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ABSTRACT

Data privacy protection is garnering increased attention among researchers. Dif-
fusion models (DMs), particularly with strict differential privacy, can potentially
produce images with both high privacy and visual quality. However, challenges
arise such as in ensuring robust protection in privatizing specific data attributes,
areas where current models often fall short. To address these challenges, we in-
troduce the PAC Privacy Preserving Diffusion Model, a model leverages diffu-
sion principles and ensure Probably Approximately Correct (PAC) privacy. We
enhance privacy protection by integrating a private classifier guidance into the
Langevin Sampling Process. Additionally, recognizing the gap in measuring the
privacy of models, we have developed a novel metric to gauge privacy levels. Our
model, assessed with this new metric and supported by Gaussian matrix compu-
tations for the PAC bound, has shown superior performance in privacy protection
over existing leading private generative models according to benchmark tests. Our
code is available at https://github.com/XUQIPAN/P3DM .

1 INTRODUCTION

Modern deep learning models, fortified with differential privacy as defined by Dwork et al. (2006),
have been instrumental in significantly preserving the privacy of sensitive data (Dwork et al., 2014).
DP-SGD Abadi et al. (2016), a pioneering method for training deep neural networks within the
differential privacy framework, applies gradient clipping at each step of the SGD (stochastic gradient
descent) to enhance privacy protection effectively.

Diffusion models (DMs) (Song & Ermon, 2019; 2020; Dhariwal & Nichol, 2021) have emerged as
state-of-the-art generative models, setting new benchmarks in various applications, particularly in
generating high-quality images. When trained under strict differential privacy protocols, these DMs
can produce images that safeguard privacy while maintaining high visual fidelity. For instance,
DPGEN (Chen et al., 2022) leverages a randomized response technique to privatize the recovery
direction in the Langevin MCMC process for image generation. The images produced by DPGEN
are not only visually appealing but also compliant with differential privacy standards, although its
privacy mechanism has been shown to be data-dependent later on. Moreover, the Differentially
Private Diffusion Models (DPDM) (Dockhorn et al., 2022) adapt DP-SGD and introduce noise mul-
tiplicity in the training process of diffusion models, demonstrating that DPDM can indeed produce
high-utility images while strictly adhering to the principles of differential privacy.

While diffusion models integrated with differential privacy (DP) mark a significant advance in
privacy-preserving generative modeling, several challenges and limitations remain.
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• Training modern deep learning models with differential privacy is notoriously difficult, as
evidenced by Tramer & Boneh (2021); He et al. (2023); Ding et al. (2024). Recent progress
relies heavily on the use of large pre-trained models (Li et al., 2022; Golatkar et al., 2022;
Yu et al., 2022; Li et al., 2022) or extensive public training data (De et al., 2022). We
believe that such a paradigm is unlikely to be a holy grail solution, as it does not provide a
rigorous privacy guarantee but is more heuristic in nature. We refer the reader to the recent
criticism against this paradigm (Tramèr et al., 2024).

• Most research on diffusion models with DP has concentrated on the privatization of overall
image features. The need to privatize specific attributes, such as facial expressions in human
portraits, has not been adequately addressed. This oversight suggests a gap in the nuanced
application of DP in generative modeling.

• The absence of a robust privacy measurement for models poses a critical challenge. Without
a clear metric, it becomes problematic to assess and compare the data privacy protection
performance across different models. This lack of standardized evaluation complicates the
advancement and adoption of privacy-preserving techniques in the field.

These issues highlight the need for continued research and development to overcome the current lim-
itations of diffusion models with DP and to push the boundaries of privacy protection in generative
modeling.

Recently, Xiao & Devadas (2023) introduces a novel definition of privacy known as Probably
Approximately Correct (PAC) Privacy, representing a significant evolution in privacy-preserving
methodologies. PAC Privacy characterizes the information-theoretic hardness to recover sensitive
data given arbitrary information disclosure/leakage during/after any processing. Compared with
differential privacy, it has the following advantages.

• Differential privacy requires bounded sensitivity, which cannot be tightly computed for
modern machine learning models. Artificial modifications are typically required to decom-
pose algorithms into multiple simpler and analyzable components, e.g., gradient clipping
in DP-SGD. The exact privacy analysis of DP can be, in general, NP-hard. Especially for
for deep learning, tight DP analysis are challenging. However, PAC privacy can be applied
to any data processing algorithm (as a black-box procedure), where security parameters can
be produced with arbitrarily high confidence via Monte-Carlo simulation.

• On the utility side, the magnitude of (necessary) perturbation required in PAC Privacy is
not lower bounded by Θ(

√
d) for a d-dimensional release, but could be O(1) (depending

on data distribution) for many practical data processing tasks, which is in contrast to the
input-independent worst-case information-theoretic lower bound like DP. Therefore, PAC
Privacy analysis in many applications can produce much sharpened utility-privacy trade-
offs.

To tackle the aforementioned challenges, we have introduced PAC Privacy Preserving Diffusion
Models (P3DM). Drawing from the foundations of DPGEN and harnessing insights from condi-
tional classifier guidance (Dhariwal & Nichol, 2021; Batzolis et al., 2021; Ho & Salimans, 2022),
our P3DM incorporates a conditional private attribute guidance module during the Langevin sam-
pling process. This addition empowers the model to specifically target and privatize certain image
attributes with greater precision.

