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Abstract

Intent obfuscation is a common tactic in adver-
sarial situations, enabling the attacker to both ma-
nipulate the target system and avoid culpability.
Surprisingly, it has rarely been implemented in
adversarial attacks on machine learning systems.
We are the first to propose incorporating intent
obfuscation in generating adversarial examples
for object detectors: by perturbing another non-
overlapping object to disrupt the target object,
the attacker hides their intended target. We con-
duct a randomized experiment on 5 prominent
detectors—YOLOv3, SSD, RetinaNet, Faster R-
CNN, and Cascade R-CNN—using both targeted
and untargeted attacks and achieve success on
all models and attacks. We analyze the success
factors characterizing intent obfuscating attacks,
including target object confidence and perturb ob-
ject sizes. We then demonstrate that the attacker
can exploit these success factors to increase suc-
cess rates for all models and attacks. Finally, we
discuss known defenses and legal repercussions.

1. Introduction
A malevolent agent sticks an adversarial patch to a bench on
the sidewalk, causing a self-driving car to miss the stop sign
and hit a crossing pedestrian. Upon interrogation, he claims
no malicious intent; the patch was only an art. Because the
sticker was on the bench but the effect was on the sign, au-
thorities are unable to prove intent. This thought experiment
highlights two serious implications of intent obfuscating
attacks: it opens up new avenues for harmful exploits, and
provides the culprit with “plausible deniability”.

Considering the potential significance of intent obfuscating
attacks, it is important for the machine learning community
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to understand and defend against such attacks. Intent ob-
fuscation, though a common practice in cyberattacks for
penetrating target systems (LIFARS, 2020), has rarely been
raised in the adversarial machine learning literature. Most
research has focused on the competition between attack and
defense, which involves crafting more effective adversarial
examples to deceive machine learning systems and evade
detection, and conversely, more robust machine learning
systems and more sensitive detection algorithms to mitigate
attacks (Ren et al., 2020; Xu et al., 2020). Intent obfuscation
complements the attack and defense literature by adding the
dimension of intent to the competition: attackers can hide
their purpose of attack for plausible deniability, and defend-
ers would have a harder time proving, or even determining,
the purpose of attack from the adversarial examples.

We propose intent obfuscating attacks on object detectors
through a contextual attack, in which we perturb one ob-
ject to target another non-overlapping object. By attacking
another object, intent is obfuscated providing plausible de-
niability, which conventional adversarial methods do not.
As the opening example demonstrates, the attacker can ma-
nipulate an innocuous object to cause the detector to miss
a critical target and simultaneously be legally shielded: the
attacker can blame the mistake on the machine learning
system rather than admit to intentional deception. As a
bonus, implementing intent obfuscation as a contextual at-
tack opens up new avenues to attack the target, especially
in situations where the attacker cannot manipulate the tar-
get directly. Moreover, contextual attacks are harder to
detect since the defense algorithms not only need to in-
spect the target but also its surrounding region. The key
question is whether perturbing one object to target another
non-overlapping object is feasible on the common detection
models and object classes.

Feasibility is not guaranteed because object detectors are
more complex then image classifiers, and consequently ad-
versarial attacks on object detectors are harder to implement
and typically less general. Most prominent attacks like
placing adversarial patches on stop-signs (Eykholt et al.,
2018) or the Fast Gradient Sign Method (FGSM) (Good-
fellow et al., 2014) perturb the target objects themselves.
But intent obfuscating attacks could nevertheless achieve
success by exploiting the contextual reasoning of object de-
tectors: Detectors are known to use contextual information
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(a) A vanishing attack perturbs a broccoli and
causes YOLOv3 to no longer detect the targeted
broccoli (no purple detections are seen around
the target).

(b) A mislabeling attack perturbs
a chair and causes SSD to misla-
bel the targeted stop sign to the
intended class—a bear—with 1.00
confidence.

(c) An untargeted attack perturbs a couch and
causes Faster R-CNN to miss correctly predicted
objects (like “tv” and “person”) and make up
objects (like “bird” and “chair”).

Figure 1. Disrupting a target object by perturbing another non-overlapping object enables intent obfuscating attacks to hide the
attacker’s intended target: the attacker can implement intent obfuscation using targeted (a) vanishing and (b) mislabeling attacks and
(c) untargeted attacks, depending on their desired end result. Predictions on the original images are in yellow and those on the attacked
images are in purple, with predictive confidence stated beside the class labels. The target and perturb objects are both dotted and labeled
with “target” and “perturb” respectively. These examples are generated in the randomized experiment on the COCO dataset (Section 4).
For clarity, the annotations are shown over the original images. Corresponding perturbed images are shown in Figure 12.

to improve performance, either implicitly through end-to-
end training (e.g. YOLO Redmon et al., 2015) or explicitly
through architectural design (Tong et al., 2020, Section 2.4).

We implement intent obfuscating attacks on object detectors
using the Targeted Objectness Gradient (TOG) algorithm
(Chow et al., 2020b) because TOG achieves greater success
than previous attacks like DAG (Xie et al., 2017), according
to Chow et al. (2020a). In addition, as an iterative gradient-
based algorithm, TOG can not only attack any modern state-
of-the-art detector trained using backpropagation, but also
enable the attacker to specify a precise target object for
intent obfuscation. We apply TOG to both 1 and 2-stage
detectors—the two most common types of object detectors
(Zhao et al., 2019; Zou et al., 2019)—on the large-scale
Microsoft Common Objects in Context (COCO) dataset
(Lin et al., 2014). In sum, we contribute to the important
and understudied issue of intent obfuscation in adversarial
machine learning:

1. We are the first to propose intent obfuscating attacks
on object detectors (Section 3).

2. We determine the feasibility of intent obfuscating at-
tacks on 5 prominent detectors—YOLOv3, SSD, Reti-
naNet, Faster R-CNN, and Cascade R-CNN—for both
targeted and untargeted attacks (Section 4).

3. We analyze the success factors for intent obfuscating
attacks, including detection models, attack modes, tar-
get object confidence and perturb object sizes (Section

5).
4. We implement intent obfuscating attacks by perturbing

arbitrary non-overlapping regions—rather than actual
objects—to disrupt the target (Section 6).

5. We demonstrate that perturbing an arbitrary region
allows us to easily manipulate two validated success
factors—perturb sizes and perturb-target distances—
to greatly increase success on all models and attacks
(Section 6.3).

2. Related Work
Intent obfuscation: Intent obfuscation is rare in the ma-
chine learning literature. One exception is a widely-cited
article on intent obfuscation by Sharif et al. (2016). The
article uses adversarially patterned spectacles to conduct
intent obfuscating attacks on face recognition systems and
enable “plausible deniability” (Sharif et al., 2016, introduc-
tion). In comparison, we execute intent obfuscating attacks
on object detectors, which is a more general and challenging
problem. Moreover, as opposed to wearing conspicuously
printed spectacles (Sharif et al., 2016, Figure 4 and 5), we
use contextual attacks to obfuscate intent, which not only
arouse less suspicion but also open up new avenues for
manipulating the target.

Contextual attacks: Previous research has attempted to
exploit the contextual reasoning of object detectors to im-
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prove existing attacks or to design new attacks (Hu et al.,
2021; Saha et al., 2020; Lee & Kolter, 2019; Liu et al.,
2018; Zhang et al., 2020; Cai et al., 2021). The first 4
citations illustrate purely contextual attacks by perturbing
non-overlapping regions, most notably through an adversar-
ial patch. We extend those papers to cover greater breadth
with 5 models, 3 attack modes and 80 COCO classes and
depth by systematically testing 10 success factors. More im-
portantly, intent obfuscating attacks and contextual attacks
diverge in 3 important aspects:

1. Aim: Intent obfuscating attack aims to disrupt the
target and hide intent. Contextual attack is a means
to obfuscate intent. Alternative means could include
showing the detection system a manipulated image
while recording the original image in the system logs.

2. Method: Perturbing actual objects intuitively obfus-
cates intent more than perturbing a background region.
A contextual attack does not distinguish the two.

3. Results: We analyze success factors which preserve
intent obfuscation through non-overlapping perturba-
tions. For contextual attacks, an overriding factor for
ensuring success is to perturb the target object together
with its surrounding context, as shown in (Zhang et al.,
2020).

