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ABSTRACT

Randomized smoothing has recently emerged as an effective tool that enables
certification of deep neural network classifiers at scale. All prior art on randomized
smoothing has focused on isotropic `p certification, which has the advantage of
yielding certificates that can be easily compared among isotropic methods via
`p-norm radius. However, isotropic certification limits the region that can be
certified around an input to worst-case adversaries, i.e. it cannot reason about
other “close”, potentially large, constant prediction safe regions. To alleviate this
issue, (i) we theoretically extend the isotropic randomized smoothing `1 and `2
certificates to their generalized anisotropic counterparts following a simplified
analysis. Moreover, (ii) we propose evaluation metrics allowing for the comparison
of general certificates – a certificate is superior to another if it certifies a superset
region – with the quantification of each certificate through the volume of the
certified region. We introduce ANCER, a framework for obtaining anisotropic
certificates for a given test set sample via volume maximization. We achieve it
by generalizing memory-based certification of data-dependent classifiers. Our
empirical results demonstrate that ANCER achieves state-of-the-art `1 and `2
certified accuracy on CIFAR-10 and ImageNet in the data-dependence setting,
while certifying larger regions in terms of volume, highlighting the benefits of
moving away from isotropic analysis.

1 INTRODUCTION

The well-studied fact that Deep Neural Networks (DNNs) are vulnerable to additive imperceptible
noise perturbations has led to a growing interest in developing robust classifiers (Goodfellow et al.,
2015; Szegedy et al., 2014). A recent promising approach to achieve state-of-the-art provable
robustness (i.e. a theoretical bound on the output around every input) at the scale of ImageNet (Deng
et al., 2009) is randomized smoothing (Lecuyer et al., 2019; Cohen et al., 2019). Given an input
x and a network f , randomized smoothing constructs g(x) = Eε∼D[f(x + ε)] such that g(x) =
g(x + δ) ∀δ ∈ R, where the certification region R is characterized by x, f , and the smoothing
distribution D. For instance, Cohen et al. (2019) showed that if D = N (0, σ2I), thenR is an `2-ball
whose radius is determined by x, f and σ. Since then, there has been significant progress towards the
design of D leading to the largestR for all inputs x. The interplay betweenR characterized by `1, `2
and `∞-balls, and a notion of optimal distribution D has been previously studied Yang et al. (2020).

Despite this progress, current randomized smoothing approaches provide certification regions that are
isotropic in nature, limiting their capacity to certifying smaller and worst-case regions. We provide
an intuitive example of this behavior in Figure 1. The isotropic nature ofR in prior art is due to the
common assumption that the smoothing distribution D is identically distributed (Yang et al., 2020;
Kumar et al., 2020; Levine & Feizi, 2021). Moreover, comparisons between various randomized
smoothing approaches were limited to methods that produce the same `p certificate, with no clear
metrics for comparing with other certificates. In this paper, we address both concerns and present
new state-of-the-art certified accuracy results on both CIFAR-10 and ImageNet datasets.

Our contributions are threefold. (i) We provide a general and simpler analysis compared to prior
art (Cohen et al., 2019; Yang et al., 2020) that paves the way for the certification of anisotropic
regions characterized by any norm, holding prior art as special cases. We then specialize our result to
regions that, for a positive definite A, are ellipsoids, i.e. ‖Aδ‖2 ≤ c, and generalized cross-polytopes,
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Figure 1: Illustration of the landscape of fy (blue corresponds to a higher confidence in y, the
true label) for a region around an input in a toy, 2-dimensional radially separable dataset. For two
dataset examples, in (a) and (b) we show the boundaries of the optimal `1 isotropic and anisotropic
certificates, while (c) and (d) are the boundaries of the optimal `2 isotropic and anisotropic certificates.
A thorough discussion of this figure is presented in Section 3.

i.e. ‖Aδ‖1 ≤ c, generalizing both `2 (Cohen et al., 2019) and `1 (Lecuyer et al., 2019; Yang
et al., 2020) certification (Section 4). (ii) We introduce a new evaluation framework to compare
methods that certify general (isotropic or anisotropic) regions. We compare two general certificates
by defining that a method certifyingR1 is superior to another certifyingR2, ifR1 is a strict superset
to R2. Further, we define a standalone quantitative metric as the volume of the certified region,
and specialize it for the cases of ellipsoids and generalized cross-polytopes (Section 5). (iii) We
propose ANCER, an anisotropic certification method that performs sample-wise (i.e. per sample in
the test set) region volume maximization (Section 6), generalizing the data-dependent, memory-based
solution from Alfarra et al. (2020). Through experiments on CIFAR-10 (Krizhevsky, 2009) and
ImageNet (Deng et al., 2009), we show that restricting ANCER’s certification region to `1 and `2-balls
outperforms state-of-the-art `1 and `2 results from previous works (Yang et al., 2020; Alfarra et al.,
2020). Further, we show that the volume of the certified regions are significantly larger than all
existing methods, thus setting a new state-of-the-art in certified accuracy. We highlight that while we
effectively achieve state-of-the-art performance, it comes at a high cost given the data-dependency
requirements. A discussion of the limitations of the solution is presented in Section 6.

Notation. We consider a base classifier f : Rn → P(K), where P(K) is a probability simplex
over K classes, i.e. f i ≥ 0 and 1>f = 1, for i ∈ {1, . . . ,K}. Further, we use (x, y) to be a sample
input x and its corresponding true label y drawn from a test set Dt, and fy to be the output of f at
the correct class. We use `p to be the typically defined ‖ · ‖p norm (p ≥ 1), and `Ap or ‖ · ‖A,p for
p = {1, 2} to be a composite norm defined with respect to a positive definite matrix A as ‖A−1/pv‖p.

2 RELATED WORK

Verified Defenses. Since the discovery that DNNs are vulnerable against input perturbations (Good-
fellow et al., 2015; Szegedy et al., 2014), a range of methods have been proposed to build classifiers
that are verifiably robust (Huang et al., 2017; Gowal et al., 2019; Bunel et al., 2018; Salman et al.,
2019b). Despite this progress, these methods do not yet scale to the networks the community is
interested in certifying (Tjeng et al., 2019; Weng et al., 2018).

Randomized Smoothing. The first works on randomized smoothing used Laplacian (Lecuyer
et al., 2019; Li et al., 2019) and Gaussian Cohen et al. (2019) distributions to obtain `1 and `2-ball
certificates, respectively. Several subsequent works improved the performance of smooth classifiers by
training the base classifier using adversarial augmentation (Salman et al., 2019a), regularization (Zhai
et al., 2019), or general adjustments to training routines (Jeong & Shin, 2020). Recent work
derived `p-norm certificates for other isotropic smoothing distributions (Yang et al., 2020; Levine
& Feizi, 2020; Zhang et al., 2019). Concurrently, Dvijotham et al. (2020) developed a framework
to handle arbitrary smoothing measures in any `p-norm; however, the certification process requires
significant hyperparameter tuning. Similarly, Mohapatra et al. (2020) introduces larger certificates
that require higher-order information, yet do not provide a closed-form solution. This was followed
by a complementary data-dependent smoothing approach, where the parameters of the smoothing
distribution were optimized per test set sample to maximize the certified radius at an individual
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input (Alfarra et al., 2020). All prior works considered smoothing with isotropic distributions and
hence certified isotropic `p-ball regions. In this paper, we extend randomized smoothing to certify
anisotropic regions, by pairing it with a generalization of the data-dependent framework (Alfarra
et al., 2020) to maximize the certified region at each input point.

3 MOTIVATING ANISOTROPIC CERTIFICATES

Certification approaches aim to find the safe region R, where arg maxi f
i(x) = arg maxi f

i(x +
δ) ∀δ ∈ R. Recent randomized smoothing techniques perform this certification by explicitly
optimizing the isotropic `p certified region around each input (Alfarra et al., 2020), obtaining state-of-
the-art performance as a result. Despite this `p optimality, we note that any `p-norm certificate is
worst-case from the perspective of that norm, as it avoids adversary regions by limiting its certificate
to the `p-closest adversary. This means that it can only enjoy a radius that is at most equal to the
distance to the closest decision boundary. However, decision boundaries of general classifiers are
complex, non-linear, and non-radially distributed with respect to a generic input sample (Karimi et al.,
2019). This is evidenced by the fact that, within a reasonably small `p-ball around an input, there
are often only a small set of adversary directions (Tramèr et al., 2017; 2018) (e.g. see the decision
boundaries in Figure 1). As such, while `p-norm certificates are useful to reason about worst-case
performance and are simple to obtain given previous works (Cohen et al., 2019; Yang et al., 2020;
Lee et al., 2019), they are otherwise uninformative in terms of the shape of decision boundaries, i.e.
which regions around the input are safe.

To visualize these concepts, we illustrate the decision boundaries of a base classifier f trained on a
toy 2-dimensional, radially separable (with respect to the origin) binary classification dataset, and
consider two different input test samples (see Figure 1). We compare the optimal isotropic and
anisotropic certified regions of different shapes at these points. In Figures 1a and 1b, we compare
an isotropic cross-polytope (of the form ‖δ‖1 ≤ r) with an anisotropic generalized cross-polytope
(of the form ‖Aδ‖1 ≤ r), while in Figures 1c and 1d we compare an isotropic `2 ball (of the form
‖δ‖2 ≤ r) with an anisotropic ellipsoid (of the form ‖Aδ‖2 ≤ r). Notice that in Figures 1a and 1c,
due to the curvature of the classification boundary (shown in white), the optimal certification region
is isotropic in nature, which is evidenced by the similarities of the optimal isotropic and anisotropic
certificates. On the other hand, in Figures 1b and 1d, the location of the decision boundary allows for
the anisotropic certified regions to be considerably larger than their isotropic counterparts, as they
are not as constrained by the closest decision boundary, i.e. the worst-case performance. We note
that these differences are further highlighted in higher dimensions, and we study them for a single
CIFAR-10 test set sample in Appendix A.1. Further, we also showcase how anisotropic certification
allows for further insights into constant prediction (safe) directions in Appendix A.2.

4 ANISOTROPIC CERTIFICATION

One of the main obstacles in enabling anisotropic certification is the complexity of the analysis
required. To alleviate this, we follow a Lipschitz argument first observed by Salman et al. (2019a)
and Jordan & Dimakis (2020) and propose a simple and general certification analysis. We start with
the following two observations. All proofs are in Appendix B.
Proposition 1. Consider a differentiable function g : Rn → R. If supx‖∇g(x)‖∗ ≤ L where ‖ · ‖∗
has a dual norm ‖z‖ = maxx z

>x s.t. ‖x‖∗ ≤ 1, then g is L-Lipschitz under norm ‖ · ‖∗, that is
|g(x)− g(y)| ≤ L‖x− y‖.

Given the previous proposition, we formalize ‖ · ‖ certification as follows:
Theorem 1. Let g : Rn → RK , gi be L-Lipschitz continuous under norm ‖ · ‖∗ ∀i ∈ {1, . . . ,K},
and cA = arg maxi g

i(x). Then, we have arg maxi g
i(x+ δ) = cA for all δ satisfying:

‖δ‖ ≤ 1

2L

(
gcA(x)−max

c
gc 6=cA(x)

)
.