Furthermore, we have crafted a set of privacy evaluation metrics. These metrics operate by measur-
ing the output class labels of the two nearest neighbor images in the feature space of the Inception
V3 model (Szegedy et al., 2016), using a pretrained classifier. Additionally, we quantify the noise
addition B necessary to assure PAC privacy in our model and conduct comparative analyses against
the mean L2-norm of B from various other models.

Through meticulous evaluations that utilize our privacy metrics and benchmarks for noise addition,
our model has proven to offer a superior degree of privacy. It exceeds the capabilities of state-
of-the-art (SOTA) models in this critical aspect, while simultaneously preserving the high quality
of synthetic image samples. These samples remain on par with those produced by the state-of-
the-art models, illustrating that our model does not sacrifice quality for privacy. This achievement
underscores our model’s potential to set new precedents in the domain of privacy-preserving image
generation and data protection at large.
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Our contributions are summarized as follows:

• We propose the first diffusion model with analysis on its PAC privacy guarantees.

• We incorporate conditional private classifier guidance into the Langevin Sampling Process,
enhancing the protection of privacy for specific attributes in images.

• We introduce a new metric that we developed for assessing the extent of privacy provided
by models.

• We compute the noise addition matrix to establish the Probably Approximately Correct
(PAC) upper bound and have conducted a comparative analysis of the norm of this matrix
across various models.

• Through extensive evaluations, we demonstrate that our model sets a new standard in pri-
vacy protection of specific attributes, achieving state-of-the-art (SOTA) results, while main-
taining image quality at a level that is comparable to other SOTA models.

2 RELATED WORKS

2.1 EARLY WORKS ON DIFFERENTIALLY PRIVATE IMAGE GENERATION

Image Synthesis with differential privacy has been studied extensively during the research. Recently,
there has been an increased emphasis on utilizing sophisticated generative models to improve the
quality of differentially private synthetic data (Hu et al., 2023). Some approaches employ Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014), or GANs that have been trained using
the Private Aggregation of Teacher Ensembles (PATE) framework (Xie et al., 2018; Chen et al.,
2020; Harder et al., 2021; Torkzadehmahani et al., 2019). Other contributions leverage variational
autoencoders(VAEs) (Pfitzner & Arnrich, 2022; Jiang et al., 2022; Takagi et al., 2021), or take
advantage of customized architectures (Cao et al., 2021; Harder et al., 2023). However, there are
several limitations for those DP synthesizers: (1) Failure when applying to high-dimensional data,
primarily due to the constraints imposed by discretization. (2) Limited image quality and lack of
expressive generator networks (Cao et al., 2021).

2.2 DIFFERENTIALLY PRIVATE DIFFUSION MODELS

Diffusion models (DMs) (Song & Ermon, 2019; 2020; Dhariwal & Nichol, 2021) , recognized
for setting new standards in image generation, can produce high-quality, privacy-compliant im-
ages when trained with differential privacy protocols. For example, DPGEN (Chen et al., 2022)
employs a data-dependant randomized response method to privatize the recovery direction in the
Langevin MCMC process for image generation. Furthermore, Differentially Private Diffusion Mod-
els (DPDM) (Dockhorn et al., 2022), which adapt DP-SGD and introduce noise multiplicity, both
demonstrate the feasibility of generating visually appealing, privacy-protective images. Subsequent
advancements, including fine-tuning existing models and employing novel diffusion model archi-
tectures, have been made to boost the effectiveness of differentially private image generation, as
detailed in Ghalebikesabi et al. (2023); Lyu et al. (2023). Nevertheless, as previously noted in the
introduction, there remains three key challenges to be addressed. In the following sections, we
propose solutions and methods to tackle these issues.

3 METHODS

We introduce the PAC Privacy Preserving Diffusion Model (P3DM), which aims to safeguard pri-
vacy for specific attributes. Our method is inspired by DPGEN (Chen et al., 2022). While DPGEN
asserts compliance with stringent ϵ-differential privacy, recent findings from Dockhorn et al. (2022)
indicate that DPGEN is, in fact, data-dependent. The RR mechanism M(d) in DPGEN holds va-
lidity only within the perturbed dataset. Specifically, if an element z belongs to the output set O
but not to the perturbed dataset d, then Pr[M(d) = O] = 0, which contravenes the differential
privacy definition. Different from DPGEN, which turns out to have no formal privacy guarantees,
our method satisfies PAC privacy.
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Algorithm 1 PAC-Private Adapted Randomized Response Algorithm
Require: a sensitive dataset {xi : i = 1, 2, ...,m}mi=1; sample number k

1: Sampling k image candidates from {xi}mi=1, with the sampling probability for each image
Eqn. 2, to construct set X← {xj : max(xi − xj)/σj ≤ β, j ∈ [m]}

2: Privatize images in X with RR from Eqn. 1 and obtain H(xi)
3: x̃i = H(xi) +B; B ∼ N (0,ΣB)
4: Return x̃i

Given a sensitive dataset {xi : i = 1, 2, ...,m}mi=1, we first sample an image by x̃i ← N (xi, σ
2I).