3. Intent Obfuscation
3.1. Attack Methods

We execute intent obfuscating attacks using the Targeted
Objectness Gradient (TOG) algorithm (Chow et al., 2020b).
TOG is an iterative gradient-based method, similar to the
Projected Gradient Descent (PGD) (Madry et al., 2017)
attack, and can be implemented both as untargeted and tar-
geted attacks. We are most interested in the targeted attack
because it gives the attacker precise control over the desired
end result. A targeted attack achieves its purpose by manip-
ulating the ground-truth for training the object detector. 1

The attacker can aim for the detector to mislabel the target
object by changing its class label and retaining its original
bounding box (“mislabeling” attack), or for the target object
to vanish entirely by removing both its bounding box and
class label from the ground-truth (“vanishing” attack). Their
technical details are elaborated below:

Let θ be the model parameters, x the input image, y′ the
desired target, and L(θ, x, y′) the optimization loss. The
desired target y′ could be derived by manipulating either the
ground-truth or the model predictions. At iteration t+1, we
add the signed gradients ∇xL(θ, x, y

′) times the learning
rate α to the perturbed image in the previous iteration xt.
Then we limit the change in x to within the bounds S and

1For object detection, the ground-truth for a labeled object
comprise 4 bounding box coordinates and 1 class label.

iterate the process for a total of T iterations:

xt+1 = Πx+S

[
xt − α · sgn(∇xL(θ, x, y

′))
]

(1)

Whereas a targeted attack minimizes the training loss to-
wards the desired target, an untargeted attack maximizes
(note the change in sign) the training loss L(θ, x, y) towards
the original target y, which could either be the ground-truth
or the model predictions:

xt+1 = Πx+S

[
xt + α · sgn(∇xL(θ, x, y))

]
(2)

The optimization loss L depends on the model, which we
will present in the next section. For illustration purposes,
we will conduct experiments using y as the ground-truth.

3.2. Model Losses

We attack 5 prominent detection models—comprising 3
one-stage detectors (SSD, YOLOv3, and RetinaNet) and 2
two-stage detectors (Faster R-CNN and Cascade R-CNN)—
implemented in the versatile MMDetection toolbox (Chen
et al., 2019) and pretrained on the COCO dataset (Lin et al.,
2014). All models, besides the more recent and widely-
cited Cascade R-CNN, are spotlighted in reviews by Zhao
et al. (2019) and Zou et al. (2019) and stated as the most
widely implemented according to Papers With Code. Table
1 summarizes the 5 detection models and corresponding
attack losses. Full details are given in Appendix B.

4. Randomized Attack
4.1. Setup

We evaluate the 3 intent obfuscating attacks—vanishing,
mislabeling and untargeted—on the 5 models using the
2017 COCO dataset (Lin et al., 2014). The COCO dataset
has 80 categories of common objects in everyday scenes for
object detection and the 2017 split has 118,000 train images
and 5,000 test images (Papers with Code). We use the
test images to attack the 5 models with pretrained weights
obtained through MMDetection (Chen et al., 2019) and
visualized the results using the FiftyOne visualization app
(Moore, B. E. and Corso, J. J., 2020).

Target and perturb objects selection: First, we evaluate
the models on the original images and count a detection
as correct when both the bounding box and the class label
match the ground-truth with at least 0.3 intersection-over-
union (IOU) and 0.3 confidence respectively. Note that
we do not use the standard COCO mean average precision
(mAP) metric since mAP measures detection precision over
the whole dataset, but we are interested in evaluating success
for single objects. After getting the initial predictions, we
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Table 1. Detection models and attack losses. Full details are given in Appendix B.

Attack Lossesc

Targeted

Detectors Stagesa COCO mAPb Vanishing Mislabeling Untargetedd

YOLOv3 1 33.7 Object Class Class, Box, Object
SSD 1 29.5 Class Class Class, Box
RetinaNet 1 36.5 Class Class Class, Box
Faster
R-CNN 2 37.4

RPN: Object;
Det: Class Det: Class

RPN: Object, Box;
Det: Class, Box

Cascade
R-CNN 2 40.3

RPN 1: Object;
RPNs 2, 3 + Det: Class

RPNs 2, 3: Class;
Det: Class

RPN 1: Object, Box;
RPNs 2, 3 + Det: Class, Box

a In general, 1-stage detectors are quicker whereas 2-stage detectors are more accurate, though the 1-stage RetinaNet
aims to be both quick and accurate. In a 2-stage detector, the input image passes through a Region Proposal Network
(RPN) stage and a detection (Det) stage.

b COCO mean Average Precision (mAP) is the primary metric on the COCO challenge.
c The training losses in detectors typically include the box regression loss (Box), the class loss on the 80 COCO labels

and/or the background class (Class), and the objectness loss on categorizing an image region as background or object
(Object).

d Untargeted attack targets all training losses in a model, i.e. the backpropagation loss.

restrict only to the correctly predicted objects. Then we ran-
domly sample a target object and another non-overlapping
perturb object per image. Images with less than 2 correctly
predicted non-overlapping objects are ignored.

Ground-truth manipulation for targeted attack: Then
we create the desired target y′ from the ground-truth y for
the 2 targeted attacks (vanishing and mislabeling equation
1). For the vanishing attack, we remove the target object
entirely—both the class label and bounding box—from the
ground-truth y to get y′. For the mislabeling attack, we
change the class label of the target object in y to a random
class (refer as “intended class” from now on) to get the
desired target y′. For the untargeted attack, we evaluate the
randomly selected target object only to compare success
rates with the 2 targeted attacks.

Attack parameters: Next, we run the 3 attacks using iter-
ations 10, 50, 100, and 200, but not more than 200 since
success rates plateau after. For every iteration, we set a learn-
ing rate α which could maximally change a pixel from 0
(black) to 1 (white). For instance, we use a 0.1 learning rate
for 10 iterations. In addition, we set a perturbation bound S
such that the image remains in the original range [0, 1] after
every iteration. Since the resulting success rates are not at
ceiling, we did not try a more restrictive bound. For ev-
ery model, attack and iteration combination, we resampled
5,000 test images.

Results evaluation: We distort the bounding box of the
perturb object and then re-evaluate the generated adversarial

image: as in the initial evaluation step, we use IOU and
confidence thresholds of 0.3 to determine whether the attack
succeeds in disrupting the target object. For targeted attacks,
we do not restrict success to the intended attack mode (e.g.
a mislabeling attack which causes the target object to vanish
is still considered as success) because it may not concern
the attacker. Nevertheless, as shown in Figure 5, vanishing
and mislabeling attacks do cause the target objects to vanish
and mislabel respectively in most success cases. In addition,
mislabeling attacks usually mislabel the target object to the
intended class (Figure 6). More experimental details are
included in Appendix C.1.

5. Hypotheses and Results
We conducted a thorough analysis by listing 10 hypotheses
increasing success rates and systematically testing whether
those hypotheses are valid. Figure 2 graphs the success
rates. The hypotheses and results are summarized in Table
2 and explained in the appendices C.2 and C.3 respectively.
Attacked images are illustrated in Figure 1.

6. Deliberate Attack
Rather than randomly selecting target and perturb objects
in the randomized experiment, the attacker can—and will—
select objects to exploit the success factors listed in Section
5. For instance, to maximize havoc on a congested street, he
may target the stop sign with the lowest predicted confidence
(Result 5), and use a targeted attack if most self-driving cars
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Figure 2. Intent obfuscating attack is feasible for all models
and attacks: We conduct a randomized experiment by resam-
pling COCO images, and within those images randomly sampling
correctly predicted target and perturb objects. Then we distort
the perturb objects to disrupt the target objects varying the attack
iterations. The binned summaries and regression trendlines graph
success proportion against attack iterations in the randomized at-
tack experiment. Errors are 95% confidence intervals. and every
point aggregates success over 5,000 images. Targeted vanishing
and mislabeling attacks obtain significantly greater success on the
1-stage YOLOv3 and SSD than the 2-stage Faster R-CNN and
Cascade R-CNN detectors. However, the 1-stage RetinaNet is as
resilient as the 2-stage detectors. Additionally, targeted attacks are
significantly more successful than untargeted attacks on YOLOv3
and SSD, but the pattern does not exist for RetinaNet, Faster R-
CNN, and Cascade R-CNN. Within targeted attacks, vanishing
achieves significantly greater success than mislabeling attack on
all models except YOLOv3. Moreover, success rates significantly
increase with larger attack iterations. Significance is determined at
α < 0.05 using a Wald z-test on the logistic estimates. Full details
are given in Section 4.

use a 1-stage detector (Result 2). He could also increase
success by deliberately perturbing larger objects (Result 6)
closer to the target (Result 7). Indeed, he can easily multiply
success on a random target for any detector by perturbing
a large arbitrary region close to the target object, as we
demonstrate below.