Theorem 1 provides an ‖ · ‖ norm robustness certificate for any L-Lipschitz classifier g under ‖ · ‖∗.
The certificate is only informative when one can attain a tight non-trivial estimate of L, ideally
supx‖∇g(x)‖∗, which is generally difficult when g is an arbitrary neural network.
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Framework Recipe. In light of Theorem 1, randomized smoothing can be viewed differently as an
instance of Theorem 1 with the favorable property that the constructed smooth classifier g enjoys an
analytical form for L = supx‖∇g(x)‖∗ by design. As such, to obtain an informative ‖ · ‖ certificate,
one must, for an arbitrary choice of a smoothing distribution, compute the analytic Lipschitz constant
L under ‖ · ‖∗ for the smooth g. While there can exist a notion of “optimal” smoothing distribution
for a given choice of ‖ · ‖ certificate, as in part addressed earlier for the isotropic `1, `2 and `∞
certificates (Yang et al., 2020), this is not the focus of this paper. The choice of the smoothing
distribution in later sections is inspired by previous work for the purpose of granting anisotropic
certificates. This recipe complements randomized smoothing works based on Neyman-Pearson’s
lemma (Cohen et al., 2019) or the Level-Set and Differential Method (Yang et al., 2020).

We will deploy this framework recipe to show two specializations for anisotropic certification, namely
ellipsoids (Section 4.1) and generalized cross-polytopes (Section 4.2).1.

4.1 CERTIFYING ELLIPSOIDS

In this section, we consider the certification under `Σ2 norm, or ‖δ‖Σ,2 =
√
δ>Σ−1δ, that has a dual

norm ‖δ‖Σ−1,2. Note that both ‖δ‖Σ,2 ≤ r and ‖δ‖Σ−1,2 ≤ r define an ellipsoid. Despite that the
following results hold for any positive definite Σ, we assume for efficiency reasons that Σ is diagonal
throughout. First, we consider the anisotropic Gaussian smoothing distribution N (0,Σ) with the
smooth classifier defined as gΣ(x) = Eε∼N (0,Σ) [f(x+ ε)]. Considering the classifier Φ−1(gΣ(x)),
where Φ is the standard Gaussian CDF, and following Theorem 1 to grant an `Σ2 certificate for
Φ−1(gΣ(x)), we derive the Lipschitz constant L under ‖ · ‖Σ−1,2, in the following proposition.

Proposition 2. Φ−1(gΣ(x)) is 1-Lipschitz (i.e. L = 1) under the ‖ · ‖Σ−1,2 norm.

Since Φ−1 is a strictly increasing function, by combining Proposition 2 with Theorem 1, we have:

Corollary 1. Let cA = arg maxi g
i
Σ(x) , then arg maxi g

i
Σ(x+ δ) = cA for all δ satisfying:

‖δ‖Σ,2 ≤
1

2

(
Φ−1 (gcAΣ (x))− Φ−1

(
max
c
gc6=cAΣ (x)

))
.

Corollary 1 holds the `2 certification from Zhai et al. (2019) as a special case for when Σ = σ2I .2

4.2 CERTIFYING GENERALIZED CROSS-POLYTOPES

Here we consider certification under the `Λ1 norm defining a generalized cross-polytope, i.e. the
set {δ : ‖δ‖Λ,1 = ‖Λ−1δ‖1 ≤ r}, as opposed to the `1-bounded set that defines a cross-polytope,
i.e. {δ : ‖δ‖1 ≤ r}. As with the ellipsoid case and despite that the following results hold for any
positive definite Λ, for the sake of efficiency, we assume Λ to be diagonal throughout. For generalized
cross-polytope certification, we consider an anisotropic Uniform smoothing distribution U , which
defines the smooth classifier gΛ(x) = Eε∼U [−1,1]n [f(x+ Λε)]. Following Theorem 1 and to certify
under the `Λ1 norm, we compute the Lipschitz constant of gΛ under the ‖Λx‖∞ norm, which is the
dual norm of ‖ · ‖Λ,1 (see Appendix B), in the next proposition.

Proposition 3. The classifier gΛ is 1/2-Lipschitz (i.e. L = 1/2) under the ‖Λx‖∞ norm.

Similar to Corollary 1, by combining Proposition 3 with Theorem 1, we have that:

Corollary 2. Let cA = arg maxi g
i
Λ(x) , then arg maxi g

i
Λ(x+ δ) = cA for all δ satisfying:

‖δ‖Λ,1 = ‖Λ−1δ‖1 ≤
(
gcAΛ (x)−max

c
gc6=cAΛ (x)

)
.

Corollary 2 holds the `1 certification from Yang et al. (2020) as a special case for when Λ = λI .

1Our analysis also grants a certificate for a mixture of Gaussians smoothing distribution (see Appendix B.1).
2A similar result was derived in the appendix of Fischer et al. (2020); Li et al. (2020) with a more involved

analysis by extending Neyman-Pearson’s lemma.
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5 EVALUATING ANISOTROPIC CERTIFICATES

With the anisotropic certification framework presented in the previous section, the question arises:
“Given two general (isotropic or anisotropic) certification regionsR1 andR2, how can one effectively
compare them?”. We propose the following definition to address this issue.

Definition 1. For a given input point x, consider the two certification regionsR1 andR2 obtained
for two classifiers f1 and f2, i.e. A1 = {δ : arg maxc f

c
1(x) = arg maxc f

c
1(x + δ),∀δ ∈ R1}

and A2 = {δ : arg maxc f
c
2(x) = arg maxc f

c
2(x + δ),∀δ ∈ R2} where arg maxc f

c
1(x) =

arg maxc f
c
2(x). We sayA1 is a "superior certificate" toA2 (i.e. A1 � A2), if and only if,A1 ⊃ A2.

This definition is a natural extension from the radius-based comparison of `p-ball certificates, provid-
ing a basis for evaluating anisotropic certification. To compare an anisotropic to an isotropic region
of certification, it is not immediately clear how to (i) check that an anisotropic region is a superset to
the isotropic region, and (ii) if it were a superset, how to quantify the improvement of the anisotropic
region over the isotropic counterpart. In Sections 5.1 and 5.2, we tackle these issues for the particular
cases of ellipsoid and generalized cross-polytope certificates.

5.1 EVALUATING ELLIPSOID CERTIFICATES

Comparing `2−Balls to `Σ2−Ellipsoids (Specialization of Definition 1). Recall that if Σ = σ2I ,
our ellipsoid certification in Corollary 1 recovers as a special case the isotropic `2-ball certification
of Cohen et al. (2019); Salman et al. (2019a); Zhai et al. (2019). Consider the certified regions
R1 = {δ : ‖δ‖2 ≤ σ̃r1} and R2 = {δ : ‖δ‖Σ,2 =

√
δ>Σ−1δ ≤ r2} for given r1, r2 > 0. Since

we take Σ = diag({σ2
i }ni=1), the maximum enclosed `2-ball for the ellipsoid R2 is given by the

set R3 = {δ : ‖δ‖2 ≤ mini σir2}, and thus R2 ⊇ R3. Therefore, it suffices that R3 ⊇ R1 (i.e.
mini σir2 ≥ σ̃r1), to say thatR2 is a superior certificate to the isotropicR1 as per Definition 1.

Quantifying `Σ2 Certificates. The aforementioned specialization is only concerned with whether
our ellipsoid certified regionR2 is “superior” to the isotropic `2-ball without quantifying it. A natural
solution is to directly compare the volumes of the certified regions. Since the volume of an ellipsoid
given by R2 is V(R2) = rn2

√
πn/Γ(n/2+1)

∏n
i=1 σi (Kendall, 2004), we directly compare the proxy

radius R̃ defined for R2 as R̃ = r2
n
√∏n

i σi, since larger R̃ correspond to certified regions with
larger volumes. Note that R̃, which is the nth root of the volume up to a constant factor, can be seen
as a generalization to the certified radius in the case when σi = σ ∀i.

5.2 EVALUATING GENERALIZED CROSS-POLYTOPE CERTIFICATES

Comparing `1−Balls to `Λ1−Generalized Cross-Polytopes (Specialization of Definition 1).
Consider the certificates S1 = {δ : ‖δ‖1 ≤ λ̃r1}, S2 = {δ : ‖δ‖Λ,1 = ‖Λ−1δ‖1 ≤ r2}, and
S3 = {δ : ‖δ‖1 ≤ mini λir2}, where we take Λ = diag({λi}ni=1). Note that since S2 ⊇ S3, then as
per Definition 1, it suffices that S3 ⊇ S1 (i.e. mini λir2 ≥ λ̃r1) to say that the anisotropic generalized
cross-polytope S2 is superior to the isotropic `1-ball S1.

Quantifying `Λ1 Certificates. Following the approach proposed in the `Σ2 case, we quantitatively
compare the generalized cross-polytope certification of Corollary 2 to the `1 certificate through the
volumes of the two regions. We first present the volume of the generalized cross-polytope.

Proposition 4. V
(
{δ : ‖Λ−1δ‖1 ≤ r}

)
= (2r)n

n!

∏
i λi.

Following this definition, we define the proxy radius for S2 in this case to be R̃ = r2
n
√∏n

i=1 λi. As
with the `2 case, larger R̃ correspond certified regions with larger volumes. As in the ellipsoid case,
R̃ can be seen as a generalization to the certified radius when λi = λ ∀i.

5



Under review as a conference paper at ICLR 2022

6 ANCER: SAMPLE-WISE VOLUME MAXIMIZATION FOR ANISOTROPIC
CERTIFICATION

Given the results from the previous sections, we are now equipped to certify anisotropic regions, in
particular ellipsoids and generalized cross-polytopes. As mentioned in Section 4, these regions are
generally defined as R = {δ : ‖δ‖Θ,p ≤ rp} for a given parameter of the smoothing distribution
Θ = diag ({θi}ni=1), an `p-norm (p ∈ {1, 2}), and a gap value of rp ∈ R+. At this point, one could
simply take an anisotropic distribution with arbitrarily chosen parameters Θ and certify a trained
network at any input point x, in the style of what was done in the previous randomized smoothing
literature with isotropic distributions. However, the choice of Θ is more complex in the anisotropic
case. A fixed choice of anisotropic Θ could severely underperform the isotropic case – take, for
example, the anisotropic distribution of Figure 1d applied to the input of Figure 1c.

Instead of taking a fixed Θ, we generalize the framework introduced in Alfarra et al. (2020), where
parameters of the smoothing distribution are optimized per input test point (i.e. in a sample-wise
fashion) so as to maximize the resulting certificate. The goal of the optimization in Alfarra et al.
(2020) is, at a point x, to maximize the isotropic `2 region described in Section 4.1 (i.e. {δ : ‖δ‖2 ≤
σxrp(x, σx))}), where rp is the gap and a function of x and σx ∈ R+. In the isotropic `p case,
this generalizes to maximizing the region {δ : ‖δ‖p ≤ θxrp (x, θx)}, which can be achieved by
maximizing radius θxrp (x, θx) through θx ∈ R+, obtaining r∗iso (Alfarra et al., 2020).

For the general anisotropic case, we propose ANCER, whose objective is to maximize the volume of
the certified region through the proxy radius, while satisfying the superset condition with respect to
the maximum isotropic `2 radius, r∗iso. In the case of the ellipsoids and generalized cross-polytopes as
presented in Sections 5.1 and 5.2, respectively, ANCER’s optimization problem can be written as:

arg max
Θx

rp (x,Θx) n

√∏
i

θxi s.t. min
i

θxi r
p (x,Θx) ≥ r∗iso (1)

where rp (x,Θx) is the gap value under the anisotropic smoothing distribution. We iteratively solve a
relaxed version of Equation (1) , with further details presented in Appendix C.