Next, we utilizes the random response method as follows:

Pr[H(x̃i) = w] =


eϵ

eϵ + k − 1
, w = xi

1

eϵ + k − 1
, w = x′

i ∈ X \ xi

(1)

In the equation, X = {xj : max(x̃i − xj)/σj ≤ β, j ∈ [m]} (where “max” is over the dimensions
of x̃i − xj), |X| = k ≥ 2, where the hyperparameter k denotes the number of selected candidates
from m training images, and the sampling probability for each image is given by

p(xi) = exp(−d∞(xi, x̃i, σi))/

m∑
a=1

exp(−d∞(xi, x̃i, σa)) (2)

In other words, the mechanism H(·) consists of 2 steps:

1. Sampling k image candidates from {xi}mi=1, with the sampling probability for each image
from Eqn. 2, to construct set X .

2. Privatize images in X with RR from Eqn. 1.

After applying H(·), we then add Gaussian noise B to the image to get x̃i ← H(xi) + B for
achieving PAC privacy. With these methods, x̃i outputs one of its k nearest neighbors with certain
probability Pr[H(x̃i) = xr

i ], as in Chen et al. (2022), giving us the privatized the recovery direction
dri = (x̃i − xr

i )/σ
2
i .

Following perturbation and privatization, we learn an energy function qθ(x̃) by optimizing the fol-
lowing loss function:

l(θ, σ) =
1

2
Ep(x)Ex̃∼N (x,σ2)

[
∥d−∇x log qθ(x̃)∥2

]
(3)

After getting the optimal ∇x log qθ(x̃) = (x̃− xr)/σ2 from Eqn. 3, we can then synthesize images
using the Langevin MCMC sampler with the optimal output∇x log qθ(x̃) as:

xt ← xt−1 +
αi

2
qθ(xt−1) +

√
αizt, t = 0, 1, 2, ...T. (4)

where αi denotes the step size.

3.1 CONDITIONAL PRIVATE LANGEVIN SAMPLING

We introduce a method of conditional private guidance within the Langevin sampling algorithm,
detailed in Algorithm 2. This method is designed to protect specific attributes within the original
datasets against adversarial attacks.

Prior to commencing the sampling iterations, it is essential to obtain class labels from a balanced
attribute of the dataset. The necessity for a dataset attribute that possesses an approximately equal
number of negative and positive samples is crucial for training classifiers to achieve exceptional
performance. Subsequently, we select a random label yi from y and fix it to initialize x0 with a
predetermined distribution, such as the standard normal distribution.
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Algorithm 2 PAC-Private Conditional Guidance Langevin Dynamics Sampling
Require: class labels y = {y1, y2, ...yn} from one of balanced dataset attributes;

gradient scale k; {δi}Li=1, ϵ, T ;
optimal output qθ from Eqn. 3;
pretrained classifier model on noisy images cθ

1: Randomly sample yn from y
2: Initialize x0

3: for i from 1 to L do
4: stepsize αi← δ2i /δ

2
L

5: for t from 1 to T do
6: Sample noise zt ∼ N (0, I)
7: xt← xt−1 +

αi

2 qθ(xt−1, δi) +
√
αizt + kΣθ(xt−1)∇xt−1

log cθ(yn|xt−1)
8: end for
9: x0← xT

10: end for
11: Return xT

Drawing on conditional image generation (Dhariwal & Nichol, 2021; Batzolis et al., 2021; Ho &
Salimans, 2022), we adapt the model from the vanilla Langevin dynamic samplings with the selected
attributes with conditional guidance

kΣθ(xt−1)∇xt−1
log cθ(yn|xt−1) (5)

where k is the gradient scale that can be tuned according to the performance of the model, Σθ(xt−1)
is the covariance matrix from reverse process Eqn. 8. In Eqn. 5, the term ∇xt−1

log cθ(yn|xt−1)
directs the Langevin sampling process toward a specific class label yn, which is sampled prior to the
inference.

This private guidance during the inference phase ensures that the synthesized images are protected
from privacy breaches related to designated attributes. At its core, this method involves intention-
ally modifying certain generated trajectories by randomly perturbing the image label yn, which is
then used by a pretrained classifier to guide the image generation process. This strategy is aimed at
diverting certain image attributes that we wish to protect. For instance, consider a scenario where
an original dataset image depicting Celebrity A wearing eyewear, a known trait of the celebrity. If
our goal is to privatize the attribute of “wearing glasses,” private classifier guidance can effectively
achieve this. When sampling occurs under the influence of this guidance, the attributes are likely to
vary, creating a chance that the resulting synthesized image based on Celebrity A might be rendered
without glasses. This modification effectively protects the attribute of ’glasses’ from being a con-
sistent element in the generated depictions of Celebrity A. Consequently, the images generated with
this approach offer a higher degree of privacy compared to those produced by the original DPGEN
method.

3.2 PRIVACY METRICS

Most privacy-preserving generative models prioritize assessing the utility of images for downstream
tasks, yet often overlook the crucial metric of the models’ own privacy. To bridge this gap in eval-
uating privacy extent, we have developed a novel algorithm that computes a privacy score for the
models obtained. As per Algorithm 3, we commence by preparing images xi generated from Algo-
rithm 2, the original dataset images xG

k , and alongside the classifier model which trained separately
with clean images (different from the classifier from Algorithm 2). Subsequently, we process all
synthesized images through InceptionV3 (Szegedy et al., 2016).

