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ABSTRACT

A new re-emerging infectious disease of monkeypox 2022 is structurally related to
smallpox that is induced by the monkeypox viruses and has caused 59,606 active
cases with 18 deaths up to September 15, 2022. To end this ongoing epidemic,
there is a need for population-wide control policies like reducing social interac-
tion by keeping social distance, treatment of infected individuals, and restriction
on animals, etc. We forecast the progression of the epidemic and come up with an
efficient control mechanism by formulating a mathematical model. The biological
feasibility and dynamical behavior of the proposed model are then investigated to-
gether with sensitivity analysis to obtain the effect of various epidemic parameters
mitigating the spread of the disease. Subsequently, by taking non-pharmaceutical
and pharmaceutical intervention strategies as control measures, an optimal control
theory is applied to mitigate the fatality of the disease to minimize the infectious
population and reduce the cost of controls, we construct an objective functional
and solve it by using Pontryagin’s maximum principle. Finally, extensive numeri-
cal simulations are performed to show the impact of the application of intervention
mechanisms in controlling the transmission of the monkeypox epidemic.

1 INTRODUCTION

The infection of monkeypox is a contagious disease resulting from the orthopoxvirus. This infection
is zoonotic and was initially transported to humans by wild rodents in central and western Africa.
But human-to-human spread (horizontal transmission) is also possible, particularly within the family
home or in the context of care (Farahat et al., 2022). The monkeypox viruses can be diffused by
immediate contact with lesions on the skin or mucous membranes of a sick person, as well as by
droplets (sneezing, saliva, sputters, etc.) (Singh et al., 2021). Generally, an individual can become
infected through contact with patient’s environment. It is, therefore, important that patients respect
isolation measures throughout the illness. Humans can also become infected through active contact
with animals (rodents and monkeys) (Oladoye, 2021). Usually, the monkeypox infection starts
from fever, headaches, body aches, weakness, etc. (Deresinski, 2022). The symptoms may lead
to the appearance of a blistering rash consisting of fluid-filled blisters that progress to dryness and
crusting, then scarring and itching after two days. The bubbles are most concentrated on the face,
the forehands, and the feet soles. The disease is more severe in children as well as those who have
weak immune systems. Historically, monkeypox was identified first in the 1970s, but recently the re-
emerging of the disease, cases are reported in various countries around the globe (ASSESSMENT,
2022). Usually monkeypox virus transmits from human interaction, but there is a significant risk
of cross-infection (animal-to-human) spread (Petersen et al., 2019). Therefore, the hypothesis of
cross-infection between human and animals play a significant role and can not be neglected.

Modeling and forecasting with the aid of dynamical system is a challenging domain in various dis-
cipline, e.g., infectious disease epidemiology (Brauer, 2017; Saravanakumar et al., 2020; Guo et al.,
2020), health sciences (Choi et al., 2016), and various other fields of applied science and technology
(Rolnick et al., 2022), and therefore attracted the considerable attention of researchers, see for in-
stance, (Das et al., 2020b; Yin et al., 2021; Saha et al., 2021). Similarly, various models demonstrate
different outlooks regarding the dynamical behavior of an epidemic (Busenberg & Cooke, 2012;
Khajanchi et al., 2018; Das et al., 2020a). With the aim of these mathematical models, researchers
want to understand the dynamics of a disease and then suggest control strategies to control or com-
pletely eradicate the infection (Chen & Guo, 2016; Kumar et al., 2019). Besides the rich literature on
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infectious disease epidemiology, there have been no enough studies found to represent the temporal
dynamics of monkeypox 2022, to the best of our knowledge. We try to formulate a model which
describes the transmission of monkeypox 2022 to understand the dynamics and suggest a control
mechanism with the aid of optimal control theory. We summarize our contributions in this work as
follows:

• The cross infection between humans and animals plays a significant role in the dynamics
of monkeypox virus transmission. We, therefore, propose a model based on the hypothesis
of cross-infection between humans and animals. The model has two blocks: humans and
animals.

• The first block describes the evolution of monkeypox in the human population, while the
second block represents the evolution of the monkeypox virus among animals.

• Four time-dependent control measures are then introduced in the model to demonstrate
the utilization of optimal control measures: to minimize the infectious individuals and
maximize the recovered population. Particularly, reducing the risk of disease transmission
by educating people to rise awareness of risk factors, treatment of infected individuals, and
restrictions on animals.

Figure 1: The plot represents the schematic process of the proposed monkeypox virus transmission
model (1)

2 RELATED WORK

The analysis of infectious diseases with the aid of dynamical systems is a fascinating outlook
to predict the dynamics of an epidemic. In the history of infectious disease epidemiology, Ker-
mack and McKendrick were the pioneers to develop the three-population-group epidemiological
model (susceptible-infectious-recovered) (Kermack & McKendrick, 1927), where various popu-
lation groups are employed to signify the infection, demonstrating their progression and inter-
actions. The classical susceptible-infectious-recovered model formulated by Kermack and McK-
endrick has been modified by incorporating an exposed compartment known as the susceptible-
exposed-infectious-recovered model (Anderson & May, 1979), which is also extensively used to
delineate the transmission of distinct diseases. Data-driven modeling methods have been also used
to investigate the transmission dynamics of infectious diseases (Heesterbeek et al., 2015). It is wor-
thy to mention that the idea of the classical susceptible-infectious-removed model has been further
investigated by various researchers to observe the transmission dynamics of distinct epidemics (see
for instance Flaxman et al. (2020); Samui et al. (2020); Britton et al. (2020)). Optimal control the-
ory has been extensively used and is very common in infectious disease epidemiology (Rohith &
Devika, 2020; Khajanchi et al., 2021). The adjustment of epidemic parameters in a feasible way, by
taking the limits on the system to optimize a given function, can be applied with the help of control
theory. Both non-pharmaceutical and pharmaceutical control measures can be used to control the
infection. Especially, the non-pharmaceutical intervention strategies play a key role. Usually, with
the help of optimal control analysis, we are able to know how to eradicate the disease.