6.1. Setup

We adopt the setup in the randomized attack (Section 4.1).
However, rather than randomly selecting target and perturb
objects, we randomly select a target object and then enclose
a non-overlapping square perturb region beside it (Figure
13). We vary the length of the square perturb region and the
distance between the target and perturb bounding boxes to
be 10, 50, 100, or 200 pixels (in original image dimensions)
and test all combinations. For every combination, we resam-
ple 200 COCO test images and run the 3 attacks all for 200
iterations (more details in Appendix D.1).

Table 2. Hypothesis testing in the randomized attack (Section 5)

Hypotheses (higher
success for)

Accepted (across attacks
and models)a

1-stage > 2-stage
models (YOLOv3,
SSD, RetinaNet >
Faster R-CNN,
Cascade R-CNN)

All except RetinaNet
(YOLOv3, SSD >
RetinaNet, Faster R-CNN,
Cascade R-CNN)

Targeted > Untargeted
attack

Only YOLOv3, SSD

Vanishing >
Mislabeling attack

All except YOLOv3

Larger attack
iterations

All

Less confident targets All

Larger perturb boxes All except mislabeling
attack on Faster R-CNN

Shorter perturb-target
distance

All

Less accurate target
COCO class

Mixed

More probable
intended class
(mislabeling attack
only)

None except RetinaNet

Lower target IOUb

(untargeted attack
only)

All

a p < .05 for Wald z-test on logistic estimate
b intersection-over-union

6.2. Hypotheses

Actively manipulating only the perturb sizes and target-
perturb distances makes the deliberate attack more con-
trolled than the randomized attack. Hence, although we are
proposing similar hypotheses to those in the randomized
attack (Hypotheses 6 and 7), we can more strongly claim
that larger perturb sizes or shorter distances cause success
rates to increase.

6.3. Results

Success rates greatly increase compared to the randomized
attack (Figure 4): in the extreme at perturb lengths more
than 200 pixels and perturb-target distances less than 10
pixels, the attacker obtains for the vanishing attack nearly
100% success rates on YOLOv3 and SSD and more than
50% on RetinaNet, Faster R-CNN and Cascade R-CNN. A
success example is illustrated in Figure 3.

Hypothesis testing is similar to the procedure in the random-
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(a) Original predictions (green) (b) Adversarial predictions
(blue) and non-overlapping
arbitrary perturb region (orange
dotted)

Figure 3. We can implement intent obfuscating attack via per-
turbing an arbitrary region rather than an actual object: A
mislabeling attack perturbs a non-overlapping arbitrary region (b)
and causes Cascade R-CNN to mislabel a cell phone (a) to the
intended class—a knife (b).

ized experiment (Section 5): A logistic regression model
using both terms as predictors show that longer perturb
lengths or shorter perturb-target distances cause success
rates to increase significantly for all model and attack com-
binations, except for perturb lengths in the untargeted attack
on Cascade R-CNN. The interaction terms, even when sig-
nificant, are negligibly close to 0. Statistics are given in
Table 11.

7. Discussion and Conclusion
Perturbing objects versus non-objects: For intent obfus-
cating attacks, perturbing actual objects is intuitively more
misleading than perturbing non-objects, and there is no a
priori reason to believe that either will change success rates.
Should the attacker then always perturb objects rather than
non-objects? Surprisingly no: Hypothesis testing showed
that perturbing an object (in the randomized attack) rather
than a non-object (in the deliberate attack) significantly
decreases success rates for most model and attack combina-
tions, after controlling for perturb sizes and perturb-target
distances (Table 12). Interestingly, while intent obfusca-
tion is possible, it is more difficult to achieve than a mere
contextual attack.

Limitations: We have shown that intent obfuscating attacks
are feasible for the 5 prominent object detectors and an-
alyzed 10 success factors. Although we did not conduct
experiments in which the attacker has no access to the vic-

YOLOv3 SSD RetinaNet Faster R−CNN Cascade R−CNN
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Figure 4. A deliberate attack obfuscates intent with increased
success for all models and attacks: We implement intent obfus-
cating attack by perturbing an arbitrary non-overlapping square re-
gion to disrupt a randomly selected target object at various lengths
and distances. The binned summaries and regression trendlines
graph success proportion against perturb-target distance and per-
turb box length in the deliberate attack experiment. Errors are 95%
confidence intervals. and every point aggregates success over 200
images. The deliberate attack multiplies success as compared to
the randomized attack (Figure 2), especially at close perturb-target
distance and large perturb box length. Full details are given in
Section 6.

tim detector, we believe that the breadth and depth of the
paper will illuminate the success characteristics of intent
obfuscating attack in both settings. Interested readers can
turn to Cai et al. (2021) for black-box contextual attacks and
Lee & Kolter (2019) for physical contextual attacks.

Broader impact: A malicious actor can use an intent ob-
fuscating attack to disrupt AI systems and claim plausible
deniability. There are known defenses against the attack:
we implement intent obfuscation by perturbing contextual
regions using gradient-based signals, making it suscepti-
ble to context-based defenses (Saha et al., 2020; Li et al.,
2020; Yin et al., 2021a) and general defense techniques re-
viewed by Ren et al. (2020); Xu et al. (2020) like gradient
obfuscation and adversarial detection. Not surprisingly, the
adversarial machine learning literature is constantly evolv-
ing, with more sophisticated attacks continuously invented
to overcome these defenses (Cai et al., 2022; Yin et al.,
2021b). In contrast, legal protection against intent obfuscat-
ing attack is scant. Established cybersecurity laws (like the
United States CFAA) do not address adversarial machine
learning explicitly (Kumar et al., 2018; 2020). Intent obfus-
cation attacks only compound the problem, since proving
malicious intent is required for criminal prosecution (Wex
Definitions Team). To conclude, we believe that establishing
the feasibility of intent obfuscating attacks will galvanize
the machine learning community to develop more robust
technical and legal solutions.
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A. Anonymized Code and Data
The code is available on the anonymized github repository https://github.com/ano938796412/icml-review.
The included README.md contains instructions to reproduce graphs and tables, download datasets and images, visualize
attacked datasets or replicate experiments. The datasets and images in both experiments are stored on an anonymized
Google Cloud Storage https://console.cloud.google.com/storage/browser/icml-review (one may
still need to sign in with a google account simply to access the public bucket). More instructions are contained in the
README.md.

B. Model Losses
YOLOv3: YOLOv3 (Redmon & Farhadi, 2018) prioritizes speed and uses a single convolutional network to predict
bounding boxes and class labels. The class label is described by the objectness score, defined as the probability that the
bounding box contains an object, and the class probability conditioned on the objectness score. Consequently, YOLOv3 has
3 training losses: the objectness loss, the class loss and the box regression loss (Redmon et al., 2015, equation 3). We attack
the objectness loss for the vanishing attack and the class loss for the mislabeling attack. For untargeted attack, we attack
all training losses. Additionally, YOLOv3 is optimized through end-to-end training and “implicitly encodes contextual
information” (Redmon et al., 2015, introduction). Therefore, it should be more vulnerable to contextual attacks. In the
experiment, we use a pretrained YOLOv3 with a DarkNet-53 backbone and input size 608 × 608. The model achieves 33.7
COCO mean average precision (mAP), the primary metric in the COCO challenge (COCO).

SSD: Like YOLOv3, SSD (Liu et al., 2015) also uses a single convolutional network and is optimized through end-to-end
training, improving both speed and accuracy. Uniquely, SSD adds several convolutional layers which successively decrease
in sizes after the base network. These layers predict bounding boxes at multiple sizes and aspect ratios. The training losses
in SSD include box regression loss and class loss. Since the class loss includes the background class in addition to the 80
COCO class labels, we target the class loss for both vanishing and mislabeling attacks. For untargeted attack, we attack all
training losses. In the experiment, we use a pretrained SSD with a VGG-16 backbone (Simonyan & Zisserman, 2014) and
input size 512 × 512. The model achieves 29.5 COCO mAP.