After obtaining the feature vector output from InceptionV3, we locate the feature vector of a ground
truth image that has the smallest L2 distance to that of the synthesized image, effectively finding the
nearest ground truth neighbor. We then test whether a pretrained classifier model can differentiate
these two images. Inability of the classifier to distinguish between the two indicates that the spe-
cific attributes, even in images most similar to the original, are well-protected. Thus, our method
successfully preserves privacy for specific attributes. Finally, we compute the average probability
of incorrect classification by the pretrained model to establish our privacy score. The greater the
privacy score a model achieves, the more robust its privacy protection is deemed to be.
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Algorithm 3 Privacy Score
Require: images xi generated by algorithm 2;

ground truth images xG
k ;

sample number n;
pretrained InceptionV3 model Iθ;
pretrained classifier model cθ.

1: private score s← 0
2: for xi from x0 to xn do
3: find argmink||Iθ(xi), Iθ(x

G
k )||2

4: if cθ(xi) ̸= cθ(x
G
k ) then

5: s← s+ 1
6: end if
7: end for
8: Return s/n

(a) DPDM FID = 117,
Privacy Score = 0.47

(b) DPGEN FID = 39.16,
Privacy Score = 0.4

(c) DP-MEPF FID =
57.5, Privacy Score = 0.4

(d) P3DM (Ours) FID =
37.96, Privacy Score =
0.56

Figure 1: CelebA images generated from DPDM, DPGEN and our model from left to right with
image resolution 64× 64.

4 EXPERIMENTS

In this section, we compare P3DM with existing methods.
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Figure 2: Privacy score and FID curve of all datapoints from different models. Each datapoint in
the figure consists of mean and standard deviation from 3 experimental results with the same epsilon
and different random seeds. Top-right corner is preferred. The curve from our method, pushes the
frontier to the upper-right over DPGEN (Chen et al., 2022), DPDM (Dockhorn et al., 2022) and
DP-MEPF (Harder et al., 2023). For more details related to data points in this figure, please refer to
Appendix D.
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4.1 DATASETS

Our experiments were carried out using the CelebA (Liu et al., 2015) datasets. We specifically
targeted attributes that have a balanced distribution of positive and negative samples, as noted in
Rudd et al. (2016), to facilitate the training of classifiers. Consequently, we selected attributes
like gender and smile from the CelebA dataset (referred to as CelebA-gender and CelebA-smile,
respectively) for sampling in Algorithm 2. All the images used in these experiments were of the
resolution 64× 64.

4.2 BASELINES

In our study, we consider DPGEN (Chen et al., 2022), DPDM (Dockhorn et al., 2022) and DP-
MEPF (Harder et al., 2023) as baseline methods. These approaches, except for DPGEN, which is
not a rigorous DP, excel in synthesizing images under differential privacy (DP) constraints, and they
stand out for their exceptional sample quality in comparison to other DP generative models. These
models serve as important benchmarks against which we evaluate the performance and efficacy of
our proposed method.

4.3 EVALUATION METRICS

In our evaluation process, we validate the capability of our PAC Privacy Preserving Diffusion Model
to generate high-resolution images using the key metric: the Frechet Inception Distance (Heusel
et al., 2017). This metric is widely recognized and utilized in the field of generative models to assess
the visual fidelity of the images they produce.

Additionally, to demonstrate our model’s effectiveness in preventing privacy leakage, we employ
our unique privacy metrics as outlined in Algorithm 3. We compare the mean norm of the Gaussian
noise E||B||2 as detailed in Theorem A.2. For our experiments, we have chosen the hyperparameters
ν = β = 0.5 and γ = 0.01. This approach allows us to comprehensively assess not just the quality of
the images generated, but also the strength of privacy protection our model offers. It is important to
note that hyperparameter tuning does incur an additional privacy cost, albeit modest (Liu & Talwar,
2019; Papernot & Steinke, 2022; Ding & Wu, 2023; Xiang et al., 2024). For simplicity we ignore
the privacy overhead due to hyperparameter tuning for all methods.

4.4 EMPIRICAL RESULTS AND ANALYSIS

It is important to note that the ξ and τ presented within the tables below is merely a hyperparameter
derived from the Randomized Response (RR) as indicated in Eqn. 1. This ξ and τ should not be
confused with the ε from ε-Differential Privacy (DP), where ξ indicates the model is PAC private,
and τ indicates the model is neither PAC private nor DP. We will later illustrate how our model
assures privacy through the automatic control of mutual information for a PAC privacy guarantee in
this section.

Fig. 2 details the evaluation results of image visual quality and privacy score on the CelebA dataset
with a resolution of 64×64, where each datapoint in the figure, or each entry in the table, consists of
mean and standard deviation from 3 experimental results with the same epsilon and different random
seeds. By examining the table, we can see that our model achieves image quality comparable to the
state-of-the-art model DPGEN (Chen et al., 2022), a conclusion also supported by Fig. 1.