2



Under review as a conference paper at ICLR 2023

A re-emerging infectious disease of monkeypox 2022, was reported in May 2022. Here, we are
interested to formulate a model by taking an extended susceptible–infected–recovered-type model
with two compartmental blocks: humans and animals. We then discuss the qualitative analysis of
the proposed two-strained model. Further, applying the theory of optimal control to understand
the progression of the monkeypox virus transmission. Since it is not merely a medical problem,
regarding a public health concern, both the combination of non-pharmaceutical and pharmaceutical
intervention can be taken into account to propose a control mechanism for the control of monkeypox
virus transmission.

3 THE MODEL

We propose an epidemiological model for the dynamics of monkeypox based on the cross infection
hypothesis: animal to human and human to human. The various compartmental population of the
model divided into two blocks: human and animal. The first block represents the evolution of the
human population, consequently distributed into three epidemiological groups: sensitive individuals,
infected by monkeypox, and recovered individuals, while the second block represents the evolution
of animals, divided into two classes: susceptible animals and infected animals. To symbolize the
population groups, let us assume that Sh(t) represents the sensitive individuals at time t, which are
not infected but have a chance to be infected at time t+∆t (∆t is the small increment in time). Mh

denotes the individual infected with monkeypox, and Rh is the recovered individuals. Similarly, the
susceptible and infected animals are denoted by Sa(t) and Ia(t), respectively. Due to the assumption
of a homogeneously mixed population for the successful transmission of the monkeypox virus, the
risky humans will enter the infected human compartment at a rate β, as well as, the susceptible
animal getting infected will move to the infected animal at a rate ϕ. The individual leaves the infected
human class only after they fully recover or die. The recovered individuals will enter Rh. Moreover,
the complete geometry of the epidemic problem is described by Figure 1, and thus, the evolution of
the disease is represented by the following deterministic system of differential equations:

dSh(t)

dt
= Φh − βMh(t)Sh(t)− ξMa(t)Sh(t)− ϑSh(t),

dMh(t)

dt
= βMh(t)Sh(t) + ξMa(t)Sh(t)− (ϑ+ ϑ1 + r)Mh(t),

dRh(t)

dt
= rMh(t)− ϑRh(t),

dSa(t)

dt
= Φa − ϕMa(t)Sa(t)− αSa(t),

dMa(t)

dt
= ϕMa(t)Sa(t)− (α+ α1)Ma(t),

(1)
with biologically feasible non-negative initial population sizes

Sh(0) > 0, Mh(0) ≥ 0, Rh(0) ≥ 0, Sa(0) > 0, Ma(0) ≥ 0. (2)

In the above epidemic problem (1)-(2), the parameters are described as: the newborn of human and
animal are denoted by Φh and Φa, respectively, while the monkeypox virus transmission rates are
β and ξ. The natural death rate of a human is assumed to be ϑ, while the same ratio for the animal
population is denoted by α. The monkeypox virus transmission rate from one animal to another is
assumed to be ϕ, and α1 is the death rate that arises from the infection of monkeypox virus in the
animal population. Moreover, the disease-induced death rate of a human is represented by ϑ1, and r
is the recovery rate of an infected human.

To proceed, first, we show the mathematical, as well as, the biological feasibility of the proposed
epidemic problem. To this end, we show the following result.

Proposition 1 The solution of the model (1)-(2) is positive and bounded.

3.1 DYNAMICAL ANALYSIS

In this section, we discuss the temporal dynamics of the model to find the stability conditions for
the monkeybox epidemic model. We find the monkeypox-free equilibrium state for the developed
model (1) and calculate the reproductive number. Let W0 is the monkeypox-free equilibrium of
the model, then, W0 =

(
Φh

ϑ , 0, 0, Φa

α , 0
)
. Moreover, the reproductive parameter, denoted by Ro,
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Parameters Indices % Increase or Decrease Impact on Ro

β 0.3677 10 3.677 %
ϑ1 -0.0288 10 0.288 %
r -0.3316 10 3.316 %
ϕ 0.6322 10 6.322 %
α1 -0.5099 10 5.099 %
α -0.7546 10 7.546 %

Table 1: Indices of the proposed epidemic problem parameters related with the basic reproductive
number, and its relative impact.

represents the average of the secondary infectious produced by an infective whenever put into a sen-
sitive/susceptible individual. To calculate this quantity for the model reported in Eq.(1) by following
(Van den Driessche & Watmough, 2002), let us assume that X = (Mh,Ma)

⊤, then
dX

dt
= F − V,

where, F and V are the 2 by 2 variational matrices at the monkeypox-free equilibrium defined as

F =

(
βΦh

ϑ
ξΦa

α

0 ϕΦa

α

)
, V =

(
ϑ+ ϑ1 + r 0

0 α+ α1

)
.