RetinaNet: RetinaNet (Lin et al., 2017b) uses a novel Focal Loss to address class imbalance in training 1-stage detectors:
most training examples belong to the easily categorized background class and thereby overwhelm the training signal. Focal
Loss mitigates the issue by down-weighting easily categorized background examples during training to emphasize the harder
object examples and thereby increases training accuracy. RetinaNet also incorporates convolutional layers structured as
a Feature Pyramidal Network (FPN) (Lin et al., 2017a) for multi-scale detection. Like SSD, RetinaNet’s training losses
comprise both the class loss (which includes the background class) and bounding box loss. We target the class loss for both
vanishing and mislabeling attacks. For untargeted attack, we attack all training losses. In the experiment, we use a pretrained
RetinaNet with a ResNet-50 backbone (He et al., 2015). The model achieves 36.5 COCO mAP.

Faster R-CNN: Faster R-CNN (Ren et al., 2015) adds a region proposal network (RPN) to the detection network in Fast
R-CNN (Girshick, 2015) to improve both speed and accuracy. Faster R-CNN begins detection with a base network to extract
convolutional features. Then using these convolutional features, the RPN proposes object regions with associated objectness
scores. The detection network then uses both the convolutional features and region proposals to predict bounding boxes and
class labels. Hence, Faster R-CNN has 4 training losses: the box regression loss and objectness loss in the RPN and the
box regression loss and class loss in the detection network. Since the class loss for the detection network also includes the
background class in addition to the 80 COCO class labels (Girshick, 2015, equation 1), we attack both the class loss and
objectness loss for the vanishing attack and attack only the class loss for the mislabeling attack. For untargeted attack, we
attack all training losses. In the experiment, we use the pretrained Faster R-CNN with a ResNet-50 backbone and FPN. The
model achieves 37.4 COCO mAP.

Cascade R-CNN: Cascade R-CNN (Cai & Vasconcelos, 2017) extends the Faster R-CNN architecture with a cascade
structure to generate more accurate detections. Cascade R-CNN repeats the RPN stage in Faster R-CNN thrice to increase
proposals quality. The 2nd and 3rd RPNs in Cascade R-CNN also propose class labels (which include the background class)
rather than only the objectness score in the 1st RPN. All 3 RPNs also predict bounding box coordinates. Hence, the training
losses for Cascade R-CNN comprise 4 box regression losses, 3 class losses and 1 objectness loss. We attack the objectness
loss and class losses for the vanishing attack and attack all class losses for the mislabeling attack. For untargeted attack, we
attack all training losses. In the experiment, we use a pretrained Cascade R-CNN with a ResNet-50 backbone and FPN. The

https://github.com/ano938796412/icml-review
https://console.cloud.google.com/storage/browser/icml-review
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model achieves 40.3 COCO mAP.

C. Randomized Attack
C.1. Setup

Since we are using a shared computing resource on an internal network, we split the attack into 50 repetitions and attacked
100 images per repetition. The images are randomly sampled without replacement within repetitions, but may repeat across
repetitions. Every repetition takes 60-90 minutes on a 32GB NVIDIA Tesla V100 GPU. 750 repetitions (5 models * 3
attacks * 50 repetitions) take 30-45 V100 GPU days.

Across model, attack and iteration combinations, we sample the same images and select the same target and perturb objects
per image to more accurately compare the success rates between combinations. In addition, the MMdetection models
backpropagate only in training mode. Hence, we set the model to training mode in the TOG attack to backpropagate the
gradients. Since the model evaluates the adversarial images in testing mode, we reset the model after every iteration to
prevent updates to its weights or running statistics, to ensure the gradients are directed towards the model in testing mode.
Also, we do not use data augmentation in the TOG attack, since the adversarial images are not augmented during evaluation.

C.2. Hypotheses

For all attacks, we expect to achieve higher success rates for:

1. 1-stage (YOLOv3, SSD, and RetinaNet) than 2-stage (Faster R-CNN and Cascade R-CNN) detectors: intuitively,
perturbing an input pixel to change one loss component in an intended direction is easier than for multiple loss
components. As the number of loss components increases, the chances that the same perturbation will change all losses
in the same direction decreases, making the overall attack harder. Because we attack more loss components for 2-stage
than 1-stage detectors, we expect to achieve correspondingly lower success rates for 2-stage detectors, beyond what
could be explained by their higher COCO mAPs listed in Table 1.

2. Targeted than untargeted attack: the gradient signal in a targeted attack is precisely aimed at the target object,
whereas for an untargeted attack the gradient signal is broadly aimed at all objects in the image. Therefore, the chances
that an untargeted attack disrupts the target object is lower.

3. Vanishing than mislabeling attack: converting the original class label to the background class should be easier than to
non-background classes, since the background class contains everything not labeled in the COCO dataset and thereby
makes up a large portion of the input space.

4. Larger attack iterations: we expect larger attack iterations to achieve better local minima and maxima respectively for
targeted and untargeted attacks since more iterations allow more possible routes to navigate across the loss landscape.

5. Target objects with lower predicted confidence: the higher the predicted confidence, the larger the decrease in class
probability needed to achieve success and the more the attack has to perturb the class loss.

6. Perturb objects with larger bounding boxes: larger bounding boxes enable the attack to perturb more pixels, after
controlling for Hypothesis 7.

7. Shorter distance between perturb and target objects: since object detectors likely utilize nearby context to make
predictions, perturbing nearby pixels should change the predictions more. Because larger perturb objects (Hypothesis
6) are more likely to be closer to the target object, we will control for both with a regression model.

8. Target object classes with lower COCO mean accuracy: when an object detector achieves lower mean accuracy for
particular classes on the COCO dataset, attacking target objects belonging to those classes should be easier. When
the target object class has lower mean accuracy, the target object will likely be predicted with lower confidence.
Considering Hypothesis 5, we will also control for the latter.

For specific attacks, we expect to achieve higher success rates for

9. Intended classes with higher probabilities for the mislabeling attack: in mislabeling attack we aim to change
the target prediction to the intended class. When the intended class has higher probability on the original image, the
increase in probability of the intended class required for the detector to mislabel the target is smaller, and the attack
would have to change the class loss less. The reasoning is similar to the one in Hypothesis 5. In addition, since higher
probability of the intended class likely entails lower confidence of the predicted class 2, we will also control for the

2To be clear, class probability and confidence are the same. In alignment with the object detection literature, I will use confidence to
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latter.
10. Target objects with lower intersection-over-union (IOU) for the untargeted attack: the lower the IOU of predicted

and ground-truth bounding boxes, the less the untargeted attack has to perturb the box loss to misalign the detection to
less than the IOU threshold.

C.3. Results

For all hypotheses, we use logistic regression to determine if the stated variables significantly predict success rates. We
transform the predictors as appropriate and run separate regressions for every model and attack combination, unless the
predictor variable include model (Hypothesis 1) or attack (Hypotheses 2 and 3). Except for Hypothesis 4, we restrict the
data to the maximum 200 attack iterations to analyze the strongest possible results. We computed the p-values using Wald
z-test and set the significance level (α) to the usual 0.05. We will state the conclusions below and report the statistics in
Appendix C.4. Attacked images are illustrated in Figure 1. Hypotheses and results are summarized in Table 2.

1. 1-stage (YOLOv3, SSD, and RetinaNet) than 2-stage (Faster R-CNN and Cascade R-CNN) detectors: As shown
in Figure 2, the success rates are significantly higher for 1-stage than 2-stage detectors, especially for vanishing and
mislabeling attacks. The higher success on 1-stage detectors could not be explained by their lower COCO mAPs.
Surprisingly, the 1-stage RetinaNet is as robust as 2-stage detectors—training RetinaNet using Focal Loss not only
boosts COCO accuracy but also increases resilience against intent obfuscating attacks (Table 3).

2. Targeted than untargeted attack: The results are mixed: targeted attack is significantly more successful than
untargeted attack for YOLOv3 and SSD, but the increase is non-existent or reversed for RetinaNet, Faster R-CNN
and Cascade R-CNN (Table 4 and Figure 2). As stated in Result 1, RetinaNet, Faster R-CNN and Cascade R-CNN
are more robust than YOLOv3 and SSD against intent obfuscating attack, and perhaps more robust models require a
coordinated attack against all loss components to achieve success.