Memory-based Anisotropic Certification. While each of the classifiers induced by the parameter
Θx, i.e. gΘx , is robust by definition as presented in Section 4, the certification of the overall data-
dependent classifier is not necessarily sound due to the optimization procedure for each x. This
is a known issue in certifying data-dependent classifiers, and is addressed by Alfarra et al. (2020)
through the use of a memory-based procedure. In Appendix D, we present an adapted version of this
algorithm to ANCER. All subsequent results are obtained following this procedure.

Limitations of ANCER. Given ANCER uses a memorization procedure similar to the one presented
in Alfarra et al. (2020), it incurs limitations on memory and runtime complexity. The main limitations
of the memory-based certification are outlined in Appendix E of Alfarra et al. (2020). The anisotropic
case increases on the complexity of the isotropic framework by the increased runtime of specific
functions presented in Appendix D. Certification runtime comparisons are in Section 7.3.

Further, note that in memory-based data-dependent certification there is a single procedure for both
certification and inference in contrast with the fixed σ setting from Cohen et al. (2019). While the
linear runtime dependency on memory size might appear daunting for the deployment of such a
system, there are a few factors that could mitigate the cost. Firstly, in practice the models deployed
get regularly updated in deployment, and the memory should be reset in those situations. Secondly,
there are possible solutions which might attain sublinear runtime for the post-certification stage, such
as the application of k-d trees to reduce the space of comparisons and speed-up the process. As such,
we believe ANCER to be suited to applications in offline scenarios, where improved robustness is
desired and inference time is not a critical issue.

A further limitation of the memorization procedure has to do with the impact of the order in which
inputs are certified on the overall statistics obtained. Within a memory-based framework, certifying
x2 with x1 in memory can be different from certifying x1 with x2 in memory if they intersect. In
practice, given the low number of intersections observed with the original certified regions, this
effect was almost negligible in the results presented in Section 7. For fairness of comparison with
non-memory based methods, we report "worst-case" results for ANCER in which we abstain from
deciding whenever an intersection of two certified regions occurs.

6



Under review as a conference paper at ICLR 2022

0 1 2 3 4 5
2 radius

0.0

0.2

0.4

0.6

0.8

C
er

tif
ie

d 
ac

cu
ra

cy

CIFAR-10 - Cohen
Fixed
Isotropic DD
ANCER

0 1 2 3 4 5
2 radius

0.0

0.2

0.4

0.6

0.8

C
er

tif
ie

d 
ac

cu
ra

cy

CIFAR-10 - SmoothAdv
Fixed
Isotropic DD
ANCER

0 1 2 3 4 5
2 radius

0.0

0.2

0.4

0.6

0.8

C
er

tif
ie

d 
ac

cu
ra

cy

CIFAR-10 - MACER
Fixed
Isotropic DD
ANCER

0 1 2 3 4
2 radius

0.0

0.2

0.4

0.6

C
er

tif
ie

d 
ac

cu
ra

cy

ImageNet - Cohen
Fixed
Isotropic DD
ANCER

0 1 2 3 4
2 radius

0.0

0.2

0.4

0.6

C
er

tif
ie

d 
ac

cu
ra

cy

ImageNet - SmoothAdv
Fixed
Isotropic DD
ANCER

0 1 2 3 4 5
2  proxy volume

0.0

0.2

0.4

0.6

0.8

C
er

tif
ie

d 
ac

cu
ra

cy

Fixed
Isotropic DD
ANCER

0 1 2 3 4 5
2  proxy volume

0.0

0.2

0.4

0.6

0.8

C
er

tif
ie

d 
ac

cu
ra

cy

Fixed
Isotropic DD
ANCER

0 1 2 3 4 5
2  proxy volume

0.0

0.2

0.4

0.6

0.8

C
er

tif
ie

d 
ac

cu
ra

cy

Fixed
Isotropic DD
ANCER

0 1 2 3 4
2  proxy radius

0.0

0.2

0.4

0.6

C
er

tif
ie

d 
A

cc
ur

ac
y

Fixed
Isotropic DD
ANCER

0 1 2 3 4
2  proxy radius

0.0

0.2

0.4

0.6

C
er

tif
ie

d 
A

cc
ur

ac
y

Fixed
Isotropic DD
ANCER

Figure 2: Distribution of top-1 certified accuracy as a function of `2 radius (top) and `Σ2 -norm proxy
radius (bottom) obtained by different certification methods on CIFAR-10 and ImageNet.

7 EXPERIMENTS

We now study the empirical performance of ANCER to obtain `Σ2 , `Λ1 , `2 and `1 certificates on
networks trained using randomized smoothing methods found in the literature. In this section, we
show that ANCER is able to achieve (i) improved performance on those networks in terms of `2
and `1 certification when compared to certification baselines that smooth using a fixed isotropic
σ (Fixed σ) (Cohen et al., 2019; Yang et al., 2020; Salman et al., 2019a; Zhai et al., 2019) or
a data-dependent and memory-based isotropic one (Isotropic DD) (Alfarra et al., 2020); and (ii)
a significant improvement in terms of the `Σ2 and `Λ1 -norm certified region obtained by the same
methods – compared by computing the proxy radius of the certified regions – thus generally satisfying
the conditions of a superior certificate proposed in Definition 1. Note that both data-dependent
approaches (Isotropic DD and ANCER) use memory-based procedures. As such, the gains described
in this section constitute a trade-off given the limitations of the method described in Section 6.

We follow an evaluation procedure as similar as possible to the ones described in Cohen et al.
(2019); Yang et al. (2020); Salman et al. (2019a); Zhai et al. (2019) by using code and pre-trained
networks whenever available and by performing experiments on CIFAR-10 (Krizhevsky, 2009) and
ImageNet (Deng et al., 2009), certifying the entire CIFAR-10 test set and a subset of 500 examples
from the ImageNet test set. For the implementation of ANCER, we solve Equation (1) with Adam for
100 iterations, where the certification gap rp(x,Θx) is estimated at each iteration using 100 noise
samples per test point (see Appendix C) and Θx in Equation (1) is initialized with the Isotropic DD
solution from Alfarra et al. (2020). Further details of the setup can be found in Appendix E.

As in previous works, `p certified accuracy at radius R is defined as the portion of the test set
Dt for which the smooth classifier correctly classifies with an `p certification radius of at least R.
In a similar fashion, we define the anisotropic `Σ2 /`Λ1 certified accuracy at a proxy radius of R̃ (as
defined in Section 5) to be the portion of Dt in which the smooth classifier classifies correctly with
an `Σ2 /`Λ1 -norm certificate of an nth root volume of at least R̃. We also report average certified
radius (ACR) defined as Ex,y∼Dt

[Rx1(g(x) = y)] (Alfarra et al., 2020; Zhai et al., 2019) as well
as average certified proxy radius (ACR̃) defined as Ex,y∼Dt [R̃x1(g(x) = y)], where Rx and R̃x
denote the radius and proxy radius at x with a true label y for a smooth classifier g. Recall that in
the isotropic case, the proxy radius is, by definition, the same as the radius for a given `p-norm. For
each classifier, we ran experiments on the σ values reported in the original work (with the exception
of Yang et al. (2020), see Section 7.2). For the sake of brevity, we report in this section the top-1
certified accuracy plots, ACR and ACR̃ per radius across σ, as in Salman et al. (2019a); Zhai et al.
(2019); Alfarra et al. (2020). The performance of each method per σ is presented in Appendix G.

7.1 ELLIPSOID CERTIFICATION (`2 AND `Σ2 -NORM CERTIFICATES)

We perform the comparison of `2-ball vs. `Σ2 -ellipsoid certificates via Gaussian smoothing using net-
works trained following the procedures defined in Cohen et al. (2019), Salman et al. (2019a), and Zhai
et al. (2019). For each of these, we report results on ResNet18 trained using σ ∈ {0.12, 0.25, 0.5, 1.0}
for CIFAR-10, and ResNet50 using σ ∈ {0.25, 0.5, 1.0} for ImageNet. For details of the training
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Table 1: Comparison of top-1 certified accuracy at different `2 radii, `2 average certified radius
(ACR) and `Σ2 average certified proxy radius (ACR̃) obtained by using the isotropic σ used for
training the networks (Fixed σ); the isotropic data-dependent (Isotropic DD) optimization scheme
from Alfarra et al. (2020); and ANCER’s data-dependent anisotropic optimization.

CIFAR-10 Certification Accuracy @ `2 radius (%)
`2 ACR `Σ2 ACR̃0.0 0.25 0.5 1.0 1.5 2.0 2.5

COHEN
Cohen et al. (2019)

Fixed σ 86 71 51 27 14 6 2 0.722 0.722
Isotropic DD 82 76 62 39 24 14 8 1.117 1.117
ANCER 86 85 77 53 31 17 10 1.449 1.772

SMOOTHADV
Salman et al. (2019a)

Fixed σ 82 72 55 32 19 9 5 0.834 0.834
Isotropic DD 82 75 63 40 25 15 7 1.011 1.011
ANCER 83 81 73 48 30 17 8 1.224 1.573

MACER
Zhai et al. (2019)

Fixed σ 87 76 59 37 24 14 9 0.970 0.970
Isotropic DD 88 80 66 40 17 9 6 1.007 1.007
ANCER 84 80 67 34 15 11 9 1.136 1.481

ImageNet Certification Accuracy @ `2 radius (%)
`2 ACR `Σ2 ACR̃0.0 0.5 1.0 1.5 2.0 2.5 3.0

COHEN
Cohen et al. (2019)

Fixed σ 70 56 41 31 19 14 12 1.098 1.098
Isotropic DD 71 59 46 36 24 19 15 1.234 1.234
ANCER 70 70 62 61 42 36 29 1.810 1.981

SMOOTHADV
Salman et al. (2019a)

Fixed σ 65 59 44 38 26 20 18 1.287 1.287
Isotropic DD 66 62 53 41 32 24 20 1.428 1.428
ANCER 66 66 62 58 44 37 32 1.807 1.965

procedures, see Appendix E.1. Figure 2 plots top-1 certified accuracy as a function of the `2 radius
(top) and of the `Σ2 -norm proxy radius (bottom) per trained network and dataset, while Table 1
presents an overview of the certified accuracy at various `2 radii, as well as `2 ACR and `Σ2 -norm
ACR̃. Recall that, following the considerations in Section 5.1, the `2 certificate obtained through
ANCER is the maximum enclosed isotropic `2-ball in the `Σ2 ellipsoid.

First, we note that sample-wise certification (Isotropic DD and ANCER) achieves higher certified
accuracy than fixed σ across the board. This mirrors the findings in Alfarra et al. (2020), since certi-
fying with a fixed σ for all samples struggles with the robustness/accuracy trade-off first mentioned
in Cohen et al. (2019), whereas the data-dependent solutions explicitly optimize σ per sample to
avoid it. More importantly, ANCER achieves new state-of-the-art `2 certified accuracy at most radii
in Table 1, e.g. at radius 0.5 ANCER brings certified accuracy to 77% (from 66%) and 70% (from
62%) on CIFAR-10 and ImageNet, respectively, yielding relative percentage improvements in ACR
between 13% and 47% when compared to Isotropic DD. While the results are significant, it might
not be immediately clear why maximizing the volume of an ellipsoid with ANCER results in a larger
maximum enclosed `2-ball certificate in `Σ2 ellipsoid when compared to optimizing the `2-ball with
Isotropic DD. We explore this phenomenon in Appendix G.3.