The reproductive number is the spectral radius of the matrix FV −1 and takes the following form

Ro = Rh +Ra, Rh =
βΦh

ϑ (ϑ+ ϑ1 + r)
, Ra =

ϕΦa

α (α+ α1)
.

Since the reproductive number is the expected average number of secondary infections. It is con-
cluded that whenever Ro < 1 the disease will die out, otherwise spread if Ro > 1.

3.2 BIOLOGICAL INTERPRETATION OF THE BASIC REPRODUCTIVE NUMBER

Since the initial spread of any epidemic is related to the reproductive number, we analyze the nor-
malized sensitivity of the proposed system parameters. The sensitivity of the threshold quantity will
enable us to recognize the most sensitive and effective parameters for disease transmission, because
a small perturbation in the most sensitive parameter can produce a great influence on the associated
epidemic model. To present the prediction for the prevalence of the monkeypox disease, reduction,
and persistence in the transmission of infection, we perform sensitivity analysis of the basic repro-
ductive number Ro. Let us assume that γ is any epidemic parameter, then the normalized forward
sensitivity co-efficient (index) related to the basic reproductive number Ro is defined by:

ΥRo
γ =

∂Ro

∂γ
× γ

Ro
.

It is clear from the formula of normalized sensitivity coefficient that it may be dependent or inde-
pendent of the model parameters. We calculate the associated sensitivity indices accordingly listed
in Table 1. It can be observed that some of the indices of the model parameters are negative and
some are positive. The negative and positive signs demonstrate that the perturbation to these param-
eters can produce a decrease or increase in the value of the basic reproductive number, respectively.
For example, the forward sensitivity index of the parameter β is ΥRo

β = 0.3677, which indicates
that if we increase the value of β by 10%, as a result, the value of the basic reproductive number
Ro would increase by 3.677%. Similarly, the forward sensitivity indices of ϑ1 and ϕ are 0.0288
and 0.6322, respectively, which implies that if we perturb the value of ϑ1 and ϕ by 10% it would
result in increase or decrease in the value of the basic reproductive number by 0.288% and 6.322%,
respectively. On the other hand, the sensitivity indices of r, α, and α1 are negatively associated with
the basic reproductive number, i.e., increasing their values would decrease the value of Ro. If we
increase the value of r, α, and α1 by 10% it casts the decrease of 15.961% in the value of Ro. In
this analysis, we observed that the most effective parameters of the proposed epidemic problem are
β, r, ϕ, α1, and α, therefore, special attention is required for the parameters with highly sensitive
indices to forecast the transmission of monkeypox disease. We now state the dynamics of the model
by proving the following results.
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Theorem 1 If Ro < 1, then the dynamical system (1) is locally and globally asymptotically stable
around the monkeypox-free equilibrium state of the model and unstable if it is greater than unity.

4 OPTIMAL CONTROL

The application of optimal control theory is one of the important theoretical analyses associated
with infectious diseases. We use this tool to produce the proper control mechanism for eliminating
infection of monkeypox virus transmission. Our analysis is not limited to the theoretical analy-
sis, and we also perform some numerical experiments to show the effect of the proposed control
strategies on the dynamics of monkeypox virus transmission. The key goal is to reduce the infected
humans and animals while maximizing the recovered human using the optimal control theory. The
parameters with certain assumptions lead to the monkeypox model as described by Eq.(1), which is
a coupled system with five state variables (Sh(t),Mh(t), Rh(t), Sa(t),Ma(t)). We introduce four
control measures µi(t) (i = 1, 2, . . . , 4) that control the number of risky and infected individuals
externally over a given time frame.

4.1 REDUCING THE RISK OF HUMAN TO HUMAN AND ZOONOTIC TRANSMISSION

The main prevention measure for monkeypox is educating people to rise awareness of risk factors
about the control measures they can take for the reduction of the virus transmission. Due to suffi-
cient information, the population needs to maintain social distance, wear masks, follow the strategy
of home isolation, etc. Thus, we introduce the control factors (1 − η1µ1(t)) and (1 − η2µ2(t))
to control the interaction between susceptible/risky human Sh(t) with infected human Mh(t) and
animal Ma(t), which represent the depletion in β and ξ, respectively, while η1 and η2 compute
the usefulness of the control measure µ1(t) and µ2(t) (where µ1(t), µ2(t) ∈ [0, 1]), respectively.
The most successful framework is µ1(t) ≡ 1 ≡ µ2(t), which indicates that when the interaction
of susceptible humans with infected humans and animals is almost perfectly avoided it makes the
transmission of the disease to zero. Here, µ1(t) ≡ 1 ≡ µ2(t) means fully response by implementing
the given control mechanism, while µ1(t) ≡ 0 ≡ µ2(t) implies no response. The intensities of the
responses are associated with the behavior of the human population, and so these response inten-
sities are represented by µ1(t) and µ2(t) as control measures. We maximize the responses using
isolation so that they change their behavior and the cost will correspond to a nonlinear function of
µ1(t) and µ2(t). Thus, we wish to find the optimal response for risky individuals with the help of
isolation as a control measure.