3. Vanishing than mislabeling attack: Vanishing attack achieves significantly more success than mislabeling attack,
except for YOLOv3 in which the two are similar (Table 4 and Figure 2).

4. Larger attack iterations: Larger attack iterations (log-transformed) significantly increase success for all models and
attacks (Table 5).

5. Target objects with lower predicted confidence: Lower target confidence significantly increases success rates for all
models and attacks (Table 6 and Figure 7).

6. Perturb objects with larger bounding boxes: Larger perturb objects significantly increase success rates for all models
and attacks, except for mislabeling attack on Faster R-CNN, after controlling for perturb-target distances (Table 7 and
Figure 8).

7. Shorter distance between perturb and target objects: Shorter perturb-target distances significantly increase success
rates for all models and attacks, after controlling for perturb object sizes (Table 7 and Figure 8).

8. Target classes with lower COCO mean accuracy: The results are mixed: of the 15 model and attack combinations,
higher COCO class accuracy significantly decreases success rates for 5 combinations but increases success rates for
4, after controlling for target class confidence. The relatively large interaction terms make interpretation challenging
(Table 8 and Figure 9).

9. Intended classes with higher probabilities for the mislabeling attack: Higher intended class probability (log-
transformed) does not predict success rates for mislabeling attack after controlling for target class confidence, except
for RetinaNet. (Table 9 and Figure 10).

10. Target objects with lower intersection-over-union (IOU) for the untargeted attack: Lower IOU increases success
rates for untargeted attack on all models (Table 10 and Figure 11).

C.4. Statistics

C.4.1. TABLE HEADERS

We generate the graphs and tables in R (R Core Team, 2022). The upper table headers are generated using R knitr (Xie,
2022) and kableExtra (Zhu, 2023): We run one regression per group (model and/or attack combination). The terms with a
blank row and 0.000 estimate are reference variables in the regression model, e.g. YOLOv3 in Table 3. The lower regression
headers are generated using R broom (Robinson et al., 2022) and broom.helpers (Larmarange & Sjoberg, 2023). To adapt
the broom documentation:

mean probability only for the predicted class.

https://broom.tidymodels.org/reference/tidy.lm.html#value
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Figure 5. Vanishing and mislabeling attacks mostly cause target objects to vanish and get mislabeled: The graph breaks down the
success rationale within the success cases (Figure 2). Though we did not restrict success to the intended attack mode (e.g. a vanishing
attack which mislabels the target object still count as a success case), the target objects do vanish and get mislabeled in most success cases
respectively in the vanishing and mislabeling attacks. The binned summaries and regression trendlines break down the success cases into
proportion vanished and mislabeled—separated by attack—against attack iterations in the randomized attack experiment. Errors are 95%
confidence intervals.

term The name of the regression term.

sig Terms which are significant (p < .05) are denoted by “*”.

estimate The estimated value of the regression term.

std.error The standard error of the regression term.

statistic The value of a Wald z-statistic to use in a hypothesis that the regression term is non-zero.

p.value The two-sided p-value associated with the observed statistic.

conf.low Lower bound on the 95% confidence interval for the estimate.

conf.high Upper bound on the 95% confidence interval for the estimate.

Table 3: We run a logistic model regressing success against detection models, split by attack, in the randomized attack
experiment. All attacks, especially vanishing and mislabeling, obtain higher success on 1-stage (YOLOv3, SSD) than
2-stage (Faster R-CNN, Cascade R-CNN) detectors. However, the 1-stage RetinaNet is as resilient as 2-stage detectors.
Table headers are explained in Appendix C.4.1.

Group Regression
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Attack term sig estimate std.error statistic p.value conf.low conf.high

YOLOv3 0.000

SSD 0.041 0.044 0.924 0.355 -0.046 0.127

RetinaNet * -1.492 0.060 -24.865 0.000 -1.610 -1.375

Faster R-CNN * -2.161 0.075 -28.651 0.000 -2.311 -2.015
Vanishing

Cascade R-CNN * -1.788 0.066 -27.097 0.000 -1.919 -1.660

YOLOv3 0.000

SSD * -0.283 0.046 -6.183 0.000 -0.372 -0.193

RetinaNet * -2.594 0.089 -29.029 0.000 -2.773 -2.422

Faster R-CNN * -2.752 0.095 -28.826 0.000 -2.944 -2.569
Mislabeling

Cascade R-CNN * -2.259 0.078 -28.907 0.000 -2.415 -2.109

YOLOv3 0.000

SSD * 0.782 0.058 13.411 0.000 0.668 0.896

RetinaNet * -0.239 0.069 -3.463 0.001 -0.375 -0.104

Faster R-CNN -0.031 0.066 -0.462 0.644 -0.160 0.099
Untargeted

Cascade R-CNN * -0.505 0.074 -6.850 0.000 -0.650 -0.361

Table 4: We run a logistic model regressing success against attacks, split by detection models in the randomized attack
experiment. Targeted attacks achieve higher success than untargeted attack on YOLOv3 and SSD. Within targeted attacks,
vanishing attacks achieve higher success than mislabeling attack, except on YOLOv3. Table headers are explained in
Appendix C.4.1.

Group Regression

Model term sig estimate std.error statistic p.value conf.low conf.high

Vanishing 0.000

Mislabeling 0.005 0.044 0.110 0.912 -0.082 0.091YOLOv3
Untargeted * -1.250 0.056 -22.340 0.000 -1.360 -1.141

Vanishing 0.000

Mislabeling * -0.318 0.046 -6.990 0.000 -0.408 -0.229SSD
Untargeted * -0.509 0.047 -10.844 0.000 -0.601 -0.417

Vanishing 0.000

Mislabeling * -1.097 0.098 -11.181 0.000 -1.292 -0.907RetinaNet
Untargeted 0.003 0.072 0.036 0.971 -0.139 0.145

Vanishing 0.000

Mislabeling * -0.586 0.113 -5.171 0.000 -0.811 -0.366Faster R-CNN
Untargeted * 0.881 0.083 10.587 0.000 0.719 1.045

Vanishing 0.000

Mislabeling * -0.466 0.092 -5.056 0.000 -0.648 -0.287Cascade R-CNN
Untargeted 0.033 0.082 0.408 0.683 -0.127 0.193
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Figure 6. Mislabeling attacks usually mislabel the target objects to the intended class: The binned summaries and regression trendlines
give us the proportion mislabeled to the intended class within the success cases in the mislabeling attack. The proportion is plotted against
attack iterations in the randomized attack experiment. Errors are 95% confidence intervals. For Cascade R-CNN, the logistic model did
not converge because the mislabel intended proportion is constant at 100%.

Table 5: We run a logistic model regressing success against log(attack iterations) in the randomized attack experiment.
Success rates increase with attack iterations for all models and attacks. Table headers are explained in Appendix C.4.1.

Group Regression

Attack term sig estimate std.error statistic p.value conf.low conf.high

YOLOv3
Vanishing log(iterations) * 0.480 0.018 26.729 0 0.445 0.515

Mislabeling log(iterations) * 0.397 0.017 23.267 0 0.363 0.430

Untargeted log(iterations) * 0.174 0.023 7.404 0 0.128 0.220

SSD
Vanishing log(iterations) * 0.528 0.018 29.009 0 0.493 0.564

Mislabeling log(iterations) * 0.452 0.019 23.386 0 0.414 0.490

Untargeted log(iterations) * 0.246 0.018 13.735 0 0.211 0.281

RetinaNet
Vanishing log(iterations) * 0.475 0.033 14.339 0 0.411 0.541

Mislabeling log(iterations) * 0.312 0.048 6.489 0 0.219 0.408

Untargeted log(iterations) * 0.328 0.029 11.206 0 0.271 0.385

Faster R-CNN
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Vanishing log(iterations) * 0.394 0.042 9.316 0 0.313 0.479

Mislabeling log(iterations) * 0.264 0.051 5.204 0 0.166 0.364

Untargeted log(iterations) * 0.440 0.030 14.511 0 0.381 0.500

Cascade R-CNN
Vanishing log(iterations) * 0.495 0.039 12.772 0 0.420 0.572

Mislabeling log(iterations) * 0.327 0.042 7.758 0 0.245 0.410

Untargeted log(iterations) * 0.291 0.033 8.886 0 0.228 0.356

Table 6: We run a logistic model regressing success against target confidence in the randomized attack experiment. Lower
target confidence significantly increases success rates for all models and attacks. Table headers are explained in Appendix
C.4.1.