Additionally, from Fig. 2, our model registers the highest performance in privacy score when having
similar FIDs, signaling an enhancement in our model’s ability to preserve privacy without substan-
tially impacting image utility. The assertion is further supported by Fig. 3, wherein the CelebA
dataset is filtered based on the ’smile’ attribute. Even upon querying the nearest images of P3DM
samples, we can distinctly observe that while all P3DM samples exhibit the absence of a smile,
the nearest neighbors predominantly display smiling faces. This highlights that, in contrast to other
models, the closest images between the generated dataset and the ground truth datasets are notably
similar in terms of the ’smile’ expression, while the images generated by our model demonstrate
distinctive features. Hence, the P3DM model effectively conceals the ’smile’ attribute.
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(a) DPGEN for ε = ∞

(b) DPDM for ε = 10

(c) DPGEN for ε = 10

(d) P3DM-Smile (Ours) for ξ = 10

Figure 3: Generated images (the second row) and their nearest neighbors measured by the l2 distance
between images from CelebA-smile dataset (the first row), with image resolution 64 × 64.

Table 1: Estimated level of noise B to approximately ensure PAC privacy
Methods DP PAC Privacy Heuristic E||B||2 ↓
P3DM-Gender ξ = 5 283.03±2.25
P3DM-Smile ξ = 5 280.60±2.57
DPGEN τ = 5 281.3±2.78
DP-MEPF ε = 5 325.6±3.62

P3DM-Gender ξ = 10 328.80±1.24
P3DM-Smile ξ = 10 327.98±1.45
DPGEN τ = 10 329.48±1.6
DPDM ε = 10 335.83±1.21
DP-MEPF ε = 10 330.75±1.33

P3DM-Gender ξ = ∞ 332.87±1.15
P3DM-Smile ξ = ∞ 331.67±1.3
DPGEN τ = ∞ 332.02±1.32
DPDM ε = ∞ 335.83±1.56
DP-MEPF ε = ∞ 333.48±1.79

Furthermore, in Table 1, we compute the multivariate Gaussian matrix B with a 1 − γ noise deter-
mination for the deterministic mechanism M followed the work by Xiao et.al Xiao & Devadas
(2023). From this, we show that under the same confidence level of 1 − γ = 0.99 to ensure
MI(X;M(X) + B) ≤ 1, the PAC Privacy Preserving Diffusion Model exhibits the smallest norm
on E||B||2. This demonstrates that data processed by our model retains the least mutual information
with the original dataset, thus affirming our model’s superior performance in privacy protection.

5 CONCLUSION

We introduce the PAC Privacy Preserving Diffusion Model (P3DM), which incorporates conditional
private classifier guidance into the Langevin Sampling process to selectively privatize image fea-
tures. In addition, we have developed and implemented a unique metric for evaluating privacy. This
metric involves comparing a generated image with its nearest counterpart in the dataset to assess
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whether a pretrained classifier can differentiate between the two. Furthermore, we calculate the
necessary additional noise B to ensure PAC privacy and benchmark the noise magnitude against
other models. Our thorough empirical and theoretical testing confirms that our model surpasses
current state-of-the-art private generative models in terms of privacy protection while maintaining
comparable image quality.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional
image generation with score-based diffusion models. arXiv preprint arXiv:2111.13606, 2021.

Tianshi Cao, Alex Bie, Arash Vahdat, Sanja Fidler, and Karsten Kreis. Don’t generate me: Training
differentially private generative models with sinkhorn divergence. Advances in Neural Informa-
tion Processing Systems, 34:12480–12492, 2021.

Dingfan Chen, Tribhuvanesh Orekondy, and Mario Fritz. Gs-wgan: A gradient-sanitized approach
for learning differentially private generators. Advances in Neural Information Processing Systems,
33:12673–12684, 2020.

Jia-Wei Chen, Chia-Mu Yu, Ching-Chia Kao, Tzai-Wei Pang, and Chun-Shien Lu. Dpgen: Differ-
entially private generative energy-guided network for natural image synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8387–8396, 2022.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlock-
ing high-accuracy differentially private image classification through scale. arXiv preprint
arXiv:2204.13650, 2022.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Youlong Ding and Xueyang Wu. Revisiting hyperparameter tuning with differential privacy, 2023.
URL https://arxiv.org/abs/2211.01852.

Youlong Ding, Xueyang Wu, Yining Meng, Yonggang Luo, Hao Wang, and Weike Pan. Delving
into differentially private Transformer. In Proceedings of the 41st International Conference on
Machine Learning, volume 235, pp. 11049–11071, 2024.

Tim Dockhorn, Tianshi Cao, Arash Vahdat, and Karsten Kreis. Differentially Private Diffusion
Models. arXiv:2210.09929, 2022.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Sahra Ghalebikesabi, Leonard Berrada, Sven Gowal, Ira Ktena, Robert Stanforth, Jamie Hayes,
Soham De, Samuel L Smith, Olivia Wiles, and Borja Balle. Differentially private diffusion models
generate useful synthetic images. arXiv preprint arXiv:2302.13861, 2023.

Aditya Golatkar, Alessandro Achille, Yu-Xiang Wang, Aaron Roth, Michael Kearns, and Stefano
Soatto. Mixed differential privacy in computer vision. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 8376–8386, 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

9

https://arxiv.org/abs/2211.01852


Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Frederik Harder, Kamil Adamczewski, and Mijung Park. Dp-merf: Differentially private mean em-
beddings with randomfeatures for practical privacy-preserving data generation. In International
conference on artificial intelligence and statistics, pp. 1819–1827. PMLR, 2021.