4.2 TREATMENT FOR INFECTED INDIVIDUALS

The treatment of infected individuals not only controls the number of the infected individuals but
also influences its development. Although there is no proper treatment for the monkeypox virus
infection, smallpox and monkeypox are genetically similar, and there are antiviral drugs against
smallpox that can be used for treatment purposes. So in the present scenario, we assume the accessi-
bility of treatment for the infected population. We introduce the term −η3µ3(t)Mh(t) as a treatment
in the proposed model, where η3 represents the treatment rate associated with the intensity µ3(t).
There are various costs associated with given medication, so we assume that the intensity of treat-
ment control measure µ3(t) lies between 0 and unity. The control µ3(t) will attempt to change the
fraction of the infected population to the recovered population.

4.3 RESTRICTION ON ANIMALS

While it seems to be difficult that how to restrict animals from the transmission of the monkeypox
infection, it is possible. In the current situation, various countries have restricted the importation of
animals (rodents) and non-human primates. Animals that are infected with monkeypox should be
placed into quarantine immediately to be isolated from other animals. Moreover, an animal that has
close contact with another infected animal should be also isolated and accordingly quarantined to
observe the symptoms of monkeypox for 30 days. We introduce the control factor (1− η4µ4(t)) to
control the interactions of susceptible and infected animals, where µ4(t) ∈ [0, 1].
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In this section, the main objective is to obtain the optimal control strategy that minimizes the infected
population with the aid of the above control measures and with the minimum associated cost. Thus,
the admissible set of control measures µi(t) is defined by

U = {µi(t), i = 1, 2, . . . , 4 : 0 ≤ µi(t) ≤ 1, t ∈ [0, T ]} .
We, therefore, develop the control problem by keeping in view the above strategies with the objective
functional W ({µi}) to be minimized:

W (µi(t), i = 1, . . . , 4) =

∫ T

0

h1Mh(t)dt+
1

2

∫ T

0

4∑
i=1

κiµ
2
i (t)dt, (3)

subject to
dSh(t)

dt
= Φh − β {1− η1µ1(t)}Mh(t)Sh(t)− ξ {1− η2µ2(t)}Ma(t)Sh(t)− ϑSh(t),

dMh(t)

dt
= β {1− η1µ1(t)}Mh(t)Sh(t) + ξ {1− η2µ2(t)}Ma(t)Sh(t)

− {ϑ+ ϑ1 + r + η3µ3(t)}Mh(t),

dRh(t)

dt
= {r + η3µ3(t)}Mh(t)− ϑRh(t),

dSa(t)

dt
= Φa − ϕ {1− η4µ4(t)}Ma(t)Sa(t)− αSa(t),

dMa(t)

dt
= ϕ {1− η4µ4(t)}Ma(t)Sa(t)− {α+ α1}Ma(t),

(4)

with the initial population sizes in Eq. (2). In Eq. (3), the integrand represents the value of cost
at time t, while the function W shows the sum of the cost described by the integrand or the total
incurred cost. The parameters h1 and κi’s are non-negative parameters that are weight constants to
balance the units of the integrand. The control measures µ∗

i (i = 1, 2, 3, 4) exist in the admissible
control set U that minimize W . We now discuss the existence of optimal control for our proposed
control problem (4), then use the well-known Pontryagin’s maximum principle for characterization
and getting the necessary conditions of the optimal controls. The following result will be presented
to ensure the existence of µ∗

i that minimizes the function W .

Theorem 2 There exist optimal controls µ∗(t) = (µ1(t), µ2(t), µ3(t), µ4(t)) in U that minimize
the objective function W associated with the control problem in Eqs.(4)–(3).

Since the above result ensures the existence of the controls to minimize the objective functional (3)
subject to the state system (4), we then derive the necessary conditions for characterization of the
optimal control problem using Pontryagin’s maximum principle, see Theorem 3 in the appendix.

5 NUMERICAL EXPERIMENTS

We perform numerical experiments to test the model predictions and verify the analytical findings.
We utilize a well-known numerical procedure of the Runge-Kutta method of the 4th order. First, we
discretize the model and develop the algorithm to perform the numerical simulations.

5.1 DISCRITIZATION

To discritize the model, we set

X =


Sh

Mh

Rh

Sa

Ma

 , F =


Φh − βMhSh − ξMaSh − ϑSh

βMhSh + ξMaSh − (ϑ+ ϑ1 + r)Mh

rMh − ϑRh

Φa − ϕMaSa − αSa

ϕMaSa − (α+ α1)Ma

 ,

Y =


φ1

φ2

φ3

φ4

φ5

 , G =


Φh − β {1− η1µ1}MhSh − ξ {1− η2µ2}MaSh − ϑSh

β {1− η1µ1}MhSh + ξ {1− η2µ2}MaSh − {ϑ+ ϑ1 + r + η3µ3}Mh

{r + η3µ3}Mh − ϑRh

Φa − ϕ {1− η4µ4}MaSa − αSa

ϕ {1− η4µ4}MaSa − {α+ α1}Ma

 ,
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and

H =

 {φ1 − φ2} {β (1− η1µ
∗
1)M

∗
h + ξ(1− η2µ

∗
3)Ma}+ φ∗

1ϑ,
{φ1 − φ2} {β (1− η1µ

∗
1)S

∗
h} − {ϑ+ ϑ1 + r + η3µ

∗
3}φ2 − {r + µ∗

3}φ3 − h1,
ϑφ3, {φ4 − φ5} {ϕ (1− η4µ

∗
4)Ma} − αφ4,

{φ1 − φ2} {ξ (1− η2µ
∗
2)S

∗
h}+ {α+ α1}φ5 + {φ4 − φ5} {ϕ (1− η4µ

∗
4)S

∗
a} ,

 ,

then Eq.(1), Eq.4), and Eq.(6) can be re-casted as

dX(t)

dt
= F (t,X(t)),

dX(t, µ)

dt
= G(t,X(µ)),

dY (t)

dt
= H(t, φ). (5)