Group Regression

Attack term sig estimate std.error statistic p.value conf.low conf.high

YOLOv3
Vanishing confidence * -0.618 0.141 -4.375 0.000 -0.895 -0.341

Mislabeling confidence * -1.924 0.142 -13.520 0.000 -2.203 -1.645

Untargeted confidence * -3.417 0.215 -15.919 0.000 -3.841 -2.999

SSD
Vanishing confidence * -0.428 0.130 -3.288 0.001 -0.684 -0.173

Mislabeling confidence * -1.144 0.140 -8.199 0.000 -1.418 -0.871

Untargeted confidence * -2.024 0.149 -13.602 0.000 -2.317 -1.733

RetinaNet
Vanishing confidence * -2.762 0.278 -9.925 0.000 -3.314 -2.222

Mislabeling confidence * -5.951 0.595 -10.002 0.000 -7.162 -4.826

Untargeted confidence * -5.002 0.328 -15.238 0.000 -5.657 -4.370

Faster R-CNN
Vanishing confidence * -2.814 0.290 -9.706 0.000 -3.382 -2.244

Mislabeling confidence * -3.927 0.382 -10.290 0.000 -4.683 -3.184

Untargeted confidence * -3.578 0.207 -17.308 0.000 -3.985 -3.174

Cascade R-CNN
Vanishing confidence * -1.690 0.259 -6.533 0.000 -2.194 -1.179

Mislabeling confidence * -3.329 0.305 -10.928 0.000 -3.928 -2.732

Untargeted confidence * -3.927 0.250 -15.679 0.000 -4.421 -3.438

Table 7: We run a logistic model regressing success against perturb-target distance (100 pixels) and perturb box size (100,000
squared pixels) in the randomized attack experiment. Larger perturb objects significantly increase success rates for all
models and attacks, except for mislabeling attack on Faster R-CNN, after controlling for perturb-target distances; shorter
perturb-target distances significantly increase success rates for all models and attacks, after controlling for perturb object
sizes. Table headers are explained in Appendix C.4.1.

Group Regression

Attack term sig estimate std.error statistic p.value conf.low conf.high

YOLOv3



On feasibility of intent obfuscating attacks

Vanishing distance * -1.903 0.102 -18.601 0.000 -2.107 -1.706

size * 6.436 0.407 15.804 0.000 5.656 7.252

distance * size * -2.167 0.344 -6.297 0.000 -2.853 -1.502

Mislabeling distance * -1.706 0.087 -19.719 0.000 -1.879 -1.540

size * 3.182 0.270 11.791 0.000 2.667 3.724

distance * size -0.384 0.252 -1.523 0.128 -0.886 0.102

Untargeted distance * -2.191 0.160 -13.656 0.000 -2.515 -1.886

size * 1.357 0.182 7.470 0.000 1.007 1.720

distance * size 0.444 0.287 1.547 0.122 -0.138 0.992

SSD
Vanishing distance * -2.264 0.112 -20.125 0.000 -2.488 -2.047

size * 3.896 0.313 12.467 0.000 3.299 4.524

distance * size * -0.978 0.306 -3.194 0.001 -1.594 -0.389

Mislabeling distance * -2.203 0.121 -18.194 0.000 -2.445 -1.970

size * 2.787 0.252 11.061 0.000 2.306 3.295

distance * size * -0.640 0.295 -2.172 0.030 -1.238 -0.079

Untargeted distance * -2.299 0.124 -18.514 0.000 -2.547 -2.060

size * 1.283 0.189 6.805 0.000 0.922 1.662

distance * size 0.164 0.263 0.623 0.533 -0.368 0.666

RetinaNet
Vanishing distance * -5.130 0.374 -13.709 0.000 -5.886 -4.420

size * 1.912 0.249 7.695 0.000 1.440 2.415

distance * size 0.152 0.588 0.259 0.795 -1.040 1.266

Mislabeling distance * -4.411 0.525 -8.405 0.000 -5.494 -3.437

size * 0.920 0.248 3.703 0.000 0.435 1.410

distance * size 0.693 0.759 0.913 0.361 -0.872 2.103

Untargeted distance * -1.555 0.151 -10.285 0.000 -1.862 -1.270

size * 1.377 0.174 7.927 0.000 1.039 1.720

distance * size * 1.683 0.230 7.315 0.000 1.240 2.143

Faster R-CNN
Vanishing distance * -6.113 0.604 -10.114 0.000 -7.351 -4.982

size * 1.638 0.275 5.964 0.000 1.114 2.192

distance * size -0.610 0.997 -0.611 0.541 -2.674 1.236

Mislabeling distance * -5.569 0.630 -8.839 0.000 -6.870 -4.398

size 0.238 0.275 0.867 0.386 -0.301 0.780

distance * size * 2.237 0.767 2.918 0.004 0.578 3.597

Untargeted distance * -1.925 0.168 -11.451 0.000 -2.267 -1.607

size * 1.880 0.194 9.677 0.000 1.504 2.265

distance * size * 2.143 0.259 8.262 0.000 1.648 2.665

Cascade R-CNN
Vanishing distance * -6.971 0.573 -12.163 0.000 -8.137 -5.890

size * 2.167 0.282 7.693 0.000 1.635 2.741
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distance * size -0.329 0.883 -0.372 0.710 -2.161 1.309

Mislabeling distance * -6.440 0.585 -10.999 0.000 -7.639 -5.343

size * 0.486 0.237 2.049 0.040 0.023 0.955

distance * size * 1.829 0.798 2.292 0.022 0.144 3.280

Untargeted distance * -2.677 0.224 -11.971 0.000 -3.132 -2.255

size * 0.693 0.174 3.991 0.000 0.352 1.034

distance * size * 2.181 0.258 8.442 0.000 1.678 2.693

Table 8: We run a logistic model regressing success against mean COCO accuracy for the target class, with target confidence
as covariate, in the randomized attack experiment. The results are mixed after controlling for target class confidence and the
relatively large interaction terms make interpretation challenging. Table headers are explained in Appendix C.4.1.

Group Regression

Attack term sig estimate std.error statistic p.value conf.low conf.high

YOLOv3
Vanishing accuracy -0.436 1.053 -0.414 0.679 -2.497 1.634

confidence 0.475 1.145 0.415 0.678 -1.771 2.722

accuracy * confidence -1.233 1.414 -0.873 0.383 -4.007 1.538

Mislabeling accuracy 0.159 1.034 0.154 0.877 -1.871 2.186

confidence 0.538 1.147 0.469 0.639 -1.716 2.782

accuracy * confidence * -2.902 1.418 -2.047 0.041 -5.679 -0.118

Untargeted accuracy * -3.282 1.330 -2.468 0.014 -5.906 -0.689

confidence * -4.205 1.659 -2.535 0.011 -7.517 -1.009

accuracy * confidence 1.199 2.069 0.580 0.562 -2.799 5.314

SSD
Vanishing accuracy -0.743 0.817 -0.909 0.363 -2.342 0.864

confidence -0.042 0.869 -0.048 0.962 -1.746 1.664

accuracy * confidence -0.396 1.089 -0.363 0.716 -2.532 1.740

Mislabeling accuracy -0.797 0.842 -0.946 0.344 -2.444 0.857

confidence -0.277 0.910 -0.305 0.761 -2.064 1.504

accuracy * confidence -0.977 1.145 -0.853 0.394 -3.221 1.271

Untargeted accuracy * -2.087 0.867 -2.408 0.016 -3.789 -0.389

confidence * -3.125 0.990 -3.157 0.002 -5.081 -1.198

accuracy * confidence 1.486 1.241 1.198 0.231 -0.933 3.932

RetinaNet
Vanishing accuracy * -3.520 1.630 -2.160 0.031 -6.700 -0.309

confidence * -6.644 2.646 -2.511 0.012 -11.879 -1.504

accuracy * confidence 4.770 3.090 1.544 0.123 -1.259 10.858

Mislabeling accuracy * -7.902 2.929 -2.697 0.007 -13.606 -2.128

confidence * -20.491 5.908 -3.469 0.001 -32.313 -9.179

accuracy * confidence * 17.153 6.788 2.527 0.012 4.011 30.592
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Untargeted accuracy * -4.352 1.707 -2.549 0.011 -7.701 -1.007