Frederik Harder, Milad Jalali, Danica J Sutherland, and Mijung Park. Pre-trained perceptual features
improve differentially private image generation. Transactions on Machine Learning Research,
2023.

Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee, Arturs Backurs,
Nenghai Yu, and Jiang Bian. Exploring the limits of differentially private deep learning with
group-wise clipping. In International Conference on Learning Representations, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Yuzheng Hu, Fan Wu, Qinbin Li, Yunhui Long, Gonzalo Munilla Garrido, Chang Ge, Bolin Ding,
David Forsyth, Bo Li, and Dawn Song. Sok: Privacy-preserving data synthesis. arXiv preprint
arXiv:2307.02106, 2023.

Dihong Jiang, Guojun Zhang, Mahdi Karami, Xi Chen, Yunfeng Shao, and Yaoliang Yu Dp2-
vae. Differentially private pre-trained variational autoencoders. arXiv preprint arXiv:2208.03409,
2022.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. In International Conference on Learning Representations,
2022.

Jingcheng Liu and Kunal Talwar. Private selection from private candidates. In Proceedings of the
51st ACM Symposium on Theory of Computing, pp. 298–309, 2019.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Saiyue Lyu, Margarita Vinaroz, Michael F Liu, and Mijung Park. Differentially private latent diffu-
sion models. arXiv preprint arXiv:2305.15759, 2023.

Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with renyi differential privacy. In
International Conference on Learning Representations, 2022.

Bjarne Pfitzner and Bert Arnrich. Dpd-fvae: Synthetic data generation using federated variational
autoencoders with differentially-private decoder. arXiv preprint arXiv:2211.11591, 2022.

Ethan M Rudd, Manuel Günther, and Terrance E Boult. Moon: A mixed objective optimization
network for the recognition of facial attributes. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14, pp.
19–35. Springer, 2016.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Shun Takagi, Tsubasa Takahashi, Yang Cao, and Masatoshi Yoshikawa. P3gm: Private high-
dimensional data release via privacy preserving phased generative model. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE), pp. 169–180. IEEE, 2021.

10



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. Dp-cgan: Differentially private
synthetic data and label generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pp. 0–0, 2019.

Florian Tramer and Dan Boneh. Differentially private learning needs better features (or much more
data). In International Conference on Learning Representations, 2021.
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A APPENDIX

A.1 DIFFERENTIAL PRIVACY

A randomized mechanismM is said (ε, δ)- differentially private if for any two adjacent datasets D
and D′ differing in a single datapoint for any subset of outputs S as follows (Dwork et al., 2014):

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ (6)

Here, ε is the upper bound on the privacy loss corresponding to M, and δ is the probability of
violating the DP constraint.

Differential privacy is a mathematical approach designed to protect individual privacy within
datasets. It offers a robust privacy assurance by enabling data analysis without disclosing sensi-
tive details about any specific person in the dataset.

A.2 CONDITIONAL DIFFUSION MODELS

Dhariwal & Nichol (2021) proposed a diffusion model that is enhanced by classifier guidance; it
has been shown to outperform existing generative models. By using true labels of datasets, it is
possible to train a classifier on noisy images xt at various timesteps pϕ(y|xt, t) , and then use this
classifier to guide the reverse sampling process∇xt log pϕ(y|xt, t). What begins as an unconditional
reverse noising process is thus transformed into a conditional one, where the generation is directed
to produce specific outcomes based on the given labels

pθ,ϕ(xt|xt+1, y) = Zpθ(xt|xt+1)pϕ(y|xt) (7)

Where Z is a normalizing constant. According to unconditional reverse process, which predicts
timestep xt from xt−1 leveraging Gaussian distribution, we have

pθ(xt|xt+1) ∼ N (µ,Σ) (8)

log pθ(xt|xt+1) = −
1

2
(xt − µ)TΣ−1(xt − µ) + C (9)

If we assume that logϕ p(y|xt) has low curvature compared to Σ−1, then we can approximate
log pϕ(y|xt) using a Taylor expansion around xt = µ as

log pϕ(y|xt) ≈ log pϕ(y|xt)|xt=µ + (xt − µ)∇xt log pϕ(y|xt)|xt=µ

= (xt − µ)g + C1
(10)

where g is the gradient of classifier g = ∇xt
log pϕ(y|xt)|x=µ and C1 is the constant.

Therefore, combing Eqn. 9 and 10 gives us

log(pθ(xt|xt+1)pϕ(y|xt)) ∼ N (µ+Σg,Σ) (11)

The investigation has led to the conclusion that the conditional transition operator can be closely
estimated using a Gaussian. And the Gaussian resembles the unconditional transition operator, with
the distinction that its mean is adjusted by the product of the covariance matrix, Σ, and the vector g.
This methodology allows for the generation of high-quality, targeted synthetic data.