The application of forward and backward Runge-Kutta method of order four gives

Xi+1 = Xi +
l

6
(h1 + 2h2 + 2h3 + h4) , Yi−1 = Yi −

l

6
(k1 + 2k2 + 2k3 + k4) , (6)

where

h1 = F (tn, Xn), h2 = F

(
tn +

l

2
, Xn +

lh1

2

)
, h3 = F

(
tn +

l

2
, Xn +

lh2

2

)
,

h4 = F (tn + h,Xn + lh3) , k1 = F (tn, Xn), k2 = F

(
tn − l

2
, Xn − lk1

2

)
,

k3 = F

(
tn − l

2
, Xn − lk2

2

)
, k4 = F (tn − k,Xn − lk3) .

Thus the rest of algorithms can be concluded as:

Algorithm 1 Runge-Kutta Method (RK4)

1: Input: Endpoints t0, tmax, integer n, parametric values, initial conditions
2: Output: approximation Sh, Mh, Rh, Sa, Ma at (n+ 1) values of t
3: Parameters and Initial Conditions: Setting the values of epidemic parameters and initial sizes

for compartmental populations
4: for i = 1, · · · , n do
5: Recursive Formula: Xi+1 for both control and without control system as given in Eq.(5)

and Eq.(6)
6: end for
7: for i = 1, · · · , n, j = n+ 2− i do
8: Recursive Formula: Yi−1 as given in Eq.(5) and Eq.(6)
9: end for

10: Optimal Control: Plugging optimal control variables as given by Eq.(7)

11: Output:
(
ti, S

i+1
h ,M i+1

h , Ri+1
h , Si+1

a ,M i+1
a

)

5.2 DISCUSSION

We perform numerical simulations to discuss sensitivity analysis and the application of optimal
control strategies. We conduct numerical experiments to present the validation of our theoretical
findings for the model parameters and initial sizes of populations as specified in Table 2. It could
be noted that some of the parameters are directly correlated to the basic reproductive number, Ro,
while some are negatively correlated, as shown in Figure 2. Figure 3 represents the contour plot
that describes the dependency of the basic reproductive number, Ro, on β (disease transmission
co-efficient of humans) and ϕ (disease transmission co-efficient of animals); β and ϑ (natural death
rate); β and r (recovery rate of infected population); and ϕ and α1 (the death rate arises from
monkeypox in animal population). It is very much clear from Table 1 and Figure 2 that the epidemic
parameters, namely, β and ϕ have positive indices, and are also associated with the susceptible
population. If we increase the value of β and ϕ, it will increase the value of basic reproductive
number Ro and cross the value Ro = 1, which leads to a substantial outbreak of the monkeypox
virus transmission. To maintain the value of the basic reproductive number and deduce a favorable
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control method to eradicate the spread of monkeypox virus transmission, we need to restrict the
value of these parameters, which is possible with the help of contact tracing and maintaining social
distancing. On the other hand, the parameters with negative indices are ϑ, r, α, and α1 as shown
in Figure 2, while the relative effect is reported in Figure 3. Moreover, whenever the value of those
parameters having negative indices increases, the basic reproductive number Ro will decrease, and
if its value becomes less than unity, the infection will no longer persist. So, treatment of infected
humans through medication has been incorporated with the aid of optimal control to eliminate the
monkeypox virus. To observe the influence of intervention strategies on the transmission dynamics
of monkeypox, we perform the numerical simulations of the proposed optimal control problem
with the help of the Runge-Kutta (RK4) scheme, as concluded in Algorithm 1. Moreover, the
time frame is taken to be 20 units, and the value of parameters are borrowed from Table 2 while
investigating and implementing the optimal control mechanism. To investigate the effect of optimal
control measures for the monkeypox virus transmission, we execute the proposed problem in two
folds: without control µ1(t) = µ2(t) = µ3(t) = µ4(t) = 0 and with the combination of four
controls (µ1(t), µ2(t), µ3(t), µ4(t)) which leads to the results as presented in Figure 4. These graphs
respectively demonstrate the dynamics of human and animal compartments of the proposed model
under no control and with controls. The black dashed and red dashed curves respectively represent
the dynamics of each compartmental population with and without the utilization of control strategies
to highlight the effect of optimal policies implementation, see Figure 4. A significant reduction in
the infected population, as well as, an increase in the non-infected population can be seen with
the application of optimal control measures, whenever, compared without intervention strategies.
We conclude that the combination of suggested optimal control measures can achieve a significant
reduction in monkeypox virus transmission whenever applied in a true sense.

1 2 3 4 5 6
−1

−0.5

0

0.5

1

β      ϑ
1
      r      φ        α

1
       α

Figure 2: The plot represents the sensitivity indices and most sensitive epidemic parameters related
to basic reproductive number Ro.