As expected, ANCER substantially improves `Σ2 ACR̃ compared to Isotropic DD in all cases –
with relative improvements in ACR̃ between 38% and 63% over both datasets. The joint results,
certification with `2 and `Σ2 , establish that ANCER certifies the `2-ball region obtained by previous
approaches, in addition to a much larger region captured by the `Σ2 certified accuracy and ACR̃, and
therefore is, according to Definition 1, generally superior to the Isotropic DD one.

7.2 GENERALIZED CROSS-POLYTOPE CERTIFICATION (`1 AND `Λ1 -NORM CERTIFICATES)

To investigate `1-ball vs. `Λ1 -generalized cross-polytope certification via Uniform smooth-
ing, we compare ANCER to the `1 state-of-the-art results from RS4A (Yang et al., 2020).
While the authors of the original work report best certified accuracy based on 15 networks
trained at different σ levels between 0.15 and 3.5 on CIFAR-10 (WideResNet40) and Ima-
geNet (ResNet50) and due to limited computational resources, we perform the analysis on a
subset of those networks with σ = {0.25, 0.5, 1.0}. We reproduce the results in Yang et al.
(2020) as closely as possible, with details of the training procedure presented in Appendix E.2.
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Table 2: Comparison of top-1 certified accuracy at different `1 radii, `1 average certified radius
(ACR) and `Λ1 average certified proxy radius (ACR̃) obtained by using the isotropic σ used for
training the networks (Fixed σ); the isotropic data-dependent (Isotropic DD) optimization scheme
from Alfarra et al. (2020); and ANCER’s data-dependent anisotropic optimization.

CIFAR-10 Certification Accuracy @ `1 radius (%)
`1 ACR `Λ1 ACR̃0.0 0.25 0.5 0.75 1.0 1.5 2.0

RS4A
Yang et al. (2020)

Fixed σ 92 83 75 71 46 0 0 0.775 0.775
Isotropic DD 92 89 82 76 58 6 2 0.946 0.946
ANCER 92 90 84 80 63 6 2 0.980 1.104

ImageNet

RS4A
Yang et al. (2020)

Fixed σ 78 73 67 63 0 0 0 0.683 0.683
Isotropic DD 79 76 70 65 46 0 0 0.729 0.729
ANCER 78 76 70 66 48 0 0 0.730 1.513
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Figure 3: Distribution of top-1 certified
accuracy as a function of `1 radius (top)
and `Λ1 -norm proxy radius (bottom) ob-
tained by different certification methods
on CIFAR-10 and ImageNet.

Figure 3 shows the top-1 certified accuracy as a function
of the `1 radius (top) and of the `Λ1 -norm proxy radius
(bottom) for RS4A, and Table 2 shows an overview of the
certified accuracy at various `1 radii, as well as `1 ACR
and `Λ1 ACR̃.

As with the ellipsoid case, we notice that ANCER out-
performs both Fixed σ and Istropic DD for most `1 radii,
establishing new state-of-the-art results in CIFAR-10 at
radii 0.5 and 1.0, and ImageNet at radii 0.5 (compared
to previous results reported in Yang et al. (2020)). Once
more and as expected, ANCER significantly improves the
`Λ1 ACR̃ for all radii, pointing to substantially larger cerfi-
cates than the isotropic case. These results also establish
that ANCER certifies the `1-ball region obtained by previ-
ous work, in addition to the larger region obtained by the
`Λ1 certificate, and thus we can consider it superior (with
respect to Definition 1) to Isotropic DD.

7.3 CERTIFICATION RUNTIME Table 3: Average certification time for
each sample per architecture used: (a)
ResNet18 (`2, `Σ2 on CIFAR-10), (b)
WideResNet40 (`1, `Λ1 on CIFAR-10),
and (c) ResNet50 (ImageNet).

Fixed σ Isotropic DD ANCER

(a) 1.6s 1.8s 2.7s
(b) 7.4s 9.5s 11.5s
(c) 109.5s 136.0s 147.0s

The certification procedures of Isotropic DD and ANCER
tradeoff improved certified accuracy for runtime, since
they require a sample-wise optimization to be run prior to
the CERTIFY step described in Cohen et al. (2019), and
a memory-based step as per Alfarra et al. (2020). The
runtime of the optimization and certification procedures
is roughly equal for `1, `2, `Σ2 and `Λ1 certification, and
mostly depends on network architecture. As such, we
report the average certification runtime for a test set sample
on an NVIDIA Quadro RTX 6000 GPU for Fixed σ, Isotropic DD and ANCER (including the isotropic
initialization step) in Table 3. We observe that the overall run time overhead for ANCER is not
significant as compared to its certification gains.

8 CONCLUSION

In this work, we lay the theoretical foundations for anisotropic certification through a simple analysis,
propose a metric for comparing general robustness certificates, and introduce ANCER, a certification
procedure that estimates the parameters of the anisotropic smoothing distribution to maximize the
certificate. Our experiments show that ANCER achieves state-of-the-art `1 and `2 certified accuracy
on CIFAR-10 and ImageNet. Our anisotropic analysis enables further insights about the boundary of
the safe region around an input sample, as compared to its isotropic counterpart.
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9 REPRODUCIBILITY STATEMENT

We provide complete proofs for each of the theoretical results presented in Section 4 in Appendix B.
Details on the practical implementation of the ANCER optimization algorithm is presented in
Appendix C, while the memory-based procedure is detailed in Appendix D. An overview of the
experimental setup used to obtain the results in Section 7 can be found at the top of that section, while
details on the hyperparameters and network training are presented in Appendix E. We include source
code in Python and instructions to reproduce our results as part of the supplementary material.

10 ETHICS STATEMENT

We confirm that no results in this paper involved studies on human subjects, and all experiments used
open-source datasets.
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A QUALITATIVE MOTIVATION OF ANISOTROPIC CERTIFICATION

A.1 VISUALIZING CIFAR-10 OPTIMIZED ISOTROPIC VS. ANISOTROPIC CERTIFICATES

1

2

Anistropic
Isotropic

(a)

3072

1

Anistropic
Isotropic

(b)

Figure 4: Illustration of the landscape of fy for
points around an input point x, and two pro-
jections of an isotropic `2 certified region and
an anisotropic `Σ2 2-norm region on a CIFAR-10
dataset example to a subset of two eigenvectors of
the Hessian of fy (blue regions correspond to a
higher confidence in y).

To extend the illustration in Figure 1 to a higher
dimensional input, we now analyze an exam-
ple of the isotropic `2 certification of random-
ized smoothing with N (0, σ2I), where σ is op-
timized per input Alfarra et al. (2020), against
ANCER, certifying an anisotropic region char-
acterized by a diagonal `Σ2 -norm. To do so, we
consider a CIFAR-10 Krizhevsky (2009) dataset
point x, where the input is of size (32x32x3).
We perform the 2D analysis by considering the
regions closest to a decision boundary. To do so,
and following Moosavi-Dezfooli et al. (2019),
we compute the Hessian of fy(x) with respect
to x where y is the true label for x with f clas-
sifying x correctly, i.e. y = arg maxi f

i(x).
In addition to the Hessian, we also compute its
eigenvector decomposition, yielding the eigen-
vectors {νi}, i ∈ {1, . . . , 3072} ordered in de-
scending order of the absolute value of the re-
spective eigenvalues. In Figure 4a, we show the
projection of the landscape of fy in the highest curvature directions, i.e. ν1 and ν2. Note that the
isotropic certification, much as in Figure 1c, in these 2 dimensions is nearly optimal when compared to
the anisotropic region. However, if we take the same projection with respect to the eigenvectors with
the lowest and highest eigenvalues, i.e. ν1 and ν3072, the advantages of the anisotropic certification
become clear as shown in Figure 4b.

A.2 VISUALIZING SAFE IMAGES IN OPTIMIZED ANISOTROPIC CERTIFICATES

x
x

+

Figure 5: Visualization of a CIFAR-10 image x and an example x+ δ of an imperceptible change
that is not inside the optimal isotropic certified region, but is covered by the anisotropic certificate.

As observed from the examples in Section 3 and Appendix A.1, anisotropic certification reasons
more closely about the shape of the decision boundaries, allowing for further insights into constant
prediction (safe) directions. In Figure 5, we present a series of test set images x, as well as practically
indistinguishable x+ δ images which are not inside the optimal certified isotropic `2-balls for each
input sample, yet are within the anisotropic certified regions. This showcases the merits of using
anisotropic certification for characterizing larger safe regions.

B ANISOTROPIC CERTIFICATION AND EVALUATION PROOFS

Proposition 1 (restatement). Consider a differentiable function g : Rn → R. If supx‖∇g(x)‖∗ ≤ L
where ‖ · ‖∗ has a dual norm ‖z‖ = maxx z

>x s.t. ‖x‖∗ ≤ 1, then g is L-Lipschitz under norm
‖ · ‖∗, that is |g(x)− g(y)| ≤ L‖x− y‖.
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Proof. Consider some x, y ∈ Rn and a parameterization in t as γ(t) = (1 − t)x + ty ∀t ∈ [0, 1].
Note that γ(0) = x and γ(1) = y. By the Fundamental Theorem of Calculus we have:

|g(y)− g(x)| = |g(γ(1))− g(γ(0))| =
∣∣∣∣∫ 1

0

dg(γ(t))

dt
dt

∣∣∣∣ =

∣∣∣∣∫ 1

0

∇g>∇γdt
∣∣∣∣ ≤ ∫ 1

0

∣∣∇g>∇γ∣∣ dt
≤
∫ 1

0

‖∇g(x)‖∗‖∇γ(t)‖dt ≤ L‖y − x‖

Theorem 1 (restatement). Let g : Rn → RK , gi be L-Lipschitz continuous under norm ‖ · ‖∗
∀i ∈ {1, . . . ,K}, and cA = arg maxi g

i(x). Then, we have arg maxi g
i(x + δ) = cA for all δ

satisfying:

‖δ‖ ≤ 1

2L

(
gcA(x)−max

c
gc 6=cA(x)

)
.

Proof. Take cB = arg maxc g
c6=cA(x). By Proposition 1, we get:

|gcA(x+ δ)− gcA(x)| ≤ L‖δ‖ =⇒ gcA(x+ δ) ≥ gcA(x)− L‖δ‖
|gcB (x+ δ)− gcB (x)| ≤ L‖δ‖ =⇒ gcB (x+ δ) ≤ gcB (x) + L‖δ‖

By subtracting the inequalities and re-arranging terms, we have that as long as gcA(x) − L‖δ‖ >
gcB (x) + L‖δ‖, i.e. the bound in the Theorem, then gcA(x + δ) > gcB (x + δ), completing the
proof.

Proposition 2 (restatement). Consider gΣ(x) = Eε∼N (0,Σ) [f(x+ ε)]. Φ−1(gΣ(x)) is 1-Lipschitz
(i.e. L = 1) under the ‖ · ‖Σ−1,2 norm.