confidence * -9.046 2.985 -3.030 0.002 -14.984 -3.279

accuracy * confidence 5.142 3.520 1.461 0.144 -1.699 12.099

Faster R-CNN
Vanishing accuracy * 4.935 2.132 2.315 0.021 0.839 9.204

confidence * 4.666 2.288 2.040 0.041 0.200 9.180

accuracy * confidence * -9.142 2.824 -3.238 0.001 -14.707 -3.627

Mislabeling accuracy * 8.515 2.767 3.078 0.002 3.222 14.084

confidence * 6.412 3.183 2.015 0.044 0.114 12.625

accuracy * confidence * -12.713 3.888 -3.270 0.001 -20.304 -5.038

Untargeted accuracy 1.447 1.442 1.003 0.316 -1.373 4.289

confidence 0.733 1.588 0.462 0.644 -2.395 3.836

accuracy * confidence * -5.146 1.969 -2.614 0.009 -8.999 -1.273

Cascade R-CNN
Vanishing accuracy 1.644 2.104 0.781 0.435 -2.419 5.840

confidence 0.766 2.173 0.353 0.724 -3.466 5.064

accuracy * confidence -2.987 2.679 -1.115 0.265 -8.273 2.237

Mislabeling accuracy * 4.762 2.347 2.029 0.042 0.236 9.446

confidence 1.915 2.651 0.722 0.470 -3.301 7.107

accuracy * confidence * -6.491 3.243 -2.002 0.045 -12.843 -0.119

Untargeted accuracy * 3.752 1.805 2.079 0.038 0.241 7.324

confidence 1.669 2.033 0.821 0.412 -2.339 5.637

accuracy * confidence * -6.887 2.519 -2.734 0.006 -11.812 -1.930

Table 9: We run a logistic model regressing success against log(intended class probability) for the mislabeling attack, with
predicted class’s confidence as covariate, in the randomized attack experiment. Intended class probability does not predict
success rates after controlling for target class confidence, except for RetinaNet. Table headers are explained in Appendix
C.4.1.

Group Regression

Model term sig estimate std.error statistic p.value conf.low conf.high

Mislabeling
YOLOv3 log(probability) 0.052 0.036 1.425 0.154 -0.019 0.123

confidence * -1.777 0.431 -4.125 0.000 -2.624 -0.935

log(probability) * confidence 0.010 0.050 0.193 0.847 -0.089 0.108

SSD log(probability) 0.034 0.042 0.791 0.429 -0.049 0.117

confidence * -0.760 0.375 -2.026 0.043 -1.494 -0.023

log(probability) * confidence 0.025 0.054 0.473 0.636 -0.080 0.131

RetinaNet log(probability) * 0.626 0.310 2.018 0.044 0.003 1.218

confidence * -8.462 1.804 -4.691 0.000 -12.016 -4.950

log(probability) * confidence -1.016 0.648 -1.568 0.117 -2.242 0.295

Faster R-CNN log(probability) 0.060 0.100 0.593 0.553 -0.137 0.257
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confidence * -3.022 0.925 -3.265 0.001 -4.835 -1.201

log(probability) * confidence 0.076 0.147 0.521 0.603 -0.207 0.368

Cascade R-CNN log(probability) 0.117 0.080 1.474 0.140 -0.039 0.274

confidence * -2.872 0.722 -3.979 0.000 -4.283 -1.450

log(probability) * confidence -0.014 0.108 -0.130 0.897 -0.224 0.200

Table 10: We run a logistic model regressing success against target IOU for the untargeted attack in the randomized attack
experiment. Target IOU for the untargeted attack increases success rates on all models. Table headers are explained in
Appendix C.4.1.

Group Regression

Model term sig estimate std.error statistic p.value conf.low conf.high

Untargeted
YOLOv3 iou * -2.199 0.278 -7.904 0 -2.741 -1.650

SSD iou * -1.704 0.226 -7.549 0 -2.146 -1.260

RetinaNet iou * -2.344 0.275 -8.533 0 -2.880 -1.802

Faster R-CNN iou * -1.961 0.267 -7.340 0 -2.481 -1.433

Cascade R-CNN iou * -2.122 0.307 -6.902 0 -2.718 -1.512
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Figure 7. Lower target confidence significantly increases success rates for all models and attacks: The binned summaries and
regression trendlines graph success proportion against target confidence in the randomized attack experiment. Bins are split into quantiles.
Errors are 95% confidence intervals.
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Figure 8. Larger perturb objects significantly increase success rates for all models and attacks, except for mislabeling attack on
Faster R-CNN, after controlling for perturb-target distances; Shorter perturb-target distances significantly increase success
rates for all models and attacks, after controlling for perturb object sizes: The binned summaries graph success proportion against
perturb-target distance (100 pixels) and perturb box size (100,000 squared pixels) in the randomized attack experiment.
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Figure 9. Although higher mean COCO accuracy for the target class seem to decrease success rates, the results are mixed after
controlling for target class confidence (Table 8): The binned summaries and regression trendlines graph success proportion against
mean COCO accuracy for the target class in the randomized attack experiment. Bins are split into quantiles. Errors are 95% confidence
intervals.
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Figure 10. Although intended class probability seem to increase success rates for the mislabeling attack, it does not predict success
rates after controlling for target class confidence, except for RetinaNet (Table 9): The binned summaries and regression trendlines
graph success proportion against intended class probability in the randomized attack experiment. Bins are split into quantiles. Errors are
95% confidence intervals.
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Figure 11. Target IOU for the untargeted attack increases success rates on all models: The binned summaries and regression trendlines
graph success proportion against target IOU for the untargeted attack in the randomized attack experiment. Bins are split into quantiles.
Errors are 95% confidence intervals.

Figure 12. These are the perturbed images corresponding to attacked examples illustrated in Figure 1.



On feasibility of intent obfuscating attacks

D. Deliberate Attack
D.1. Setup

Since we are using a shared computing resource on an internal network, we split the attack into 2 repetitions and attacked
100 images per repetition. The images are randomly sampled without replacement within repetitions, but may repeat across
repetitions. Every repetition takes 45-60 minutes on a 32GB NVIDIA Tesla V100 GPU. 480 repetitions (5 models * 3
attacks * 4 perturb box lengths * 4 perturb-target distances * 2 repetitions) take 15-20 V100 GPU days. We also re-ran 3
SSD repetitions which arbitrarily crashed.

D.2. Results

Table 11: We run a logistic model regressing success against perturb-target distance and perturb box length in the deliberate
attack experiment. Longer perturb box length or shorter perturb-target distance cause success rates to significantly increase
for all model and attack combinations, except for perturb box length in untargeted attack on Cascade R-CNN. The interaction
terms, even when significant, are negligibly close to 0. Table headers are explained in Appendix C.4.1.