6 CONCLUSION

To keep the current scenario of the monkeypox virus transmission in our mind, we investigated and
proposed a model for the dynamics of monkeypox virus transmission. Both theoretical and numer-
ical analyses of the proposed epidemic problem have been studied with the aid of stability theory.
Positivity, as well as, the boundedness of the states of the epidemic problem guarantees that the
considered model is a well-defined dynamical system. We performed the local and global dynamics
of the model and derived the stability conditions. The proposed model has several epidemic pa-
rameters and so with the help of normalized sensitivity analysis, the most significant parameters are
quantified. It could be observed that disease transmission from both human-to-human and animals
to human play a significant role in disease transmission. Besides the disease transmission rate, the
parameter r is also very effective and has a major effect on infected individuals and Ro. Moreover,
we modified the proposed model by incorporating optimal measures with the aid of control theory
to mitigate the monkeypox disease burden and describe the effect of control policies implementa-
tion, and as a result to stop the disease from spreading. The findings of our optimal control problem
show that the maintenance of the social distancing, tracing contact, transportation of animals and
treatment of infected individuals may support mitigating monkeypox virus spreading in the current
scenario of the epidemic.
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Figure 3: Contour plots of the basic reproductive number Ro to show the sensitivity analysis. The
basic reproductive number is taken to be the function of β, ϕ and ϑ1 to show the relative effect of
these parameters on the basic reproductive number.
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Figure 4: The plots represent the dynamics of the compartmental population with the implementa-
tion and without the implementation of control strategies

Given the increased development of fractional calculus, many operators of fractional orders were
introduced to capture more valuable information. In our future work, we will generalize the proposed
model to its associated fractional version to discuss the dynamics of monkeypox virus disease.
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APPENDIX

A.1 PROOF OF PROPOSITION 1

Proof. The differentiability of the right-hand side of the proposed model equations implies the
existence of a unique maximal solution for any associated Cauchy problem. So, the solution of the
first equation of the model looks like

Sh(t) = exp

{
−ϑt−

∫ t

0

(βMh(x) + ξMa(x)) dx

}
× Φht exp

{
ϑt+

∫ x

0

(βMh(y) + ξMa(y)) dy

}
dx

+ Sh(0) exp

{
−ϑt−

∫ t

0

(βMh(x) + ξMa(x)) dx

}
> 0.

The solution of second equation of the model (1) takes the form

Mh(t) = exp

{
−(ϑ+ ϑ1 + r)t+

∫ t

0

βSh(x)dx

}∫ t

0

ξMa(x)Sh(x)

× exp

{
(ϑ+ ϑ1 + r)x+

∫ x

0

βSh(y)dy

}
dx

+Mh(0) exp

{
−(ϑ+ ϑ1 + r)t+

∫ t

0

βSh(x)dx

}
≥ 0.
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Clearly, we see that Sh(t) > 0 and Mh(t) ≥ 0 for Sh(0) > 0 and Mh(0) ≥ 0. Following the
same steps, we can easily show that Rh(t) ≥ 0, Sa(t) > 0 and Ma(t) ≥ 0. Moreover, to show the
boundedness, let us assume that the total human and animal populations are denoted by Nh(t) and
Na(t) respectively, then the total dynamics of humans and animal looks like

dNh(t)

dt
≤ Φh − ϑNh(t),

dNa(t)

dt
≤ Φa − αNa(t).

It is easy to solve the above inequalities and then taking unbounded limit i.e., t approaches to infinity,
Nh(t) → Φh

ϑ and Na(t) → Φa

α , and thus the feasible region for the proposed model is given by

Ω =

{
(Sh,Mh, Rh, Sa,Ma) ∈ R5

+, Nh ≤ Φh

ϑ
, Na ≤ Φa

α

}
.

A.2 PROOF OF THEOREM 1

Proof. We use the approach of linear stability analysis and linearize the proposed model around the
Monkeypox free equilibrium, W0, then the variational matrix may takes the form

J(W0) =


−ϑ −βΦh

ϑ 0 0 − ξΦa

α

0 βΦh

ϑ − (ϑ+ ϑ1 + r) 0 0 ξΦa

α
0 r −ϑ 0 0

0 0 0 −α −ϕΦa

α
0 0 0 0 − (α+ α1)

 .

Let the associated eigenvalues of J(W0) are λi, where, i = 1, 2, . . . , 5, then we obtain

λ1 = −ϑ = λ3, λ2 = − (ϑ+ ϑ1 + r) (1−Rh) , λ4 = −α, λ5 = −(α+ α1).

Obviously, λ1, λ3, λ4 and λ5 are negative while λ2 is negative whenever Rh < 1 holds. Since,
Rh < 1 provided that R0 < 1, therefore we conclude that the proposed Monkeypox model is
locally asymptotically stable at the disease-free state W0 subject to the condition R0 < 1 holds.
To discuss the global dynamics, let us define So

h = Φh

ϑ and So
a = Φa

α , and a real-valued function,
H(t) = H0 +H1, such that

H0 =
{
Sh − S0

h

}
+

{
Sa − S0

a

}
, H1 = Mh +Rh +Ma.