Proof. To prove Proposition 2, one needs to show that Φ−1(giΣ(x)) ∀i is 1-Lipschitz under the
‖ · ‖Σ−1,2 norm. For ease of notation, we drop the superscript giΣ and use only g. We want to
show that ‖∇Φ−1(gΣ(x))‖Σ−1,2 = ‖Σ1/2∇Φ−1(gΣ(x))‖2 ≤ 1. Following the argument presented
in Salman et al. (2019a), it suffices to show that, for any unit norm direction u and p = gΣ(x), we
have:

u>Σ
1
2∇gΣ(x) ≤ 1√

2π
exp

(
−1

2
(Φ−1(p))2

)
. (2)

We start by noticing that:

u>Σ
1
2∇gΣ(x) =

1

(
√

2π)n
√
|Σ|

∫
Rn

f(t)u>Σ
1
2 Σ−1(t− x) exp

(
−1

2
(x− t)Σ−1(x− t)

)
dnt

= Es∼N (0,I)[f(x+ Σ
1
2 s)u>s] = Ev∼N (0,Σ)[f(x+ v)u>Σ−

1
2 v].

We now need to find the optimal f∗ : Rn → [0, 1] that satisfies gΣ(x) = Ev∼N (0,Σ)[f(x+ v)] = p

while maximizing the left hand size Ev∼N (0,Σ)[f(x+ v)u>Σ−
1
2 v]. We argue that the maximizer is

the following function:
f∗(x+ v) = 1

{
u>Σ−

1
2 v ≥ −Φ−1(p)

}
.

To prove that f∗ is indeed the optimal maximizer, we first show feasibility. (i): It is clear that
f∗ : Rn → [0, 1]. (ii) Note that:

Ev∼N (0,Σ))

[
1

{
u>Σ−

1
2 v ≥ −Φ−1(p)

}]
= Px∼N (0,1)(x ≥ −Φ−1(p)) = 1− Φ(−Φ−1(p)) = p.

To show the optimality of f∗, we show that it attains the right upper bound:

Ev∼N (0,Σ))

[
u>Σ−

1
2 v1

{
u>Σ−

1
2 v ≥ −Φ−1(p)

}]
= Ex∼N (0,1)

[
x1
{
x ≥ −Φ−1(p)

} ]
=

1√
2π

∫ ∞
−Φ−1(p)

x exp

(
−1

2
x2

)
dx

=
1√
2π

exp

(
−1

2
(Φ−1(p))2

)
obtaining the bound from Equation (2), and thus completing the proof.
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Proposition 3 (restatement). Consider gΛ(x) = Eε∼U [−1,1]n [f(x + Λε)]. The classifier giΛ ∀i is
1/2-Lipschitz (i.e. L = 1/2) under the ‖Λx‖∞ norm.

Proof. We begin by observing that the dual norm of ‖x‖Λ,1 = ‖Λ−1x‖1 is ‖x‖∗ = ‖Λx‖∞, since:

max
‖Λ−1x‖1≤1

x>y = max
‖z‖1≤1

y>Λz = ‖Λy‖∞.

Without loss of generality, we analyze ∂gi/∂x1. Let x̂ = [x2, . . . , xn] ∈ Rn−1, then:

λ1∂g
i

∂x1
=

λ1

(2λ)n
∂

∂x1

∫
[−1,1]n−1

∫ 1

−1

f i(x1 + λ1ε1, x̂+ Λ̂ε̂)dε1d
n−1ε̂

=
1

2n

∫
[−1,1]n−1

(f i(x1 + 1, x̂+ Λ̂ε̂)− f i(x1 − 1, x̂+ Λ̂ε̂))dn−1ε̂

Thus,∣∣∣∣λ1∂g
i

∂x1

∣∣∣∣ ≤ 1

2n
∏n
j=2 λj

∫
[−1,1]n−1

∣∣∣f i(x1 + 1, x̂+ Λ̂ε̂)− f i(x1 − 1, x̂+ Λ̂ε̂)
∣∣∣ dn−1ε̂ ≤ 1

2
.

The second and last steps follow by the change of variable t = x1+λ1ε1 and Leibniz rule. Following a
symmetric argument,

∣∣λj∂gi/∂xj

∣∣ ≤ 1/2 ∀i resulting in having ‖Λ∇gi(x)‖∞ = maxi λi
∣∣∂gi/∂xi

∣∣ ≤
1/2 ∀i concluding the proof.

Proposition 4 (restatement). V
(
{δ : ‖Λ−1δ‖1 ≤ r}

)
= (2r)n

n!

∏
i λi.

Proof. Take A = rΛ−1 = diag(1/rλ1, . . . , 1/rλn) = diag(a1, . . . , an).

We can re-write the region as {x :
∑
i ai|xi| ≤ 1}, from which it is clear to see that this region is

an origin centered, axis-aligned simplex with the set of vertices V = {±1/aiei}ni=1, where ei is the
standard basis vector i.

Define the sets of vertices Vt = V \ {−1/anen} and Vb = V \ {1/anen}. Given the symmetry
around the origin, each of these sets defines an n-dimensional hyperpyramid with a shared base
Bn−1 given by the n − 1-dimensional hyperplane defined by all vertices where xn = 0, and an
apex at the vertex 1/anen (or −1/anen in the case of Vb). The volume of each of these n − 1-
dimensional hyperpyramids is given by V(Bn−1)/nan (Kendall (2004)), yielding a total volume of
Vn = 2

n
1
an
V(Bn−1). The same argument can be applied to compute V(Bn−1) which is a union of

two n− 1-dimensional hyperpyramids. This forms a recursion that completes the proof.

Proof. (Alternative Proof.) We consider the case that Λ−1 is a general positive definite matrix
that is not necessarily diagonal. Note that V

(
{δ : ‖Λ−1δ‖1 ≤ r}

)
= V

(
{δ : ‖(rΛ)−1δ‖1 ≤ 1}

)
=

rn|Λ|V ({δ : ‖δ‖1 ≤ 1}) where |rΛ| denotes the determinant. The last equality follows by the
volume of a set under a linear map and noting that {δ : ‖(rΛ)−1δ‖1 ≤ 1} = {rΛδ : ‖δ‖1 ≤ r}.
At last, {δ : ‖δ‖1 ≤ 1} can be expressed as the disjoint union of 2n simplexes. Thus, we have
V
(
{δ : ‖Λ−1δ‖1 ≤ r}

)
= (2r)n/n!|Λ| since the volume of a simplex is 1/n! completing the proof.

For completeness, we supplement the previous result with bounds on the volume that may be useful
for future readers.

Proposition 5. For any positive definite Λ−1 ∈ Rn×n, we have the following:(
2r

n

)n
V
(
Z(Λ)

)
≤ V

(
{δ : ‖Λ−1δ‖1 ≤ r}

)
≤ (2r)nV (Z(Λ))

where V (Z(Λ)) =
√
|Λ>Λ| which is the volume of the zonotope with a generator matrix Λ.
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Proof. Let S1 = {δ : ‖Λ−1δ‖1 ≤ r}, S∞ = {δ : ‖Λ−1δ‖∞ ≤ r} and Sn∞ = {δ : n‖Λ−1δ‖∞ ≤
r}. Since ‖Λ−1δ‖∞ ≤ ‖Λ−1δ‖1 ≤ n‖Λ−1δ‖∞, then S∞ ⊇ S1 ⊇ Sn∞. Therefore, we have
V(S∞) ≥ V(S1) ≥ V(Sn∞). At last note that, Sn∞ = { rnΛδ : ‖δ‖∞ ≤ 1} and that with the change of
variables δ = 2u−1n where 1n is a vector of all ones, we have Sn∞ = Z

(
2r
n Λ
)
⊕−rn Λ1n where⊕ is a

Minkowski sum and noting that rnΛ1n is a single point in Rn. Therefore, V
(
Z
(

2r
n Λ
)
⊕ −rn Λ1n

)
=

(2r/n)
n V (Z(Λ)). The upper bound follows with a similar argument completing the proof.

B.1 CERTIFICATION UNDER GAUSSIAN MIXTURE SMOOTHING DISTRIBUTION

We consider a general, K-component, zero-mean Gaussian mixture smoothing distribution G such
that:

G({αi,Σi}Ki=1) :=

K∑
i=1

αiN (0,Σi), s.t.
∑
i

αi = 1, 0 < αi ≤ 1 (3)

Given f and as per the recipe described in Section 4, we are interested in the Lipschitz constant of
the smooth classifier gG(x) = (f ∗ G)(x) =

∑K
i αigΣi

=
∑K
i αi(f ∗ N (0,Σi)) =

∑
i αigΣi

(x)
where gΣi

is defined as in the Gaussian case.

Note the weaker bound when compared to Proposition 2, for each of the Gaussian components
presented in the following proposition.

Proposition 6. gΣ is
√

2/π-Lipschitz under ‖.‖Σ−1,2 norm.

Proof. Following a similar argument to the proof of Proposition 2, we get:

u>Σ
1
2∇gΣ(x) ≤ 1

(2π)n/2
√
|Σ|

∫
Rn

|u>Σ−
1
2 (t− x)| exp

(
−1

2
(x− t)>Σ−1(x− t)

)
dnt

= Es∼N (0,I)

[
|u>s|

]
= Ev∼N (0,1) [|v|] =

√
2/π.

With Proposition 6, we obtain a Lipschitz constant for a Gaussian mixture smoothing distribution as:

Proposition 7. gG is
√
π/2-Lipschitz under ‖δ‖B−1,2 norm, where B−1 =

∑K
i αiΣ

−1
i .

Proof.

|gG(x+ δ)− gG(x)| ≤
∑
i

αi|gΣi
(x+ δ)− gΣi

(x)|

≤
√
π

2

∑
i

αi‖δ‖Σi,2 ≤
√
π

2

√√√√δ>

(∑
i

αiΣ
−1
i

)
δ =

√
π

2
‖δ‖B,2,

Obtained by first applying the triangle inequality, then Proposition 2 followed by Jensen’s inequality.

Thus yielding the following certificate by combining Proposition 7 and Theorem 1.

Corollary 3. Let cA = arg maxi gG(x) , then arg maxi g
i
G(x+ δ) = cA for all δ satisfying:

‖δ‖B,2 ≤
1√
2π

(
gcAG (x)−max

c
gc6=cAG (x)

)
.

where B−1 =
∑K
i αiΣ

−1
i .
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C ANCER OPTIMIZATION

In this section we detail the implementation choices required to solving Equation (1). For ease of
presentation, we restate the ANCER optimization problem (with Θx = diag({θxi }ni=1)):

arg max
Θx

rp (x,Θx) n

√∏
i

θxi s.t. min
i

θxi r
p (x,Θx) ≥ r∗iso,

where rp (x,Θx) is the gap value under the anisotropic smoothing distribution, and r∗iso is the optimal
isotropic radius, i.e. θ̄xrp(x, θ̄x) for θ̄x ∈ R+. This is a nonlinear constrained optimization problem
that is challenging to solve. As such, we relax it, and solve instead:

arg max
Θx

rp (x,Θx) n

√∏
i

θxi + κmin
i

θxi r
p (x,Θx) s.t. θxi ≥ θ̄x

given a hyperparameter κ ∈ R+. While the constraint θxi ≥ θ̄x is not explicitly required to enforce
the superset condition over the isotropic case, it proved itself beneficial from an empirical perspective.
To sample from the distribution parameterized by Θx (in our case, either a Gaussian or Uniform), we
make use of the reparameterization trick, as in Alfarra et al. (2020). The solution of this optimization
problem can be found iteratively by performing projected gradient ascent.