A.3 PAC PRIVACY

A.3.1 BASIC DEFINITION

Definition A.1. ((δ, ρ,D) PAC Privacy). As discussed in Xiao & Devadas (2023), for a data pro-
cessing mechanismM, given some data distribution D, a measure function ρ(., .), and a finite set
X∗, we say M satisfies (δ, ρ,D)-PAC Privacy if the following experiment is impossible: A user
generates data X from distribution D and sendsM(X ) to an adversary. The adversary who knows
D andM is asked to return an estimation X̃ ∈ X∗ on X such that with posterior success probability
at least (1− δ), ρ(X̃,X) = 1.
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Definition A.2. ((∆fδ, ρ,D) PAC Advantage Privacy) Equivalantly, as discussed in Xiao & De-
vadas (2023),M could be defined as (∆fδ, ρ,D) PAC Advantage Privacy if the posterior advantage
measured in f -divergence Df satisfies

∆fδ = Df (1δ∥1δρo ) = δρof(
δ

δρo
) + (1− δρo)f(

1− δ

1− δρo
), (12)

where (1− δρo) represents the optimal prior success rate of recovering X .

1− δρo = sup
X̃∈X∗

Pr
X∼D

(
ρ(X̃,X) = 1

)
, (13)

and 1δ and 1δρo represent two Bernoulli distributions of parameters δ and δρo , respectively.

The definition above depicts the reconstruction hardness for the attackers to recover the private data
distribution M(X ). With a lower bound probability (1 − δ), the measure function ρ(., .) cannot
distinguish the recovery data from the original data. However, the limitation of the naive definition
is that the prior distribution of the public dataset is unknown, resulting in the failure of adversarial
inferences.

Definition A.3. (Mutual Information). For two random variables x and w in some joint distribution,
the mutual information MI(x;w) is defined as

MI(x,w) = H(x)−H(x|w) = DKL(Px,w||Px ⊗ Pw), (14)

where DKL denotes the KL divergence.

Theorem A.1. As discussed in Xiao & Devadas (2023), for any selected f -divergence Df , a mech-
anismM : X ∗ → Y satisfies (∆fδ, ρ,D) PAC Advantage Privacy if

∆fδ = Df

(
1δ∥1δρo

)
≤ inf

PW

Df

(
PX,M(X)∥PX ⊗ PW

)
. (15)

In particular, when we select Df to be the KL-divergence and PW = PM(X), M satisfies
(∆KLδ, ρ,D) PAC Advantage Privacy where

∆KLδ = DKL(1δ∥1δρo ) ≤MI
(
X;M(X)

)
. (16)

In summary, Df

(
1δ∥1δρo

)
quantifies the divergence between optimal a priori and posterior recon-

struction, effectively measuring the difficulty of inference. A higher value of Df

(
1δ∥1δρo

)
signifies

greater privacy leakage. Moreover, since MI
(
X;M(X)

)
provides an upper bound for Df , a lower

value of MI
(
X;M(X)

)
indicates stronger privacy protection. Thus, theorem A.1 establishes a

general method for linking the difficulty of arbitrary inference to the well-known concept of mu-
tual information. With theorem A.1, the goal of PAC privacy is explicit: determining the bound
MI

(
X;M(X)

)
with high confidence.

A.3.2 NOISE DETERMINATION AND SIMULATED PRIVACY GUARANTEE WITH HIGH
CONFIDENCE

The natural idea to achieve information leakage control is perturbation: when MI
(
X;M(X)

)
is

not small enough to produce satisfied PAC Privacy, we may add additional Gaussian noise B, to
produce smaller MI

(
X;M(X) +B

)
.

Theorem A.2. (Xiao & Devadas, 2023) When the mutual information MI(X;M(X)) is insufficient
to ensure PAC privacy, additional Gaussian noise B ∼ N (0,ΣB) can be introduced to yield a
reduced mutual information MI(X;M(X) +B), such that MI(X;M(X) +B) satisfies

MI(X;M(X) +B) ≤ 1

2
· log det

(
Id +ΣM(X) · Σ−1

B

)
. (17)

In particular, let the eigenvalues of ΣM(X) be (λ1, . . . , λd), then there exists some ΣB such that
E[∥B∥22] = (

∑d
j=1

√
λj)

2, and MI(X;M(X) +B) ≤ 1/2.
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Therefore, we have a simple upper bound on the mutual information after perturbation which only
requires the knowledge of the covariance ofM(X). Another important and appealing property is
that the noise calibrated to ensure the target mutual information bound is not explicitly dependent
on the output dimensionality d but instead on the square root sum of eigenvalues of ΣM(X). When
M(X) is largely distributed in a p-rank subspace of Rd, the above theorem suggests that a noise of
scale O(

√
p) is needed. Depending on data distribution, if p is a constant, then the noise can be as

low as O(1). This is different from DP where the expected l2 norm of noise is in a scale of Θ(
√
d)

given constant L2-norm sensitivity.

Based on Theorem A.2, we can use an automatic protocol Algorithm Xiao & Devadas (2023) to
determine ΣB and produce an upper bound such that MI(X;M(X) + B) ≤ (ν + β) with high
confidence, where ν and β are positive parameters selected as explained below. After sufficiently
many simulations, the following theorem ensures that we can obtain accurate enough estimation
with arbitrarily high probability.