Clearly, H(t) is non-negative and its temporal differentiation with the application of some algebraic
manipulation leads to the assertion

dH

dt
= −ϑ {Sh − So

h} − α {Sa − So
a} − (ϑ+ ϑ1)Mh − ϑRh − (α+ α1)Ma,

implies that dH
dt < 0. Also it could be noted that, whenever, Sh = So

h and Sa = So
a, then dH

dt = 0,
which prove that H(t) is Lyapunov function and the proposed model is stable globally asymptoti-
cally.

A.3 PROOF OF THEOREM 2

Proof. Since the solutions of model (1) are bounded and non-negative for the initial population sizes
(2). The objective functional is also non- negative which ultimately implies that W is bounded.
Thus to minimize the sequence of controls µτ (t) = (µτ

1(t), µ
τ
2(t), µ

τ
3(t), µ

τ
4(t)) ∈ U exists, such

that
lim
τ→∞

W (µτ (t)) = inf
µ∈U

W (µ(t)).

The controls in set U are bounded uniformly in L∞ space which implies that they are bounded
uniformly in L2([0, T ]) space. Since, L2 space is reflexive, so there exists a subsequence µ∗(t) ∈ U
such that

µτ
1(t) → µ∗

1(t), µτ
2(t) → µ∗

2(t), µτ
3(t) → µ∗

3(t), µτ
4(t) → µ∗

4(t)

weakly in L2 space as τ approaches ∞, then the sequence defined by zτ = (Sτ
h ,M

τ
h , R

τ
h, S

τ
a ,M

τ
a ) is

bounded uniformly corresponding to µτ (t). It can be observed from the right-hand side of model (1)
that they are uniformly bounded which gives the equi-continuity of the state sequence and uniform
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bounded-ness of the derivatives for zτ . The Arzel–Ascoli theorem then gives that there exist zτ =
(Sτ

h ,M
τ
h , R

τ
h, S

τ
a ,M

τ
a ) such that zτ → z∗ uniformly on [0, T ].

Further, to complete the proof, let us assume a proper subsequence passing through the limit of the
system (1) and corresponding to µ∗

1(t), µ
∗
2(t), µ

∗
3(t), µ

∗
4(t), we can obtain the optimal solution z∗.

Thus, the lower semi-continuity of L2 norm with respect to L2 weak convergence gives that

inf
µ∈U

W (µτ ) = lim
τ→∞

W (µτ ) ≥
∫ T

0

h1Mhdt+
1

2

∫ T

0

4∑
i=1

κiµ
2
i dt = W (µ∗).

Therefore, µ∗(t) = (µ∗
1(t), µ

∗
2(t), µ

∗
3(t), µ

∗
4(t)) is an optimal control measure.

A.4 CHARACTERIZATION OF OPTIMAL CONTROL

Theorem 3 There exists optimal controls µ∗ = (µ1, µ2, µ3, µ4) in U and the corresponding so-
lutions of optimal state z∗ = (S∗

h,M
∗
h , R

∗
h, S

∗
a ,M

∗
a ) of the Eq.(4) that minimize W (3), then the

adjoint variables φ1, φ2, φ3, φ4, and φ5 satisfying the equations:

φ
′

1(t) = {φ1 − φ2} {β (1− η1µ1)Mh + ξ(1− η2µ2)Ma}+ φ1ϑ,

φ
′

2(t) = {φ1 − φ2} {β (1− η1µ1)Sh}+ {ϑ+ ϑ1 + r + η3µ3}φ2 − {r + µ3}φ3 − h1,

φ
′

3(t) = ϑφ3, φ
′

4(t) = {φ4 − φ5} {ϕ (1− η4µ4)Ma}+ αφ4,

φ
′

5(t) = {φ1 − φ2} {ξ (1− η2µ2)Sh}+ {α+ α1}φ5 + {φ4 − φ5} {ϕ (1− η4µ4)Sa} ,
with the transversal condition:

φ1(T ) = φ2(T ) = φ3(T ) = φ4(T ) = φ5(T ) = 0.

Further, the associated optimal measures µ∗(t) = (µ∗
1(t), µ

∗
2(t), µ

∗
3(t), µ

∗
4(t)) are:

µ∗
1 =

1

κ1
{φ2 − φ1}βη1MhSh, µ∗

2 =
1

κ2
{φ1 − φ2} ξη2MaSh, µ∗

3 =
1

κ3
{φ2 − φ3} η3Mh,

µ∗
4 =

1

κ4
{φ5 − φ4} η4MaSa.

Proof. In order to investigate the necessary conditions for the control measures using the Pon-
tryagin’smaximum principle for the proposed model (4), we define the Hamiltonian H for every
t ∈ [0, T ] as:

H = h1Mh(t)dt+
1

2

4∑
i=1

κiµ
2
i (t) + φ(t)g(z, µ),

where φ(t) = (φ1(t), φ2(t), φ3(t), φ4(t), φ5(t), ), g = (g1, g2, g3, g4, g5), and g1, g2, g3, g4 and g5
respectively represent the right hand side of the first, second, third, fourth and fifth equation of the
system (4). We derive the minimized Hamiltonian with the help of Pontryagin’s maximum principle
which minimize the objective function W (3). The Pontryagin’s maximum principle relates the state
variables of the model and the objective functional with including adjoint variables. Therefore, by
using the Pontryagin’s principle there exists φ

′

1(t), φ
′

2(t), φ
′

3(t), φ
′

4(t) and φ
′

5(t) that satisfies

φ
′

1(t) =
∂H

∂Sh
, φ

′

2(t) =
∂H

∂Mh
, φ

′

3(t) =
∂H

∂Rh
, φ

′

4(t) =
∂H

∂Sa
, φ

′

5(t) =
∂H

∂Ma
,

with the transversal conditions φ1(T ) = φ2(T ) = φ3(T ) = φ4(T ) = φ5(T ) = 0. Now by using
the characterization of controls we have

∂H

∂µ1(t)
= 0,

∂H

∂µ2(t)
= 0,

∂H

∂µ3(t)
= 0,

∂H

∂µ4(t)
= 0.