A standalone implementation for the ANCER optimization stage is presented in Listing 1, whereas the
full code integrated in our code base is available as supplementary material. To perform certification,
we simply feed the output of this optimization to the certification procedure from Cohen et al. (2019).
import torch
from torch.autograd import Variable
from torch.distributions.normal import Normal

class Certificate():
def compute_proxy_gap(self, logits: torch.Tensor):

raise NotImplementedError

def sample_noise(self, batch: torch.Tensor, repeated_theta: torch.Tensor):
raise NotImplementedError

def compute_gap(self, pABar: float):
raise NotImplementedError

class L2Certificate(Certificate):
def __init__(self, batch_size: int, device: str = "cuda:0"):

self.m = Normal(torch.zeros(batch_size).to(device),
torch.ones(batch_size).to(device))

self.device = device
self.norm = "l2"

def compute_proxy_gap(self, logits: torch.Tensor):
return self.m.icdf(logits[:, 0].clamp_(0.001, 0.999)) - \

self.m.icdf(logits[:, 1].clamp_(0.001, 0.999))

def sample_noise(self, batch: torch.Tensor, repeated_theta: torch.Tensor):
return torch.randn_like(batch, device=self.device) * repeated_theta

def compute_gap(self, pABar: float):
return norm.ppf(pABar)

class L1Certificate(Certificate):
def __init__(self, device="cuda:0"):

self.device = device
self.norm = "l1"

def compute_proxy_gap(self, logits: torch.Tensor):
return logits[:, 0] - logits[:, 1]

def sample_noise(self, batch: torch.Tensor, repeated_theta: torch.Tensor):
return 2 * (torch.rand_like(batch, device=self.device) - 0.5) * repeated_theta

def compute_gap(self, pABar: float):
return 2 * (pABar - 0.5)
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def ancer_optimization(
model: torch.nn.Module, batch: torch.Tensor,
certificate: Certificate, learning_rate: float,
isotropic_theta: torch.Tensor, iterations: int,
samples: int, kappa: float, device: str = "cuda:0"):

"""Optimize batch using ANCER, assuming isotropic initialization point.

Args:
model: trained network
batch: inputs to certify around
certificate: instance of desired certification object
learning_rate: optimization learning rate for ANCER
isotropic_theta: initialization isotropic value per input in batch
iterations: number of iterations to run the optimization
samples: number of samples per input and iteration
kappa: relaxation hyperparameter

"""
batch_size = batch.shape[0]
img_size = np.prod(batch.shape[1:])

# define a variable, the optimizer, and the initial sigma values
theta = Variable(isotropic_theta, requires_grad=True).to(device)
optimizer = torch.optim.Adam([theta], lr=learning_rate)
initial_theta = theta.detach().clone()

# reshape vectors to have ‘‘samples‘‘ per input in batch
new_shape = [batch_size * samples]
new_shape.extend(batch[0].shape)
new_batch = batch.repeat((1, samples, 1, 1)).view(new_shape)

# solve iteratively by projected gradient ascend
for _ in range(iterations):

theta_repeated = theta.repeat(1, samples, 1, 1).view(new_shape)

# Reparameterization trick
noise = certificate.sample_noise(new_batch, theta_repeated)
out = model(

new_batch + noise
).reshape(batch_size, samples, -1).mean(dim=1)

vals, _ = torch.topk(out, 2)
gap = certificate.compute_proxy_gap(vals)

prod = torch.prod(
(theta.reshape(batch_size, -1))**(1/img_size), dim=1)

proxy_radius = prod * gap

radius_maximizer = - (
proxy_radius.sum() +
kappa *
(torch.min(theta.view(batch_size, -1), dim=1).values*gap).sum()

)
radius_maximizer.backward()
optimizer.step()

# project to the initial theta
with torch.no_grad():

torch.max(theta, initial_theta, out=theta)

return theta

Listing 1: Python implementation of the ANCER optimization routine using PyTorch Paszke et al.
(2019)

D MEMORY-BASED CERTIFICATION FOR ANCER

To guarantee the soundness of the ANCER classifier, we use an adapted version of the data-dependent
memory-based solution presented in Alfarra et al. (2020). The modified algorithm involves a
post-processing certification step that obtains adjusted certification statistics based on the memory
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procedure from Alfarra et al. (2020) (see the original paper for more details). We present an adapted
version to ANCER of this post-processing memory-based step in Algorithm 1.

Algorithm 1: Memory-Based Certification
Input: input point xN+1, certified regionRN+1, prediction CN+1, and memoryM
Result: Prediction for xN+1 and certified region at xN+1 that does not intersect with any

certified region inM.
for (xi, Ci,Ri) ∈M do

if CN+1 6= Ci then
if xN+1 ∈ Ri then

return ABSTAIN, 0
else if MaxIntersect(RN+1,Ri) and Intersect(RN+1,Ri) then
R′N+1 = LargestOutSubset(Ri,RN+1);
RN+1 ← R′N+1;

end
add (xN+1, CN+1,RN+1) toM;
return CN+1,RN+1;

Note that the proposed certified region RN+1 emerges from our certification bounds presented in
Sections 4.1 and 4.2. There are a few differences between our proposed Algorithm 1 with respect to
the original variant presented in Alfarra et al. (2020). The first is that we remove the computation of
the largest certifiable subset of a certified regionRN+1 when there exists an i such that xN+1 ∈ Ri
with a different class prediction, i.e. (LargestInSubset in Alfarra et al. (2020)) due to the
complexity of the operation in the anisotropic case. As an example, it is generally difficult to find
the largest volume ellipsoid contained in another ellipsoid. Due to this complexity, we choose to
simply ABSTAIN instead. Given the high dimensionality of the data, empirically, we never found a
certificate in this situation within our experiments. Further, to ease the computational burden of the
Intersect function, we introduce and instantiate the function MaxIntersect first which checks
whether the `p-ball over-approximation of the regionRN+1 intersects with a `p over-approximation
of Ri. This follows since when the `p balls over-approximation to the anisotropic regions RN+1

and Ri do not intersect, then RN+1 and Ri do not intersect either. Only in cases in which those
over-approximation regions intersect, we run the more expensive Intersect procedure. We present
practical implementations for MaxIntersect, Intersect and LargestOutSubset for the
ellipsoids and generalized cross-polytopes considered in this paper.

D.1 IMPLEMENTING MAXINTERSECT(RA, RB) IN THE ELLIPSOID AND GENERALIZED
CROSS-POLYTOPE CASES

Given the two regionsRA andRB, consider `p-ball approximations of those regions,RB̃ = {x ∈
Rn : ‖x− a‖p ≤ ra} andRB̃ = {x ∈ Rn : ‖x− b‖p ≤ rb} such thatRA ⊆ RÃ andRB ⊆ RB̃.
Lemma 1. If ‖a− b‖p > ra + rb, thenRA ∩RB = ∅.

Proof. For the sake of contradiction, let ‖a− b‖p > ra + rb and x ∈ RÃ ∩RB̃. Then, we have that
‖x− a‖ ≤ ra and ‖x− b‖ ≤ rb. However:

ra + rb < ‖a− b‖p ≤ ‖x− a‖p + ‖x− b‖p ≤ ra + rb,

forming a contradiction. Thus,RÃ ∩RB̃ = ∅, which in turn impliesRA ∩RB = ∅ sinceRA and
RB are subsets ofRÃ andRB̃, respectively.

This forms a fast, maximum intersection check for ellipsoids, i.e. p = 2, and generalized cross-
polytopes, i.e. p = 1. The MaxIntersect function returns False if ‖a − b‖p > ra + rb, and
True otherwise.

D.2 IMPLEMENTING INTERSECT(RA, RB) IN THE ELLIPSOID CASE

The problem of efficiently checking if two ellipsoids intersect is not trivial. We rely on the work
of Ros et al. (2002); Gilitschenski & Hanebeck (2012) with missing proofs from Gilitschenski &
Hanebeck (2012) for completeness.
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Lemma 2. LetRA = {x ∈ Rn : (x−a)>A(x−a) ≤ 1} andRB = {x ∈ Rn : (x−b)>B(x−b) ≤
1} define two ellipsoids centered at a and b, respectively. We have thatR = {x : t(x− a)>A(x−
a) + (1− t)(x− b)>B(x− b) ≤ 1} for any t ∈ [0, 1] satisfiesRA ∩RB ⊆ R ⊆ RA ∪RB.

Proof. By considering the convex combination of the left-hand side of the inequalities defining the
regionsRA andRB, it becomes obvious that x ∈ RA ∩RB =⇒ x ∈ R, concluding the left side
of the property. As for the right side, it suffices to show that if x /∈ RA and x ∈ R then x ∈ RB

and, similarly, that if x /∈ RB and x ∈ R then x ∈ RA. We show the first case since the second
follows by symmetry. Without loss of generality, we assume that a = b = 0n. Now, let x be such
that x>Ax > 1 and tx>Ax+ (1− t)x>Bx ≤ 1 since x /∈ RA and x ∈ R. Then, since x ∈ R, we
have that (1− t)x>Bx ≤ 1− tx>Ax ≤ 1 since x>Ax > 1 which implies that x ∈ RB.

Note that the previous result holds without loss of generality when for the radius 1 as the radius can
be absorbed in A and B. As the following Lemma was shown by Gilitschenski & Hanebeck (2012)
without proof, we complement it below for completeness.
Lemma 3. The setR is equivalent to the following ellipsoidR = {x : (x−m)>Et(x−m) ≤ K(t)}
where Et = tA+(1−t)B,m = E−1

t (tAa+ (1− t)Bb), andK(t) = 1−ta>Aa−(1−t)b>Bb+
m>Etm.

Proof.

t(x− a)>A(x− a) + (1− t)(x− b)>B(x− b) ≤ 1

⇔x> (tA + (1− t)B)︸ ︷︷ ︸
Et

x− 2x> (tAa+ (1− t)Bb)︸ ︷︷ ︸
Etm

≤ 1− ta>Aa− (1− t)b>Bb

⇔(x−m)>Et(x−m) ≤ 1− ta>Aa− (1− t)b>Bb+m>Etm

The last equality follows by adding and subtracting m>Etm and concluding the proof.

Proposition 8. The set of points satisfyingR for t ∈ (0, 1) is either an empty set, a single point, or
the ellipsoidR.

Proof. We first observe that since A and B are positive definite, then Et is positive definite. Then
observe that for a choice of t ∈ (0, 1) such that K(t) < 0, the set R is an empty set, and since
R ⊇ RA ∩ RB, the two sets do not intersect. If K(t) = 0, then the only point satisfying R is the
center at m. Following a similar argument, then the two ellipsoids intersect at a point. At last for a
choice of t such that K(t) > 0, thenR defines an ellipsoid.

As per Theorem 8, it suffices to find some t ∈ [0, 1] under which K(t) < 0 to guarantee that
the ellipsoids do not intersect. To that end, we solve the following convex optimization problem:
t∗ = argmint∈[0,1]K(t) and check the condition if K(t∗) < 0. Moreover, as shown by Ros et al.
(2002); Gilitschenski & Hanebeck (2012) K(t) is convex in the domain t ∈ (0, 1). With several
algebraic manipulations, one can show that K(t) has the following equivalent forms:

K(t) = 1− ta>Aa− (1− t)b>Bb+m>Etm

K(t) = 1− t(1− t)(b− a)>BE−1
t A(b− a)

K(t) = 1− (b− a)>
(

1

1− t
B−1 +

1

t
A−1

)−1

(b− a)

Observe that for ANCER, we have that both A and B to be diagonals with diagonal elements
{Aii}ni=1 and {Bii}ni=1, respectively, resulting in the following simple form for K(t):

K(t) = 1−
n∑
i=1

(bi − ai)2 t(1− t)AiiBii

tAii + (1− t)Bii
.

