet, Faster R-
CNN, and Cascade R-CNN. Within targeted attacks, vanishing
achieves signi�cantly greater success than mislabeling attack on
all models except YOLOv3. Moreover, success rates signi�cantly
increase with larger attack iterations. Signi�cance is determined at
� < 0:05 using a Wald z-test on the logistic estimates. Full details
are given in Section 4.

use a 1-stage detector (Result 2). He could also increase
success by deliberately perturbing larger objects (Result 6)
closer to the target (Result 7). Indeed, he can easily multiply
success on a random target for any detector by perturbing
a largearbitrary region close to the target object, as we
demonstrate below.

6.1. Setup

We adopt the setup in the randomized attack (Section 4.1).
However, rather than randomly selecting target and perturb
objects, we randomly select a target object and then enclose
a non-overlapping square perturb region beside it (Figure
13). We vary the length of the square perturb region and the
distance between the target and perturb bounding boxes to
be 10, 50, 100, or 200 pixels (in original image dimensions)
and test all combinations. For every combination, we resam-
ple 200 COCO test images and run the 3 attacks all for 200
iterations (more details in Appendix D.1).

Table 2.Hypothesis testing in the randomized attack (Section 5)

Hypotheses (higher
success for)

Accepted (across attacks
and models)a

1-stage> 2-stage
models (YOLOv3,
SSD, RetinaNet>
Faster R-CNN,
Cascade R-CNN)

All except RetinaNet
(YOLOv3, SSD>
RetinaNet, Faster R-CNN,
Cascade R-CNN)

Targeted> Untargeted
attack

Only YOLOv3, SSD

Vanishing>
Mislabeling attack

All except YOLOv3

Larger attack
iterations

All

Less con�dent targets All

Larger perturb boxes All except mislabeling
attack on Faster R-CNN

Shorter perturb-target
distance

All

Less accurate target
COCO class

Mixed

More probable
intended class
(mislabeling attack
only)

None except RetinaNet

Lower target IOUb

(untargeted attack
only)

All

a p < : 05 for Wald z-test on logistic estimate
b intersection-over-union

6.2. Hypotheses

Actively manipulating only the perturb sizes and target-
perturb distances makes the deliberate attack more con-
trolled than the randomized attack. Hence, although we are
proposing similar hypotheses to those in the randomized
attack (Hypotheses 6 and 7), we can more strongly claim
that larger perturb sizes or shorter distancescausesuccess
rates to increase.

6.3. Results

Success rates greatly increase compared to the randomized
attack (Figure 4): in the extreme at perturb lengths more
than 200 pixels and perturb-target distances less than 10
pixels, the attacker obtains for the vanishing attack nearly
100% success rates on YOLOv3 and SSD and more than
50% on RetinaNet, Faster R-CNN and Cascade R-CNN. A
success example is illustrated in Figure 3.

Hypothesis testing is similar to the procedure in the random-