Theorem A.3. Xiao & Devadas (2023) Assume that M(X) ∈ Rd and ∥M(X)∥2 ≤ r for some
constant r uniformly for any X, and apply Algorithm 1 to obtain the Gaussian noise covariance
ΣB for a specified mutual information bound v + β. v and β can be chosen independently, and c is
a security parameter. Then, there exists a fixed and universal constant κ such that one can ensure
MI(X;M(X) + B) ≤ ν + β with confidence at least (1 − γ) once the selections of c, m and γ
satisfy,

c ≥ κr

(
max

{√
d+ log(4/γ)

m
,
d+ log(4/γ)

m

}
+

√
d log(4/γ)

m

)
. (6)

Another way to interpret this noise determination is that a smaller E||B||2 implies a smaller covari-
ance matrix ΣB and lesser noise addition on M(X), which indicates X and M(X) have less mutual
information. Therefore, less noise addition signifies a higher privacy protection of the model M .

B AUTOMATIC PROTOCOL ALGORITHM XIAO & DEVADAS (2023)

Algorithm 4 (1 - γ)-Confidence Noise Determination of Deterministic Mechanism
Require: Diffusion-Privacy model M , data distribution D, sampling complexity m, security parameter c, and

mutual information quantities ν and β.
1: for k = 1, 2, . . . ,m do
2: Independently generate data X(k) from distribution D.
3: Record y(k) = M(X(k)).
4: end for
5: Calculate empirical mean µ̂ = 1

m

∑m
k=1 y

(k) and the empirical covariance estimation Σ̂ =
1
m

∑m
k=1(y

(k) − µ̂)(y(k) − µ̂)T .
6: Apply singular value decomposition (SVD) on Σ̂ and obtain the decomposition as Σ̂ = Û Λ̂ÛT , where Λ̂

is the diagonal matrix of eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd.
7: Determine the maximal index j0 = argmaxj λj for those λj > c.
8: if min1≤j≤j0,1≤d(λj − λ̂j) > r

√
d/c+ 2c then then

9: for j = 1, 2, . . . , d do
10: Determine the j-th element of a diagonal matrix AB as

λB,j =
2ν√

λj + 10cν/β ·
(∑d

j=1

√
λj + 10cν/β

)
11: end for
12: Determine the Gaussian noise covariance as ΣB = ÛABÛ

T .
13: else
14: Determine the Gaussian noise covariance as ΣB =

(∑d
j=1 λj + dc/(2ν)

)
· Id.

15: end if
16: Return Gaussian covariance matrix ΣB .
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C PAC PRIVACY PROOF OF OUR MODEL

Since the randomized response method adds Gaussian noise Z in the random response mechanism,
it can be proven to be PAC private using Theorem A.1 and Theorem A.2 in the paper:

• Algorithm 1 can be combined and written as H(X) +B, where H(X) represents the RR
mechanism and B denotes Gaussian noise with B ∼ N (0,ΣB).

• Applying Theorem A.2 and Theorem A.3, we can yield a satisfied upper bound (with ar-
bitary high confidence) for the whole process MI(X;M(X)) ≤ 1

2 · log det
(
Id +ΣM(X) ·

Σ−1
B

)
, whereM(X) = H(X) +B.

• Hence, MI(X;M(X)) can be used to produce an upper bound for the attack success
probability via Theorem A.1.

What’s more, Algorithm 2 is a heuristic method that further enhances privacy. We calculate noise B
to measure its privacy strength, achieving the best performance as shown in Table 1. Of independent
interest to ensure the PAC privacy of Algorithm 2 itself, we simply need to add noise B to the final
xT in Algorithm 2.

D DETAILED DATA IN FIGURE 2

Table 2: Perceptual and privacy score comparisons on CelebA with image resolution 64 × 64. In
our model, we train with data on a specific label respectively, and Model-Gender means our model
is trained with CelebA-Gender dataset. ξ indicates a hyperparameter derived from the Randomized
Response (RR).

DPGEN P3DM-Gender P3DM-Smile

ξ FID ↓ Privacy Score ↑ FID ↓ Privacy Score ↑ FID ↓ Privacy Score ↑
1 175±2.5 0.6±0.05 170±1.85 0.63±0.08
5 155±1.5 0.46±0.076 125.8±3.6 0.55±0.082 107.85±4.7 0.6±0.075
10 39.2±0.7 0.4±0.03 44.82±4.48 0.5±0.05 37.96±1.85 0.56±0.045
15 38.5±0.7 0.4±0.06 40±0.5 0.45±0.05 37.9±0.6 0.5±0.025
∞ 34.4±1.8 0.376±0.03 34.64±2.18 0.4±0.04 36.03±1.32

Table 3: Perceptual and privacy score comparisons on CelebA with image resolution 64 × 64. In
our model, we train with data on a specific label respectively, and Model-Gender means our model
is trained with CelebA-Gender dataset. ε represents the DP parameter of baselines.

DPDM DP-MEPF

ε FID ↓ Privacy Score ↑ FID ↓ Privacy Score ↑
1 67.5±1.45 0.48±0.02
5 170±2 0.57±0.06 61.2±1.8 0.45±0.03
10 117±1.5 0.47±0.04 57.5±1.2 0.4±0.04
15 113±1.2 0.35±0.05 55.8±1.4 0.38±0.02
∞ 110±1.2 0.3±0.06 52±2.3 0.34±0.025
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