The Intersect function in the ellipsoid case returns False if there exists a t ∈ (0, 1) such that
K(t) < 0, i.e. ellipsoids do not intersect, and True otherwise.
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D.3 IMPLEMENTING INTERSECT(RA, RB) IN THE GENERALIZED CROSS-POLYTOPE CASE

Let RA and RB be two generalized cross-polytopes RA = {x ∈ Rn : ‖A(x − a)‖1 ≤ 1} and
RB = {x ∈ Rn : ‖B(x− b)‖1 ≤ 1}, where A and B are positive definite diagonal matrices with
elements {Aii}ni=1 and {Bii}ni=1, respectively. We are interested in deciding whetherRA andRB

intersect. However, given the conservative context in which Intersect is used in Algorithm 1, we
only need to make sure that the function only returns False if it is guaranteed thatRA ∩RB = ∅.
As such, we are able to simplify the complex problem of generalized cross-polytope intersection
to the much simpler one of ellipsoid over-approximation intersection. We do this by considering
the over-approximation, i.e. superset, ellipsoids RÃ = {x ∈ Rn : ‖A(x − a)‖2 ≤ 1} and
RB̃ = {x ∈ Rn : ‖B(x − b)‖2 ≤ 1}, and perform the ellipsoid intersection check presented in
Appendix D.2. If RÃ ∩ RB̃ = ∅, then this implies that RA ∩ RB = ∅ and we can safely return
False. Otherwise, we conservatively assume the generalized cross-polytopes intersect, and return
True, triggering the reduction procedure detailed in Appendix D.5.

D.4 IMPLEMENTING LARGESTOUTSUBSET(RA, RB) IN THE ELLIPSOID CASE

Given two ellipsoids RA = {x ∈ Rn : (x − a)>A(x − a) ≤ 1} and RB = {x ∈ Rn : (x −
b)>B(x− b) ≤ 1} that do intersect where A and B are positive definite diagonal matrices, the task
is to find the largest possible ellipsoidRB̃ centered at b such thatRB̃ ⊆ RB whereRA ∩RB̃ = ∅.
Finding a maximum ellipsoid that satisfies those conditions is not trivial, so instead we consider a
maximum enclosing `2-ball of RB, RB̃ = {x ∈ Rn : ‖x − b‖2 ≤ r}, that does not intersect RA.
To obtain this ball, we project the center ofRB, b, to the ellipsoidRA. Particularly, we formulate
the problem as the projection of a vector y = b − a onto an ellipsoid with the same shape as RA

centered at 0n. This is equivalent to solving the following optimization problem for a symmetric
positive definite matrix A:

min
x

1

2
‖x− y‖22 s.t. x>Ax ≤ 1.

Note that the objective function is convex, and the constraint forms a convex set. Forming the
Lagrangian to this problem, we obtain:

L(x, λ) =
1

2
‖x− y‖22 + λ

(
x>Ax− 1

)
,

where λ > 0. Therefore, the global optimal solution must satisfy the KKT conditions below:
∂L
∂x

= 0→ x∗ = (2λA + I)
−1
y,

∂L
∂λ

= 0→ y> (2λA + I)
−>

A (2λA + I)
−1
y − 1︸ ︷︷ ︸

f(λ)

= 0.

Thus, to project the vector y on our region the ellipsoid characterized by A, one needs to solve
the scalar optimization f(λ) = 0 then substitute back in the formula of x∗. Further, given A =
diag(A11, . . . ,Ann), we can simplify the problem to:

f(λ) =

n∑
i=1

y2
iAii

(1 + 2λAii)2
− 1 = 0.

Once x∗ is obtained, we can define the maximum radius of the `2-ball centered at b that does not
intersectRA as:

r∗ = ‖(x∗ + a)− b‖2 − ε,
for an arbitrarily small ε. Finally, we obtainRB̃ as the maximum ball contained withinRB that has
a radius smaller than r∗, that is:

RB̃ = {x ∈ Rn : ‖x− b‖2 ≤ min{r∗,min
i

Bii}}.

Note that while choosing the radius of RB̃ to be r∗ guarantees that RB̃ ∩ RA = ∅, this does not
guarantee that RB̃ ⊆ RB. To guarantee both properties, we take the minimum of both r∗ and
mini Bii. This approach finds the solution to the projection of the point to the ellipsoid {x ∈ Rn :
x>Ax ≤ 1}; it does not work for the case in which b ∈ RA, since the problem would be trivially
solved by setting x∗ = y. Thus, our classifier must abstain in that situation.

21



Under review as a conference paper at ICLR 2022

D.5 IMPLEMENTING LARGESTOUTSUBSET(RA, RB) IN THE GENERALIZED
CROSS-POLYTOPE CASE

Let RA and RB be two generalized cross-polytopes RA = {x ∈ Rn : ‖A(x − a)‖1 ≤ 1} and
RB = {x ∈ Rn : ‖B(x− b)‖1 ≤ 1}, where A and B are positive definite diagonal matrices with
elements {Aii}ni=1 and {Bii}ni=1, respectively. The task is to find the largest possible generalized
cross-polytopeRB̃ centered at b such thatRB̃ ⊆ RB whereRA ∩RB̃ = ∅.
As with the ellipsoid case, solving this problem for a generalized cross-polytope is not trivial,
so instead we consider a maximum enclosing cross-polytope (i.e., `1-ball) of RB̃ = {x ∈ Rn :
‖x− b‖1 ≤ r} that does not intersectRA and is a subset ofRB. To obtain this `1-ball, we project
the center ofRB, b, to the generalized cross-polytopeRA in a similar fashion to the ellipsoid case in
Appendix D.4. We formulate the problem as the projection of the vector y = b− a to the 0n centered
generalized cross-polytope {x ∈ Rn : ‖Ax‖1 ≤ 1}.
Lemma 4. Consider the hyperplane H = {x ∈ Rn : w>x − k = 0} and a point y ∈ Rn. The `2
projection of y on the hyperplane is the point x∗ = y − (w>y−k)w/‖w‖22.

Proof. We define the projection problem in a similar fashion to the ellipsoid case:

min
x

1

2
‖x− y‖22 s.t. w>x− k = 0,

and obtain the Lagrangian as L(x, λ) = 1
2 ‖x− y‖

2
2 + λ(w>x− k), from where we get (using the

KKT conditions): x∗ = y − λ∗w and λ∗ = w>y−k/‖w‖22; thus obtaining: x∗ = y − (w>y−k)w
‖w‖22

.

While this formulation does not yield the closest point from a hyperplane when measured with the `1
norm, the fact that ‖x−x∗‖1 ≥ ‖x−x∗‖2 implies the certification set obtained in the `1 norm via this
method is a subset of the `2-ball of the minimum projection point. Crucially, this `2 projection has
the advantage of having a closed-form solution, while an `1 one would require solving the problem
using an iterative linear programming solver. As such, for the sake of computational complexity,
we decided to use this projection, despite the sub-optimality of the result from the `1 perspective.
Empirically, we have found this does not affect our results.

Since the set of vertices of the generalized cross-polytope {x ∈ Rn : ‖Ax‖1 ≤ 1} is given by
{ei/Aii,−ei/Aii}ni=1, and considering the distance between the projections and the original y, the
hyperplane that minimizes it is defined by the set of vertices {sign(yi)ei/Aii}ni=1. By writing it as a
system of n equations, we obtain the hyperplane defined by w = [−sign(y1)A11, ...,−sign(yn)Ann]
and k = 1. Finally, after computing x∗ as per Lemma 4, we can define the maximum radius of the
`1-ball centered at b that does not intersectRA as:

r∗ = ‖(x∗ + a)− b‖1 − ε,

for an arbitrarily small ε. Finally, and similar to the ellipsoids case, we obtainRB̃ as the maximum
generalized cross-polytope contained withinRB that has a radius smaller than r∗, that is:

RB̃ = {x ∈ Rn : ‖x− b‖1 ≤ min{r∗,min
i

Bii}}

Similar to before, to guarantee that the `1 ball RB̃ is still a subset to RB, we take the minimum
between r∗ and mini Bii to be the radius ofRB̃. As with the ellipsoid case, this approach does not
work for the case in which b ∈ RA, since the assumption of the closest plane to y would not hold.
Thus, our classifier must abstain in that situation.

E EXPERIMENTAL SETUP

The experiments reported in the paper used the CIFAR-10 Krizhevsky (2009)3 and ImageNet Deng
et al. (2009)4 datasets, and trained ResNet18, WideResNet40 and ResNet50 networks He et al. (2016).

3Available here (url), under an MIT license.
4Available here (url), terms of access detailed in the Download page.
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Experiments used the typical data split for these datasets found in the PyTorch implementation Paszke
et al. (2019). The procedures to obtain the baseline networks used in the experiments are detailed in
Appendix E.1 and E.2 for ellipsoids and generalized cross-polytopes, respectively. Source code to
reproduce the ANCER optimization and certification results of this paper is available as supplementary
material.

Isotropic DD Optimization. We used the available code of Alfarra et al. (2020)5 to obtain the
isotropic data dependent smoothing parameters. To train our models from scratch, we used an adapted
version of the code provided in the same repository.

Certification. Following Cohen et al. (2019); Salman et al. (2019a); Zhai et al. (2019); Yang et al.
(2020); Alfarra et al. (2020), all results were certified with N0 = 100 Monte Carlo samples for
selection and N = 100, 000 estimation samples, with failure a probability of α = 0.001.

E.1 ELLIPSOID CERTIFICATION BASELINE NETWORKS

In terms of ellipsoid certification, the baselines we considered were COHEN Cohen et al. (2019)6,
SMOOTHADV Salman et al. (2019a)7 and MACER Zhai et al. (2019)8.

In the CIFAR-10 experiments, we used a ResNet18 architecture, instead of the ResNet110 used
in Cohen et al. (2019); Salman et al. (2019a); Zhai et al. (2019) due to constraints at the level of
computation power. As such, we had to train each of the networks from scratch following the
procedures available in the source code of each of the baselines. We did so under our own framework,
and the training scripts are available in the supplementary material. For the ImageNet experiments
we used the ResNet50 networks provided by each of the baselines in their respective open source
repositories.

We trained the ResNet18 networks for 120 epochs, with a batch size of 256 and stochastic gradient
descent with a learning rate of 10−2, and momentum of 0.9.

E.2 GENERALIZED CROSS-POLYTOPE CERTIFICATION BASELINE NETWORKS

For the certification of generalized cross-polytopes we considered RS4A Yang et al. (2020)9. As
described in RS4A Yang et al. (2020), we take λ = σ/

√
3 and report results as a function of σ for

ease of comparison.

As with the baseline, we ran experiments on CIFAR-10 on a WideResNet40 architecture, and
ImageNet on a ResNet50 Yang et al. (2020). However, due to limited computational power, we
were not able to run experiments on the wide range of distributional parameters the original work
considers, i.e. σ = {0.15, 0.25, 0.5, 0.75, 1.0, 1.125, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5}
on CIFAR-10 and σ = {0.25, 0.5, 0.75, 1.0, 1.125, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5} on
ImageNet. Instead, and matching the requirements from the ellipsoid section, we choose a subset of
σ = {0.25, 0.5, 1.0} and performed our analysis at that level.

While the trained models are available in the source code of RS4A, we ran into several issues when
we attempted to use them, the most problematic of which being the fact that the clean accuracy of
such models was very low in both the WideResNet40 and ResNet50 ones. To avoid these issues we
trained the models from scratch, but using the stability training loss as presented in the source code
of RS4A. All of these models achieved clean accuracy of over 70%.