Group Regression

Attack term sig estimate std.error statistic p.value conf.low conf.high

YOLOv3
Vanishing distance * -0.015 0.002 -7.681 0.000 -0.018 -0.011

length * 0.030 0.002 19.637 0.000 0.027 0.033

distance * length * 0.000 0.000 -6.081 0.000 0.000 0.000

Mislabeling distance * -0.015 0.002 -8.540 0.000 -0.018 -0.011

length * 0.019 0.001 16.603 0.000 0.016 0.021

distance * length 0.000 0.000 -1.733 0.083 0.000 0.000

Untargeted distance * -0.021 0.003 -7.440 0.000 -0.026 -0.015

length * 0.007 0.001 6.528 0.000 0.005 0.009

distance * length 0.000 0.000 1.467 0.142 0.000 0.000

SSD
Vanishing distance * -0.015 0.002 -7.055 0.000 -0.019 -0.011

length * 0.024 0.001 17.747 0.000 0.021 0.027

distance * length * 0.000 0.000 -4.823 0.000 0.000 0.000

Mislabeling distance * -0.018 0.002 -7.553 0.000 -0.023 -0.014

length * 0.020 0.001 15.991 0.000 0.017 0.022

distance * length * 0.000 0.000 -2.458 0.014 0.000 0.000

Untargeted distance * -0.018 0.002 -7.742 0.000 -0.023 -0.014

length * 0.013 0.001 11.665 0.000 0.011 0.015

distance * length 0.000 0.000 -0.873 0.383 0.000 0.000

RetinaNet
Vanishing distance * -0.045 0.006 -7.187 0.000 -0.058 -0.033

length * 0.016 0.001 10.614 0.000 0.013 0.019

distance * length * 0.000 0.000 -2.147 0.032 0.000 0.000

Mislabeling distance * -0.031 0.007 -4.240 0.000 -0.047 -0.018

length * 0.008 0.002 4.541 0.000 0.005 0.012

distance * length 0.000 0.000 -1.021 0.307 0.000 0.000



On feasibility of intent obfuscating attacks

Untargeted distance * -0.038 0.005 -7.446 0.000 -0.049 -0.029

length * 0.005 0.001 3.969 0.000 0.003 0.008

distance * length * 0.000 0.000 6.925 0.000 0.000 0.000

Faster R-CNN
Vanishing distance * -0.061 0.010 -6.407 0.000 -0.081 -0.044

length * 0.011 0.001 7.127 0.000 0.008 0.014

distance * length 0.000 0.000 -0.490 0.624 0.000 0.000

Mislabeling distance * -0.054 0.012 -4.664 0.000 -0.080 -0.034

length * 0.007 0.002 3.706 0.000 0.003 0.010

distance * length 0.000 0.000 -0.717 0.473 0.000 0.000

Untargeted distance * -0.044 0.006 -8.012 0.000 -0.056 -0.034

length * 0.005 0.001 3.676 0.000 0.002 0.007

distance * length * 0.000 0.000 6.889 0.000 0.000 0.000

Cascade R-CNN
Vanishing distance * -0.063 0.010 -6.579 0.000 -0.083 -0.046

length * 0.015 0.002 9.395 0.000 0.012 0.018

distance * length 0.000 0.000 -1.003 0.316 0.000 0.000

Mislabeling distance * -0.062 0.012 -5.240 0.000 -0.088 -0.041

length * 0.010 0.002 5.795 0.000 0.006 0.013

distance * length 0.000 0.000 -0.122 0.903 0.000 0.000

Untargeted distance * -0.061 0.008 -7.544 0.000 -0.079 -0.047

length 0.002 0.001 1.498 0.134 -0.001 0.005

distance * length * 0.000 0.000 6.198 0.000 0.000 0.000

Table 12: We combined the data in the randomized and deliberate attack experiments to run a logistic model regressing
success against object (versus non-object), with perturb-target distance (100 pixels) and perturb box size (100,000 squared
pixels) as covariates. The “object” term codes object as 1 and non-object as 0. Perturbing an object (in the randomized
attack) rather than a non-object (in the deliberate attack) significantly decreases success rates for most model and attack
combinations, after controlling for perturb sizes and perturb-target distances. Table headers are explained in Appendix C.4.1.

Group Regression

Attack term sig estimate std.error statistic p.value conf.low conf.high

YOLOv3
Vanishing object * -0.317 0.063 -5.031 0.000 -0.440 -0.193

distance * -1.711 0.076 -22.383 0.000 -1.863 -1.563

size * 8.585 0.367 23.423 0.000 7.878 9.315

distance * size * -3.258 0.310 -10.498 0.000 -3.872 -2.655

Mislabeling object -0.026 0.059 -0.440 0.660 -0.141 0.089

distance * -1.515 0.066 -22.796 0.000 -1.647 -1.386

size * 4.538 0.253 17.940 0.000 4.050 5.041

distance * size * -0.908 0.231 -3.938 0.000 -1.365 -0.462

Untargeted object * -0.201 0.079 -2.544 0.011 -0.357 -0.046

distance * -1.970 0.114 -17.351 0.000 -2.197 -1.752
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size * 1.593 0.170 9.364 0.000 1.265 1.932

distance * size 0.356 0.250 1.423 0.155 -0.149 0.837

SSD
Vanishing object 0.096 0.063 1.532 0.125 -0.027 0.219

distance * -1.924 0.084 -22.955 0.000 -2.090 -1.762

size * 5.883 0.296 19.896 0.000 5.313 6.472

distance * size * -2.263 0.289 -7.826 0.000 -2.844 -1.707

Mislabeling object -0.039 0.064 -0.609 0.542 -0.166 0.087

distance * -1.953 0.091 -21.407 0.000 -2.134 -1.776

size * 4.228 0.249 16.958 0.000 3.749 4.726

distance * size * -1.509 0.282 -5.356 0.000 -2.077 -0.971

Untargeted object * 0.176 0.066 2.661 0.008 0.047 0.306

distance * -2.060 0.093 -22.041 0.000 -2.246 -1.879

size * 1.958 0.187 10.482 0.000 1.599 2.331

distance * size -0.227 0.244 -0.929 0.353 -0.719 0.240

RetinaNet
Vanishing object * -0.551 0.093 -5.947 0.000 -0.734 -0.370

distance * -4.949 0.261 -18.960 0.000 -5.472 -4.448

size * 2.686 0.251 10.722 0.000 2.208 3.190

distance * size -0.881 0.569 -1.548 0.122 -2.035 0.197

Mislabeling object -0.245 0.136 -1.799 0.072 -0.513 0.022

distance * -3.968 0.357 -11.109 0.000 -4.697 -3.297

size * 1.163 0.231 5.032 0.000 0.712 1.621

distance * size 0.117 0.696 0.168 0.867 -1.323 1.403

Untargeted object * -0.448 0.091 -4.902 0.000 -0.628 -0.269

distance * -1.333 0.106 -12.560 0.000 -1.546 -1.130

size * 1.675 0.165 10.157 0.000 1.355 2.002

distance * size * 1.766 0.203 8.701 0.000 1.373 2.170

Faster R-CNN
Vanishing object * -0.768 0.113 -6.813 0.000 -0.991 -0.549

distance * -6.002 0.408 -14.728 0.000 -6.829 -5.230

size * 2.062 0.256 8.052 0.000 1.572 2.577

distance * size -1.190 0.905 -1.315 0.188 -3.059 0.485

Mislabeling object * -0.384 0.139 -2.770 0.006 -0.657 -0.113

distance * -5.868 0.483 -12.144 0.000 -6.858 -4.961

size 0.461 0.252 1.832 0.067 -0.029 0.958

distance * size * 2.055 0.747 2.752 0.006 0.440 3.362

Untargeted object * -0.275 0.089 -3.096 0.002 -0.449 -0.101

distance * -1.804 0.124 -14.599 0.000 -2.053 -1.568

size * 2.104 0.182 11.585 0.000 1.752 2.464

distance * size * 2.226 0.233 9.570 0.000 1.778 2.690
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Cascade R-CNN
Vanishing object * -0.665 0.104 -6.395 0.000 -0.870 -0.462

distance * -6.496 0.388 -16.731 0.000 -7.279 -5.757

size * 2.905 0.277 10.474 0.000 2.378 3.465

distance * size -1.579 0.840 -1.881 0.060 -3.310 -0.020

Mislabeling object * -0.282 0.117 -2.402 0.016 -0.513 -0.052

distance * -6.317 0.438 -14.410 0.000 -7.210 -5.489

size * 0.886 0.220 4.018 0.000 0.459 1.325

distance * size 1.310 0.746 1.757 0.079 -0.265 2.666

Untargeted object -0.175 0.100 -1.739 0.082 -0.371 0.022

distance * -2.464 0.159 -15.457 0.000 -2.786 -2.160

size * 0.913 0.161 5.677 0.000 0.598 1.229

distance * size * 2.093 0.216 9.686 0.000 1.670 2.519
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Figure 13. We enclose a non-overlapping square perturb region in 1 over 4 possible directions around the target object, on the top, left,
right or bottom, as illustrated. The square perturb region is axes and center-aligned to the target bounding box, and the perturb-target
distance is the shortest distance between the perturb and target boundaries. We randomly sample among the eligible directions in which
the perturb region is within image bounds. In the illustrated example, the top dashed region is not eligible. When all directions are not
eligible, we discard the image and resample. Across model and attack combinations, we sample the same images and select the same
target object and perturb direction per image to more accurately compare the success rates between combinations.