From ∂H
∂µi

= 0 (i = 1, 2, 3, 4), and at µ1(t) = µ∗
1(t), µ2(t) = µ∗

2(t), µ3(t) = µ∗
3(t) and µ4(t) =

µ∗
4(t) we obtain

µ∗
1 =

1

κ1
{φ2 − φ1}βη1MhSh, µ∗

2 =
1

κ2
{φ1 − φ2} ξη2MaSh, µ

∗
3 =

1

κ3
{φ2 − φ3} η3Mh,

µ∗
4 =

1

κ4
{φ5 − φ4} η4MaSa.
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Parameter Value Parameter Value Parameter Value

Φh 0.9430 β 0.0003 ξ 0.0044
ϑ 0.4570 ϑ1 0.0910 r 0.0590
Φa 0.6000 ϕ 0.0790 α 0.1200
α1 0.0900 η1 0.0900 η2 0.5000
η3 0.0400 η4 0.0400 η5 0.0500
h1 0.6000 h2 0.9000 k1 0.4400
k2 0.0200 k3 0.2000 k4 0.2000
k5 0.2000

Table 2: Parametric values used in the numerical simulation of the optimal control problem

By considering the lower and upper bound for µ1(t), µ2(t), µ3(t), and µ4(t), we leads to the fol-
lowing assertions:

µ∗
1(t) = min

{
max

{
0,

1

κ1
{φ2(t)− φ1(t)}βη1Mh(t)Sh(t)

}
, 1

}
,

µ∗
2(t) = min

{
max

{
0,

1

κ2
{φ1(t)− φ2(t)} ξη2Ma(t)Sh(t)

}
, 1

}
,

µ∗
3(t) = min

{
max

{
0,

1

κ3
{φ2(t)− φ3(t)} η3Mh(t)

}
, 1

}
,

µ∗
4(t) = min

{
max

{
0,

1

κ4
{φ5(t)− φ4(t)} η4Ma(t)Sa(t)

}
, 1

}
.

(7)

It is also clear from the Hamiltonian H that

∂2H

∂µ2
1

= κ2
1 > 0,

∂2H

∂µ2
2

= κ2
2 > 0,

∂2H

∂µ2
3

= κ2
3 > 0,

∂2H

∂µ2
4

= κ2
4 > 0,

which implies that the optimal measures minimize (H).

We state the optimality system with the help of µ∗
1, µ∗

2, µ∗
3 and µ∗

4. Thus, the optimality system that
minimize H at (S∗

h, M∗
h , R∗

h, S∗
a , M∗

a , µ∗
1, µ∗

2, µ∗
3, µ∗

4, φ1, φ2, φ3, φ4) becomes:

dSh

dt
= Φh − β {1− η1µ

∗
1}M∗

hS
∗
h − ξ {1− η2µ

∗
2}M∗

aS
∗
h − ϑS∗

h,

dMh

dt
= β {1− η1µ

∗
1}M∗

hS
∗
h + ξ {1− η2µ

∗
2}M∗

aS
∗
h − {ϑ+ ϑ1 + r + η3µ

∗
3}M∗

h ,

dRh

dt
= {r + µ3(t)}M∗

h − ϑR∗
h,

dSa

dt
= Φa − ϕ {1− η4µ4(t)}M∗

aS
∗
a − αS∗

a ,

dMa

dt
= ϕ {1− η4µ

∗
4}M∗

aS
∗
a − {α+ α1}M∗

a ,

with initial population sizes S∗
h(0) > 0, M∗

h(0) ≥ 0, R∗
h(0) ≥ 0, S∗

a(0) ≥ 0, M∗
a (0) ≥ 0, and the

associated co-states (adjoint variables) are

φ
′

1 = {φ1 − φ2} {β (1− η1µ
∗
1)M

∗
h + ξ(1− η2µ

∗
3)Ma}+ φ∗

1ϑ,

φ
′

2 = {φ1 − φ2} {β (1− η1µ
∗
1)S

∗
h} − {ϑ+ ϑ1 + r + η3µ

∗
3}φ2 − {r + µ∗

3}φ3 − h1,

φ
′

3 = ϑφ3, φ
′

4 = {φ4 − φ5} {ϕ (1− η4µ
∗
4)Ma} − αφ4,

φ
′

5 = {φ1 − φ2} {ξ (1− η2µ
∗
2)S

∗
h}+ {α+ α1}φ5 + {φ4 − φ5} {ϕ (1− η4µ

∗
4)S

∗
a} ,

where φ1(T ) = φ2(T ) = φ3(T ) = φ4(T ) = φ5(T ) = 0 are the transversal conditions, and the
four control variables are stated by Eq.(7). Hence, the proof.
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