Following the procedures described in the original work, we trained the WideResNet40 models with
the stability loss used in Yang et al. (2020) for 120 epochs, with a batch size of 128 and stochastic
gradient descent with a learning rate of 10−2, and momentum of 0.9, along with a step learning rate
scheduler with a γ of 0.1. For the ResNet50 networks on ImageNet, we trained them from scratch

5Data Dependent Randomized Smoothing source code available here
6COHEN source code available here.
7SMOOTHADV source code available here.
8MACER source code available here.
9RS4A source code available here.
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with stability loss for 90 epochs with a learning rate of 0.1 that drops by a factor of 0.1 after each 30
epochs and a batch size of 256.

F SUPERSET ARGUMENT

The results we present in Section 7 support the argument that ANCER achieves, in general, a certificate
that is a superset of the Fixed σ and Isotropic DD ones. To confirm this at an individual test set
sample level, we compare the `2, `1, `Σ2 and `Λ1 certification results across the different methods, and
obtain the percentage of the test set in which ANCER performs at least as well as all other methods in
each certificates of the samples. Results of this analysis are presented in Tables 4 and 5.

For most networks and datasets, we observe that ANCER achieves a larger `p certificate than the
baselines in a significant portion of the dataset, showcasing the fact that it obtains a superset of
the isotropic region per sample. This is further confirmed by the comparison with the anisotropic
certificates, in which, for all trained networks except MACER in CIFAR-10, ANCER’s certificate is
superior in over 90% of the test set samples.

Table 4: Superset in top-1 `2 and `Σ2 (rounded to nearest percent)

% ANCER `2 is the best % ANCER `Σ2 is the best

CIFAR-10: COHEN 83 93
CIFAR-10: SMOOTHADV 73 90
CIFAR-10: MACER 50 69

ImageNet: COHEN 94 96
ImageNet: SMOOTHADV 90 93

Table 5: Superset in top-1 `1 and `Λ1 (rounded to nearest percent)

% ANCER `1 is the best % ANCER `Λ1 is the best

CIFAR-10: RS4A 100 100
ImageNet: RS4A 97 99

G EXPERIMENTAL RESULTS PER σ

G.1 CERTIFYING ELLIPSOIDS - `2 AND `Σ2 CERTIFICATION RESULTS PER σ

In this section we report certified accuracy at various `2 radii and `Σ2 proxy radii, following the metrics
defined in Section 7, for each training method (COHEN Cohen et al. (2019), SMOOTHADV Salman
et al. (2019a) and MACER Zhai et al. (2019)), dataset (CIFAR-10 and ImageNet) and σ (σ ∈
{0.12, 0.25, 0.5, 1.0}). Figures 6 and 7 shows certified accuracy at different `2 radii for CIFAR-10
and ImageNet, respectively, whereas Figures 8 and 9 plot certified accuracy and different `Σ2 proxy
radii for CIFAR-10 and ImageNet, respectively.

G.2 CERTIFYING ELLIPSOIDS - `1 AND `Λ1 CERTIFICATION RESULTS PER σ

In this section we report certified accuracy at various `1 radii and `Λ1 proxy radii, following the metrics
defined in Section 7, for RS4A, dataset (CIFAR-10 and ImageNet) and σ (σ ∈ {0.25, 0.5, 1.0}).
Figures 10 and 11 shows certified accuracy at different `1 radii for CIFAR-10 and ImageNet, respec-
tively, whereas Figures 12 and 13 plot certified accuracy and different `Λ1 proxy radii for CIFAR-10
and ImageNet, respectively.

G.3 WHY DOES ANCER IMPROVE UPON ISOTROPIC DD’S `p CERTIFICATES?

As observed in Sections 7.1 and 7.2, ANCER’s `2 and `1 certificates outperform the corresponding
certificates obtained by Isotropic DD. To explain this, we compare the `2 certified region obtained
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Figure 6: CIFAR-10 certified accuracy as a function of `2 radius, per model and σ (used as initializa-
tion in the isotropic data-dependent case and ANCER).
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Figure 7: ImageNet certified accuracy as a function of `2 radius, per model and σ (used as initialization
in the isotropic data-dependent case and ANCER).

by ANCER, defined in Section 6 as {δ : ‖δ‖2 ≤ mini σ
x
i r(x,Σ

x)}, to the one by Isotropic DD
defined as {δ : ‖δ‖2 ≤ σxr(x, σx)}. We observe that the radius of both of these certificates can
be separated into a σ-factor (σx vs. σxmin = mini σ

x
i ) and a gap-factor (r(x, σx) vs. r(x,Σx)). We

posit the seemingly surprising result can be attributed to the computation of the gap-factor r using an
anisotropic, optimized distribution. However, another potential explanation would be that ANCER
benefits from a prematurely stopped initialization provided by Isotropic DD, thus achieving a better
σxmin than the isotropic σx when given further optimization iterations.

To investigate this, we take the optimized parameters from the Isotropic DD experiments on
SMOOTHADV for an initial σ = 0.25 on CIFAR-10, and run the optimization step of Isotropic
DD for 100 iterations more than its default number of iterations from Alfarra et al. (2020), so
as to match the total number of optimization steps between Isotropic DD and ANCER. The
histograms of σx or σxmin and the gap-factor r, i.e. the two factors from the `2 certifica-
tion results, are presented in Figure 14. While σx for Isotropic DD is similar in distribution
to ANCER’s σxmin, the distribution of the two gaps, r(x, σx) and r(x,Σx), are quite different.
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Figure 8: CIFAR-10 certified accuracy as a function of `Σ2 proxy radius, per model and σ (used as
initialization in the isotropic data-dependent case and ANCER).
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Figure 9: ImageNet certified accuracy as a function of `Σ2 proxy radius, per model and σ (used as
initialization in the isotropic data-dependent case and ANCER).
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Figure 14: Histograms of the values
of the σ-factor (left) and gap r (right)
obtained by ANCER initialized with
Isotropic DD, and Isotropic DD when
allowed to run for 100 iterations more
than the baseline. Vertical lines plot the
median of the data.

In particular, the ANCER certification gap is significantly
larger when compared to Isotropic DD, and is the main
contributor to the improvement in the `2-ball certificate of
ANCER. That is to say, ANCER generates Σx that is better
aligned with the decision boundaries, and hence increases
the confidence of the smooth classifier.

H VISUAL COMPARISON OF
PARAMETERS IN ELLIPSOID CERTIFICATES

Anisotropic certification allows for a better characteriza-
tion of the decision boundaries of the base classifier f . For
example, the directions aligned with the major axes of the
ellipsoids ‖δ‖Σ,2 = r, i.e. locations where Σ is large, are,
by definition, expected to be less sensitive to perturbations
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Figure 10: CIFAR-10 certified accuracy as a function of `1 radius per σ (used as initialization in the
isotropic data-dependent case and ANCER).
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Figure 11: ImageNet certified accuracy as a function of `1 radius per σ (used as initialization in the
isotropic data-dependent case and ANCER).

compared to the minor axes directions. To visualize this concept, Figure 15 shows CIFAR-10 images
along with their corresponding optimized `2 isotropic parameters obtained by Isotropic DD, and `Σ2
anisotropic parameters obtained by ANCER. First, we note the richness of information provided by
the anisotropic parameters when compared to the `2 worst-case, isotropic one. Interestingly, pixel
locations where the intensity of Σ is large (higher intensity in Figure 15) are generally the ones
corresponding least with the underlying true class and overlapping more with background pixels.

A particular insight one can get from ANCER certification is that the decision boundaries are not
distributed isotropically around each input. To quantify this in higher dimensions, we plot in Figure 16
a histogram of the ratio between the maximum and minimum elements of our optimized smoothing
parameters for the experiments on SmoothAdv (with an initial σ = 1.0) on CIFAR-10. We note that
this ratio can be as high as 5 for some of the input points, meaning the decision boundaries in that
case could be 5 times closer to a given input for some directions than others.

I NON DATA-DEPENDENT ANISOTROPIC CERTIFICATION

As mentioned briefly in Section 6, it is our intuition that anisotropic certification requires a data-
dependent approach, as different points will have fairly different decision boundaries and the certified
regions will extend in different directions (as exemplified in Figure 1).

To validate this claim, we perform certification of SmoothAdv Salman et al. (2019a) with an initial
σ = 1 on CIFAR-10 using a Σ which is the average of all the optimized Σx. The results of the
certified accuracy, ACR and ACR̃ are presented in Table 6, along with the same results for the
methods reported in the main paper. As can be observed, moving away from the data-dependent
certification in the anisotropic scenario leads to a significant performance drop in terms of robustness.

J THEORETICAL AND EMPIRICAL COMPARISON WITH MOHAPATRA ET AL.
(2020)

In regards to the theoretical results, unfortunately the certified regions of Mohapatra et al. (2020)
do not exhibit a closed form solution similarly to ours. Thus, a direct theoretical volume bound
comparison is not possible.

As for the empirical comparison, ANCER’s performance on both `2 and `1 certificates far out-does
that of Mohapatra et al. (2020). For example, with `2 certificates at a radius of 0.5, Cohen certified
with ANCER achieves 77% certified accuracy (see Table 1) while Mohapatra et al. (2020) achieves
under 60% certified accuracy. Note that Mohapatra et al. (2020) has only a marginal improvement
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Figure 12: CIFAR-10 certified accuracy as a function of `Λ1 proxy radius per σ (used as initialization
in the isotropic data-dependent case and ANCER).
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Figure 13: ImageNet certified accuracy as a function of `Λ1 proxy radius per σ (used as initialization
in the isotropic data-dependent case and ANCER).

over Cohen et al. As for the `1 certificates, Mohapatra et al. (2020) uses the Gaussian distribution
of Cohen et al, resulting in worse performance than existing state-of-art in `1 Yang et al. (2020)
that uses a uniform distribution. Our approach improves further upon the performance of Yang
et al. (2020). For example, as per Table 2, RS4A with ANCER certification achieves 84% certified
accuracy at an `1 radius of 0.5, Yang et al. (2020) achieves 75% certified accuracy while Mohapatra
et al. (2020) achieves below 60%. However, we believe that the combination of both approaches,
ANCER and Mohapatra et al. (2020) can further boost the performance as also hinted on in the
abstract of Mohapatra et al. (2020) on the use of data-dependent smoothing.
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Figure 15: Visualization of an input CIFAR-10 image x (top), and the optimized parameters σ
(middle) and Σ (bottom) – higher intensity corresponds to higher σi in that pixel and channel – of the
smoothing distributions in the isotropic and anisotropic case, respectively.
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Figure 16: Distribution of the maximum over the minimum ANCER σx at each dataset point for
SmoothAdv Salman et al. (2019a) on CIFAR-10 (for initial σ = 1.0)

Table 6: Comparison of different certification methods on SmoothAdv with an initial σ = 1.0 on
CIFAR-10.

CIFAR-10 SmoothAdv Accuracy @ `2 radius (%)
`2 ACR `Σ2 ACR̃0.0 0.25 0.5 1.0 1.5 2.0 2.5

σ = 1.0

Fixed σ 45 40 35 25 16 9 5 0.565 0.565
Isotropic DD 41 39 36 29 21 14 7 0.694 0.694
ANCER 44 43 41 35 26 15 8 0.871 0.992

Average Σ 29 25 21 14 9 5 2 0.329 0.379
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